推荐下计算机视觉这个领域,依据学术范标准评价体系得出的近年来最重要的9篇论文吧: (对于英语阅读有困难的同学,访问后可以使用翻译功能) 一、Deep Residual Learning for Image Recognition 摘要:Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation. 全文链接: 文献全文 - 学术范 () 二、Very Deep Convolutional Networks for Large-Scale Image Recognition 摘要:In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision. 全文链接: 文献全文 - 学术范 () 三、U-Net: Convolutional Networks for Biomedical Image Segmentation 摘要:There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at . 全文链接: 文献全文 - 学术范 () 四、Microsoft COCO: Common Objects in Context 摘要:We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model. 全文链接: 文献全文 - 学术范 () 五、Rethinking the Inception Architecture for Computer Vision 摘要:Convolutional networks are at the core of most state of-the-art computer vision solutions for a wide variety of tasks. Since 2014 very deep convolutional networks started to become mainstream, yielding substantial gains in various benchmarks. Although increased model size and computational cost tend to translate to immediate quality gains for most tasks (as long as enough labeled data is provided for training), computational efficiency and low parameter count are still enabling factors for various use cases such as mobile vision and big-data scenarios. Here we are exploring ways to scale up networks in ways that aim at utilizing the added computation as efficiently as possible by suitably factorized convolutions and aggressive regularization. We benchmark our methods on the ILSVRC 2012 classification challenge validation set demonstrate substantial gains over the state of the art: 21:2% top-1 and 5:6% top-5 error for single frame evaluation using a network with a computational cost of 5 billion multiply-adds per inference and with using less than 25 million parameters. With an ensemble of 4 models and multi-crop evaluation, we report 3:5% top-5 error and 17:3% top-1 error on the validation set and 3:6% top-5 error on the official test set. 全文链接: 文献全文 - 学术范 () 六、Mask R-CNN 摘要:We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, ., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without tricks, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition. Code will be made available. 全文链接: 文献全文 - 学术范 () 七、Feature Pyramid Networks for Object Detection 摘要:Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But pyramid representations have been avoided in recent object detectors that are based on deep convolutional networks, partially because they are slow to compute and memory intensive. In this paper, we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost. A top-down architecture with lateral connections is developed for building high-level semantic feature maps at all scales. This architecture, called a Feature Pyramid Network (FPN), shows significant improvement as a generic feature extractor in several applications. Using a basic Faster R-CNN system, our method achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners. In addition, our method can run at 5 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection. Code will be made publicly available. 