果蔬保鲜技术论文篇二 切分果蔬的贮藏保鲜技术研究进展 摘要:指出了近年来人们的消费模式不断发生着变化,促进了速食工业的快速发展,可以直接食用、营养、卫生的新鲜切分果蔬的需求迅速增加。鲜切果蔬除具有新鲜、使用方便等优点外,还具有重要的环境保护效应。鲜切果蔬更好地保持了果蔬的风味和营养,但耐贮性低于完整果蔬。主要阐述了切分果蔬经过加工处理而导致的贮存期缩短等保鲜技术的研究进展。 关键词:切分果蔬;保鲜技术;研究 1 引言 目前在欧洲、美国、日本等发达国家和地区鲜切果蔬已经实现系统化、规范化生产,产品大量进入食品商店和超市。据报道,美国等西方发达国家鲜切果蔬的消费已经占果品、蔬菜消费的1/3。在我国,鲜切果蔬生产刚刚起步,加工规模比较小。我国的鲜切果蔬生产量和品质还不能满足社会发展的需要,主要原因是鲜切果蔬加工工艺和保鲜技术存在问题,价格高,货架期(7d左右)得不到保证,而且对鲜切果蔬的质量没有检测标准。我国是一个水果、蔬菜生产大国,约占世界总产量的l/3,鲜切果蔬生产和技术的落后,不仅影响农民收入水平的提高,还影响我国农业及农村产业结构的战略性调整,因此研究鲜切果蔬的保鲜技术具有重大的经济意义和深远的社会意义。 2 切分果蔬的贮藏保鲜技术 低温保鲜 低温处理能有效地减缓酶和微生物的活动,抑制果蔬呼吸作用,降低各种生化反应的速率,延缓衰老和抑制褐变。由于酶活性化学反应的温度系数Q10为2~3,温度每下降10℃,生理生化反应就下降到1/3~1/2,因此,切分材料时在低温下操作,可以将乙烯和呼吸速率的上升及其他劣变的生理代谢减到最低,保存期可大大延长。孙伟、丁宝莲等[1]通过研究马铃薯、胡萝卜、甜椒、萝卜、莴苣、芹菜、甘蓝、大白菜、青花菜、蘑菇、花椰菜、香菇等切割后在10~30℃不同的温度下的呼吸速率发现,切割蔬菜加工场所适应温度应在15℃以下,多数研究认为切分水果在0~5℃条件下贮藏较适合。切割产品加工后在5℃条件下运输和销售,其表面微生物的数量至少可以在10d保持稳定,而在10℃条件下,只能使切割蔬菜表面微生物在3d保持基本稳定,之后就急剧上升。不同果蔬对低温的忍耐力不同,每种果蔬都有其最佳的加工和贮藏温度。 气调保鲜 气调保鲜作为无公害保鲜技术,在国际上倍受重视。水果经预加工后进行气调包装 (modified atmosphere package,MAP) 可以大大延长水果的货架期。MAP 结合冷藏可显著提高切分水果的贮藏质量,延长贮藏期。在贮藏过程中创造一个低O2和高CO2的环境,可降低呼吸,抑制乙烯的产生,延迟切分果蔬的衰老,延长贮藏时间。在降低O2浓度升高CO2浓度的同时,防止嫌气环境的形成,因为这种环境的形成,容易导致水果无氧呼吸产生异味。合适的气体环境可通过适当的包装由果蔬的呼吸作用而获得,也可以人为地改变贮藏环境的气体组成(control atmosphere)。切分果蔬包装内部通常要保持2%~5%O2和5%~10%CO2,以利于保持品质。BAI [2]在研究中发现用具有不同CO2和O2透过率的聚乙烯薄膜密封包装可使切分糙皮甜瓜的保鲜期从不包装时的6d延长到12d,而且品质也优于不包装处理。包装薄膜的厚度和组成成分对保鲜效果也有较大的影响。周涛等[3]发现使用高密度聚乙烯薄膜比使用低密度聚乙烯薄膜包装更能抑制切分茭白的木质化,保持嫩度。王清章等[4]采用010mm和008mm厚的低密度聚乙烯薄膜以及008mm和006mm厚的PA/PE复合薄膜真空包装切分莲藕,结果表明PA/PE能极显著地抑制莲藕的褐变,并能保持较多的营养成分。 涂膜保鲜 涂膜技术将可食性膜涂于切分果蔬表面形成涂层,可保持和改善产品品质。可食性膜可减少水分损失,防止芳香成分挥发;阻止氧气进入,降低水果表面的氧气浓度,提高CO2浓度,进而可抑制呼吸作用,延迟乙烯产生,延缓果蔬的后熟和衰老,有利于贮藏;抑制果蔬的褐变,在成膜剂中加入抗氧化剂、抗褐变剂可以降低切分果蔬的氧化变质与变色。Mei等[5]采用5%的葡萄糖酸钙和乳酸钙的混合物,其中含有的VE,来涂膜处理切分胡萝卜,较好地保持了切分产品的品质和营养成分。 涂膜剂可分为糖类、蛋白质类、复合类。糖类涂膜剂主要包括壳聚糖类、海藻酸钠类、淀粉类及魔芋可食性膜。蛋白质类可分为玉米醇溶蛋白、大豆蛋白、乳清蛋白等。复合型膜是由糖、脂肪、蛋白质等多种物质经过一定的处理而形成的膜。由于它们之间的性质不同和功能上的互补性,所形成的膜有更为理想的性能。彭丽霞等[6]用2%的壳聚糖涂膜处理切分荸荠较好地抑制了褐变。 3 切分果蔬微生物的控制 鲜切果蔬,尤其是切分水果,切分后汁液外渗,其汁液中糖分和其他营养成分含量较高,有利于微生物的生长,很容易导致腐烂。目前,日本、法国等国家对鲜切果蔬产品都制定了严格的微生物控制标推,保证鲜切产品的卫生及质量。 鲜切果蔬防止微生物生长主要是控制水分活度(aw)和酸度(pH值),应用防腐剂及低温冷藏等栅栏因子。蔬菜上的微生物主要是细菌,霉菌、酵母菌数量较少;水果上除有一定细菌外,霉菌、酵母菌数量相对较多。不同种类的蔬菜和水果上的微生物群落差别很大。果蔬上常见的细菌有欧文氏菌属、假单孢菌属、黄单孢菌属(Xanthomonas)、棒杆菌属(Corynebacterium)、芽孢杆菌属、梭状芽孢杆菌属等,尤以欧文氏菌属、假单孢菌属常见。欧文氏菌属、某些假单孢菌 (如边缘单孢菌,Pseudomonas marginalis)、芽孢杆菌以及梭状芽孢杆菌可以引起果蔬发生细菌性软化腐烂。这些细菌可分泌果胶酶,分解果胶,使蔬菜组织软化;有时有水渗出,并产生臭气。 化学防腐剂 醋酸、苯甲酸、次氯酸钠、山梨酸及其盐类、H2O2等可有效抑制微生物生长繁殖,有效控制那些在低温下仍能生长的腐败菌和致病菌。在生产上,常在清洗液中加入防腐剂,进行清洗处理。陈胜民[7]使用次氯酸钠、双氧水及氯化钙分别处理切分莴苣,其中100mg/kgNaClO浸泡3min的贮藏效果最好。但是使用次氯酸钠一般来说只有一个星期的保鲜期,若想获得更长的保鲜期,则要配合使用其他防腐剂如山梨酸钾等。鲜切蔬菜组织的pH值一般为~,正适合于各种腐败菌的生长,加入适当的醋酸、柠檬酸和乳酸等,可降低果蔬组织的pH值,抑制微生物的生长繁殖。但是,过多的酸会破坏果蔬本身的风味。 生物防腐剂 生物防腐剂是指来自植物、动物、微生物中的一类抗菌物质。由于鲜切果蔬为即食产品,化学防腐剂的应用受到一定限制,因此来自生物的天然防腐剂的研究和应用,便日益受到重视。近年来,经过大量的研究发现,乳酸菌的代谢物细菌素或类细菌素,能有效地抑制鲜切果蔬中嗜水气单胞菌和单核李氏杆菌等有害微生物的生长。Vescovo等[8]成功地应用乳酸菌保存生菜色拉。由于生物防腐剂的防治成本高和防治效果较单一,目前的应用受到较大的限制。 物理方法 近年来采用辐照、臭氧、超声波、紫外照射、超高压、脉冲电场和脉冲磁场来控制切分果蔬中的微生物研究取得了较大的进展。这些物理方法与传统的热处理相比,温度变化小,既不使产品发生显著的化学变化,也不会产生异味,既可保持产品的营养成分,又可保持产品的新鲜感和良好风味,近年来在生产上得到较广泛的应用。高翔等[9]采用辐照鲜切西洋芹,结果表明辐照剂量为1kGy可有效控制微生物繁殖,使细菌数降低2个数量级;霉菌和酵母菌降低一个数量级;大肠菌群未检出;同时大大抑制酶活力,多酚氧化酶的活力较对照降低60个单位;各项营养指标良好,贮藏至第6d,Vc含量高于对照15%;感官品质优良。但采用辐照方法来保鲜切分果蔬时应注意:由于不同的果蔬具有不同的辐照耐受性,当辐照剂量超过一定值,会造成细胞膜的损伤。 紫外照射也能较好地控制切分果蔬微生物,对细菌、霉菌、酵母、病毒等各类微生物都有显著的杀灭作用。紫外线不仅可以杀灭果蔬表面的微生物,同时紫外线还可以诱导切分果蔬产生一些次生代谢物质,这些次生代谢物质有抑菌的作用,从而延长切分果蔬的保鲜期。超高压杀菌是将食品物料以某种方式包装以后,放入液体介质中,在100~1000MPa压力下作用一段时间后,使之达到灭菌的要求,其基本原理就是压力对微生物的致死作用。日本一家公司,在25℃条件下,使用606×108Pa,在20min内可将土豆色拉上的芽孢菌全部杀死。超声波杀菌近年来也得到了应用,超声波杀菌单独使用不能取得较好的杀菌效果,它可以和其他的杀菌 措施 结合使用可取得较好的效果。目前,一般用超声波来清洗切分果蔬。脉冲电场和脉冲磁场杀菌机理尚未完全清楚,但是用它杀菌所用的时间较短,可取得较好的杀菌效果。 4 切分果蔬的品质变化 切分产品褐变及软化 鲜切果蔬发生的褐变和白化在生产上主要采用酶的抑制剂和抗氧化剂来控制酚氧化酶的活性,或降低氧浓度,来抑制酶促褐变。传统上采用的化学物质有亚硫酸钠盐、柠檬酸等,近年又研究发现醋酸锌、氯化钙、异抗坏血酸及其钠盐、L-半胱氨酸、4-取代基间苯二酚等对于酶促反应的控制具有显著效果。国外对土豆切片、苹果切片、鲜切杨桃片的研究表明结合使用多种褐变抑制剂对褐变的控制效果更好。 硬度下降及组织透明化 潘勇贵等[10]对切分菠萝进行研究发现切分菠萝硬度快速下降,其机理可能是伤乙烯和伤呼吸加快果蔬组织的衰老进程,尤其是跃变型果实,伤乙烯和伤呼吸诱导一些与成熟相关酶类的活性,如果胶酶、纤维素酶、脂酶、过氧化物酶等活性,从而使组织细胞崩溃,果肉软化;切分导致的细胞破裂,使细胞降解酶被激活,或与底物接触机会增加,使细胞破坏所致;微生物的入侵分泌果胶酶、纤维素酶等破坏果蔬组织。组织透明化在切分哈密瓜上的表现尤为严重。哈密瓜切分后,如切分时的温度过高,或切分的工艺不正确,切分后哈密瓜片会在几小时之内出现透明化,透明率可达到整个切分瓜片的60%。 2013年3月 绿 色 科 技 第3期5 结语 在生产过程中对果蔬进行整理、清洗、切分等操作,果蔬不再以完整状态而存在,从而引起一系列的生理生化变化,这些变化将会影响切分果蔬的质量,进而影响切分产品的安全性和货架期,因而切分果蔬的生理生化变化研究受到广泛重视,有待于进一步地深入研究。 参考文献: [1] 孙 伟,丁宝莲,虞冠军,等.半加工切割蔬菜生产的生理和品质保持问题[J].上海农业学报,1999,15(4):80~83. [2] ,,,AND and chemical properties of Edible Films Containing Nisin and Their Action Against Listeria Monocytogenes[J].Journal of Food Science,2001,66(7):1006~1012. [3] 周 涛.MAP包装对微加工茭白品质的影响[J].食品工业科技,2002(5):64~66. [4] 王清章,李 洁.包装材料对莲藕贮藏保鲜的影响[J].保鲜与加工,2002,2(2):9~11. [5] ,,,et of Exogenous Propylene on Softening,Glycosidase,and Pectinmethylesterase Activity during postharvest Riping of Apricots[J].,Chem,2002,50(2):1441~1446. [6] 彭贵霞,郁志芳,夏志华,等.鲜切山药片生产工艺技术的研究[J].食品科学,2003,24(2):66~69. [7] 陈胜民.莴苣MP加工工艺及贮藏研究[J].食品科学,2002,23(2):142~143. [8] Vescovo M,Torriani S,Orsi C,et of antimicrobia-producing latic acid bacterial to control pathogens invegetables[J].Apple Bacteriol,1996,81(3):113. [9] 高 翔,陆兆新,张立奎,等.鲜切西洋芹辐照保鲜的研究[J].食品与发酵工业,2001,29(7):32~35. [10] 潘永贵,施瑞城.采后果蔬受机械伤害的生理生化反应[J].植物生理学通讯,2000,36(6):568~572. [11] 王 莉.浅谈切分果蔬保鲜技术的研究现状和发展趋势[J].现代园艺,2012(24). [12] 陈守江.果蔬采后超低氧保鲜技术研究进展[J].南京:晓庄学院学报,2012(6). [13] 尹淑娟.浅谈果蔬气调贮藏保鲜技术[J].科技文汇,2012(3). [14] 胡 欣,张长峰,郑先章.减压冷藏技术对鲜切果蔬保鲜效果的研究[J].保鲜与加工,2012(6).
