首页 > 期刊论文知识库 > 五一数学建模优秀论文

五一数学建模优秀论文

发布时间:

五一数学建模优秀论文

石头听了,感谢不尽。那僧便念咒书符,大展幻术,将一块大石登时变成一块鲜明莹洁的美玉,且又缩成扇坠大小的可佩可拿。那僧托于掌上,笑道:“形体倒也是个宝物了!还只没有实在的好处,须得再镌上数字,使人一见便知是奇物方妙。然后携你到那昌明隆盛之邦,诗礼簪缨之族,花柳繁华地,温柔富贵乡去安身乐业。”石头听了,喜不能禁,乃问:“不知赐了弟子那几件奇处,又不知携了弟子到何地方?望乞明示,使弟子不惑。”那僧笑道:“你且莫问,日后自然明白的说着,便袖了这石,同那道人飘然而去,竟不知投奔何方何舍。后来,又不知过了几世几劫,因有个空空道人访道求仙,忽从这大荒山无稽崖青埂峰下经过,忽见一大块石上字迹分明,编述历历。空空道人乃从头一看,原来就是无材补天,幻形入世蒙茫茫大士渺渺真人携入红尘,历尽离合悲欢炎凉世态的一段此系身前身后事,倩谁记去作奇传?诗后便是此石坠落之乡投胎之处,亲自经历的一段陈迹故事。其中家庭闺阁琐事,以及闲情诗词倒还全备,或可适趣解闷,然朝代年纪、地舆邦国反空空道人遂向石头说道:“石兄,你这一段故事,据你自己说有些趣味,故编写在此,意欲问世传奇。据我看来,第一件,无朝代年纪可考;第二件,并无大贤大忠理朝廷治风俗的善政,其中只不过几个异样女子,或情或痴,或小才微善,亦无班姑蔡女之德能。我纵抄去,恐世人不爱看呢。”石头笑答道:“我师何太痴耶!若云无朝代可考,今我师竟假借汉唐等年纪添缀,又有何难?但我想,历来野史,皆蹈一辙,莫如我这不此套者,反倒新奇别致,不过只取其事体情理罢了,又何必拘拘于朝代年纪哉!再者,市井俗人喜看理治之书者甚少,爱适趣闲文者特多。历来野史,或讪谤君相,或贬人妻女,奸淫凶恶,不可胜数。更有一种风月笔墨,其淫秽污臭,屠毒笔墨,坏人子弟,又不可胜数。至若佳人才子等书,则又千部共出一套,且其中终不能不涉于淫滥,以致满纸潘安、子建、西子君、不过作者要写出自己的那两首情诗艳赋来,故假拟出男女二人名姓,又必旁出一小人其间拨乱,亦如剧中之小丑然。且鬟婢开口即者也之乎,非文即理。故逐一看去,悉皆自相矛盾,大不近情理之话,竟不如我半世亲睹亲闻的这几个女子,虽不敢说强似前代书中所有之人,但事迹原委,亦可以消愁破闷;也有几首歪诗熟话,可以喷饭供酒。至若离合悲欢,兴衰际遇,则又追踪蹑迹,不敢稍加穿凿,徒为供人之目而反失其真传者。今之人,贫者日为衣食所累,富者又怀不足之心,纵然一时稍闲,又有贪淫恋色,好货寻愁之事,那里去有工夫看那理治之书?所以我这一段故事,也不愿世人称奇道妙,也不定要世人喜悦检读,只愿他们当那醉淫饱卧之时,或避事去愁之际,把此一玩,岂不省了些寿命筋力?就比那谋虚逐妄,却也省了口舌是非之害,腿脚奔忙之苦。再者,亦令世人换新眼目不比那些胡牵乱扯,忽离忽遇,满纸才人淑女、子建文君红娘空空道人听如此说,思忖半晌,将《石头记》再检阅一遍,因见上面虽有些指奸责佞贬恶诛邪之语,亦非伤时骂世之旨;及至君仁臣良父慈子孝,凡伦常所关之处,皆是称功颂德,眷眷无穷,实非别书之可比。虽其中大旨谈情,亦不过实录其事,又非假拟妄称,一味淫邀艳约、私订偷盟之可比。因毫不干涉时世,方从头至尾抄录回来,问世传奇。从此空空道人因空见色,由色生情,传情入色,自色悟空,遂易名为情僧,改《石头记》为《情僧录》。东鲁孔梅溪则题曰《风月宝鉴》。后因曹雪芹于悼红轩中披阅十载,增删五次,纂成目录,分出章回当日地陷东南,这东南一隅有处曰姑苏,有城曰阊门者,最是红尘中一二等富贵风流之地。这阊门外有个十里街,街内有个仁清巷,巷内有个古庙,因地方窄狭,人皆呼作葫芦庙。庙旁住着一家乡宦,姓甄,名费,字士隐。嫡妻封氏,情性贤淑,深明礼义。家中虽不甚富贵,然本地便也推他为望族了。因这