全文链接: 文献全文 - 学术范 () 八、ORB: An efficient alternative to SIFT or SURF 摘要:Feature matching is at the base of many computer vision problems, such as object recognition or structure from motion. Current methods rely on costly descriptors for detection and matching. In this paper, we propose a very fast binary descriptor based on BRIEF, called ORB, which is rotation invariant and resistant to noise. We demonstrate through experiments how ORB is at two orders of magnitude faster than SIFT, while performing as well in many situations. The efficiency is tested on several real-world applications, including object detection and patch-tracking on a smart phone. 全文链接: 文献全文 - 学术范 () 九、DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs 摘要:In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First , we highlight convolution with upsampled filters, or ‘atrous convolution’, as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second , we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third , we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed “DeepLab” system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online. 全文链接: 文献全文 - 学术范 () 希望对你有帮助!
计算机信息管理在第三方物流中的应用 摘要:本文以提高计算机信息管理在企业物流中的应用程度为出发点,通过对第三方企业物流专业现状分析,就我国企业的物流管理信息系统建设进行了系统规划,给出了系统规划的框架,并就物流管理信息系统的安全性提出了建议。 关键词:信息管理,第三方物流,系统安全,外部信息,内部信息 我国物流市场现状 对于企业的发展而言,物流愈来愈成为其发展的瓶颈。目前,我国国内没有一家能让众企业均信服的第三方物流(简称TPC)企业,使得许多企业都拿出大量资金自己做物流。因此,第三方物流企业应该抓住这个时机,搞好自己的物流管理。 现代物流是以计算机信息管理和通信技术为核心的产业,但目前的企业物流尚处于传统的传递、送货阶段。因此,第三方物流企业要有严格的、科学的管理系统实现事务处理信息化、信息处理电子化的能力,充分利用计算机和计算机网络来处理信息,以提高自身竞争力。要达到此目的,其关键就是加紧物流管理信息系统的开发建设。 物流管理信息系统的设计与开发 第三方企业物流要做大、做强,展示本身企业的形象,从技术而言,开发物流管理信息系统就应从大局着眼,全盘考虑。首先就是管理者和技术人员的充分统筹规划,在企业内部开发适合自己信息管理系统,建立自己的供求网站,其次是对现行的规章制度整合优化,并对新内容进行开发。 系统的设计模式 此系统可以从第三方物流企业的市场地位方面进行考虑并进行开发。 由此可见,第三方物流管理信息系统建设包括两部分:外部的网上信息交流和内部的信息处理。 外部信息交流 客户管理子系统:网上接受订单模块;查询模块。财务结算子系统:基本费用结算模块;特别费用结算模块;查询费用结算模块。 内部信息处理 仓储管理子系统:仓库管理模块;库存管理模块;查询模块。运输管理子系统:车辆、人员变动管理模块;运输任务调度管理模块;查询模块。财务结算子系统:费用结算模块;查询模块。管理层子系统:权限设置模块;查询模块。 建立本企业的网站 物流企业建立自己的因特网站,在该网站上将企业的运作方式、配送情况每日在网上发布。通过运用现代化电子商务手段,实现网上配送的信息发布与收集,方便了客户、节省了物流成本、提高了物流效果,从而为企业带来更多的利润。 物流管理信息系统的安全性 根据系统分外部和内部两大模块,系统的安全性问题可从两方面进行保障。 外部信息交流中的安全 在与其他企业的信息交流中,接受企业定单、反馈信息等重要信息都在网上进行。针对网络上的不安全因素(例如:网络黑客攻击、网络病毒传播、网络系统本身不安全等)可采取相应的对策,例如:数据加密技术、数字签名技术、报文鉴别技术、访问控制技术、密钥管理技术、身份认证技术等。 内部信息处理中的安全 安全的运行环境是企业物流信息的基本要求,而形成一支高度自觉、遵纪守法的技术职工队伍则是计算机信息系统安全工作的最重要环节。要抓好这个环节的安全工作,可从两方面着手:一方面是从技术入手。即开发并应用好企业物流管理信息系统中的权限设置模块,对接触此信息管理系统的工作人员设置不同的访问权限、设置口令、进行身份确认,对用户的定时、定终端登陆用机的安全实施严格的访问控制技术,严格有效地制约对计算机的非法访问,防范非法用户的入侵。另一方面是由管理入手。任何的企业发展都要以人为本,第三方物流企业也不例外,企业可以在思想品质、职业道德、规章制度等方面做一定的工作。 发展现代物流产业是市场发展的必然趋势,第三方物流信息管理的设计与开发将会带来企业的外溢效应,实现计算机化全面管理在规划物流管理信息系统时会对一些较落后的环节进行优化的同时,可加快物流产业向现代化、信息化、产业化、集团化、专业化发展的进程,从而有利于拓展市场,扩大生存空间,提高企业的整体经济效益,有利于物流企业实现可持续发展。 参考文献: 1.王国华.计算机物流信息管理系统的实施与应用[J].科技情报开发与经济,2004,14 2.朱明.数据挖掘[M].中国科学技术大学出版社,2002