果蔬汁加工技术的应用进展
摘要 :果蔬经过制汁后比原果更容易贮藏,含有丰富的营养成分,且在减少果蔬原料的损失的同时提高其附加值。本文综述了果蔬汁加工过程中破碎榨汁技术、过滤澄清技术、均质技术、浓缩技术和杀菌技术的应用进展。
关键词 :果蔬汁 加工技术 应用进展
近年来,随着人们生活水平的逐步提高,对日常饮品的“营养、安全、健康”更为关注和重视。果蔬汁在口感及营养方面都接近新鲜果蔬,并且和具有一定的保健价值,受到各年龄阶段人们的喜爱。不同果蔬汁的加工方法不同,但某些关键技术是相似的。本文主要介绍果蔬汁加工技术中破碎榨汁技术、膜分离技术、超高压技术、高压脉冲技术和酶技术的应用进展。
1. 破碎榨汁技术
根据果蔬不同的形状、特性及加工需要,选用合适的破碎设备,并结合相适宜的破碎工艺进行破碎。常用的破碎工艺可分为热破碎和冷破碎。通常情况下,为了生产得到组织形态好、具有一定粘稠度的果蔬汁,可以运用热破碎,通过抑制和破坏某些酶的活力,如果胶分解酶、脂肪氧化酶等,从而达到破碎效果。[1]果蔬汁榨汁过程中,果蔬中所含有的果胶、淀粉、纤维素等物质会影响果蔬的出汁率,导致果蔬出汁率降低。采用酶技术处理果蔬原料, 即可提高产品出汁率, 该技术不仅可提高产品的澄清度, 且能防止果汁产生沉淀。[2]
2. 膜分离技术
传统的澄清方法是对果蔬汁进行酶处理,如果胶酶等,再用明胶、单宁、膨润土、硅溶胶等澄清剂对其进行絮沉降处理,静置、取清液,最后用离心或过滤的方法进一步处理。[3]在传统加工工艺过程中,果蔬汁成品的营养物质和风味物质损失多、成本高、耗能大。膜分离技术在果蔬汁制品的生产加工过程中发挥重要作用,能够有效地克服这些缺陷。膜分离技术主要具备使果蔬汁脱苦、脱酸、澄清和浓缩的功能,并提高果蔬汁的稳定性。
果蔬汁的脱苦
柑橘类果汁由于含有柚皮苷、柠檬碱等苦味物质,对产品的风味和商业价值造成负面影响。1E. Hernandez等人[4]利用超滤和二已烯基聚苯乙烯树脂吸附的联合过程对葡萄抽汁进行脱苦的实验,表明柚皮苷和柠檬碱可被完全除去,果汁风味得到显著提高。
果蔬汁的脱酸
根据刘茉娥等人[5]介绍利用电渗析膜,表明电渗析膜可以脱除果汁中的有机酸,能够使果汁酸度降低,从而提高果汁的品质。
果蔬汁的澄清
果蔬汁中因含有一些胶体物质、单宁、蛋白质等物质,它们在加热和贮存过程中往往使果蔬汁变得混浊,有的甚至产生沉淀,缩短了产品的货架期。应用超滤法澄清番茄汁、苹果汁、菠萝汁、梨汁、柑橘汁等,可获得较好的经济效益和较高的产品质量。
果蔬汁的稳定性
超滤可提高果蔬汁的稳定性,如苹果汁在超滤前宾透光率为,经超滤后,透光率为,在户观上已达到清澈透明,并在常温下贮存四个月,其透光率几乎为一定值,稳定性良好。[6]
3.超高压技术
杀菌是果蔬汁制品生产中的关键技术之一。传统的热力杀菌虽然可以杀灭鲜榨果蔬汁中的微生物, 但果蔬汁中的营养成分仍会受到破坏, 产生热臭、风味劣变, 造成果蔬汁制品产品质量变差。[7]食品超高压技术(ultrahigh pressure processingUHP),又称为高静压技术(high hydrostatic pressure processing,HHP),是指将密封于弹性容器内的食品置于水或其他液体作为传压介质的压力系统中,经100MPa以上压力处理,在常温甚至更低的温度下达到杀菌、灭酶和改善食品功能特性等作用口。由于超高压技术只作用于非共价键,能够保证共价键完好无损,因而可以降低鲜榨果蔬汁中的微生物数量, 并保持产品的营养、风味和安全品质, 具有重要的意义。[8]与加热杀菌相比,超高压技术有着无法比拟的优越性, 特别是超高压杀菌可以保持食品原有的色、香、味和营养成分。
超高压对果蔬汁色泽的影响
经研究发现,与传统的热杀菌相比,超高压技术处理果蔬汁能够较好的保持其色泽,对部分果蔬,如番茄等甚至有改善色泽的作用。其原因在于超高压对果蔬内源酶的钝化作用及高压的均质作用使果蔬组织细胞内的呈色物质溶出。
超高压对果蔬汁芳香成分的影响
超高压对果蔬汁的香气有不同方面的影响,不仅能够处理过程中会使香气反应前体物的浓度增加还能使香气物质降解降低或激活某些有关香气的酶的活性。因此超高压加工的果蔬汁的风味会呈现出不同的变化。
超高压对果蔬汁营养物质的影响
超高压对食品中营养成分的影响与各种营养成分的性质有关,由于超高压处理不能破坏共价键,因此认为超高压处理对于食品中小分子化合物一类的营养物质不会有直接的破坏作用,但可能会加速一些食品体系中的生化反应,使部分营养物质间接受到破坏。
超高压对果蔬汁中酶活性的影响
内源酶易引起果蔬最初的品质变化,,压力在酶的活性中心通过打破稳定分子内和酶蛋白的相互作用间的微妙平衡, 导致酶构象的变化而导酶失活。大量研究表明,超高压技术可钝化果蔬汁中的大部分酶。[9]
4. 高压脉冲技术
高压脉冲电场技术(pulsed electric field,PEF)作为非热加工工艺之一,因其作用时间短、均匀、效率高,且能够最大程度地保持食品新鲜度的优点而成为食品非热处理方式应用的热点之一。此外,在杀菌钝酶、活性物质提取、保持食品原汁原味等方面显示了很大的优势。
PEF技术在果蔬汁活性物质提取时的应用
由于细胞膜的渗透性功能,PEF技术作用于细胞时能够提高物质传质系数,将低能量PEF应用于不同的植物组织,PEF技术不仅提高果蔬汁提取率,且使果蔬汁中活性成分如酚类物质、VC的保留率更高。 PEF技术在果蔬汁钝酶方面的应用
经研究表明,PEF技术对果蔬汁酶活性的钝化有很好的作用效果,PEF技术不仅在钝化酶活性及延缓氧化、褐变等不良变化中发挥积极作用,同时对果蔬汁品质影响也较小。
PEF技术对果蔬汁品质的影响
研究PEF能温和且高效地处理物料,最大程度上保留原料的营养成分。经过PEF处理的果蔬汁,一般最好保存于低温下,如果酸度适宜,也可存于常温。[11]经PEF技术处理后的果蔬汁与热处理及酶处理等传统技术相比,果蔬汁品质更接近于原汁,符合人们对食品原汁、原味、天然营养的需求。
综上所述,随着科学技术的发展,虽然果蔬汁制品加工技术已达到一定的水平,但仍存在着一些问题。目前已有应用生物技术改善饮料加工原料、生产饮料添加剂和功能因子以及去除饮料不良性状的研究, 但生物技术要真正实现大规模地运用于果蔬汁饮料加工还有待进一步研究与完善。总之,果蔬汁饮料的各种加工技术需要相互贯通、相互融合、取长补短、集成发展,这是果蔬汁饮料加工技术的一个必然发展趋势。
参考文献:
[1] 夏天,马力.果蔬汁饮料加工技术研究进展[J].江苏食品与发酵,2008,(4):21-23,36.
[2]杨文雄, 尹利端. 中国果蔬汁加工技术发展新趋势[J]. 农产品
加工, 2007, (4): 26?28.
[3]李勇,刘冠卉,苏世彦.现代软饮料生产技术[M].北京:化学工业出版社,2006.