数学建模--教学楼人员疏散--获校数学建模二等 数学建模人员疏散本题是由我和我的好哥们张勇还有我们区队的学委谢菲菲经过数个日夜的精心准备而完成的,指导老师沈聪.摘要 文章分析了大型建筑物内人员疏散的特点,结合我校1号教学楼的设定火灾场景人员的安全疏散,对该建筑物火灾中人员疏散的设计方案做出了初步评价,得出了一种在人流密度较大的建筑物内,火灾中人员疏散时间的计算方法和疏散过程中瓶颈现象的处理方法,并提出了采用距离控制疏散过程和瓶颈控制疏散过程来分析和计算建筑物的人员疏散。 关键字 人员疏散 流体模型 距离控制疏散过程 问题的提出教学楼人员疏散时间预测学校的教学楼是一种人员非常集中的场所,而且具有较大的火灾荷载和较多的起火因素,一旦发生火灾,火灾及其烟气蔓延很快,容易造成严重的人员伤亡。对于不同类型的建筑物,人员疏散问题的处理办法有较大的区别,结合1号教学楼的结构形式,对教学楼的典型的火灾场景作了分析,分析该建筑物中人员疏散设计的现状,提出一种人员疏散的基础,并对学校领导提出有益的见解建议。 前言建筑物发生火灾后,人员安全疏散与人员的生命安全直接相关,疏散保证其中的人员及时疏散到安全地带具有重要意义。火灾中人员能否安全疏散主要取决于疏散到安全区域所用时间的长短,火灾中的人员安全疏散指的是在火灾烟气尚未达到对人员构成危险的状态之前,将建筑物内的所有人员安全地疏散到安全区域的行动。人员疏散时间在考虑建筑物结构和人员距离安全区域的远近等环境因素的同时,还必须综合考虑处于火灾的紧急情况下,人员自然状况和人员心理这是一个涉及建筑物结构、火灾发展过程和人员行为三种基本因素的复杂问题。随着性能化安全疏散设计技术的发展,世界各国都相继开展了疏散安全评估技术的开发及研究工作,并取得了一定的成果(模型和程序),如英国的CRISP、EXODUS、STEPS、Simulex,美国的ELVAC、EVACNET4、EXIT89,HAZARDI,澳大利亚的EGRESSPRO、FIREWIND,加拿大的FIERA system和日本的EVACS等,我国建筑、消防科研及教学单位也已开展了此项研究工作,并且相关的研究列入了国家“九五”及“十五”科技攻关课题。一般地,疏散评估方法由火灾中烟气的性状预测和疏散预测两部分组成,烟气性状预测就是预测烟气对疏散人员会造成影响的时间。众多火灾案例表明,火灾烟气毒性、缺氧使人窒息以及辐射热是致人伤亡的主要因素。其中烟气毒性是火灾中影响人员安全疏散和造成人员死亡的最主要因素,也就是造成火灾危险的主要因素。研究表明:人员在CO浓度为4X10-3浓度下暴露30分钟会致死。此外,缺氧窒息和辐射热也是致人死亡的主要因素,研究表明:空气中氧气的正常值为21%,当氧气含量降低到12%~15%时,便会造成呼吸急促、头痛、眩晕和困乏,当氧气含量低到6%~8%时,便会使人虚脱甚至死亡;人体在短时间可承受的最大辐射热为/m2(烟气层温度约为200℃)。 图1 疏散影响因素 预测烟气对安全疏散的影响成为安全疏散评估的一部分,该部分应考虑烟气控制设备的性能以及墙和开口部对烟的影响等;通过危险来临时间和疏散所需时间的对比来评估疏散设计方案的合理性和疏散的安全性。疏散所需时间小于危险来临时间,则疏散是安全的,疏散设计方案可行;反之,疏散是不安全的,疏散设计应加以修改,并再评估。 图2 人员疏散与烟层下降关系(两层区域模型)示意图 疏散所需时间包括了疏散开始时间和疏散行动时间。疏散开始时间即从起火到开始疏散的时间,它大体可分为感知时间(从起火至人感知火的时间)和疏散准备时间(从感知火至开始疏散时间)两阶段。一般地,疏散开始时间与火灾探测系统、报警系统,起火场所、人员相对位置,疏散人员状态及状况、建筑物形状及管理状况,疏散诱导手段等因素有关。 疏散行动时间即从疏散开始至疏散结束的时间,它由步行时间(从最远疏散点至安全出口步行所需的时间)和出口通过排队时间(计算区域人员全部从出口通过所需的时间)构成。与疏散行动时间预测相关的参数及其关系见图3。 图3 与疏散行动时间预测相关的参数及其关系模型的分析与建立 我们将人群在1号教学楼内的走动模拟成水在管道内的流动,对人员的个体特性没有考虑,而是将人群的疏散作为一个整体运动处理,并对人员疏散过程作了如下保守假设: u 疏散人员具有相同的特征,且均具有足够的身体条件疏散到安全地点;u 疏散人员是清醒状态,在疏散开始的时刻同时井然有序地进行疏散,且在疏散过程中不会出现中途返回选择其它疏散路径;u 在疏散过程中,人流的流量与疏散通道的宽度成正比分配,即从某一个出口疏散的人数按其宽度占出口的总宽度的比例进行分配u 人员从每个可用出口疏散且所有人的疏散速度一致并保持不变。 以上假设是人员疏散的一种理想状态,与人员疏散的实际过程可能存在一定的差别,为了弥补疏散过程中的一些不确定性因素的影响,在采用该模型进行人员疏散的计算时,通常保守地考虑一个安全系数,一般取1.5~2,即实际疏散时间为计算疏散时间乘以安全系数后的数值。 1号教学楼平面图 教学楼模型的简化与计算假设 我校1号教学楼为一幢分为A、B两座,中间连接着C座的建筑(如上图),A、B两座为五层,C座为两层。A、B座每层有若干教室,除A座四楼和B座五楼,其它每层都有两个大教室。C座一层即为大厅,C座二层为几个办公室,人员极少故忽略不考虑,只作为一条人员通道。为了重点分析人员疏散情况,现将A、B座每层楼的10个小教室(40人)、一个中教室(100)和一个大教室(240人)简化为6个教室。 图4 原教室平面简图在走廊通道的1/2处,将1、2、3、4、5号教室简化为13、14号教室,将6、7、8、9、10号教室简化为15、16号教室。此时,13、14、15、16号教室所容纳的人数均为100人,教室的出口为距走廊通道两边的1/4处,且11、13、15号教室的出口距左楼梯的距离相等,12、14、16号教室的出口距右楼梯的距离相等。我们设大教室靠近大教室出口的100人走左楼梯,其余的140人从大教室楼外的楼梯疏散,这样让每一个通道的出口都得到了利用。由于1号教学楼的A、B两座楼的对称性,所以此简图的建立同时适用于1号教学楼A、B两座楼的任意楼层。 图5 简化后教室平面简图 经测量,走廊的总长度为44米,走廊宽为米,单级楼梯的宽度为米,每级楼梯共有26级,楼梯口宽米,每间教室的面积为125平方米. 则简化后走廊的1/4处即为教室的出口,距楼梯的距离应为44/4=11米。对火灾场景做出如下假设:u 火灾发生在第二层的15号教室;u 发生火灾是每个教室都为满人,这样这层楼共有600人;u 教学楼内安装有集中火灾报警系统,但没有应急广播系统;u 从起火时刻起,在10分钟内还没有撤离起火楼层为逃生失败; 对于这种场景下的火灾发展与烟气蔓延过程可用一些模拟程序进行计算,并据此确定楼内危险状况到来的时间.但是为了突出重点,这里不详细讨论计算细节.人员的整个疏散时间可分为疏散前的滞后时间,疏散中通过某距离的时间及在某些重要出口的等待时间三部分,根据建筑物的结构特点,可将人们的疏散通道分成若干个小段。在某些小段的出口处,人群通过时可能需要一定的排队时间。于是第i 个人的疏散时间ti 可表示为:式中, ti,delay为疏散前的滞后时间,包括觉察火灾和确认火灾所用的时间; di,n为第n 段的长度; vi,n 为该人在第n 段的平均行走速度;Δtm,queue 为第n 段出口处的排队等候时间。最后一个离开教学楼的人员所有用的时间就是教学楼人员疏散所需的疏散时间。假设二层的15号教室是起火房间,其中的人员直接获得火灾迹象进而马上疏散,设其反应的滞后时间为60s;教学内的人员大部分是学生,火灾信息将传播的很快,因而同楼层的其他教室的人员会得到15号教室人员的警告,开始决定疏散行动.设这种信息传播的时间为120s,即这批人的总的滞后时间为120+60=180秒;因为左右两侧为对称状态,所以在这里我们就计算一面的.一、三、四、五层的人员将通过火灾报警系统的警告而开始进行疏散,他们得到火灾信息的时间又比二层内的其他教室的人员晚了60秒.因此其总反应延迟为240秒.由于火灾发生在二楼,其对一层人员构成的危险相对较小,故下面重点讨论二,三,四,五楼的人员疏散.为了实际了解教学楼内人员行走的状况,本组专门进行了几次现场观察,具体记录了学生通过一些典型路段的时间。参考一些其它资料[1、2、3] ,提出人员疏散的主要参数可用图6 表示。在开始疏散时算起,某人在教室内的逗留时间视为其排队时间。人的行走速度应根据不同的人流密度选取。当人流密度大于1 人/ m2时,采用0. 6m/ s 的疏散速度,通过走廊所需时间为60s ,通过大厅所需时间为12s ;当人流密度小于1 人/m2 时,疏散速度取为1. 2m/ s ,通过走廊所需时间为30s ,通过大厅所需时间为6s。 图6 人员疏散的若干主要参数 Pauls[4]提出,下楼梯的人员流量f 与楼梯的有效宽度w 和使用楼梯的人数p 有关,其计算公式为: 式中,流量f 的单位为人/ s , w 的单位为mm。