Windows NT/2000系统下进程的隐藏摘要 进程的隐藏一直是木马程序设计者不断探求的重要技术,本文采用远程线程技术,通过动态链接库方法,较好地解决了这一问题,通过远程线程将木马作为线程隐藏在其他进程中,从而达到隐藏的目的。关键字进程 线程 木马 动态链接库 木马程序(也称后门程序)是能被控制的运行在远程主机上的程序,由于木马程序是运行在远程主机上,所以进程的隐藏无疑是大家关心的焦点。本文分析了Windows NT/2000系统下进程隐藏的基本技术和方法,并着重讨论运用线程嫁接技术如何实现Windows NT/2000系统中进程的隐藏。1 基本原理在WIN95/98中,只需要将进程注册为系统服务就能够从进程查看器中隐形,可是这一切在Windows NT/2000中却完全不同, 无论木马从端口、启动文件上如何巧妙地隐藏自己,始终都不能躲过Windows NT/2000的任务管理器,Windows NT/2000的任务管理器均能轻松显示出木马进程,难道在Windows NT/2000下木马真的再也无法隐藏自己的进程了?我们知道,在WINDOWS系统下,可执行文件主要是Exe和Com文件,这两种文件在运行时都有一个共同点,会生成一个独立的进程,寻找特定进程是我们发现木马的方法之一,随着入侵检测软件的不断发展,关联进程和SOCKET已经成为流行的技术,假设一个木马在运行时被检测软件同时查出端口和进程,我们基本上认为这个木马的隐藏已经完全失败。在Windows NT/2000下正常情况用户进程对于系统管理员来说都是可见的,要想做到木马的进程隐藏,有两个办法,第一是让系统管理员看不见你的进程;第二是不使用进程。本文以第二种方法为例加以讨论,其基本原理是将自已的木马以线程方式嫁接于远程进程之中,远程进程则是合法的用户程序,这样用户管理者看到的只是合法进程,而无法发现木马线程的存在,从而达到隐藏的目的。2 实现方法 为了弄清实现方法,我们必须首先了解Windows系统的另一种"可执行文件"----DLL,DLL是Dynamic Link Library(动态链接库)的缩写,DLL文件是Windows的基础,因为所有的API函数都是在DLL中实现的。DLL文件没有程序逻辑,是由多个功能函数构成,它并不能独立运行,一般都是由进程加载并调用的。因为DLL文件不能独立运行,所以在进程列表中并不会出现DLL,假设我们编写了一个木马DLL,并且通过别的进程来运行它,那么无论是入侵检测软件还是进程列表中,都只会出现那个进程而并不会出现木马DLL,如果那个进程是可信进程,(例如浏览器程序,没人会怀疑它是木马吧?)那么我们编写的DLL作为那个进程的一部分,也将成为被信赖的一员,也就达到了隐藏的目的。 运行DLL方法有多种,但其中最隐蔽的方法是采用动态嵌入技术,动态嵌入技术指的是将自己的代码嵌入正在运行的进程中的技术。理论上来说,在Windows中的每个进程都有自己的私有内存空间,别的进程是不允许对这个私有空间进行操作的,但是实际上,我们仍然可以利用种种方法进入并操作进程的私有内存。动态嵌入技术有多种如:窗口Hook、挂接API、远程线程等,这里介绍一下远程线程技术,它只要有基本的进线程和动态链接库的知识就可以很轻松地完成动态嵌入。远程线程技术指的是通过在另一个进程中创建远程线程的方法进入那个进程的内存地址空间。我们知道,在进程中,可以通过CreateThread函数创建线程,被创建的新线程与主线程(就是进程启动时被同时自动建立的那个线程)共享地址空间以及其他的资源。但是很少有人知道,通过CreateRemoteThread也同样可以在另一个进程内创建新线程,被创建的远程线程同样可以共享远程进程(是远程进程)的地址空间,所以,实际上,我们通过一个远程线程,进入了远程进程的内存地址空间,也就拥有了那个远程进程相当的权限。全文地址: 更多计算机论文:
这其实并不难,首先在设计题目时,不要过于笼统广泛,要多从自身的角度出发,要结合你们当前所处的生活环境、城市等进行思考,从中找出其中一个点进行扩展,千万不要涉及的太大,那样就没有突出点。然后就是在确定要做具体点的时候,还要在自己的设计中添加一个相对新颖的功能,最重要还是要和你的导师多走动走动,商量你自己设计的项目,寻求一些比较擅长的同学的帮助,实在搞不定的时候,就只能找别人代做了,但你要先了解行情,避免自己踩坑,详情可以找六月雪毕业设计咨询,那里的质量都是不错的
Automatic Pixel-Level Crack Detection on Dam Surface Using Deep Convolutional Network 论文笔记 论文:Automatic Pixel-Level Crack Detection on Dam Surface Using Deep Convolutional Network Received: 大多数坝面裂缝检测只能实现裂缝分类及粗略的定位。像素级语义分割检测可以提供更加精确直观的检测结果。作者提出一种基于深度卷积网络的坝面裂缝检测算法。首先使用无人机进行数据采集,然后对采集到的图像进行预处理(包括裁剪、手动标注),最后对设计好的CDDS 网络结构进行训练、验证和测试。 与ResNet152-based SegNet U-Net FCN 进行了比较。 大坝是水电站的重要水利建筑物。大坝的安全运行对于水电站有着重要的意义。由于结构变形、地震、水流引起的裂缝对大坝坝体产生严重的影响并威胁到水电站的安全运行。因此,对大坝结构的定期健康评估,特别是对大坝裂缝的检测任务变得尤为重要。 根据大坝裂缝的结构特征以及裂缝强度,人们可以对大坝的结构健康进行评估和监测。传统的大坝裂缝的巡检任务通常基于人工进行检测,但是效率低下、耗时费力,浪费了大量的人工成本,因此对裂缝的自动高效检测是非常必要的。 基于计算机视觉的裂缝检测算法得到了广泛的研究。这些方法大多采用传统的图像处理技术和机器学习方法,以识别出一些简单的结构损伤。这些方法利用手工提取的特征从图像中提取特征,然后评估提取的特征是否表示缺陷。然而,上述方法的结果不可避免地受到主观因素的影响 卷积神经网络(CNN)在图像分类和识别领域取得很大的进步,基于CNN的裂缝检测算法也展示出更优异的表现。