[4] , , . Evaluation of Ultrafiltration and Adsorption to Debitter Grapefruitjuice and Grapefruit pulp wash[J].Journal of Food Science, Vol57, No3. 1992,664-666.
[5]刘茉娥.膜分离技术[M].北京:化学工业出版社,,204-225,255-259.
[6]吴继红. 超滤膜分离技术在澄清果蔬汁加工中的应用[J]. 塔里木农垦大学学报,1996,01:37-41.
这个关系到无氧呼吸~
大多数酿酒师知道,发酵在成品啤酒的味道上起很大的作用。如果你尚未了解,现在你看这篇文章就会明白。在这篇文章中,除了麦芽和酒花香气,我们寻找其它的风味物质来源,看能否促使发酵产生我们想要的风味。控制你的脂类物质 脂类主要是一种发酵期间产生的风味物质。你可能听说过这个词很多次,而且它的意思可能会令人困惑。 “这款啤酒酯香味很差”或“这款啤酒酯香味不错”。现在意见上有分歧了。我们似乎有差的酯香和不错的酯香。那么什么让酯香优秀,什么改善酯香呢?有三点会回答这个问题: 1. 你啤酒中的酯类型: 这里有一些您可能在家酿啤酒或商业啤酒中偶尔或经常经历的名词。 乙酸异戊酯 -生产成熟的香蕉风味 乙酸乙酯 -高含量的指甲油去除剂风味 丁酸乙酯 -热带水果风味 辛酸乙酯 -杏,菠萝风味 己酸乙酯 -苹果,梨,菠萝风味 这些名词可以列举很多,有一件事你可能已经注意到了,它们有重复的地方。 需要知道的是,酯类物质可以在您的啤酒的味道和香气中发挥重要作用。 2. 你酿造的啤酒风格: 因此,不同类型的酯类为您的啤酒提供不同的风味。有些好,有的不甚好。你必须了解所酿造的啤酒风格,让你知道啤酒中的酯类是好还是一团糟。提示:指甲油去除剂类的风味通常属于一团糟的分类。 经典的例子: 当你读“香蕉”时,德式酵母浑浊型小麦酒可能首先出现在你脑海里。没错,德国小麦酒含有乙酸异戊酯来产生香蕉风味。这肯定不是来自小麦还是二棱大麦。 更多抽象的例子: 英式啤酒和新英格兰风格IPA。英式酵母比许多美式艾尔酵母产生更多的果味成分。新英格兰IPA依靠酯类来突出其“果汁”的风格。 这是第二部分的重点。酵母(不是麦芽清单),在啤酒中创造酯类物质。在酵母浑浊型小麦酒中,您选择的德国小麦酵母将贡献香蕉风味。在英式啤酒和新英格兰的IPA中,英式酵母菌株将为您的啤酒贡献一些果味。您在自制商店购买的酵母菌株,能针对啤酒风格较其他酵母提供更优质的酯类。除开酵母本身,其产生的水果香味甚至可以吸引果蝇。 3. 发酵温度: 啤酒发酵温度也有助于啤酒中特定的酯香类型。在较高温度下的发酵通常增加成品啤酒中的酯类物质,较低的温度倾向于减少酯类物质的生成。 成品啤酒中得到什么样的酯类,酵母得选择和发酵温度起重要作用。例如,丁酸(类似呕吐,胆汁,低劣的风味)可以通过Brettanomyces酵母转化成丁酸乙酯。所以正确的控制发酵环境有利于获得优良的在啤酒风味。 神奇的酚类物质 接下来要看的是酚类。像酯类一样,它们根据发酵的环境为您的啤酒提供了让人愉悦和难受的风味物质。酚类物质的分类: 经典的 “ Brettanomyces 酵母风格 ” ( 4- 乙基苯酚) 。Brettanomyces酵母可以根据发酵环境贡献不同的风味。 在发酵中创造竞争环境,是在Brett啤酒(Brettanomyces酵母发酵的啤酒)中产生不舒适风味最简的方法。简而言之,发酵期间的竞争压力与产生不舒适风味物质的量成正比。常规酵母也是如此(因为更高的发酵温度会促进酯类和其他风味物质的产生。记住高的发酵温度并不总是一件好事)。 比利时 “ 丁香 ” 和一些小麦啤酒( 4- 乙烯基愈创木酚 4-vinyl guaiacol )。 这种丁香味常见于小麦啤酒和比利时风味啤酒。您可以通过45℃(113℉)的糖化保温休止或增加发酵温度来促进这种味道的生成。 “ 香草味 ” ( 4- 羟基 -3- 甲氧基苯甲醛 4-hydroxy-3-methoxybenzaldehyde )。 猜猜这是什么样的。你说香草吧? 如果酵母被允许分解大麦的细胞壁,那么就可以产生非常少量的酚类物质。然而,在啤酒中提升香草风味的最好的方法是使用橡木。中等烘焙的橡木被认为是最好的。 在合适的啤酒中添加合适的量看起来很舒服。那么坏的方面呢?氯的存在()会使你的成品啤酒产生涩味,类似于漱口水的味道。当酿造水中有氯的存在时,或者发酵温度过高时会产生 氯酚 。氯酚在口腔顶部会增添一种挥之不去的止咳糖浆的味道。对我来说,这是最易发现的风味之一,也许你已经体验过一或两次。 其他发酵风味 你还可以在发酵过程中发现其他的风味,不是酚类也不是酯类。下面的例子是其他的风味物质,通常是由于发酵管理不好或者操作失误造成的。 双乙酰: 这为啤酒提供了一种黄油爆米花的味道(轻则玉米味,重则馊饭味)。它实际上是酵母在发酵旺盛阶段产生的。在发酵过程中会同时被酵母还原。然而,如果由于发酵温度太低或酵母接种量不足时,产生的双乙酰多与能被还原的双乙酰,从而导致成品啤酒中的不舒适香味。 乙醛: 这是在发酵过程中产生的,其生成数量随菌株种类不同而不同,它是不希望得到的产物,装瓶之前更长的成熟期有利于降低这类物质的含量。 杂醇: 杂醇是具有两个以上碳分子的醇(乙醇为2)。当发酵温度较高或酵母营养不良时,这种情况更为常见。 就味道而言,在两个星期内,啤酒可能会发生很多事情。幸运的是,大多数在我们的控制之下,有时我们在自酿啤酒时,甚至可以使它成为我们的优势。 感谢DAVID "MARSHMALLOWBLUE" DOUCETTE供稿 咕噜精酿翻译团队
随着经济的发展,人们生活水平的不断提高,啤酒作为一种时尚消费品,已经成为人们生活中不可或缺的商品,其市场需求日益渐增。然而,在啤酒行业发展的同时,也存在着品种庞杂缺乏个性、创新乏力盲目跟风、倚重工艺忽视原料、企业规模偏小、渠道单一、赢利力低等问题。因此,如何在我国啤酒生产工业的基础上,提高啤酒的生产工艺技术,提高生产过程的自动化水平,提高产品的技术含量,积极参与国际市场竞争,是一个刻不容缓的问题。可观的是我国啤酒的质量近年来有了大幅度的提高,特别是在啤酒的外观、色泽、泡沫等指标上,均在世界浅色啤酒中名列前茅。其次,我国的啤酒在风味上也有了长足的进步。生产的啤酒符合国际标准的已超过 95%。
一般的啤酒发酵流程是,麦芽粉碎----糖化糊化------液化----------过滤-----发酵-----------再过滤------包装
国内进口需求取代大,国外以出口为主。根据复合果酱产业国内外市场分析,果酱行业零售规模稳步提升,增长空间广阔。果酱作为水果加工产品,贮藏时间更长,运输更为便捷,同时富含维生素与膳食纤维,兼顾消费者健康饮食理念的需求。目前国内果酱类产品仍以进口为主,存在较大的进口替代需求,国外复合果酱产业发达,以出口为主,全球果酱类产品的市场未来仍将保持3%-5%的增速稳定增长,中国市场将呈现更高增速。
复合果酱加工技术是指利用多种食材制成的果酱发酵体系,是搭配多种浓度的、有机物含量低的果酱原料而得出的果酱产品。复合果酱加工技术通过多种生物工艺方法,能够有效改善果酱的口感、颜色和营养价值,减少加工过程中的损耗,从而达到节约成本和提高产品品质的目的。
复合果酱加工技术现状怎么写简介复合果酱加工技术是一种把多种水果或蔬菜混合制成果酱的加工技术。复合果酱可以满足消费者对果酱口感、营养价值和风味的需求,并且具有营养均衡、添加剂少、维生素和矿物质含量高等优点。复合果酱加工技术主要包括果蔬清洗、切割、烹调、灌装等环节,可以采用自动化技术进行生产,大大提高了生产效率。复合果酱的生产工艺简单,加工成本低,经济效益显著,是当今果酱加工行业的主流技术。
果酱、果泥等加工原理都是利用果胶的凝胶作用来制取的,高甲氧基果胶的凝胶原理在于高度水合的果胶胶束因脱水及电性中和而形成凝聚体,在糖、酸作用下由溶胶变成凝胶。果酱是食品工业的一种原料,也是一种营养丰富的食品。水果加工成果酱,便于贮藏运输。苹果、桃、杏、梨、红果、沙果、枣、西瓜、草莓、柑桔和香蕉等许多水果都可用来制做果酱。果酱无须保持原来的果形,因而一些废、次、落果,经清洗等处理,只要符合卫生条件的均可利用。对于水果资源丰富,很多交通不便的农村,生产旺季尚有大量鲜果运不出去,进行果酱加工更有必要。果酱是将水果果实经去皮去核等处理,煮软打成酱,加糖浓缩而成。其加工方法简单,易于掌握,既可用于中小型企业,也可为农业个体户家庭生产。加工时,把果实洗净,除去果核,皮厚的要削皮,剔除腐烂和不能食用果实,进行清洗,并去核、去皮、去蒂柄及去伤残部分。洗桃时,在水中加的明矾,以利去毛,然后用清水洗净。核果类水果桃、杏等,洗净、去核、去皮、切半后,及时放入浓度为的柠檬酸水溶液或的亚硫酸钠水溶液或浓度的食盐水浸泡护色。对于果肉柔软多汁的浆果类,如草莓等,可以不经过预煮,按原料重量的10%~20%,添加水和糖液,尽快加热软化,直接进行糖煮浓缩。对于肉质坚硬的原料要进行预煮,然后根据果实的种类和成熟程度,分次加入适量的糖共煮。如酸梅、杏、小葡萄等酸味比较强的果实,一般加糖量约等于果实的重量;如桃、甜梅、甜葡萄等果实,糖量一般是果实重量的1/2。煮的时间以果实的种类而定,果肉柔软的短一些,果肉坚硬的就要长些,煮到果肉与糖充分混合,过剩水分已经蒸发出去,变成厚腻的糊状即成。煮好后趁热装入玻璃罐或洋铁罐内,随即封罐,再将果酱罐头放在沸水中煮半小时,就可保存。