此公式的应用范围为0. 1 < p/ w < 0. 55 。 这样便可以通过流量和室内人数来计算出疏散所用时间。出口的有效宽度是从通道的实际宽度里减去其两侧边界层而得到的净宽度,通常通道一侧的边界层被设定为150mm。 3 结果与讨论 在整个疏散过程中会出现如下几种情况: (1) 起火教室的人员刚开始进行疏散时,人流密度比较小,疏散空间相对于正在进行疏散的人群来说是比较宽敞的,此时决定疏散的关键因素是疏散路径的长度。现将这种类型的疏散过程定义为是距离控制疏散过程; (2) 起火楼层中其它教室的人员可较快获得火灾信息,并决定进行疏散,他们的整个疏散过程可能会分成两个阶段来进行计算: 当f进入2层楼梯口流出2层楼梯口时, 这时的疏散就属于距离控制疏散过程;当f进入2层楼梯口> f流出2层楼梯口时, 二楼楼梯间的宽度便成为疏散过程中控制因素。现将这种过程定义为瓶颈控制疏散过程; (3) 三、四层人员开始疏散以后,可能会使三楼楼梯间和二楼楼梯间成为瓶颈控制疏散过程; (4) 一楼教室人员开始疏散时,可能引起一楼大厅出口的瓶颈控制疏散过程; (5) 在疏散后期,等待疏散的人员相对于疏散通道来说,将会满足距离控制疏散过程的条件,即又会出现距离控制疏散过程。 起火教室内的人员密度为100/ 125 = 人/m2 。然而教室里还有很多的桌椅,因此人员行动不是十分方便,参考表1 给出的数据,将室内人员的行走速度为 s。设教室的门宽为1. 80m。而在疏散过程中,这个宽度不可能完全利用,它的等效宽度,等于此宽度上减去0. 30m。则从教室中出来的人员流量f0为: f0=v0×s0×w0=××(人/ s) (3)式中, v0 和s0 分别为人员在教室中行走速度和人员密度, w0 为教室出口的有效宽度。按此速度计算,起火教室里的人员要在 内才能完全疏散完毕。 设人员按照 人/ s 的流量进入走廊。由于走廊里的人流密度不到1 人/ m2 ,因此采用1. 2m/s的速度进行计算。可得人员到达二楼楼梯口的时间为。在此阶段, 将要使用二楼楼梯的人数为100人。此时p/ w=100/1700= < 0. 1 , 因而不能使用公式2 来计算楼梯的流量。采用Fruin[5]提出的人均占用楼梯面积来计算通过楼梯的流量。根据进入楼梯间的人数,取楼梯中单位宽度的人流量为人 /(m. s) ,人的平均速度为0. 6m/ s ,则下一层楼的楼梯的时间为13s。这样从着火时刻算起,在第(60+)时,着火的15号教室人员疏散成功。以上这些数据都是在距离控制疏散过程范围之内得出的。 起火后120s ,起火楼层其它两个教室(即11和13号教室)里的人员开始疏散。在进入该层楼梯间之前,疏散的主要参数和起火教室中的人员的情况基本一致。在他们中有人到达二层楼梯口,起火教室里的人员已经全部撤离二楼大厅。因此,即将使用二楼楼梯间的人数p1 为: p1 = 100 ×2 = 200 (人) (4)此时f进入2层楼梯口>f流出2层楼梯口,从该时刻起,疏散过程由距离控制疏散过渡到由二楼楼梯间瓶颈控制疏散阶段。由于p/ w =200/1700= ,可以使用公式2 计算二楼楼梯口的疏散流量f1 , 即:?/P> f1 = (3400/ 8040) × 200 = 人/ s) (5) 式中的3400 为两个楼梯口的总有效宽度,单位是mm。而三、四层的人员在起火后180s 时才开始疏散。三层人员在(180+)时到达二层楼梯口,与此同时四层人员到达三层楼梯口,第五层到达第四层楼梯口。此时刻二层楼梯前尚等待疏散人员数p′1: p′1 = 200 - ( – ) × = (人) <0 (6) 所以,二层楼的人员已经全部到达一层此后,需要使用二层楼梯间的人数p2 : p2 = 100×3=300 (人) (7)相应此阶段通过二楼楼梯间的流量f 2 : f2 = (3400/8040) × 200 = (人/ s) (8) 这┤送ü楼楼梯的疏散时间t1 : t1 = 300÷ = 120 ( s) (9) 因为教学楼三、四、五层的结构相同,所以五层到四层,四层到三层和三层到二层所用的时间相等,因此人员的疏散在楼梯口不会出现瓶颈现象所以,通过二楼楼梯的总体疏散时间T : T = 120×3 = ( s) (10) 最终根据安全系数得出实际疏散时间为T实际: T实际 =×(~2)=~1293( s) (11)图7 二楼楼梯口流量随时间的变化曲线图 关于几点补充说明:以上是我们只对B座二楼的15号教室起火进行的假设分析和计算,此时当人员到达一楼即视为疏散成功。同理,当三楼起火的时候,人员到达二楼即视为疏散成功,四楼、五楼以此类推。因为1号教学楼A、B座结构的对称性所以楼层的其他教室起火与此是同一个道理。所以本文上述的分析与计算同时适用于A、B两座楼。另外当三层以上(包括三楼)起火的时候,便体现出C座二楼的作用。当B座的三楼起火的时候,B座二楼的人员肯定是在B座三楼人员后对起火做出应对反应,所以会出现当三楼人员疏散到二楼的时候,二楼的人员也开始疏散的情况,势必造成二楼楼梯口出现瓶颈现象。因为A、B座的三、四、五楼并没有连接,都是独立的结构,出现火灾不会直接从B座的三楼威胁到A座三楼及其他楼层人员的安全,所以为了避免上述二楼楼梯口出现瓶颈现象的发生,我们让二楼的所有人员向A座的二楼转移,这样就会让起火楼层的人员能够更快的疏散到安全区域。当B座的四、五楼起火的时候也同样让二楼的人员向A座的二楼转移,为二楼以上的人员疏散创造条件。同理,A座也是如此。 在对火灾假设分析和计算的时候,我们并没有对大教室的后门楼梯的疏散做出计算,由于1号教学楼的特殊性,A座的四楼和B座的五楼没有大教室,所以大教室的后门楼梯疏散人员的速度是很快的,不会在大教室后门的楼梯出现瓶颈现象。 关于1号教学楼的几个出口:u 大厅有一个大门u A座一楼靠近正厅有一个门u A座大教室旁边有一个门u B座中教室靠近大厅正门侧面的窗户可以作为一个应急出口u A、B座的底层都有一个地下室(当烟气蔓延太快来不及疏散,受烟气威胁的时候可以作为一个逃生去向)u A、B座大教室各有一个后门 合计: 8个出口致校领导的一封信尊敬的校领导,你们好。针对我校1号教学楼,我们数学建模小组通过实际测量、建立模型、模型分析,得出如下结论:一旦1号教学楼发生火灾,人员有可能不能全部安全疏散。以上的分析是按一种很理想的条件进行的,并没有进行任何修正。实际上人在火灾中的行为是很复杂的,尤其是没有经过火灾安全训练的人,可能会出现盲目乱跑、逆向行走等现象,而这也会延长总的疏散时间。 该模型在现阶段是一个人员疏散分析模型的基础,目前属于理论上的模型,以上的计算结果都是通过手算或文曲星计算得到的。模型中的人员行走速度是通过多次观察该教学楼内下课时人员的行走速度和参照Fru2in 给出的疏散时人员行走速度、NFPA 中给出的人员行走速度以及目前人员疏散模型中通用的计算速度等修正而得到的,具有较为广泛的通用性。而预测的疏散时间是根据建筑物的结构特点和人员行走速度而得到的,在计算疏散所用时间的时候在剔除疏散前人员的滞后时间(或称预移动时间) 外,所得到的时间是合理的。对于疏散前人员的滞后时间,参考T. J . Shields 等试验结论:75 %人员在听到火灾警报后的15~40 s 才开始移动,而整个疏散所用的时间为 s。在该例中起火教室的反应滞后时间为60 s ,这是从开始着火时刻算起的。预移动时间与不同类型的建筑物、建筑物中人员的自身特点和建筑物中的报警系统有着很大的关系,它是一个很不确定的数值。本文中所用的预移动时间不到整个疏散过程中所用的时间的 10 %。二楼楼梯口流量随时间的变化曲线如图7所示。由上可知,二层以上的所有人通过二楼楼梯所需的时间为 s ,这比前面设定的可用安全疏散时间要长,因而不能保证有关人员全部安全疏散出去。楼梯的宽度和大厅的正门显然是制约人员疏散的一个瓶颈。造成这种情况的基本原因是该教学楼的疏散通道安排不当,楼梯通道的宽度不够,对此可以适当增大楼梯的总宽度;或者在教学楼的每个分支上再修一个楼梯,则人员的疏散会更加的畅通;最好是分别在A座和B座新建一个象正门一样的出口,这样将大大的缓解了大厅正门疏散人员的压力,不至于造成大厅人员堵塞而影响楼上人员的疏散。另一方面,学校还应多增加一些消防设施,每个教室都该配备灭火器;学校还应加强学生消防意识的培养和教育,形式可以多样化、新颖化,比如做报告,上实践课,做消防演习等等。让他们了解一些消防逃生的常识,学会一些消防器材的使用,并让他们对自己所使用的教学楼有充分发认识和了解,一旦发生火灾好知道采取何种疏散方法才能在最短的时间内到达安全区域。如果学校经费有限,也可以不花一分钱就可以消除这个消防隐患,就是合理安排上课的教室,避免每个楼层的所有教室都被用于上课。每层至少可以空出几个,这样就会大大的缓解人员疏散不利带来的危险。但是这样也有弊端,就是没有充分利用教室的使用价值,浪费资源。