大坝裂缝的特点: 修补痕迹、噪声大、背景纹理复杂、非结构化的、分布不均匀、裂缝位置随机、背景模糊等缺点 提出了一种像素级的大坝表面裂缝检测方法,利用深卷积网络进行特征提取。利用浅卷积层的定位特征和深卷积层的抽象特征,进行 多尺度卷积级联融合和多维损失值计算 ,实现裂纹缺陷像素级分割,并以高精度、高效率等优点解决了坝面明显裂缝检测问题,消除了可能存在的安全隐患,确保了坝面安全。实验结果表明,该方法对大坝表面像素级裂缝的检测是最优的。 语义分割 PSPNet [42],ICNet [43], Deeplabv3[44],UNet [45] and SegNet [46] 语义分割网络通常分为编码网络和解码网络。 编码网络: 卷积层:用于提取输入图像的特征 池化层:减小feature map的规模,减轻计算负担。 解码网络: 反卷积层(反褶积层):上采样还原feature map大小与输入图像相同,并输出预测结果。 编解码网络结构高度对称:同时利用稀疏feature map和稠密feature map。 为了融合sparse 和 dense feature ,采用跳跃模块以连接编解码网络。编码网络: 15 卷积层:3*3 步长1 4 池化层: 2*2 步长2 解码网络: 15 反卷积层 1*1 4池化层 采用dropout和BN防止过拟合。 Skip branch 4个,1*1卷积和反卷积 每个branch计算 branch loss,4个branch loss级联为总损失的一部分。 Skip branch 的输入输出图像大小不变。卷积核的通道数必须等于输入张量的通道数。降采样 取矩阵最大值 卷积核大小 2*2 步长为2。反褶积也叫做转置卷积 通过上采样还原feature map与输入图像大小相同。 上采样方法:反褶积法、 插值法 反褶积法:对张量进行zero-padding填充最外层,再用反褶积核进行反褶积,修剪第一行和最后一行。1000副5472*3648图像使用LEAR软件手动标记。 得到504张数据集,404用于训练,50用于验证,50用于测试。 在Linux系统上使用TensorFlow构建的 在配置了8 GB GPU的HP工作站上执行培训、验证和测试 利用Anaconda建立了CDDS网络的虚拟python环境评价指标: Precision精度表示在所有预测破裂的样本中,样本的基本真实性也被破解的概率。 Recall召回表明在所有标记为开裂的样本中,样本被预测为开裂的概率。当正负样本数量存在较大差距时,仅使用精确性或召回率来评估性能是不合理的。TPR表示所有标记为裂纹的样本中被正确预测为裂纹的概率。TNR代表以标签为背景的所有样本中被正确预测为背景的概率.F-measure考虑到查全率和查准率的综合影响,F-测度是一个综合指标。IoU是目标检测领域中常用的评价定位精度的方法。IoU表示预测结果与地面真实值的交集与联合的交集的比率。大坝表面裂缝图像分为背景和裂缝两类。背景像素的数目远大于裂纹像素的数目。通常情况下,我们会同时计算背景arrears和裂缝arrears,然后以两张arrears的平均数作为最终arrears。IoU值是由背景像素决定的,不能准确表达裂纹的定位精度。使用三种学习速率10^4,10^5,10^6 使用softmax函数计算概率 使用Dice loss计算网络损失。 裂缝骨架提取:快速细化算法 调用OpenCV库,进行计算。 计算裂缝面积及长度宽度。使用其他裂缝数据集进行补充验证 ,在测试数据集上,提出的CDDS网络的裂纹IOU和F测度分别达到和 略。
推荐下计算机视觉这个领域,依据学术范标准评价体系得出的近年来最重要的9篇论文吧: (对于英语阅读有困难的同学,访问后可以使用翻译功能) 一、Deep Residual Learning for Image Recognition 摘要:Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation. 全文链接: 文献全文 - 学术范 () 二、Very Deep Convolutional Networks for Large-Scale Image Recognition 摘要:In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision. 全文链接: 文献全文 - 学术范 () 三、U-Net: Convolutional Networks for Biomedical Image Segmentation 摘要:There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at . 全文链接: 文献全文 - 学术范 () 四、Microsoft COCO: Common Objects in Context 摘要:We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model. 全文链接: 文献全文 - 学术范 () 五、Rethinking the Inception Architecture for Computer Vision 摘要:Convolutional networks are at the core of most state of-the-art computer vision solutions for a wide variety of tasks. Since 2014 very deep convolutional networks started to become mainstream, yielding substantial gains in various benchmarks. Although increased model size and computational cost tend to translate to immediate quality gains for most tasks (as long as enough labeled data is provided for training), computational efficiency and low parameter count are still enabling factors for various use cases such as mobile vision and big-data scenarios. Here we are exploring ways to scale up networks in ways that aim at utilizing