消化功能状况、胃内容物的性质以及食物,都能影响酵素的发挥。所以,酵素餐前、餐后服用的效果大不一样。首先我们要知道,人体内含有几千种不同的酵素,它们或是溶解于细胞质中,或是与各种膜结构结合在一起,或是位于细胞内其他结构的特定位置上(是细胞的一种产物)。这些酶统称胞内酶;另外,还有一些在细胞内合成后再分泌至细胞外的酶──胞外酶。酶催化化学反应的能力叫酶活力(或称酶活性)。酶活力可受多种因素的调节控制,从而使生物体能适应外界条件的变化,维持生命活动。没有酶的参与,生命活动就根本无法维持。例如食物必须在酶的作用下降解成小分子,才能透过肠壁,被组织吸收和利用。在胃里有胃蛋白酶,在肠里有胰脏分泌的胰蛋白酶、胰凝乳蛋白酶、脂肪酶和淀粉酶等,又如葡萄糖的氧化过程就有22种酶的参与。知道了这些我们再看酵素的服用时间。1吃饭前服用酵素(空腹服用)首先是空腹服用,因为你空腹服用,酵素没有食物的打扰,直接去进行净化和修复,好比那用久了的洗衣机,要放上清洁剂和水空转,以清洗洗衣机内部,如果一直在洗衣而不打扫,洗衣机内部的脏的程度就可想而知了,人的身体和洗衣机是同样的道理。所以一般人和亚健康人士空腹服用最佳,减肥也是,空腹服用可以使酵素最大限度的分散到身体的各处器官,减轻身体分泌酵素的负担。2吃饭后服用酵素吃饭后服用酵素,酵素的首要任务就直接去分解、吸收食物去了,把大分子的食物变成可直接可以吸收利用的营养。饭后吃酵素,酵素在身体里首要参与的是分解、消化、吸收,适合胃弱、营养不良、体虚、食欲不振等人士。白芸豆酵素咀嚼片建议在饭前吃,白芸豆酵素咀嚼片中含有丰富的白芸豆以及果蔬成分,白芸豆有着非常不错的饱腹感,还可以帮助加快人体肠道蠕动速度,有效阻碍脂肪以及淀粉的摄入,大大降低脂肪形成的速度,果蔬成分是可以帮助减肥瘦身的,所以正确服用白芸豆酵素咀嚼片可以有效减肥。所以说酵素饭前饭后吃看个人体质,白芸豆应该饭前吃。扩展资料:酵素是以动物、植物、菌类等为原料,添加或不添加辅料,经微生物发酵制得的含有特定生物活性成分(包括多糖类、寡糖类、蛋白质及多肽、氨基酸类、维生素类)的产品。酵素经常被宣传有减肥、抗癌、抗衰老等效果,然而实际上效果并不理想。自制酵素有风险。酵素,一词源于日本,即常说的“酶”。解放前我国的教科书上也称酶为“酵素”的,现在我国台湾地区仍称作“酵素”。然而现在市场广受青睐的被称作“酵素”的保健食品却不是称之为酶的“酵素”。据日本学者山内慎一所著《保健食品袖珍典》(保健食品ミニバブル)记述,“酵素”在日本的原名 “植物酵素エキス” ,翻译成中文是 “植物之酶的提取物”或“植物酶提取之精华”的意思,是用各种植物作原料,用乳酸菌或酵母菌发酵所制成的发酵食品。我国工业和信息化部发布的轻工行业标准《酵素产品分类导则》将酵素定义为,以动物、植物、菌类等为原料,添加或不添加辅料,经微生物发酵制得的含有特定生物活性成分的产品。其生物活性成分包含来自植物原料和微生物所提供的各种营养素和天然植物中的植物类功能性化学成分(phytochemicals),以及发酵生成的一些生理活性物质,包括氨基酸、肽类、维生素、多糖、多酚类、黄酮类、醇类、酯类、酶类、矿物元素、有机酸和各种益生菌。1.制备工艺特点常见的水果、蔬菜、糙米、菌类、药食同源中药等均可作为酵素发酵的原料。酵素生产工艺的特点是:为防止杂菌生长和产生酒精,可加入酿造米醋及较高浓度的异麦芽糖、白糖或红糖等;发酵周期比较长,一般为几个月至2年等。也有采用二次发酵工艺,即经过后熟工艺得到酵素产品。2.典型酵素产品制备工艺食用酵素近年来,我国学者开始深入研究酵素食品的生产工艺。董洁等以利用酵母菌和乳酸菌发酵金丝小枣,确定出最佳的工艺参数为:在30℃条件下,接种酵母菌,发酵12h;在37℃下,接种乳酸菌发酵剂,静置发酵28h,然后控制温度6~8℃,静置24h,进行发酵,然后使酵液产香。南竹等以蛋白酶活性为指标,运用Box-Behnken Design 响应面法优化制作菠萝皮渣酵素的最佳工艺参数为发酵温度23℃,酵母菌接种量,发酵时间。章苇虹等以还原糖含量、黄酮含量、蛋白质含量、总酸含量以及可溶性固形物含量为指标,通过正交试验滁菊水果酵素产品的优化条件为火龙果添加量150g/L、滁菊添加量6g/L、白砂糖添加量145 g/L、发酵30d。扶庆权等采用单因素实验和正交实验,确定酵素芋头粉面包的最佳制作工艺参数为酵素粉添加量3%,芋头粉添加量6%,酵母添加量2%,白糖添加量16%
酵素是指以动物、植物和菌类等为原料,经微生物发酵制得的含有特定生物活性成分的产品。
果蔬汁加工技术的应用进展
摘要 :果蔬经过制汁后比原果更容易贮藏,含有丰富的营养成分,且在减少果蔬原料的损失的同时提高其附加值。本文综述了果蔬汁加工过程中破碎榨汁技术、过滤澄清技术、均质技术、浓缩技术和杀菌技术的应用进展。
关键词 :果蔬汁 加工技术 应用进展
近年来,随着人们生活水平的逐步提高,对日常饮品的“营养、安全、健康”更为关注和重视。果蔬汁在口感及营养方面都接近新鲜果蔬,并且和具有一定的保健价值,受到各年龄阶段人们的喜爱。不同果蔬汁的加工方法不同,但某些关键技术是相似的。本文主要介绍果蔬汁加工技术中破碎榨汁技术、膜分离技术、超高压技术、高压脉冲技术和酶技术的应用进展。
1. 破碎榨汁技术
根据果蔬不同的形状、特性及加工需要,选用合适的破碎设备,并结合相适宜的破碎工艺进行破碎。常用的破碎工艺可分为热破碎和冷破碎。通常情况下,为了生产得到组织形态好、具有一定粘稠度的果蔬汁,可以运用热破碎,通过抑制和破坏某些酶的活力,如果胶分解酶、脂肪氧化酶等,从而达到破碎效果。[1]果蔬汁榨汁过程中,果蔬中所含有的果胶、淀粉、纤维素等物质会影响果蔬的出汁率,导致果蔬出汁率降低。采用酶技术处理果蔬原料, 即可提高产品出汁率, 该技术不仅可提高产品的澄清度, 且能防止果汁产生沉淀。[2]
2. 膜分离技术
传统的澄清方法是对果蔬汁进行酶处理,如果胶酶等,再用明胶、单宁、膨润土、硅溶胶等澄清剂对其进行絮沉降处理,静置、取清液,最后用离心或过滤的方法进一步处理。[3]在传统加工工艺过程中,果蔬汁成品的营养物质和风味物质损失多、成本高、耗能大。膜分离技术在果蔬汁制品的生产加工过程中发挥重要作用,能够有效地克服这些缺陷。膜分离技术主要具备使果蔬汁脱苦、脱酸、澄清和浓缩的功能,并提高果蔬汁的稳定性。
果蔬汁的脱苦
柑橘类果汁由于含有柚皮苷、柠檬碱等苦味物质,对产品的风味和商业价值造成负面影响。1E. Hernandez等人[4]利用超滤和二已烯基聚苯乙烯树脂吸附的联合过程对葡萄抽汁进行脱苦的实验,表明柚皮苷和柠檬碱可被完全除去,果汁风味得到显著提高。
果蔬汁的脱酸
根据刘茉娥等人[5]介绍利用电渗析膜,表明电渗析膜可以脱除果汁中的有机酸,能够使果汁酸度降低,从而提高果汁的品质。
果蔬汁的澄清
果蔬汁中因含有一些胶体物质、单宁、蛋白质等物质,它们在加热和贮存过程中往往使果蔬汁变得混浊,有的甚至产生沉淀,缩短了产品的货架期。应用超滤法澄清番茄汁、苹果汁、菠萝汁、梨汁、柑橘汁等,可获得较好的经济效益和较高的产品质量。
果蔬汁的稳定性
超滤可提高果蔬汁的稳定性,如苹果汁在超滤前宾透光率为,经超滤后,透光率为,在户观上已达到清澈透明,并在常温下贮存四个月,其透光率几乎为一定值,稳定性良好。[6]
3.超高压技术
杀菌是果蔬汁制品生产中的关键技术之一。传统的热力杀菌虽然可以杀灭鲜榨果蔬汁中的微生物, 但果蔬汁中的营养成分仍会受到破坏, 产生热臭、风味劣变, 造成果蔬汁制品产品质量变差。[7]食品超高压技术(ultrahigh pressure processingUHP),又称为高静压技术(high hydrostatic pressure processing,HHP),是指将密封于弹性容器内的食品置于水或其他液体作为传压介质的压力系统中,经100MPa以上压力处理,在常温甚至更低的温度下达到杀菌、灭酶和改善食品功能特性等作用口。由于超高压技术只作用于非共价键,能够保证共价键完好无损,因而可以降低鲜榨果蔬汁中的微生物数量, 并保持产品的营养、风味和安全品质, 具有重要的意义。[8]与加热杀菌相比,超高压技术有着无法比拟的优越性, 特别是超高压杀菌可以保持食品原有的色、香、味和营养成分。
超高压对果蔬汁色泽的影响
经研究发现,与传统的热杀菌相比,超高压技术处理果蔬汁能够较好的保持其色泽,对部分果蔬,如番茄等甚至有改善色泽的作用。其原因在于超高压对果蔬内源酶的钝化作用及高压的均质作用使果蔬组织细胞内的呈色物质溶出。
超高压对果蔬汁芳香成分的影响
超高压对果蔬汁的香气有不同方面的影响,不仅能够处理过程中会使香气反应前体物的浓度增加还能使香气物质降解降低或激活某些有关香气的酶的活性。因此超高压加工的果蔬汁的风味会呈现出不同的变化。
超高压对果蔬汁营养物质的影响
超高压对食品中营养成分的影响与各种营养成分的性质有关,由于超高压处理不能破坏共价键,因此认为超高压处理对于食品中小分子化合物一类的营养物质不会有直接的破坏作用,但可能会加速一些食品体系中的生化反应,使部分营养物质间接受到破坏。
超高压对果蔬汁中酶活性的影响
内源酶易引起果蔬最初的品质变化,,压力在酶的活性中心通过打破稳定分子内和酶蛋白的相互作用间的微妙平衡, 导致酶构象的变化而导酶失活。大量研究表明,超高压技术可钝化果蔬汁中的大部分酶。[9]
4. 高压脉冲技术
高压脉冲电场技术(pulsed electric field,PEF)作为非热加工工艺之一,因其作用时间短、均匀、效率高,且能够最大程度地保持食品新鲜度的优点而成为食品非热处理方式应用的热点之一。此外,在杀菌钝酶、活性物质提取、保持食品原汁原味等方面显示了很大的优势。
PEF技术在果蔬汁活性物质提取时的应用
由于细胞膜的渗透性功能,PEF技术作用于细胞时能够提高物质传质系数,将低能量PEF应用于不同的植物组织,PEF技术不仅提高果蔬汁提取率,且使果蔬汁中活性成分如酚类物质、VC的保留率更高。 PEF技术在果蔬汁钝酶方面的应用
经研究表明,PEF技术对果蔬汁酶活性的钝化有很好的作用效果,PEF技术不仅在钝化酶活性及延缓氧化、褐变等不良变化中发挥积极作用,同时对果蔬汁品质影响也较小。
PEF技术对果蔬汁品质的影响
研究PEF能温和且高效地处理物料,最大程度上保留原料的营养成分。经过PEF处理的果蔬汁,一般最好保存于低温下,如果酸度适宜,也可存于常温。[11]经PEF技术处理后的果蔬汁与热处理及酶处理等传统技术相比,果蔬汁品质更接近于原汁,符合人们对食品原汁、原味、天然营养的需求。
综上所述,随着科学技术的发展,虽然果蔬汁制品加工技术已达到一定的水平,但仍存在着一些问题。目前已有应用生物技术改善饮料加工原料、生产饮料添加剂和功能因子以及去除饮料不良性状的研究, 但生物技术要真正实现大规模地运用于果蔬汁饮料加工还有待进一步研究与完善。总之,果蔬汁饮料的各种加工技术需要相互贯通、相互融合、取长补短、集成发展,这是果蔬汁饮料加工技术的一个必然发展趋势。
参考文献:
[1] 夏天,马力.果蔬汁饮料加工技术研究进展[J].江苏食品与发酵,2008,(4):21-23,36.