建模论文建模论文写作指导(一)、建模论文的标准组成部分建模论文作为一种研究性学习有意义的尝试,可以锻炼学生发现问题、解决问题的能力.一般来说,建模论文的标准组成部分由论文的标题、摘要、正文、结论、参考文献等部分组成.现就每个部分做个简要的说明.1. 题目题目是给评委的第一印象,所以论文的题目一定要避免指代不清,表达不明的现象.建议将论文所涉及的模型或所用的计算方式写入题目.如“用概率方法计算商场打折与返券的实惠效应”.2. 摘要摘要是论文中重要的组成部分.摘要应该使用简练的语言叙述论文的核心观点和主要思想.如果你有一些创新的地方,一定要在摘要中说明.进一步,必须把一些数值的结果放在摘要里面,例如:“我们的最终计算得出,对于消费者来说,打折比返券的实惠率提高了23%.”摘要应该最后书写.在论文的其他部分还没有完成之前,你不应该书写摘要.因为摘要是论文的主旨和核心内容的集中体现,只有将论文全部完成且把论文的体系罗列清楚后,才可写摘要.摘要一般分三个部分.用三句话表述整篇论文的中心.第一句,用什么模型,解决什么问题.第二句,通过怎样的思路来解决问题.第三句,最后结果怎么样.当然,对于低年级的同学,也可以不写摘要.3. 正文正文是论文的核心,也是最重要的组成部分.在论文的写作中,正文应该是从“提出问题—分析问题—选择模型—建立模型—得出结论”的方式来逐渐进行的.其中,提出问题、分析问题应该是清晰简短.而选择模型和建立模型应该是目标明确、数据详实、公式合理、计算精确.在正文写作中,应尽量不要用单纯的文字表述,尽量多地结合图表和数据,尽量多地使用科学语言,这会使得论文的层次上升.4. 结论论文的结论集中表现了这篇论文的成果,可以说,只有论文的结论经得起推敲,论文才可以获得比较高的评价.结论的书写应该注意用词准确,与正文所描述或论证的现象或数据保持绝对的统一.并且一定要对结论进行自我点评,最好是能将结论推广到社会实践中去检验.5. 参考资料在论文中,如果使用了其他人的资料.必须在论文后标明引用文章的作者、应用来源等信息.以下是我找的两篇获奖论文房贷应该怎么还才合理摘要及关键词:本论文主要讨论了怎样还房贷才合理。关键词: 房贷 本金 利率 等额本金 等额本息一.问题的提出随着经济的发展,金融正越来越多的进入普通人的生活;贷款,保险,养老金和信用卡;个人住房抵押贷款是其中重要的一项。当今社会中,热度最高的话题当属“买房子”。而北京目前房价都在3、4万一平米左右,使人们不得不选择进行贷款。而去银行贷款其实也是一门学问,究竟应该怎样还房贷才合适呢?下面数据为最近公布的银行贷款利率短期贷款: 中长期贷款:六个月以内(含六个月): 一至三年(含三年)六个月至一年(含一年) 三年至五年(含五年)五年以上二.模型的假设1.银行在贷款期利率不变2.在这段期间内不考虑经济波动的影响3.客户在还款期内还款能力不变,而且不提前还款三.模型建立符号规定A : 客户向银行贷款的本金B : 客户平均每期应还的本金C : 客户应向银行还款的总额D : 客户的利息负担总和α: 客户向银行贷款的月利率β: 客户向银行贷款的年利率m : 贷款期n : 客户总的还款期数 根据我们的日常生活常识,我们可以得到下面的关系:(1) (2) (3) 两种比较常见的还款方式(1)等额本息还款把按揭贷款的本金总额与利息总额相加,然后平均分摊到还款期限的每个月中。作为还款人,每个月还给银行固定金额。(2)等额本金还款又称利随本清、等本不等息还款法。贷款人将本金分摊到每个月内,同时付清上一交易日至本次还款日之间的利息。等额本息还款模型 (1)贷款期在1年以上:先假设银行贷给客户的本金是在某个月的1号一次到位的. 客户的合同里规定说,在本金到位后的下个月1号开始还钱,且设在还款期内年利率不变. 因为一年的年利率是β,那么,平均到一个月就是(β/12),也就是月利率α, 即有关系式: 设每月均还款总额是x(元) (i=1…n)是客户在第i期1号还款前还欠银行的金额 (i=1…n) 是客户在第i期1号还钱后欠银行的金额. 根据上面的分析,有第1期还款前欠银行的金额: 第1期还款后欠银行的金额: ……第i期还款前欠银行的金额: 第i期还款后欠银行的金额: ……第n期还款前欠银行的金额: 第n期还款后欠银行的金额: 因为第n期还款后,客户欠银行的金额就还清. 也就是说: ,即: 解方程得: 这就是月均还款总额的公式. 因此,客户总的还款总额就等于: 利息负担总和等于: 等额本金还款模型假设贷款期在1年以上.设客户第i期应付的金额为 (i=1…n) (单位:元)因此,客户第一期应付的金额为 : 第二期应付的金额为 : 那么,客户第n期应付的金额为 : 累计应付的还款总额为 :利息负担总和为 : 四.模型求解某一个人从银行贷款100万元,贷款期限为五年,即分60次还款,贷款利率为,每次还款金额见下表: 等额本息还款 元 等额本金还款第一次 第二次 第三次 第四次 第五次 第十次 第二十次 第三十次 第四十次 第五十次 第六十次 总还款金额 117 116万贷款二十年 等额本息还款 等额本金还款第一次 第二次 第三次 第四次 9575第五次 第十次 第20次 第50次 第80次 第100次 7375第150次 第180次 第200次 第210次 第220次 4625第230次 第240次 总还款 180万 166万贷款三十年 等额本息还款 等额本金还款第一次 第二次 第三次 第四次 第五次 第十次 8125第二十次 第五十次 第一百次 6750第一百五十次 第二百次 第二百五十次 第三百次 第三百一十次 第三百二十次 第三百三十次 第三百四十次 第三百五十次 第三百六十次 总还款 229万 199万五.模型分析等额本金还款:适合目前收入较高的人群。借款人在开始还贷时,每月负担比等额本息要重。随着时间推移,还款负担便会逐渐减轻。这种还款方式相对同样期限的等额本息法,总的利息支出较低。等额本息还款法的特点是每个月归还一样的本息和,容易作出预算。还款初期利息占每月供款的大部分,随本金逐渐返还供款中本金比重增加。等额本息还款法更适用于现期收入少,预期收入将稳定或增加的借款人,或预算清晰的人士和收入稳定的人士。六.模型应用该模型可在实践中应用,每一个贷款买房者可应用这个模型,并根据自己的条件和承受能力,对各种贷款方案进行优选。ETC收费与停车收费成本比较现在面对严重的高速公路堵车问题,我们真的手足无措吗?几年前,速通公司推出了ETC不停车收费系统,这本应该能很大程度上缓解高速公路收费站拥堵的情况,但实际效果却并不理想。我们觉得 主要原因是ETC成本太高,一台机器要450元钱,于是很多人宁可花时间在路上等。其实,如果我们仔细算一下成本,便会对这个问题有更新的认识。我们的几个平均参数:车重m=,轮胎与地面摩擦系数u=,汽油热值q= J/kg,93汽油价格元/升(元/千克),发动机空转功率p= 17 kw ,热效率为23%。一般汽车在出高速时,车道一般有几辆车在排队,我们平均为5辆。每辆车交费时间平均为10s。这样每辆车在收费时启动制动5次,等待50秒。每次启动速度由0到10mph,启动距离为5米。由此我们推算;1启动时耗油,设为 ,由能量守恒得到等式 ,代入数据后得到 =。2 等待10秒时油耗, = = 所以每次汽车出高速要消耗 =119g 汽油,约合元。如果按每周走一次高速算,一年52次就是元,6年下来花在高速收费站毫无意义的油钱就是元,而这钱已经够买一台ETM机了。除去油钱,每次交费时断断续续的启动和刹车,也会对发动机和刹车片造成不小的损耗,增加额外的维修费用。还有很重要的一点是浪费的时间,每次平均要50秒,如果遇上高峰期,几公里长的车队几米几米的向前动,耽误的时间就更别提了。所以综合以上因素考虑,如果汽车在六年内经常走高速的话,使用ETC的成本是要低于停车收费的。从车主的角度考虑,汽车配备了ETC机,可以在不太高的车速下完成交费。既省下了频繁启动和等待浪费的油钱,也减少了对发动机刹车片的磨损,还省下了很多时间。从路政部门的角度考虑,如果停车收费,需要在收费站投入大量的纸张、油墨和计算机处理系统并安排相应的工作人员,收上的钱还需要汇总转移一次才能存入银行,既耗材又麻烦。如果使用ETC系统,就可以无纸化收费,无需工作人员进行处理,车主交的钱可以直接与账户挂钩,省下了很多步骤。所以从这些方面考虑,ETC系统可以降低路政部门在收费站投入的成本。从环境的角度考虑,汽车在刹车和等待时会排放大量的尾气,达正常行驶时的几倍,尤其是在高峰期收费站拥堵时,几百两几千两汽车堵在几公里路上,尾气的排量和密度是大的惊人的。使用ETC系统可以很有效地缓解收费站拥堵的情况,从而减轻汽车尾气对收费站周围环境的影响。综合以上因素,无论从车主成本、路政部门还是环境角度考虑,使用ETC系统都会起到很大的积极作用。我们在ETC系统的购买上还有两个建议,就是路政部门是不是也可以帮车主分担些费用,因为这对双方都有利;或许政府还可以出台相关政策,在汽车出厂时就配备ETC机,把这笔钱算在购车成本里,并给予相应补贴之类的。总之越多的车辆配备了ETC机,高速收费站就会越畅通望楼主采纳。。。。。。。。。。。。。。。。。。。。。很辛苦的。。