the added computation as efficiently as possible by suitably factorized convolutions and aggressive regularization. We benchmark our methods on the ILSVRC 2012 classification challenge validation set demonstrate substantial gains over the state of the art: 21:2% top-1 and 5:6% top-5 error for single frame evaluation using a network with a computational cost of 5 billion multiply-adds per inference and with using less than 25 million parameters. With an ensemble of 4 models and multi-crop evaluation, we report 3:5% top-5 error and 17:3% top-1 error on the validation set and 3:6% top-5 error on the official test set. 全文链接: 文献全文 - 学术范 () 六、Mask R-CNN 摘要:We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, ., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without tricks, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition. Code will be made available. 全文链接: 文献全文 - 学术范 () 七、Feature Pyramid Networks for Object Detection 摘要:Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But pyramid representations have been avoided in recent object detectors that are based on deep convolutional networks, partially because they are slow to compute and memory intensive. In this paper, we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost. A top-down architecture with lateral connections is developed for building high-level semantic feature maps at all scales. This architecture, called a Feature Pyramid Network (FPN), shows significant improvement as a generic feature extractor in several applications. Using a basic Faster R-CNN system, our method achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners. In addition, our method can run at 5 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection. Code will be made publicly available. 全文链接: 文献全文 - 学术范 () 八、ORB: An efficient alternative to SIFT or SURF 摘要:Feature matching is at the base of many computer vision problems, such as object recognition or structure from motion. Current methods rely on costly descriptors for detection and matching. In this paper, we propose a very fast binary descriptor based on BRIEF, called ORB, which is rotation invariant and resistant to noise. We demonstrate through experiments how ORB is at two orders of magnitude faster than SIFT, while performing as well in many situations. The efficiency is tested on several real-world applications, including object detection and patch-tracking on a smart phone. 全文链接: 文献全文 - 学术范 () 九、DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs 摘要:In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First , we highlight convolution with upsampled filters, or ‘atrous convolution’, as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second , we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third , we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed “DeepLab” system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online. 全文链接: 文献全文 - 学术范 () 希望对你有帮助!