[2]杨文雄, 尹利端. 中国果蔬汁加工技术发展新趋势[J]. 农产品
加工, 2007, (4): 26?28.
[3]李勇,刘冠卉,苏世彦.现代软饮料生产技术[M].北京:化学工业出版社,2006.
[4] , , . Evaluation of Ultrafiltration and Adsorption to Debitter Grapefruitjuice and Grapefruit pulp wash[J].Journal of Food Science, Vol57, No3. 1992,664-666.
[5]刘茉娥.膜分离技术[M].北京:化学工业出版社,,204-225,255-259.
[6]吴继红. 超滤膜分离技术在澄清果蔬汁加工中的应用[J]. 塔里木农垦大学学报,1996,01:37-41.
当前在福建省各个城市的城市道路上都种植有绿化芒果树,每到夏季都会收获大量成熟的芒果。然而,由于绿化芒果往往重金属、农药超标,导致不适宜食用,在夏天道路上长时间暴晒也会黏在汽车和道路上,影响交通和市容。本文探讨了道路绿化芒果制备环保酵素的可能性,环保芒果酵素可以用作保健食品、保健外用品、城市污水处理以及有机肥料。最后,采用道路芒果,制备了芒果酵素,结果发现,由于道路芒果含糖量较高,制备过程中不需要额外添加糖类,芒果酵素制备工艺简单,在解决城市交通环境问题的同时,在营养保健品,生物医学,城市污水净化以及生物肥料等领域都具有相当大的应用空间。 当前,为了促进福建省的城市市政建设,提升福建省的城市市政市容风貌,福建省各个城市均引进了芒果树作为城市园林建设的组成部分之一。在经过几十年的发展之后,绿化芒果树已经成为了福建省各个城市的城市道路两旁的园林的重要组成部分之一。每年夏季,都会收获大量的成熟芒果,引发市民的争相采摘。然而,由于城市道路所种植的芒果树为绿化芒果,和用做水果的可食用芒果之间,具有一定的区别,并不适合食用。且由于芒果汁水较多,在破裂之后容易黏在地上,影响市容和过往的车辆。因此,每年对于大量成熟的芒果进行处理,是摆在各个城市的城市管理者面前的一个重要的难题。本文通过探讨福建省城市道路绿化芒果对公众和城市道路的危害。进行了绿化芒果制备环保酵素的探究,最后对福建城市道路绿化芒果制备环保酵素的经济效益进行了展望。芒果从开花到结果往往需要80到150天,而福建省的道路绿化芒果往往在夏季7月中旬到八月初成熟。在芒果的成熟期,往往容易获得炭疽病、细菌性角斑病、烟煤病等疾病,并且容易爆发蚜虫、钻心虫、甘蔗冥虫、切叶象甲、果核象甲、叶瘿蚊、蓟马、果实蝇、介壳虫、桔小实蝇等等虫害[1-2]。为了防止芒果发生病变和虫害,市政公司往往需要喷洒大量的农药,而绿化芒果往往并没有做进一步的农药残余检测,导致其体内残留大量的农药。此外,由于绿化芒果树往往种植在道路两旁。道路往来车辆往往也会产生大量的汽车尾气,尾气中含有大量的重金属污染,被道路两旁的绿化芒果吸收。结果导致绿化芒果当中往往铅、镉、汞、砷等重金属元素严重超标,公众一旦采摘食用,这些残留的重金属很有可能进入人体体内[3-4]。因此,福建省的城市道路的绿化芒果往往不适宜食用,每到收获季,相关市政部门已经及时加强宣传,避免公众采摘,造成严重的后果。 在夏季绿化芒果收获的季节,往往会有大量的芒果掉落到地上,其中相当多芒果则会掉落到道路当中。由于芒果本身较为多汁,导致一旦汽车行驶过去,碾压过芒果,会导致芒果发生破裂,汁肉会附着在汽车和道路上。黏在汽车上的芒果,可能对汽车产生负面影响,甚至影响汽车的正常使用,产生安全隐患。同时附着在道路上的芒果,在经过夏天的阳光的暴晒之后,会在道路上形成一个黑色印记。这种黑色印记往往难以清理,久而久之,对于道路的美观会产生较大的影响。同时,夏季蚊虫滋长,芒果的腐烂,也会滋生大量的蚊虫,对于道路两旁的市容会产生一定的不良影响。 综上所述,由于城市道路两旁的绿化芒果本身残留农药和重金属的特点,不适合食用。同时,如果长时间放任芒果在地上不去处理,也会对城市的道路和市容产生影响。因此,福建省各个城市的市政公司,一到夏天,往往就需要收集大量的芒果,这些芒果往往就被放起来,并没有进行使用。因此,有必要对每年产生的大量的绿化芒果进行研究,从而提高其本身的经济效益。 芒果酵素制作工艺简单,原材料也需要较少,所需要的原材料如下: 绿化芒果,泉州市道路两旁收集;红糖(分析纯),福建糖业有限公司生产;去离子水,实验室自制。 取300g绿化芒果,将所采摘的城市道路绿化芒果切成小块,连皮带壳倒入塑料桶中,之后加入0-100g红糖,再加入1000g去离子水,可以根据不同的目的,添加特定的菌种,之后在发酵桶中搅拌均匀后,密封放置3个月左右,就可以成功制备环保芒果酵素。根据作用的不同,还可以添加其他水果作为添加剂来制作复合酵素。 为了探究合适的芒果酵素的制备配方,在制备过程中研究了红糖添加量,去离子水添加量的影响,结果发现,红糖的比例和去离子水的比例对于环保芒果酵素的制备会产生一定的影响。其中红糖的添加对于环保芒果酵素的制备的影响较小,这是因为芒果本身含糖量较高,果肉中的含糖量达到了14-16%,为高糖水果,因此可以不需要额外添加糖类来方便发酵。同时,去离子水的添加量也会影响酵母菌的生长,在适宜的添加量下,可以得到相对数量较多的酵母菌的酵素。因此,经过优化后的环保芒果酵素的绿化芒果、红糖以及去离子水的比例为:3:0:10,采用最佳比例下的配方,可以制得收率为70%的环保酵素原液,用于进一步的提炼或者作为添加剂使用。 但是,由于环保芒果酵素本身,并不是传统意义上的“酵素”(Enzyme),也就是“酶”,而是“植物之酶的提取物”或“植物酶提取之精华”,因此酵母菌的数量本身并不能决定酵素的评价标准,而当前,由于对于酵素的研究还不够充分,导致对于酵素的评价还没有严格的标准。对于酵素,还有相当多的研究空间。 使用绿化芒果制备环保酵素的原材料较少,工艺简单,收率较高,一次可以处理大量的市政公司所收集的芒果,具有非常大的应用潜力。本章结合相关文献,探究福建城市道路绿化芒果制备环保酵素的未来的产品进行了展望。 酵素可以用来作为营养保健食品,酵素具有以下功效[6]:(1)清除自由基、抗氧化功能;(2)解酒护肝保健功能;(3)润肠通便保健功能;(4)净化血液功能;(5)抑菌功能。郭艳萍等人[6]使用大麦制备了大麦酵素,并且对酵素当中的成分进行了分析。结果发现,在天然条件下经过大麦原有的有益微生物发酵过程中总酚含量上升了,DPPH自由基、超氧自由基和ABTS自由基清除能力呈逐渐增加趋势,发酵前后分别提高了、和。说明发酵产生的大麦酵素具有较好的抗氧化能力。曲佳乐等人[7]使用植物酵素,对实验小鼠分别进行了先喂酵素后灌酒和先灌酒后喂酵素的实验,结果发现,先喂酵素后灌酒的实验小鼠,醒酒时间与对照组比较明显减少了,并且没有产生醉酒死亡的实验小鼠。而先灌酒后喂酵素的实验小鼠,醒酒时间也显著缩短,说明植物酵素有良好的延迟酒醉和解酒的效果。但是由于环保酵素的体内仍然含有较高的农药残留和重金属残留,导致所制得的环保酵素,并不适合作为营养保健食品的原料,但是可以作为动物饲养的饲料使用。周永学等人[8]将酵素添加剂添加到猪饲料当中,探究猪的生产性能。结果发现,在肥育猪饲粮中添加大约5%的酵素添加剂可明显提高猪的生产性能,改善健康状况,减轻环境污染,增加养猪经济效益。同时,酵素制成的饲料,也可以作为福建沿海海产品养殖的饲料添加剂,从而降低饲料成本,同时减轻海洋污染,降低由于水富营养化而导致的赤潮等生态灾难的爆发。 在人体的皮肤当中,含有多种酵素,这些酵素可以促进酵素既可清洁皮肤、加快皮肤的新陈代谢、消除青春痘、淡化皱纹从而改善肌肤状况。但是,随着年龄的增长,人体内的酵素含量会逐渐减少,从而导致出现一系列的皮肤问题,因此,环保芒果酵素可以作为外用的美容和保健用品,给人体皮肤补充酵素。任清等人[9],使用了膏状酵素,以人体前臂皮肤为受试部位,对平均年龄为23岁的男生20名和女生16名进行了酵素美白功效人体实验,结果发现,膏状酵素对酪氨酸酶的抑制率都高于80%,而且随着浓度的升高而升高,5%膏状酵素对酪氨酸酶的抑制率接近100%,说明膏状酵素能有效地阻断黑素的形成,延缓皮肤的衰老。董银卯等人[10],同样使用膏状酵素,进行了痤疮相关病原菌抑制实验和人体皮肤实验,结果发现酵素对于三种痤疮相关病原菌都具有相当高的抑制作用。综上所述,环保芒果酵素作为外用护肤品,具有非常大的潜力,可以作为外用护肤品,面膜,泡脚等的添加成分,具有非常高的经济价值。当前,福建省生物医疗产业也是蓬勃发展,在厦门已经建立了围绕生物医学的创新与研究基地。而针对酵素进行开发,对于未来福建省生物医疗产业的发展,也具有相当大的潜力。 上世纪80年代,日本微生物学家发现酵素在农用生物技术上面具有相当大的作用,在经过了几十年的发展之后,如今酵素在净化城市污水上面也投入了使用[11]。酵素通过触媒作用将复合微生物进行复合发酵,激活环境中有益微生物,抑制有害微生物,达到净化环境的目的。