1.教育部中国大学生在线数学建模网站收录了12年至18年的国赛优秀论文 (最新的论文要到新的网站上找);2.数学的实践与认识收录了几乎所有年份的数学建模优秀论文, 学校有知网权限的话可以下载阅读;3.数学中国、校苑数模之类的网站上也有相关论文推荐;4.地区级小比赛一般都有公布特等奖/一等奖论文,如五一建模联赛、

优秀数学建模论文

下载一片获奖论文,之后的所有基本就都解决了吧!!

利用数学知识解决现实生活的具体问题了成为当今数学界普遍关注的内容,利用建立数学模型解决实际问题的数学建模活动也应运而生了。下文是我为大家搜集整理的关于2017数学建模b题优秀论文的内容,欢迎大家阅读参考!

浅谈数学建模实验教学改革

摘要:阐述了数学建模课程在大学生知识面的拓宽、全方位能力的培养以及人文素质的提高三方面的重要作用,提出了数学建模课程有助于提高学生的综合素质。从数学建模理论课程和实验教学两者之间的区别与联系的角度提出了实验教学改革的必要性,最后针对数学建模实验教学的具体情况提出了实验教学改革的 措施 。

关键词:数学建模;实验教学;教学改革

一、数学建模课程有助于提高学生的综合素质

随着 教育 改革的不断深入,我国目前正在开展以“素质和素质教育”为核心的教育思想与教育观念大讨论。在1983年召开的世界大学校长会议中,对理想的大学生综合素质提出了三条标准:专业知识要掌握本学科的 方法 论、具有将本学科知识与实际生活与其他学科相结合的能力以及具有良好的人格素质。[1]

数学是一切科学和技术的基础,数学的思考方式对培养学生科学的思维方法具有重要意义,因而数学的重要性是毋庸置疑的。数学和各学科的相互渗透及其在技术中的应用,推动了数学本身的发展和各个学科理论的发展。戴维在1984年说过:“对数学研究的低水平的资助只能来自对于数学研究带来的好处的完全不妥的评价。显然,很少有人认识到当今被如此称颂的‘高技术’本质上是数学技术。”数学的广泛应用性主要取决于数学的 思维方式 。数学对于学生的培养,不只是数学定理的证明,公式、定义的理解,重要的是培养学生具备正确的思想方法,而且可以依据自己所学到的知识不断创新、不断寻找新的途径。

21世纪以来,数学建模课程的开设在国内高校中稳步展开,并获得了广泛认同。参加数学建模竞赛的学校和人数逐年上升,数学建模课程的重要性得到广泛认可,越来越多的高校开设了数学建模课程。[2-4]与传统数学所给的应用题有所不同,数学建模课程着重培养学生的创造性。由于数学建模是从实际问题着手,经过分析、抽象、简化建立数学模型,然后求解、验证并解释实际问题的过程。 社会实践 中的有些实际问题,没有一个明确的已知条件,有时甚至连求解目标也要经过分析问题的各种因素自行确定。这就要求建模者具有较宽的基本知识面,分析问题的能力,具有一定的 想象力 、联想力、洞察力和创新力,具有归纳综合和计算能力等等,即要求具有较好的数学 文化 素质。

1.数学建模课程拓宽了学生的知识面

一方面,数学专业的基础理论教材内容比较成熟,并且侧重定理证明以及演算方法的训练,对问题的实际背景以及模型提取过程介绍不多,而数学建模课程恰好弥补了这一不足。另一方面,由于数学建模问题的实用性和广泛性,大学生在建模实践中要用到很多知识,这些知识已超出了学生的专业知识范围。除了数学知识外,还必须掌握诸如计算方法、计算机语言、应用软件及其他学科的知识等。它是多学科知识的高度综合,宽泛的学科领域和广博的技能技巧是学生所不曾涉猎过的,只能通过学生自学和讨论来进一步掌握。

2.数学建模课程对学生能力的培养是全面的

数学建模的题目多数直接来源于科研、生产、工程与管理的实际问题,且大多是经过适当简化的正在研究或正在探讨阶段中的尚未完全解决的实际问题的部分或片段。解决数学建模问题的过程是对大学生数学与计算机知识、发现及解决问题能力、信息收集能力、论文写作能力及团队协作能力等各方面能力的综合考查。在数学建模实践中,大多数问题既没有唯一的答案,也没有唯一的方法,要解决问题必须要求学生具有独立的思考能力,充分发挥自己的创造能力、想象能力,深刻了解背景,查阅大量资料,并且参加实际调查,根据自身对问题的熟悉程度和知识的掌握来选择思路与方法。通过对所得结果不断地思考和改进,培养和训练学生的科研能力

3.数学建模课程使学生的毅力、意志以及团结合作精神等人文素质方面得到了培养

每年一期的全国大学生数学建模竞赛采取半封闭的形式持续三个昼夜。这是一个非常艰苦的创新过程,不仅培养了大学生刻苦探索的态度、不屈不挠的精神、坚韧不拔的毅力,还培养了学生孜孜不倦、精益求精和锲而不舍的创新精神,并且数学建模竞赛采取三人一个小组,三名同学在竞赛过程中共同解决一个竞赛题目。这就需要他们在竞赛的不同阶段团结协作,密切配合,取长补短,合理分工。因此,数学建模可以培养学生的团队意识与协作精神。

二、数学建模的理论课程与实验教学

数学模型是由数字、字母或其他数学符号组成的,描述现实对象数量规律的数学公式、图形或算法,它是对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。而创建一个数学模型的全过程称为数学建模,即运用数学的语言、方法去近似地刻画该实际问题,并加以解决的全过程。换句话说,数学建模是从定量化的角度,用数学语言和方法,通过对实际问题抽象、简化建立数学模型,然后通过计算,解决实际问题的过程。[6]数学建模课程与传统的数学教学不同。前者侧重于将数学作为工具,来分析和解决各种实际问题,是以培养学生解决实际问题的能力和应用创新能力为目标的实践性课程。而后者则侧重于公式推导、定理证明等。

数学建模课程包括数学建模理论课程和实验教学。数学建模的实验教学是指学生在教师指导下用计算机和数学软件学习数学,它强调将符号计算、数值计算、数据处理、数学软件和数学建模理论课程相结合的数学课程教学。[5]

数学建模的理论课程和实验教学是相辅相成、不可缺少的,也是互相促进的。首先,数学建模理论课程主要是对实际问题进行分析并得到数学结构模型以及模型结果的解释和应用,而对于模型的求解则很少涉及,相反,实验教学则是借助计算机和数学软件对模型进行求解,充分利用计算机的有利条件,让学生手、眼、脑共用,积极主动地使用数学。其次,数学建模理论课程很少涉及模型的解法,而实验教学则是介绍若干数学方法及相应的软件,以方便地完成模型的求解。最后,数学建模理论课程包含丰富的建模案例,主要对实际问题进行分析以及建立模型等理论过程,而实验教学则通过计算机和软件将所建立的模型进行求解,从而使学生将理论和实践相融合,提高学生运用数学知识解决实际问题的能力。

三、实验教学的改革

教育必须反映社会的实际需要,数学建模进入大学课堂,既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,开设数学建模课程则是加强后者的一种尝试。

实际问题的解决不仅需要利用数学建模的理论知识,即根据实际问题的内在规律,通过分析做出必要的假设,适当的运用数学工具,得到一个数学结构,更要利用数学建模的实验操作知识将得到的数学结构进行求解(在实际求解中,利用计算机或者软件进行求解),而且求解所得到的结果要能够解释实际问题。因此,实际问题的解决要求数学建模的理论课程内容和实验教学内容配套同步,有机结合。

目前很多高校的数学建模课程共54课时,其中包括课堂理论讲授36课时和实验教学18课时两部分。限于课时和教学进度,现有的实验教学以学生掌握数学软件的基础操作为主要目的,达不到与课程讲授内容的配套同步,学生对于数学软件的学习掌握也存在较多的问题。因此,有必要对数学建模课程的实验教学进行改革。

实验教学改革以问题为引导,采用专题研讨的形式开展,结合台州学校“数学实验在线平台”的建设,学生利用平台掌握基础的数学软件使用方法、命令格式,并且围绕课堂讲授的数学专题模块开展配套的数学建模实验研讨。具体而言,针对不同难易程度的题目类型,实验教学内容分别以三种不同的形式进行。

1.初步的数学软件题目类型

此类题目类型以熟悉掌握数学软件的常用命令格式为目的。例如,绘出某个二元函数的三维曲面图。又如,求一个已知方阵的行列式、逆、特征值以及对应特征向量。再如,求某个具体多项式的根。

这类题目的已知条件比较简单,只需要直接利用软件的某个指令就可以得到所求解的结果,学生在了解相关的软件指令基础上就能独立完成任务。对于这类题目类型,规定学生利用课余时间登录实验平台进行操作,并由授课教师在线评判其正确与否。

2.简单的数学建模题目类型

此类题目类型以提高使用数学软件能力为目的。例如,列出所有的水仙花数(水仙数是一个三位数,其各位数字立方和等于该数本身)。又如,已知某车间生产不同的产品,不同的产品所需要的原料和工时数据,以及不同产品所获得的利润数据。要求在给定原料和工时的条件下,如何安排生产,使得获得的利润最大。再如,给定一片海域一组数据,该数据包括一些离散点的坐标以及在该坐标处的水深,在已知船吃水深度的条件下,求船安全行驶的范围或者容易触礁的范围。

这类题目的已知条件唯一确定,所得到的结果也是唯一的,需要通过简单的编程实现。学生需要对问题进行分析,并具备一定的编程基础才能进行求解并完成规定的任务。对于这类题目类型,授课教师可以利用实验教学的课程时间先进行简单的分析和阐述,然后要求学生利用课余时间独立完成,最后由授课教师进行评判。

3.具有一定综合性质的数学建模题目类型

此类题目以培养学生建立模型和分析求解能力为目的。例如,根据某集团的经济效益指标、发展能力指标、内部运营指标以及客户满意度指标在2011年和2012年的数据,分析并阐述客户满意指标的走势。又如,收集数据,从手机品牌、外观、功能和质量等方面分析目前市场主流手机产品的价格定位规律,以及分析各品牌手机的价格策略与市场占有份额的关系。再如,选择某个事件(例如2010年的上海世博会、全国竞赛题)的某个侧面,建立数学模型,利用互联网或者调查收集的数据,定量分析该事件的影响力。

这类题目的已知条件比较复杂和灵活,有些题目甚至需要自己收集,有时甚至连求解目标也要自行确定。对于这类题目,授课教师应先利用实验教学课程时间指导研讨,然后要求学生通过团队合作完成基本的建模思路整理和模型求解,并以实验 报告 的形式提交数学模型和模型求解的实验结果。

参考文献:

[1]陈祖福.面向21世纪改革高等教育的教学内容和课程体系[J].教学与教材研究,1994,(1).