计算机视觉技术自20世纪70年代产生以来就得到了全世界的广泛关注。下面是我整理了计算机视觉技术论文,有兴趣的亲可以来阅读一下!
计算机视觉技术的应用研究
摘 要 文章在介绍计算机视觉技术相关内容的基础上,对该技术在工业、农业、林业和农产品检测这四个领域的具体应用进行简要分析。
关键词 计算机;视觉技术;应用研究
中图分类号:TP212 文献标识码:A 文章编号:1671-7597(2013)16-0114-01
计算机视觉技术自20世纪70年代产生以来就得到了全世界的广泛关注。作为一种多学科综合应用下的新技术,随着专家对其研究会的不断深入,其应用领域也越来越广,给人们的生产生活带来了极大方便。
1 计算机视觉技术
计算机视觉技术是在计算机技术应用下发展起来的一种新技术,主要用来研究计算机模拟生物的宏观或外显功能。该技术在应用过程中会涉及到计算机科学、神经生物学、人工智能、模式识别以及图像处理等多个学科,多学科技术的综合运用使得计算机具有了“感知”周围世界的能力,这也正是该技术发挥作用的核心所在。计算机视觉技术的特点就在于,首先,它能在不接触被测者的前提下完成对被测者的检测;其次,该技术应用的领域和检测的对象非常广,能在敏感器件的应用下,完成对人类难以观察到的超声波、微波和红外线等的检测;最后,该技术还突破了人在视觉观察上长时间工作的限制,能对检测对象进行长时间观察。
2 计算机视觉技术在各领域的应用分析
随着计算机视觉技术研究的不断加深,该技术的应用领域也越来越广,下面,本文就选取工业、农业、林业、农产品检测、电力系统自动化及图书馆工作这6个方面对计算机视觉技术的应用进行简要分析。
在工业领域中的应用
工业生产对产品的质量要求极高,计算机视觉技术在工业上的应用主要集中在以下3方面:1)产品形状和尺寸的检测上。对制造业而言,产品的形状和尺寸是否合格直接影响到产品在实际应用过程中作用的发挥。计算机视觉技术的应用能对产品进行二维和三维等几何特征的检测,如产品的圆度、位置及形状等。2)产品零部件缺失情况的检测。在生产线运行过程中,计算机视觉技术能准确检测出产品在生产过程中是否存在铆钉、螺丝钉等零部件的缺失以及产品内部是否在生产过程中掺进杂质等。3)产品表面质量的检测。为了从各个方面保证产品的合格性,对其进行表面质量的检测也是一个极其重要的环节。计算机视觉技术实现了对产品表面的纹理、粗糙度、划痕、裂纹等各方面的有效检测。
在农业生产领域中的应用
该技术在农业领域的应用主要集中在以下两方面:1)对病虫害的预测预报。预测预报作用发挥的关键环节是建立起计算机视觉技术对所有昆虫的识别体系。对昆虫图像识别系统进行数字化建模所使用的方法主要以下2种,一种是运用数学形态学的方法对害虫的边缘进行检测,进而提取害虫的特征;第二种是从昆虫的二值化图像中提取出昆虫的周长、面积和复杂度等基本信息,并对这些信息建立害虫的模板库以实现对昆虫的模糊决策分析。2)对农作物生长的监测。常用的方法就是运用计算机视觉技术下的非接触式监测系统对农作物生长环境下的光照、温度、湿度、风速、营养液浓度等相关因素进行连续地监测,进而判断出农作物长势。
在林业生产中的应用
该技术在林业生产中的应用主要集中在农药喷洒和林木球果采集这两方面。就林业的农药喷洒而言,常规的农药喷洒方式易造成农药的大量流失,不仅达不到防止林业有害生物的目的,还浪费了大量的人力、物力和财力。计算机视觉技术的应用能通过对施药目标图像进行实时分析,得出具体的施药量和准确的施药位置,该技术指导下的施药工作极大发挥了农药的效果。就林木球果采集而言,该采集工作的操作难度一直都很大,我国当前使用的方法主要是人工使用专业工具下的采集以及机械设备运用下的高空作业车采集和摇振采种机采集,这两种方式都存在一定的安全性和效率问题。计算机视觉技术的应用能通过对需要进行采集的林木球果进行图像采集来得出球果所处的具体位置,再结合专业机械手的使用完成球果采集。该技术不仅节省了大量劳动力,还极大提高了采摘效率。
在农产品检测中的应用
农产品在生产过程中受自然环境的影响比较大,所以农产品不仅会产生质量上的差异,还会造成颜色、大小、形状等外观上的极大不同。由于农产品在出售时大多要进行产品等级的划分,所以将计算机视觉技术运用到对其颜色和外形尺寸的检测上,有效达到了对农产品进行检测的目的。通过对外观大小尺寸的检测,不仅提高了对农产品进行分门别类地等级划分的效率,还在很大程度上减少了对产品的损坏;通过对西瓜等农产品进行颜色上的检测,能准确判断其是否成熟,有效避免了人工操作下的失误。
在电力系统自动化中的应用
计算机视觉技术在电力系统自动化应用的表现当前主要表现在以下2个方面:1)在人机界面中的应用。人机界面在运行过程中更加强调人的主体地位,实现了用户对各种效应通道和感觉通道的运用。具体来讲,计算机视觉技术在用户向计算机的输入方面,效应通道实现了手动为主向手、足、口、身体等的转变;在计算机向用户的输出方面,感觉通道实现了视觉为主向触觉、嗅觉、听觉等的转变。2)在电厂煤粉锅炉火焰检测中的应用。对煤粉锅炉火焰的检测既能有效判断锅炉的运行状况,又能在很大程度上实现电厂的安全性运营。由于煤的负荷变化和种类变化会在使着火位置发生移动,所以为了保证炉膛火焰检测的准确性,必须弥补之前单纯应用火焰检测器只能判断有无火焰开关量信号的弊端。计算机视觉技术的应用,就在弥补火焰检测器应用弊端的基础上,实现了对火焰形状的进一步检测。
在图书馆工作中的应用
随着当前数字图书馆和自动化管理系统的建立,计算机技术在图书馆方面的应用越来越广泛。当前计算机视觉技术在图书馆方面的应用主要集中在古籍修补和书刊剔旧这两方面。就古籍修补而言,古籍图书等在收藏的过程中,受温度、湿度、光照等的影响,极易导致纸张变黄、变脆以及虫洞等现象的出现。在进行修补时,依靠计算机视觉技术开展具体的修补工作,能在很大程度上提高修补工作的效率。就书刊剔旧而言,由于图书馆藏书众多,对那些使用率低且较为陈旧的文献资料进行及时地剔除,能实现图书资源的及时更新。计算机视觉技术在该方面的应用,极大地保证了工作的准确性和效率性。
3 结束语
通过以上对计算机视觉技术在工业、农业、林业、农产品检测、电力系统自动化及图书馆工作这6个方面的研究可以看出,随着计算机技术的进一步发展以及计算机与各专业学科的不断渗透,该技术的发展前景和应用领域都将更加广阔。
参考文献
[1]郑加强.基于计算机视觉的雾滴尺寸检测技术[J].南京林业大学学报,2009(09).
[2]沈明彼.计算机视觉技术在社会各领域应用的发展与展望[J].农业机械学报,2012(03).