用来净化环境的环保酵素当中,可以引入乳酸菌、光合细菌、双歧杆菌、芽孢杆菌、放线菌、酵母菌、醋酸杆菌及发酵等多种复合菌种。在使用酵素来净化城市污水的过程中,酵素当中的菌类会吸收污水当中的有机物,催化了有机污染物的代谢速率,同时降低系统污泥产率从而实现无化学处理,无味道,无农药处理。而城市道路的绿化芒果酵素,可以在引入特定菌种之后,具有特定的净化污水功效。之后所制备出来的环保芒果酵素可以城市污水处理厂的生物净化的重要一环,在未来的福建省城市智慧生态系统当中,会起到越来越重要的作用。同时,还可以用来替代传统的化学制品,来制备洗涤剂、空气清新剂以及汽车保养剂。 当前,有机农业已经成为中国农业发展的重要方向。传统的化肥和农药的泛滥使用,会导致土壤板结、通透性降低、土壤养分流失、病虫害猖獗等一系列问题。而酵素所制备的新型生物肥料,给以上这些问题的解决,提供了新的研究方向。当前,酵素生物肥料,已经在粮食作物的种植、蔬菜的种植、水果的种植上面都开始投入应用。王显权[12]使用酵素生物肥料,和传统肥料参杂的方案,对辽单121玉米进行了培养,并且计算了综合经济成本。结果发现参杂酵素生物肥料的混合养分齐全,可替代其它化学肥料作基肥、追肥施用,补充土壤有机质,提高微生物活性,同时还可以最大程度上降低肥料成本,实现有机肥料的循环利用,从而提高土壤产出率。当前,闽北地区积极围绕着生态环保,打造有机生态农业产业。而环保酵素作为传统化肥和农药的替代品,对于闽北生态农业的发展起到至关重要的促进作用,每年福建省各个城市所积累的绿化芒果,足以供给闽北的生态农业,实现“绿水青山就是金山银山”的目标。 当前,福建省各个城市都在道路两旁种植了相当多绿化芒果,每年在芒果盛开的季节,都会由于这些成熟的芒果,对于市政公司产生不小的麻烦。本文探究了城市道路绿化芒果对于公众健康以及道路交通的危害。探究了城市道路绿化芒果制备环保酵素的研究,结果发现通过简单的制备工业,完全可以制备出具有较高收率的环保芒果酵素。同时,在制备过程中,通过添加特定的菌种,可以制备具有不同功效的酵素。之后,对于福建省城市道路绿化芒果所制备的环保芒果酵素的应用进行了展望。福建省城市道路绿化芒果所制备的环保芒果酵素,可以作为福建省沿海水产养殖的饲料添加剂,同时在福建省生物医疗产业发展当中,具有非常大的研究潜力。此外,环保芒果酵素还可以成为福建省未来城市智慧净水体系的重要组成部分。而环保芒果酵素所制备的生物肥料,在闽北生态农业的建设中也会起到非常积极的作用。在未来,福建省各个城市的市政公司,应该积极探索城市绿化芒果的作用,实现变废为宝,提高城市的经济效益。[1]盛蒂,朱兰保,王丹.蚌埠市售水果重金属污染及健康风险预警评估[J].西南民族大学学报(自然科学版),2014,40(06):837-842. [2]段云,李建国,徐志.芒果质量安全状况调查及检测分析[J].热带农业科学,2013,33(08):62-65. [3]陈笑玲. 福州市3种主要园林树种抗重金属与酸雨胁迫能力研究[D].福建农林大学,2008. [4]游秀花. 福州市主要绿化树种对镉胁迫的生理响应与抗性比较研究[D].福建农林大学,2008.[5] [5]白浩,文佳嘉,费爽雯,袁水林,李欣.酵素的功能与综合应用研究进展[J].食品工业,2017,38(06):270-272. [6]郭艳萍,赵金安.大麦天然酵素抗氧化性能的初步探究[J].山西化工,2014,34(04):4-6. [7]曲佳乐,赵金凤,皮子凤,崔玉东,宋凤瑞,刘志强.植物酵素解酒护肝保健功能研究[J].食品科技,2013,38(09):51-55. [8]周永学,吕金辉,李永明,吴文育,舒菊英.酵素菌添加剂在肥育猪生产上的应用效果观察[J].养猪,2006(02):23. [9]任清,于晓艳,潘妍,刘杰,胡英杰,董银卯.微生物酵素美白抗衰老功效研究[J].香料香精化妆品,2008(03):28-32. [10]董银卯,于晓艳,潘妍,刘永国,任清.微生物酵素抑菌功效研究[J].香料香精化妆品,2008(04):27-29. [11]孟睿,何连生,胡春明,王宏亮,张丹荣,王宫廷.复合酵素净化城镇污水的机理研究[J].环境生态学,2019,1(02):77-79+84. [12]王显权.酵素菌有机肥对玉米辽单121产量性状的影响[J].耕作与栽培,2009(05):38-39.
一下的方法应该够你用的了:::果胶提取加工技术及其制备方法1、一种果胶寡聚糖、其制备工艺及防治植物病害的应用2、含有起抑制雄性生殖毒性作用的果胶的药物组合物3、利用废渣和废水固态发酵生产果胶酶4、具有果胶乙酰酯酶活性的多肽和编码该多肽的核酸5、利用银杏外种皮为原料提取的银杏型果胶和提取方法6、豆腐柴叶制备果胶工艺7、草酸青霉固态发酵生产果胶酶8、果胶膜组合物9、向日葵低酯果胶的分离纯化方法10、胡萝卜素、果胶、食用纤维连续提取方法11、作为具有泡沫头饮料的泡沫稳定剂的果胶12、口服可溶性经调节柑桔果胶抑制癌症转移的方法13、从向日葵盘和杆中提取食用低酯果胶的方法14、从柑桔果皮中提制果胶同时联产酒、油、酱、色素和柑桔皮甙的方法15、果胶酶制剂16、豆腐柴提取果胶的方法17、一种生产果胶的方法18、用草酸提取-铁盐沉淀工艺提取向日葵低酯食用果胶的方法19、分子筛法制备果胶20、改性甜菜果胶的生产方法21、从番木瓜中提取食用果胶22、果胶代血浆及制备方法23、用苹果废料制取果胶冻工艺24、甜菜渣制取果胶的方法25、由甜菜粕制备果胶新方法26、从大量废弃芭蕉茹及冻坏生蕉果中提炼果胶三法27、一种金属盐法提制果胶的方法28、从橙皮等柑桔类果皮中提制高质量果胶的方法29、山楂果胶和果汁的分离、提纯、浓缩方法30、一种向日葵盘提取低酯果胶的生产方法31、从马铃薯粉渣中提取低酯果胶的方法32、保健果胶、果汁及其制备方法33、从柑桔皮中同时提取天然黄色素、桔油和果胶的方法34、用蚕沙残渣提取果胶的方法35、向日葵低酯果胶的提取方法36、保健果胶及果汁37、胶态果胶铋药物38、使用果胶酶处理制取山楂汁的方法及产品39、应用高分子量脱乙酰基甲壳素脱除果胶和澄清果(蔬)汁的方法40、柑桔废弃物提取低酯果胶的方法41、果汁-果胶-食用纤维连续提取方法42、颗粒状果胶酶制剂及其制造方法43、预酸解、高酸度连续提取生产果胶的方法及设备44、柠檬皮果胶的提取方法45、一种利用柑桔类果皮中果胶酯酶的脱酯方法及其应用46、果胶组合物及其制备方法47、果胶组合物及其制备方法48、枯草芽孢杆菌及固体碱性果胶酶生产工艺49、假酸浆果胶粉及其生产方法50、向日葵低酯果胶的纯化方法51、半导体激光辐照选育果胶酶高产菌株52、从胡麻籽中提取高果胶含量的胡麻胶的方法53、用高酯果胶在酸性环境中稳定蛋白质的方法54、改性的果胶材料55、活性人参果胶囊(片)及其制备方法56、含有果胶酯酶的洗涤剂组合物57、含有碱性果胶降解酶的洗涤剂组合物58、含果胶裂解酶的洗涤剂组合物59、超果胶酶及其生产工艺60、具有果胶酯酶活性的酶61、苎麻优质果胶的制备方法62、包含果胶甲酯酶和两种底物的组合物63、获得精选果胶级分的方法、这样的级分及其用途64、固态发酵果渣、菜渣制备果胶酶65、炭黑曲霉突变株K58固体发酵生产果胶酶66、含有解果胶酶的洗涤剂组合物67、长寿果胶囊及其制备方法68、地衣芽孢杆菌果胶降解醇69、新的果胶酸裂解酶70、果胶及其生产方法,含果胶的酸性蛋白食品及其生产方法71、用于糊状物质中的果胶、其制备方法、包含该果胶的糊状物质及其应用72、果胶的生产方法73、酶促修饰果胶的方法74、分级分离的果胶产品的制造方法75、包含抗坏血酸和果胶的组合物76、含有果胶酸盐裂解酶和漂白体系的洗涤剂组合物77、用于稳定蛋白质的果胶78、果胶酶制剂的生产方法79、含有果胶酸裂解酶和特定表面活性剂体系的洗涤剂组合物80、大毛霉液态发酵含果胶的废渣制备果胶酶81、可降低钙离子灵敏度的果胶82、用于多肽的表达和分泌的果胶酸裂解酶融合体83、苎麻脱胶果胶酶的生产及其在苎麻脱胶工艺中的应用84、防治植物病害的碱性果胶解聚酶制剂及其使用方法85、一种香蕉皮中果胶的提取方法86、含有甜菜果胶的面包组合物87、一种果胶酸性寡糖及用途88、利用果胶酶制取柑橘皮低甲氧基果胶的方法89、一种果胶酸性寡糖的制备方法90、提高蛋白酶和果胶酶活力的麦芽制备方法91、一株产碱性果胶酶工程菌及其构建和用该菌生产碱性果胶酶的方法92、获得果胶的方法93、苎麻中果胶含量的测定方法94、来源于西印度樱桃果实的果胶和其应用95、果胶的制造法及使用果胶的凝胶剂及凝胶状食品96、一种用温度策略促进重组毕赤酵母高产碱性果胶酶的方法97、一种从柚子皮中提取柚皮甙和果胶的方法98、芦荟苹果胶冻及其制作方法99、打瓜的综合利用及从打瓜中提取果胶的方法100、果胶的改性方法及其应用101、一种不饱和果胶低聚糖及复合生物防腐剂102、一株吉氏芽孢杆菌突变株及其发酵生产碱性果胶酶103、一种从薜荔花被中提取低酯果胶的方法104、采用水萃取法从薜荔籽中提取优质低酯果胶的