[2]叶其孝.数学建模教学活动与大学生教育改革[J].数学的实践与认识,1997,27(1):92-96.

[3]李大潜.中国大学生数学建模竞赛[M].北京:高等教育出版社,1998:313-321.

[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,31(5):613-617.

[5]蒲俊,张朝伦,李顺初.探索数学建模教学改革提高大学生综合素质[J].中国大学教学,2011,(12):24-26.

[6]陈慧.数学实验课程教学改革研究[J].中国大学教学,2007,(12):35-36.

浅谈数学建模与创新

摘要:数学建模是一门十分注重理论联系实际的课程,它有助于培养学生的创新能力、动手能力和 自我评价 能力。本文分析了数学建模竞赛对数学教学改革和创新所起的作用,指出数学建模的起源、发展和目的。着重在提高学生的学习兴趣、做好选题工作、评价工作和指导工作上进行分析和讨论。

关键词:数学建模;数学建模竞赛;创新能力

1 数模竞赛的起源与历史

数模竞赛是由美国工业与应用数学学会在1985年发起的一项大学生竞赛活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。我国大学生数学建模竞赛是由教育部高教司和中国工业与数学学会主办、面向全国高等院校的、每年一届的通讯竞赛。其宗旨是:创新意识、团队精神、重在参与、公平竞争。1992载在中国创办,自从创办以来,得到了教育部高教司和中国工业与应用数学协会的得力支持和关心,呈现出迅速的发展发展势头,就2003年来说,报名阶段须然受到“非典”影响,但是全国30个省(市、自治区)及香港的637所院校就有5406队参赛,在职业技术学院增加更快,参赛高校由2002年的1067所上升到了2003年的1410所。可以说:数学建模已经成为全国高校规模最大课外科技活动。

2 什么是数学建模

数学建模(Mathematical Modelling)是一种数学的思考方法,是“对现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示。”从科学,工程,经济,管理等角度看数学建模就是用数学的语言和方法,通过抽象,简化建立能近似刻画并“解决”实际问题的一种强有力的数学工具。顾名思义,modelling一词在英文中有“塑造艺术”的意思,从而可以理解从不同的侧面,角度去考察问题就会有不尽的数学模型,从而数学建模 的创造又带有一定的艺术的特点。而数学建模最重要的特点是要接受实践的检验,多次修改模型渐趋完善的过程。

3 竞赛的内容

竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。

4 竞赛的目的

随着科学技术的飞速发展,现代中学生的生活背景越来越丰富,他们看问题的视野也越来越开阔。

国家新的课程改革的进行,不但使广大教师的教育理念发生了根本性的改变,同学们的学习理念也发生了巨大改变,过去的那种单纯的知识性的传授和学习的模式已转变为以能力培养为主、学以致用的教学和学习模式,同学们的接受能力和学习能力得到极大提高。所以在中学阶段向同学们更多介绍一些科技事件或自然现象的知识储备基本具备。下面就中学阶段如何开设好数学建模选修课谈几点体会。

提高学生的学习兴趣,培养他们的创新能力是开设数学建模选修课的主要目的

数学建模就是运用数学思想、方法和知识解决实际问题的过程。

兴趣是最好的老师。而数学建模在数学知识与实践之间建立了一个沟通的平台,通过这个平台,同学们可以体验数学在解决实际问题中的价值和作用,体验数学与日常生活和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,对数学有一种感性的认识,激发他们学习数学的兴趣。

做好选题工作是开好数学建模选修课的关键

数学学习过程中,问题是关键。如何提出一些贴合学生实际、具有代表意义、能培养学生创新意识、提高学习能力、真正让学生感兴趣的问题是开好数学建模选修课的第一步。做好数学建模选题工作,可从以下几个方面入手。

可操作性。通过数学建模,学生将了解和经历解决实际问题的全过程,体验数学与日常生活及其他学科的联系,感受数学的实用价值,增强应用意识,提高实践能力。所以在选题时要考虑到不同学校、不同层次的学生的接受能力,争取让每一个学生能够根据自己的生活 经验 发现并提出问题,对同样的问题,可以发挥自己的特长和个性,从不同的角度、层次探索解决的方法,从而获得综合运用知识和方法解决实际问题的经验,发展创新意识。

实践性。开设数学建模选修课的主要目的之一就是让同学们在能力培养的同时,学以致用。所以所选课题应来源于实践,尽量是学生所熟悉的、或亲身经历的现实问题,让学生有一种身临其境的感觉,以提高他们的求知欲。

知识性。高中阶段的学习虽然强调能力培养,但也应该注意到,学生的学习过程也是一个知识积累、为下一步的继续学习打基础的过程。所以我们在数学建模选题的时候,应选取一些解决问题所涉及的知识、思想、方法与高中数学课程内容有联系的问题。让同学们在探索的过程中体会到所学知识的作用。

做好数学建模过程中的指导工作是开好数学建模选修课的重要保障

数学建模是一门实践性很强的科目,学生在初接触时往往抓不住问题的关键,很难将实际问题中的信息数学化。同时就同学们的学习方式给以必要的指导。具体可从以下几个方面入手。

引导学生学会发现并提出问题。最初开设数学建模时,可以先由老师提出一些问题供学生选择,或者提供一些实际情景,引导学生提出问题。随着课程的推进,教师应逐渐让学生学会从自己生活的世界中发现问题、提出问题。

引导学生学会数学建模的基本程序,让同学们掌握科学的 学习方法 。数学建模可以通过以下框图实现。

指导学生成立课题组,学会合作学习。数学建模学习对知识和能力的要求明显高于传统意义上的学习,在这种学习过程中,个人力量往往很难奏效,所以数学建模经常采取课题组的模式。

做好学生在数学建模过程中表现的评价工作对学生的后继学习是一个有力促进

高中阶段开设数学建模选修课的目的主要是以培养学生的学习能力、提高他们的创新意识为主要目的。通过师生之间的互动,使同学们在互动中展示自我,张扬个性,提高他们的 总结 能力和应变能力。评价内容应关注以下几个方面:

科学性。建模过程中使用的数学方法是否得当,求解过程是否合乎常理。

创新性。问题的提出和解决的方案是否充分发挥了学生的主观能动性,有新意。

合作性。学生在数学建模中是否采取了各种合作方式解决问题,养成与人交流的习惯,并获得良好的情感体验。

真实性。建模的结果是否是学生本人参与制作的,数据是否是真实的。

实效性。建模的结果是否具有一定的实际意义。

新的九年义务教育数学课程标准认为:数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括,形成方法和理论,并进行广泛应用的过程。义务教育的课程不仅要考虑数学自身的抽象性、精确性和应用的极端广泛性等特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程。从这个意义上说,我们的中学数学教育的过程应该是一个教会学生建模和解模,并会用模的过程。目前,二期课程改革明确要求加大研究性和探究性课程的力度,这无疑将推动数学模型课在中学阶段的开设和推广。

参考文献

[1]王彬.数学建模在中职研究性学习中的实践研究[J].东北师范大学,2010-05-01.