点击下页还有更多>>>计算机视觉技术论文
数字化家庭是未来智能小区系统的基本单元。所谓“数字化家庭”就是基于家庭内部提供覆盖整个家庭的智能化服务,包括数据通信、家庭娱乐和信息家电控制功能。 数字化家庭设计的一项主要内容是通信功能的实现,包括家庭与外界的通信及家庭内部相关设施之间的通信。从现在的发展来看,外部的通信主要通过宽带接入。intenet,而家庭内部的通信,笔者采用目前比较具有竞争力的蓝牙(bluetootlh)无线接入技术。 传统的数字化家庭采用pc进行总体控制,缺乏人性化。笔者根据人工情感的思想设计一种配备多种外部传感器的智能机器人,将此智能机器人视作家庭成员,通过它实现对数字化家庭的控制。 本文主要就智能机器人在数字化家庭医疗保健方面的应用进行模型设计,在智能机器人与医疗仪器和控制pc的通信采用蓝牙技术。整个系统的成本较低,功能较为全面,扩展应用非常广阔,具有极大的市场潜力。2 智能机器人的总体设计 2.1 智能机器人的多传感器系统 机器人智能技术中最为重要的相关领域是机器人的多感觉系统和多传感信息的集成与融合[1],统称为智能系统的硬件和软件部分。视觉、听觉、力觉、触觉等外部传感器和机器人各关节的内部传感器信息融合使用,可使机器人完成实时图像传输、语音识别、景物辨别、定位、自动避障、目标物探测等重要功能;给机器人加上相关的医疗模块(ccd、camera、立体麦克风、图像采集卡等)和专用医疗传感器部件,再加上医疗专家系统就可以实现医疗保健和远程医疗监护功能。智能机器人的多传感器系统框图如图1所示。 2.2 智能机器人控制系统 机器人控制系统包含2部分:一是上位机,一般采用pc,它完成机器人的运动轨迹规划、传感器信息融合控制算法、视觉处理、人机接口及远程处理等任务;二是下位机,一般采用多单片机系统或dsp等作为控制器的核心部件,完成电机伺服控制、反馈处理、图像处理、语音识别和通信接口等功能。 如果采用多单片机系统作为下位机,每个处理器完成单一任务,通过信息交换和相互协调完成总体系统功能,但其在信号处理能力上明显有所欠缺。由于dsp擅长对信号的处理,而且对此智能机器人来说经常需要信号处理、图像处理和语音识别,所以采用dsp作为智能机器人控制系统的控制器[2]。 控制系统以dsp(tms320c54x)为核心部件,由蓝牙无线通信、gsm无线通信(支持gprs)、电机驱动、数字罗盘、感觉功能传感器(视觉和听觉等)、医疗传感器和多选一串口通信(rs-232)模块等组成,控制系统框图如图2所示。 (1)系统通过驱动电机和转向电机控制机器人的运动,转向电机利用数字罗盘的信息作为反馈量进行pid控制。 (2)采用爱立信(ericsson)公司的rokl01007型电路作为蓝牙无线通信模块,实现智能机器人与上位机pc的通信和与其他基于蓝牙模块的医疗保健仪器的通信。 (3)支持gprs的gsm无线通信模块支持数据、语音、短信息和传真服务,采用手机通信方式与远端医疗监控中心通信。 (4)由于tms320c54x只有1个串行口,而蓝牙模块、gsm无线模块、数字罗盘和视觉听觉等感觉功能传感器模块都是采用rs一232异步串行通信,所以必须设计1个多选一串口通信模块进行转换处理。当tms320c54x需要蓝牙无线通信模块的数据时通过电路选通;当t~ms320c54x需要某个传感器模块的数据时,关断上次无线通信模块的选通,同时选通该次传感器模块。这样,各个模块就完成了与1~ms320c54x的串口通信。3 主要医疗保健功能的实现 智能机器人对于数字化家庭的医疗保健可以提供如下的服务: (1)医疗监护 通过集成有蓝牙模块的医疗传感器对家庭成员的主要生理参数如心电、血压、体温、呼吸和血氧饱和度等进行实时检测,通过机器人的处理系统提供本地结果。 (2)远程诊断和会诊 通过机器人的视觉和听觉等感觉功能,将采集的视频、音频等数据结合各项生理参数数据传给远程医疗中心,由医疗中心的专家进行远程监控,结合医疗专家系统对家庭成员的健康状况进行会诊,即提供望(视频)、闻、问(音频)、切(各项生理参数)的服务[3]。 3.1机器人视觉与视频信号的传输 机器人采集的视频信号有2种作用:提供机器人视觉;将采集到的家庭成员的静态图像和动态画面传给远程医疗中心。 机器人视觉的作用是从3维环境图像中获得所需的信息并构造出环境对象的明确而有意义的描述。视觉包括3个过程: (1)图像获取。通过视觉传感器(立体影像的ccd camera)将3维环境图像转换为电信号。 (2)图像处理。图像到图像的变换,如特征提取。 (3)图像理解。在处理的基础上给出环境描述。 通过视频信号的传输,远程医疗中心的医生可以实时了解家庭成员的身体状况和精神状态。