方法105、一株嗜碱细菌及其固态发酵生产碱性果胶酶106、包含果胶的基质形成组合物107、一种高活力果胶复合酶制备方法108、胶体果胶铋分散片109、盐析法提取豆腐柴叶中果胶110、癞葡萄果胶制备工艺111、发酵法制备碱性果胶酶过程中提高碱性果胶酶酶活的方法112、果胶酸裂解酶变体113、一种黑曲霉菌株及其在果胶酶固态发酵生产中的应用114、果胶薄膜115、一种果胶酶亲和吸附剂的制备方法116、一种碱性果胶酶制剂的复配和应用方法117、一种碱性果胶酶高产菌及其筛选方法和用该菌株发酵法生产碱性果胶酶118、生物化学法制取果胶119、可高产果胶酶的塔宾曲霉及在固态发酵生产中的应用120、果胶及其生产方法,含果胶的酸性蛋白食品及其生产方法121、柑桔皮制备果胶的方法122、全棉机织物淀粉酶、果胶酶、蛋白酶连续浸轧-汽蒸法前处理工艺123、从柚子中同时提取果胶、柚皮甙等八种产物的方法124、包含枯草杆菌果胶酸裂解酶的洗涤剂组合物125、果胶凝胶的就地形成126、含糖用甜菜果胶和类胡萝卜素的组合物127、含有果胶和抗坏血酸的组合物128、黄姜中提取果胶的方法129、制备含纤维果胶的方法及其产品和应用130、含有与聚果胶酸酯和EDTA螯合的银的抗菌溶液131、一种口服复方胶体果胶铋制剂及制备方法132、一种提高碱性果胶酶在棉纺织精练工艺中稳定性的方法133、含有果胶的植物材料的改进处理方法134、高活性液体食品级果胶酶的制造方法135、从柑桔类果皮中提取桔子油和果胶的方法136、抗菌性果胶纤维素137、苹果果胶的脱色及生产白色细粉的苹果果胶的工艺138、一种酰胺化果胶的生产工艺139、大豆种皮制备果胶新方法140、一种利用苹果渣制取高纯度果胶的方法141、含高重量份钙盐的在体交联果胶骨架给药系统142、大豆种皮联产制备果胶和重金属离子吸附剂的方法143、用解聚果胶作为稳定剂制备食品的方法144、利用剑麻麻渣制备叶绿素铜钠及果胶的方法145、低分子柑桔果胶用于增强免疫功能的应用146、低分子柑桔果胶用于调节血糖血脂和改善脂肪肝中的应用147、胶体果胶铋干混悬剂及其制备方法148、柑橘类果皮中果胶的提取与制备工艺149、一种从白构皮制浆蒸煮废液中提取果胶的方法150、利用生物提取与膜分离技术生产果胶的方法151、基于果胶的冷胶凝糕点糖衣152、一种低温果胶酶菌株、低温果胶酶及其生产方法153、一种以果胶为基质的脂肪替代品的生产方法154、一种利用果皮生产果胶的方法155、纳米胶体果胶铋及其颗粒剂药物156、利用膜技术从向日葵盘中分离低酯果胶的方法157、果胶提取方法158、甘薯果胶及其生产技术159、一种双水相萃取体系分离纯化果胶酶的方法160、一种含果胶颗粒的含乳饮料及其生产方法161、低甲氧基苹果果胶的生产工艺162、高分子苹果果胶的生产工艺163、一株克劳氏芽孢杆菌突变株及其发酵生产碱性果胶酶164、一种果胶/聚乙烯醇水凝胶材料及其制备方法165、用于低卡路里凝胶的含果胶组合物的胶凝剂166、果胶-5-氟尿嘧啶结肠癌双靶向前体药物及制备方法167、果胶酶在抑制藻华中的应用及方法168、含有果胶烯化氧衍生物的组合物169、含有果胶的酸化乳制品170、一种果胶快速分级方法171、一种苹果果胶的生产方法172、柿皮中果胶、单宁及色素的连续提取方法173、一种产果胶酶的工程菌株174、里氏木霉液体发酵生产纤维素酶、木聚糖酶、葡聚糖酶和果胶酶的方法175、解淀粉类芽孢杆菌P17菌株,由其所得的低温果胶酶及其分离纯化方法176、以苹果果胶为主要组分的润肠排毒的功能食品及其制备方法177、以苹果果胶为主要组分的调节血脂降胆固醇的功能食品及其制备方法178、以苹果果胶为主要组分的调节血糖的功能食品及其制备方法179、色果胶囊及其生产方法180、黑曲霉液态发酵果胶酶及其对白水和纸浆中胶体物质控制181、一种果胶中残留的有机溶剂的测定方法182、经果胶改性的抗性淀粉、含其的组合物和制备抗性淀粉的方法183、一种从柑桔皮中提取液体果胶方法184、由秋葵果实荚分离的果胶多糖185、果胶的制备方法和用所述果胶的胶凝剂和凝胶状食物186、纯棉机织物果胶酶、双氧水温堆前处理工艺187、可食性食品果胶保鲜膜及其制备方法和应用。
果胶的提取方法果胶分果胶液、果胶粉及低甲氧基果胶粉三种。果胶液为白色均匀浓稠液,不带果皮和果肉碎屑,含固体7~9%,果胶粉为淡黄色或浅灰色白色,溶于水,味微酸无异味,含水7~10%,胶凝力达100~150级(150级果胶意指1克果胶粉溶于水中,在pH3~3.4之间能使加入的150克砂糖完全凝固成果冻)。低甲氧基果胶粉为白色,溶于水,甲氧基含量为2.5~4.5%。 果胶用途很广,特别是在食品工业方面,除用作果酱、果冻等的增稠剂外,还是冰淇淋等的优良稳定剂,此外在制药、纺织等工业中也广泛应用。低甲氧基果胶除有果胶的种种用途外,还可以制成低糖、低热值的疗效果酱类食品,它的生产在食品工业上已日益受到重视。 一、果胶液的生产工艺 1.原料的选择:提取果胶的原料很多,如柑桔、柚子、柠檬、番石榴、苹果、梨、山渣等的果皮,果芯及榨汁后的果渣都是很好的原料。几种新鲜的果皮,果芯的果胶含量如下: 甜橙 柠檬 苹果 梨 桃 ~3% ~ l~ ~ ~ 2.漂洗:原料中所含的成分,如糖甙、芳香物质、色素、酸类和盐类等在提取果胶前须漂洗干净,以免影响果胶的品质及胶凝力。柑桔类果皮首先提取精油,后经绞碎,再用蒸汽加热到95~98℃保持10分钟,以破坏果胶,避免果胶水解降低胶凝力。这种处理可与回收残余精油同时进行。 柑桔类果皮中含有柑皮苷、桔皮苷或柚皮苷,味较苦,必须用清水浸泡半小时,后加热至90℃保持5分钟,压去汁液,再用清水漂洗数次,这样才可除去大部分糖苷、色素及其他杂质,去除大部分苦味。 3.抽提:果胶的抽提包括原果胶的水解与果胶的溶出两个过程。在整个过程中要掌握温度、时间和酸度。酸度高,则需时较短;温度较低,则需时较长。温度较高或多次抽取才能提净果胶。抽提时,将绞碎的原料倒入抽提锅内,加水4倍,加亚硫酸调节pH值至1.8~2.7,后通入蒸汽,边搅拌边加热到95℃,保持45~60分钟,即可抽出大部分果胶。 4.抽提液的处理:将袖提物料通过压滤机过滤,并用高速(7000转/分)离心机分离杂质。然后迅速冷却到50℃左右;加入1~2%淀粉酶使抽提液中淀粉水解为糖。当酶作用终了时,即需加热到77℃,破坏酶的活力。接着加入0.3~0.5%活性炭在55~60℃下搅拌20~30分钟,使果胶脱色,再加入1~1.5%硅藻土,搅匀,后用压滤机滤清抽提液。 5.果胶液的浓缩与贮藏:将滤清的果胶液送入真空浓缩锅中,保持真空度667毫米汞柱以上,沸点50℃左右,浓缩至总固体达7~9%为止。浓缩毕,即将果胶液加热至70℃,装入玻璃瓶中,加盖密封,后置于70℃热水中加热杀菌30分钟,冷却后,送入仓库,或将果胶液装入木桶中,加0.2%亚硫酸氢钠搅拌匀,并密封贮藏。 二、果胶粉的生产工艺 果胶粉的生产除上述各工序外,还需除去果胶中的水分,制成粉未,加工的方法如下: 1.喷雾干燥法:将上述浓缩液经高压喷头喷入干燥室,室内空气温度保持120~150℃,果胶细雾接触热空气后,瞬时便干燥成细粉落在干燥室的底部。并由螺旋输送器送到包装车间,立即通过60目筛筛分,后装入聚乙烯薄膜袋中。 用本法取得的果胶粉细度大,溶解度高,成本较低,但与酒精沉淀法相比,成品易返潮,并含较多杂质,因此,亦有将此法制成的果胶粉用浓度50~70%的酒精处理,除去杂质,提高果胶粉质量。采用本法加工时,应特别注意原料的漂洗,先尽量清除杂质,否则制品将因残留糖分过多而易返潮和长霉。 2.酒精沉淀法:将200公斤含总固体8%左右的果胶浓缩液置于凝结器中,加入盐酸3公斤,搅拌半分钟,以促进果胶凝结,并可溶解一部分盐类,以减少杂质沉淀。后慢慢加入200公斤浓度90%左右的酒精,边加边搅拌;每隔1~2分钟开动搅拌器一次,果胶即沉淀析出,继用压榨机榨干汁液,汁液供收酒精用。后将耙碎的果胶加2倍量的95%酒精,开动搅拌器,洗涤半小时,再取出凝结果胶,榨干汁液,如此反复洗涤二次。榨干后,将凝结果胶送入真空干燥室中,于65~75℃下进行干燥,干燥到含水量达8%以下为止。再把果胶粉研细。通过60目筛筛分,并立即分装。 用本法提取的果胶粉杂质少、纯度高、胶凝力强,但成本较高。 三、低甲氧基果胶的生产工艺 低甲氧基果胶的制法主要有碱化法、酸化法、酶化法等,现介绍碱化法如下:提取的果胶液经真空浓缩,使果胶液中果胶含量达到4%,后把果胶液置于不锈钢锅中,加入氢氧化铵,调节pH值至10.5,保持液温15℃历3小时,后加入等容积的95%酒精和适量盐酸,使pH值降到5。搅拌混合物,静置1小时,捞出沉淀果胶,压干酒精,打碎压饼并使之悬浮于pH值为5.2的50%酒精中,以便除去氯化铵。再沥干、压榨破碎并将其悬浮于95%酒精中1小时。压干后,耙碎摊于烘盘中,在65℃真空烘箱中烘20小时,取出磨细,用100目筛过筛,然后用聚乙烯薄膜袋包装,产出率约为果胶量的90%。