数学建模论文写作 一、写好数模答卷的重要性 1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。 2. 答卷是竞赛活动的成绩结晶的书面形式。 3. 写好答卷的训练,是科技写作的一种基本训练。 二、答卷的基本内容,需要重视的问题 1.评阅原则 假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。 2.答卷的文章结构 题目(写出较确切的题目;同时要有新意、醒目) 摘要(200-300字,包括模型的主要特点、建模方法和主要结论) 关键词(求解问题、使用的方法中的重要术语) 1)问题重述。 2)问题分析。 3)模型假设。 4)符号说明。 5)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。 6)模型求解(计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。) 7)进一步讨论(结果表示、分析与检验,误差分析,模型检验) 8)模型评价(特点,优缺点,改进方法,推广。) 9)参考文献。 10)附录(计算程序,框图;各种求解演算过程,计算中间结果;各种图形,表格。) 3. 要重视的问题 1)摘要。 包括: a. 模型的数学归类(在数学上属于什么类型); b. 建模的思想(思路); c. 算法思想(求解思路); d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……); e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。 ▲ 注意表述:准确、简明、条理清晰、合乎语法、要求符合文章格式。务必认真校对。 2)问题重述。 3)问题分析。 因素之间的关系、因素与环境之间的关系、因素自身的变化规律、确定研究的方法或模型的类型。 5)模型假设。 根据全国组委会确定的评阅原则,基本假设的合理性很重要。 a. 根据题目中条件作出假设 b. 根据题目中要求作出假设 关键性假设不能缺;假设要切合题意。 6) 模型的建立。 a. 基本模型: ⅰ)首先要有数学模型:数学公式、方案等; ⅱ)基本模型,要求完整,正确,简明; b. 简化模型: ⅰ)要明确说明简化思想,依据等; ⅱ)简化后模型,尽可能完整给出; c. 模型要实用,有效,以解决问题有效为原则。 数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。 ⅰ)能用初等方法解决的、就不用高级方法; ⅱ)能用简单方法解决的,就不用复杂方法; ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。 d.鼓励创新,但要切实,不要离题搞标新立异。数模创新可出现在: ▲ 建模中,模型本身,简化的好方法、好策略等; ▲ 模型求解中; ▲ 结果表示、分析、检验,模型检验; ▲ 推广部分。 e.在问题分析推导过程中,需要注意的问题: ⅰ)分析:中肯、确切; ⅱ)术语:专业、内行; ⅲ)原理、依据:正确、明确; ⅳ)表述:简明,关键步骤要列出; ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。 7)模型求解。 a. 需要建立数学命题时: 命题叙述要符合数学命题的表述规范,尽可能论证严密。 b. 需要说明计算方法或算法的原理、思想、依据、步骤。 若采用现有软件,说明采用此软件的理由,软件名称。 c. 计算过程,中间结果可要可不要的,不要列出。 d. 设法算出合理的数值结果。 8) 结果分析、检验;模型检验及模型修正;结果表示。 a. 最终数值结果的正确性或合理性是第一位的; b. 对数值结果或模拟结果进行必要的检验; 结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进。 c. 题目中要求回答的问题,数值结果,结论,须一一列出; d. 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据; e. 结果表示:要集中,一目了然,直观,便于比较分析。 ▲ 数值结果表示:精心设计表格;可能的话,用图形图表形式。 ▲ 求解方案,用图示更好。 9)必要时对问题解答,作定性或规律性的讨论。最后结论要明确。 10)模型评价 优点突出,缺点不回避。 改变原题要求,重新建模可在此做。 推广或改进方向时,不要玩弄新数学术语。 11)参考文献 12)附录 详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。主要结果数据,应在正文中列出,不怕重复。检查答卷的主要三点,把三关: a. 模型的正确性、合理性、创新性 b. 结果的正确性、合理性 c. 文字表述清晰,分析精辟,摘要精彩 三、关于写答卷前的思考和工作规划 答卷需要回答哪几个问题――建模需要解决哪几个问题; 问题以怎样的方式回答――结果以怎样的形式表示; 每个问题要列出哪些关键数据――建模要计算哪些关键数据; 每个量,列出一组还是多组数――要计算一组还是多组数。 四、答卷要求的原理 1. 准确――科学性; 2. 条理――逻辑性; 3. 简洁――数学美; 4. 创新――研究、应用目标之一,人才培养需要; 5. 实用――建模、实际问题要求。 五、建模理念 1. 应用意识 要解决实际问题,结果、结论要符合实际; 模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。 2. 数学建模 用数学方法解决问题,要有数学模型; 问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。 3. 创新意识 建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。

数学建模论文范文--利用数学建模解数学应用题数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。 2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。 学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程: 现实原型问题 数学模型 数学抽象 简化原则 演算推理 现实原型问题的解 数学模型的解 反映性原则 返回解释 列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。 3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。 高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。 例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。 时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145 分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。 通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。 四、培养学生的其他能力,完善数学建模思想。 由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想: (1)理解实际问题的能力; (2)洞察能力,即关于抓住系统要点的能力; (3)抽象分析问题的能力; (4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力; (5)运用数学知识的能力; (6)通过实际加以检验的能力。 只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。 例2:解方程组 x+y+z=1 (1) x2+y2+z2=1/3 (2) x3+y3+z3=1/9 (3) 分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。 方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根 t3-t2+1/3t-1/27=0 (4) 函数模型: 由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3) 平面解析模型 方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。 总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

数学建模优秀论文网

中国知网,,多数都是要钱办会员才能阅读和下载,不过,如果你是在学校的教育网登陆的话,一般大学都帮买了知网的授权,你是可以随便下载和浏览的。

你可以去数学中国网看看

数学中国啊,注册个账号,里面很多相关的东西都可以下载。有什么疑问可以问我哈

教育部中国大学生在线是全国大学生数学建模竞赛组委会指定的官方论文发布网站。中国大学生在线网站首页课堂频道列表 “数学建模”专题(如图所示),提供权威的数学建模国赛、数学建模挑战赛论文发布、试题下载及赛事新闻资讯等。请参赛队伍在指定时间及时进入专题,下载竞赛题目.

数学建模优秀论文word

首先是摘要,这个是全文的概述,里面包括这个模型的主题,以及几个需要解决问题的总体答案,比如对模型结果的阐述,或者对原来的安排评价是否合理等等。另外摘要最好控制在word一页内(小四宋体),不要太多。下面是论文的主体:1. 问题重述主要是对需要解决的问题用自己的语言进行描述,这个就看你自己的文笔功底了。2. 模型假设对你将要建立的模型进行理想假设,比如说将一些可能对结果影响不显著,但考虑起来需要很多时间的的问题理想化。3. 符号说明将你要建立的模型中的一些参量用符号代替表示。4. 模型建立这个是介绍你模型建立的原理和步骤,以及最终的模型结果,一般是一个评价函数,也可以是另外的形式,不过一定要给出一个能解决问题的大的方法5. 问题一、二、三(视具体的需要回答问题的个数而定,最好分条回答)利用你上面建立的模型,对题目提出的问题进行求解,这个部分需要你通过程序来实现,最后给出这个问题的结果,如果是满不满意这样的问题,需要给出明确回答满意或不满意,如果是一个量的结果,就需要把通过你的模型以及代码得到的准确结果进行阐述。6. 模型改进解决完上面题目提出的问题之后,可以对你的模型不足的地方再提出来,并提出改进的方案,以完善整个模型。7. 参考文献最后将你的参考文献写上,包括你在网上查的的资料,以及别人的论文或者书籍等等。如果最后需要你一并交上程序代码的话,还需要一个附录,里面包括程序代码,或者如果你上面的问题的结果太长的话(比如要给出几百个点的坐标这样的),可以将这些结果也放在这一块。如果楼主需要看论文样式的话,推荐一个网站:这是北京航空航天大学的数学建模网站,里面包括了该学校从92年开始到09年的各届论文,里面不乏一些比较好的论文,楼主如果需要参考样式的话,可以看看这些论文。

(一)要有全局观念,从整体出发去检查每一部分在论文中所占的地位和作用。看看各部分的比例分配是否恰当,篇幅的长短是否合适,每一部分能否为中心论点服务。比如有一篇论文论述企业深化改革与稳定是辩证统一的,作者以浙江××市某企业为例,说只要干部在改革中以身作则,与职工同甘共苦,可以取得多数职工的理解。从全局观念分折,我们就可以发现这里只讲了企业如何改革才能稳定,没有论述通过深化改革,转换企业经营机制,提高了企业经济效益,职工收入增加,最终达到社会稳定。(二)从中心论点出发,决定材料的取舍,把与主题无关或关系不大的材料毫不可惜地舍弃,尽管这些材料是煞费苦心费了不少劳动搜集来的。有所失,才能有所得。一块毛料寸寸宝贵,舍不得剪裁去,也就缝制不成合身的衣服。为了成衣,必须剪裁去不需要的部分。所以,我们必须时刻牢记材料只是为形成自己论文的论点服务的,离开了这一点,无论是多少好的材料都必须舍得抛弃。(三)要考虑各部分之间的逻辑关系。初学撰写论文的人常犯的毛病,是论点和论据没有必然联系,有的只限于反复阐述论点,而缺乏切实有力的论据;有的材料一大堆,论点不明确;有的各部分之间没有形成有机的逻辑关系,这样的论文都是不合乎要求的,这样的论文是没有说服力的。为了有说服力,必须有虚有实,有论点有例证,理论和实际相结合,论证过程有严密的逻辑性,拟提纲时特别要注意这一点,检查这一点。(四)论文的基本结构由序论、本论、结论三大部分组成。序论、结论这两部分在提纲中部应比较简略。本论则是全文的重点,是应集中笔墨写深写透的部分,因此在提纲上也要列得较为详细。本论部分至少要有两层标准,层层深入,层层推理,以便体现总论点和分论点的有机结合,把论点讲深讲透。

己发送:请采纳我邮箱:

数学建模论文具体的格式要求如下:

1、论文用白色A4纸单面打印;上下左右各留出至少厘米的页边距;从左侧装订。

2、论文第一页为承诺书,具体内容和格式见本规范第二页。

3、论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规范第三页。

4、论文题目和摘要写在论文第三页上,从第四页开始是论文正文

5、论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。

6、论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。

7、论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。

8、摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。

9、引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。

10、参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。

11、参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。

12、参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。

扩展资料:

电子版论文格式规范

1、参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求命名和提交以下两个电子文件,分别对应于参赛论文和相关的支撑材料。

2、参赛论文的电子版不能包含承诺书和编号专用页(即电子版论文第一页为摘要页)。除此之外,其内容及格式必须与纸质版完全一致(包括正文及附录),且必须是一个单独的文件,文件格式只能为PDF或者Word格式之一(建议使用PDF格式),不要压缩,文件大小不要超过20MB。

3、支撑材料(不超过20MB)包括用于支撑论文模型、结果、结论的所有必要文件,至少应包含参赛论文的所有源程序,通常还应包含参赛论文使用的数据(赛题中提供的原始数据除外)、较大篇幅的中间结果的图形或表格、难以从公开渠道找到的相关资料等。

所有支撑材料使用WinRAR软件压缩在一个文件中(后缀为RAR);

如果支撑材料与论文内容不相符,该论文可能会被取消评奖资格。支撑材料中不能包含承诺书和编号专用页,不能有任何可能显示答题人身份和所在学校及赛区的信息。如果确实没有需要提供的支撑材料,可以不提供支撑材料。

参考资料:惠州学院-全国大学生数学建模竞赛论文格式规范

参考资料:湖南人文科技学院-全国大学生数学建模竞赛论文格式规范

2020数学建模优秀论文

2022统计建模大赛

统计建模大赛官网 2020年(第七届)全国大学生统计建模大赛优秀论文集

如何在数学建模比赛中稳拿奖 全国大学生统计建模大赛:经验+流程

统计建模公开数据/数据开放平台 统计建模官方数据平台 其他数据平台汇总

民用航空: 是指使用航空器从事除了国防、警察和海关等国家航空活动以外的航空活动,民用航空活动是航空活动的一部分,同时以“使用”航空器界定了它和航空制造业的界限,用“非军事等性质”表明了它和军事航空等国家航空活动不同。

旅游交通业: 旅游交通业是实现旅游者空间移动的各种交通工具、手段和服务的集合,特别是旅游交通要满足旅游者安全、方便、快捷、舒适、价廉等方面的需求,要求旅游交通业不仅要具有一般交通运输的功能,还要具有满足人们旅游需求的功能,并在交通工具、运输方式、服务特点等方面都形成旅游交通业的特色。

航班出港准点率: “准点率,又称正点率、航班正常率,是指航空旅客运输部门在执行运输计划时,航班实际出发时间与计划出发时间的较为一致的航班数量(即正常航班)与全部航班数量的比率,表征承运人运输效率和运输质量。”

航班着陆率: 航班着陆率的定义为每小时内机场安全着陆的航空器数量。

=城市经济水平+城市宜居水平+城市旅游水平 +机场评分+航空公司评分 +基于博弈论的机票销售模式 +两地疫情情况 +油费

=航班日内时间+航班距离离岗时间 +航线距离+直达与转机+舱位选择 +油费

基于时间序列的机票预测模型

基于ARMA平稳时间序列的机票预测模型

基于ARMA平稳时间序列机票价格预测模型

航班延误建模与流量分配方案

新冠肺炎对交通运输业影响的预测与分析

数据解析 | 新冠疫情对民航业与飞机制造业的影响分析

河南省交通旅游融合发展策略之总体思路与发展策略

原因1:受当前疫情影响,人们出行意愿普遍降低。此时上座率大幅萎缩,机票价格开始大幅度打折。

原因2:错峰出行影响了机票的价格。

原因3:停飞不代表没有成本。这里存在的成本主要体现在飞机的租赁成本、机场停机费、飞机的折旧维修成本,这些都是固定支出。如果飞机起飞的话,虽然存在着起降费,燃油费,机组人员员工成本等费用,但近些年因为民航开始采取减费和补贴政策,例如对燃油,起降费有优惠。既然这样,如果低价飞行的话至少还能抵消部分成本。

原因4:停飞会影响全球航班时刻资源的使用。

原因5:当前售卖的基本上是廉价航空机票。因为廉价航空一般会选择在运营费便宜的机场降落,有时不提供免费餐点等附加服务,所以总体成本相对更低。

原因6:航班除了客运还有货运和邮运,当前形势下,陆运交通并不方便,为了保证全国的物资调动,航空运输成为首选。

原因7:响应复工复产号召,必须要有部分航班保障。

【DEA模型讲解】购买机场前你应该会的挑选方法

作用:DEA(data envelopment analysis数据包络分析法)是运筹学和研究经济生产边界的一种方法。该方法一般被用来测量一些 决策部门的生产效率 。 对象:一个机场就是一个生产决策单元(DMU:decision making unit) 模型:CCR(导出综合效率 = 规模 + 纯技术)、BCC(导出技术效率) 输入指标matrix:航站楼面积,跑道长度,停机位数量,跑道数量 输出指标matrix:货运量,客运量,通航城市 目标函数:效率评价指数 = 输出综合 / 输入综合 约束条件:0<效率<1 分式规划模型-->线性规划模型-->对偶问题(求min-->求max) 规模报酬值 与1的大小关系 松弛变量:强有效、弱有效

深度分析:“上海第三机场”为什么最终选定南通,而苏州出局?

深度剖析!上海第三机场为何选南通?无锡、苏州落选最大原因竟是……

总结:拆迁费低,空域重叠率低,带动长三角发展薄弱的北面地区

数据来自于 METAR(METeorological Aerodrome Report)、TAF(Terminal Aerodrome Forecasts)和 SPECI(SPECIal weather report), 其中 METAR 和 SPECI 通告了实际气象信息,TAF 报则表示了未来一段时间的预报信息。 TAF:

除机场传统生产统计系统(机场起降架次统计、机场业务量统计、机场吞吐量分析(分公司)、旅客流量流向统计等报表)外,大数据技术亦可在机场战略规划、航线布局与规划、旅客构成、飞行安全、航班正常率、机场建设规模、投资规模等机场运营管理中得到应用——例如机场生产统计系统,通过对机场业务生产量、流量流向等报表的历史数据以及对机场实际运营情况的分析,可以对机场的中远期的航空业务量进行预测,从而为机场规划、航线规划提供可靠的数据支持。 另外,大数据亦可应用在机场新航线开发及航线布局与规划方面......

有向加权机场网络 关键机场 时间延迟稳定性方法 ( Time Delay Stability Method,TDS)——延误步长分布和延误时间序列,可以看出两个机场的延误时间序列间存在规律性的有效延迟步长分布,说明从长期来看两个机场之间存在稳定的相关性。

[1]刘彤丹,王艳军.基于ITDS的机场网络构建及分析[J].航空计算技术,2019,49(06):38-43.

云南省数学建模获奖名单如下:

2022年第十四届全国大学生数学竞赛云南赛区预赛中,数计学院喜获云南省数学B类一等奖5项,二等奖3项,三等奖6项,非数学类2项。2019级数学与应用数学班陈杰、刘娇、赵继滔、陈波,2020级数学与应用数学班张心怡获得云南省数学B类一等奖,其中,陈杰同学获数学B类一等奖第一名。

数学与计算机学院高度重视学科竞赛,成立大赛指导教师团队,积极组织参赛选手报名,学全方位进行指导和训练,旨在激励大学生学习数学的兴趣,培养学生运用数学分析和解决问题能力,进一步推动高等学校数学课程的改革和建设,加强实践能力提升,以赛促教、以赛促学,以赛促改。

数学建模竞赛简介:

该竞赛创办于1992年,每年一届,是首批列入“高校学科竞赛排行榜”的19项竞赛之一。2022年,来自全国及英国、马来西亚等国家的1606所院校、校区、54257队(本科组49424队、专科组4833队)、超过16万人报名参赛。2022年赛题于竞赛开始时(2022年9月15日晚上6:00)发布在本站、中国知网、中国大学生在线、高等教育出版社、中国高校数学建模课程中心、中国数模等网站。报名参赛、论文提交请通过中国知网进行。

数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。

  • 索引序列
  • 五一数学建模优秀论文
  • 优秀数学建模论文
  • 数学建模优秀论文网
  • 数学建模优秀论文word
  • 2020数学建模优秀论文
  • 返回顶部