一下的方法应该够你用的了:::果胶提取加工技术及其制备方法1、一种果胶寡聚糖、其制备工艺及防治植物病害的应用2、含有起抑制雄性生殖毒性作用的果胶的药物组合物3、利用废渣和废水固态发酵生产果胶酶4、具有果胶乙酰酯酶活性的多肽和编码该多肽的核酸5、利用银杏外种皮为原料提取的银杏型果胶和提取方法6、豆腐柴叶制备果胶工艺7、草酸青霉固态发酵生产果胶酶8、果胶膜组合物9、向日葵低酯果胶的分离纯化方法10、胡萝卜素、果胶、食用纤维连续提取方法11、作为具有泡沫头饮料的泡沫稳定剂的果胶12、口服可溶性经调节柑桔果胶抑制癌症转移的方法13、从向日葵盘和杆中提取食用低酯果胶的方法14、从柑桔果皮中提制果胶同时联产酒、油、酱、色素和柑桔皮甙的方法15、果胶酶制剂16、豆腐柴提取果胶的方法17、一种生产果胶的方法18、用草酸提取-铁盐沉淀工艺提取向日葵低酯食用果胶的方法19、分子筛法制备果胶20、改性甜菜果胶的生产方法21、从番木瓜中提取食用果胶22、果胶代血浆及制备方法23、用苹果废料制取果胶冻工艺24、甜菜渣制取果胶的方法25、由甜菜粕制备果胶新方法26、从大量废弃芭蕉茹及冻坏生蕉果中提炼果胶三法27、一种金属盐法提制果胶的方法28、从橙皮等柑桔类果皮中提制高质量果胶的方法29、山楂果胶和果汁的分离、提纯、浓缩方法30、一种向日葵盘提取低酯果胶的生产方法31、从马铃薯粉渣中提取低酯果胶的方法32、保健果胶、果汁及其制备方法33、从柑桔皮中同时提取天然黄色素、桔油和果胶的方法34、用蚕沙残渣提取果胶的方法35、向日葵低酯果胶的提取方法36、保健果胶及果汁37、胶态果胶铋药物38、使用果胶酶处理制取山楂汁的方法及产品39、应用高分子量脱乙酰基甲壳素脱除果胶和澄清果(蔬)汁的方法40、柑桔废弃物提取低酯果胶的方法41、果汁-果胶-食用纤维连续提取方法42、颗粒状果胶酶制剂及其制造方法43、预酸解、高酸度连续提取生产果胶的方法及设备44、柠檬皮果胶的提取方法45、一种利用柑桔类果皮中果胶酯酶的脱酯方法及其应用46、果胶组合物及其制备方法47、果胶组合物及其制备方法48、枯草芽孢杆菌及固体碱性果胶酶生产工艺49、假酸浆果胶粉及其生产方法50、向日葵低酯果胶的纯化方法51、半导体激光辐照选育果胶酶高产菌株52、从胡麻籽中提取高果胶含量的胡麻胶的方法53、用高酯果胶在酸性环境中稳定蛋白质的方法54、改性的果胶材料55、活性人参果胶囊(片)及其制备方法56、含有果胶酯酶的洗涤剂组合物57、含有碱性果胶降解酶的洗涤剂组合物58、含果胶裂解酶的洗涤剂组合物59、超果胶酶及其生产工艺60、具有果胶酯酶活性的酶61、苎麻优质果胶的制备方法62、包含果胶甲酯酶和两种底物的组合物63、获得精选果胶级分的方法、这样的级分及其用途64、固态发酵果渣、菜渣制备果胶酶65、炭黑曲霉突变株K58固体发酵生产果胶酶66、含有解果胶酶的洗涤剂组合物67、长寿果胶囊及其制备方法68、地衣芽孢杆菌果胶降解醇69、新的果胶酸裂解酶70、果胶及其生产方法,含果胶的酸性蛋白食品及其生产方法71、用于糊状物质中的果胶、其制备方法、包含该果胶的糊状物质及其应用72、果胶的生产方法73、酶促修饰果胶的方法74、分级分离的果胶产品的制造方法75、包含抗坏血酸和果胶的组合物76、含有果胶酸盐裂解酶和漂白体系的洗涤剂组合物77、用于稳定蛋白质的果胶78、果胶酶制剂的生产方法79、含有果胶酸裂解酶和特定表面活性剂体系的洗涤剂组合物80、大毛霉液态发酵含果胶的废渣制备果胶酶81、可降低钙离子灵敏度的果胶82、用于多肽的表达和分泌的果胶酸裂解酶融合体83、苎麻脱胶果胶酶的生产及其在苎麻脱胶工艺中的应用84、防治植物病害的碱性果胶解聚酶制剂及其使用方法85、一种香蕉皮中果胶的提取方法86、含有甜菜果胶的面包组合物87、一种果胶酸性寡糖及用途88、利用果胶酶制取柑橘皮低甲氧基果胶的方法89、一种果胶酸性寡糖的制备方法90、提高蛋白酶和果胶酶活力的麦芽制备方法91、一株产碱性果胶酶工程菌及其构建和用该菌生产碱性果胶酶的方法92、获得果胶的方法93、苎麻中果胶含量的测定方法94、来源于西印度樱桃果实的果胶和其应用95、果胶的制造法及使用果胶的凝胶剂及凝胶状食品96、一种用温度策略促进重组毕赤酵母高产碱性果胶酶的方法97、一种从柚子皮中提取柚皮甙和果胶的方法98、芦荟苹果胶冻及其制作方法99、打瓜的综合利用及从打瓜中提取果胶的方法100、果胶的改性方法及其应用101、一种不饱和果胶低聚糖及复合生物防腐剂102、一株吉氏芽孢杆菌突变株及其发酵生产碱性果胶酶103、一种从薜荔花被中提取低酯果胶的方法104、采用水萃取法从薜荔籽中提取优质低酯果胶的方法105、一株嗜碱细菌及其固态发酵生产碱性果胶酶106、包含果胶的基质形成组合物107、一种高活力果胶复合酶制备方法108、胶体果胶铋分散片109、盐析法提取豆腐柴叶中果胶110、癞葡萄果胶制备工艺111、发酵法制备碱性果胶酶过程中提高碱性果胶酶酶活的方法112、果胶酸裂解酶变体113、一种黑曲霉菌株及其在果胶酶固态发酵生产中的应用114、果胶薄膜115、一种果胶酶亲和吸附剂的制备方法116、一种碱性果胶酶制剂的复配和应用方法117、一种碱性果胶酶高产菌及其筛选方法和用该菌株发酵法生产碱性果胶酶118、生物化学法制取果胶119、可高产果胶酶的塔宾曲霉及在固态发酵生产中的应用120、果胶及其生产方法,含果胶的酸性蛋白食品及其生产方法121、柑桔皮制备果胶的方法122、全棉机织物淀粉酶、果胶酶、蛋白酶连续浸轧-汽蒸法前处理工艺123、从柚子中同时提取果胶、柚皮甙等八种产物的方法124、包含枯草杆菌果胶酸裂解酶的洗涤剂组合物125、果胶凝胶的就地形成126、含糖用甜菜果胶和类胡萝卜素的组合物127、含有果胶和抗坏血酸的组合物128、黄姜中提取果胶的方法129、制备含纤维果胶的方法及其产品和应用130、含有与聚果胶酸酯和EDTA螯合的银的抗菌溶液131、一种口服复方胶体果胶铋制剂及制备方法132、一种提高碱性果胶酶在棉纺织精练工艺中稳定性的方法133、含有果胶的植物材料的改进处理方法134、高活性液体食品级果胶酶的制造方法135、从柑桔类果皮中提取桔子油和果胶的方法136、抗菌性果胶纤维素137、苹果果胶的脱色及生产白色细粉的苹果果胶的工艺138、一种酰胺化果胶的生产工艺139、大豆种皮制备果胶新方法140、一种利用苹果渣制取高纯度果胶的方法141、含高重量份钙盐的在体交联果胶骨架给药系统142、大豆种皮联产制备果胶和重金属离子吸附剂的方法143、用解聚果胶作为稳定剂制备食品的方法144、利用剑麻麻渣制备叶绿素铜钠及果胶的方法145、低分子柑桔果胶用于增强免疫功能的应用146、低分子柑桔果胶用于调节血糖血脂和改善脂肪肝中的应用147、胶体果胶铋干混悬剂及其制备方法148、柑橘类果皮中果胶的提取与制备工艺149、一种从白构皮制浆蒸煮废液中提取果胶的方法150、利用生物提取与膜分离技术生产果胶的方法151、基于果胶的冷胶凝糕点糖衣152、一种低温果胶酶菌株、低温果胶酶及其生产方法153、一种以果胶为基质的脂肪替代品的生产方法154、一种利用果皮生产果胶的方法155、纳米胶体果胶铋及其颗粒剂药物156、利用膜技术从向日葵盘中分离低酯果胶的方法157、果胶提取方法158、甘薯果胶及其生产技术159、一种双水相萃取体系分离纯化果胶酶的方法160、一种含果胶颗粒的含乳饮料及其生产方法161、低甲氧基苹果果胶的生产工艺162、高分子苹果果胶的生产工艺163、一株克劳氏芽孢杆菌突变株及其发酵生产碱性果胶酶164、一种果胶/聚乙烯醇水凝胶材料及其制备方法165、用于低卡路里凝胶的含果胶组合物的胶凝剂166、果胶-5-氟尿嘧啶结肠癌双靶向前体药物及制备方法167、果胶酶在抑制藻华中的应用及方法168、含有果胶烯化氧衍生物的组合物169、含有果胶的酸化乳制品170、一种果胶快速分级方法171、一种苹果果胶的生产方法172、柿皮中果胶、单宁及色素的连续提取方法173、一种产果胶酶的工程菌株174、里氏木霉液体发酵生产纤维素酶、木聚糖酶、葡聚糖酶和果胶酶的方法175、解淀粉类芽孢杆菌P17菌株,由其所得的低温果胶酶及其分离纯化方法176、以苹果果胶为主要组分的润肠排毒的功能食品及其制备方法177、以苹果果胶为主要组分的调节血脂降胆固醇的功能食品及其制备方法178、以苹果果胶为主要组分的调节血糖的功能食品及其制备方法179、色果胶囊及其生产方法180、黑曲霉液态发酵果胶酶及其对白水和纸浆中胶体物质控制181、一种果胶中残留的有机溶剂的测定方法182、经果胶改性的抗性淀粉、含其的组合物和制备抗性淀粉的方法183、一种从柑桔皮中提取液体果胶方法184、由秋葵果实荚分离的果胶多糖185、果胶的制备方法和用所述果胶的胶凝剂和凝胶状食物186、纯棉机织物果胶酶、双氧水温堆前处理工艺187、可食性食品果胶保鲜膜及其制备方法和应用
果胶在糖果中的应用 亲水胶体在糖果制造中起着重要的作用.亲水胶体是软糖的骨架,可... 柠檬酸钠 (二水柠檬酸三钠) 砂糖 葡萄糖浆, 42 DE, 70%