智能机器人根据医生的需要捕捉适合医疗保健和诊断需求的图像,有选择地传输高分辨率和低分辨率的图像。在医疗保健的过程中,对于图像传送有2种不同条件的需求: (1)医生观察家庭成员的皮肤、嘴唇、舌面、指甲和面部表情的颜色时,需要传送静态高清晰度彩色图像;采用的方法是间隔一段时间(例如5分钟)传送1幅高清晰度静态图像。 (2)医生借助动态画面查看家庭成员的身体移动能力时,可以传送分辨率较低和尺寸较小的图像,采用的方法是进行合理的压缩和恢复以保证实时性。 3.2机器人听觉与音频信号的传输 机器人采集的音频信号也有2种作用:一是提供机器人听觉;二是借助于音频信号,家庭成员可以和医生进行沟通,医生可以了解家庭成员的健康状况和心态。音频信号的传输为医生对家庭成员进行医疗保健提供了语言交流的途径。 机器人听觉是语音识别技术,医疗保健智能机器人带有各种声交互系统,能够按照家庭成员的命令进行医疗测试和监护,还可以按照家庭成员的命令做家务、控制数字化家电和照看病人等。 声音的获取采用多个立体麦克风。由于声音的频率范围大约是300hz一3400hz,过高或过低频率的声音在一般情况下是不需要传输的,所以只用传送频率范围在1000hz-3000hz的声音,医生和家庭成员就可以进行正常的交流,从而可以降低传输音频信号所占用的带宽,再采用合适的通信音频压缩协议即可满足实时音频的要求。智能机器人的听觉系统如图3所示。3.3各项生理信息的采集与传输 传统检测设备通过有线方式连到人体上进行生理信息的采集,各种连线容易使病人心情紧张,从而导致检测到的数据不准确。使用蓝牙技术可以很好地解决这个问题,带有蓝牙模块的医疗微型传感器安置在家庭成员身上,尽量使其不对人体正常活动产生干扰,再通过蓝牙技术将采集的数据传输到接收设备并对其进行处理。 在智能机器人上安装1个带有蓝牙模块的探测器作为接收设备,各种医疗传感器将采集到的生理信息数据通过蓝牙模块传输到探测器,探测器有2种工作方式:一是将数据交给智能机器人处理,提供本地结果;二是与internet连接(也可以通过gsm无线模块直接发回),通过将数据传输到远程医疗中心,达到医疗保健与远程监护的目的。视频和音频数据的传输也采用这种方式。智能机器人的数据传输系统如图4所示。 4 蓝牙模块的应用 4.1蓝牙技术概况 蓝牙技术[4]是用于替代电缆或连线的短距离无线通信技术。它的载波选用全球公用的2.4ghz(实际射频通道为f=2402 k×1mhz,k=0,1,2,…,78)ism频带,并采用跳频方式来扩展频带,跳频速率为1600跳/s。可得到79个1mhz带宽的信道。蓝牙设备采用gfsk调制技术,通信速率为1mbit/s,实际有效速率最高可达721kbit/s,通信距离为10m,发射功率为1mw;当发射功率为100mw时,通信距离可达100m,可以满足数字化家庭的需要。 4.2蓝牙模块 rokl01007型蓝牙模块[5]是爱立信公司推出的适合于短距离通信的无线基带模块。它的集成度高、功耗小(射频功率为1mw),支持所有的蓝牙协议,可嵌入任何需要蓝牙功能的设备中。该模块包括基带控制器、无线收发器、闪存、电源管理模块和时钟5个功能模块,可提供高至hci(主机控制接口)层的功能。单个蓝牙模块的结构如图5所示。 4.3主,从设备硬件组成 蓝牙技术支持点到点ppp(point-t0-point pro-tocol)和点对多点的通信,用无线方式将若干蓝牙设备连接成1个微微网[6]。每个微微网由1个主设备(master)和若干个从设备(slave)组成,从设备最多为7台。主设备负责通信协议的动作,mac地址用3位来表示,即在1个微微网内可寻址8个设备(互联的设备数量实际是没有限制的,只不过在同一时刻只能激活8个,其中1个为主,7个为从)。从设备受控于主设备。所有设备单元均采用同一跳频序列。 将带有蓝牙模块的微型医疗传感器作为从设备,将智能机器人上的带有蓝牙模块的探测器作为主设备。主从设备的硬件主要包括天线单元、功率放大模块、蓝牙模块、嵌入式微处理器系统、接口电路及一些辅助电路。主设备是整个蓝牙的核心部分,要完成各种不同通信协议之间的转换和信息共享,以及同外部通信之间的数据交换功能,同时还负责对各个从设备的管理和控制。 5 结束语 随着社会的进步,经济的发展和人民生活水平的提高,越来越多的人需要家庭医疗保健服务。文中提出的应用于数字化家庭医疗保健服务的智能机器人系统的功能较为全面,且在家用智能机器人、基于蓝牙技术的智能家居和数字化医院等方面的拓展应用非常广阔,具有极大的市场潜力。 更多论文请到文秘杂烩网 采纳哦
随着科技的进步,智能机器人的性能不断地完善,因此也被越来越多的应用于军事、排险、农业、救援、海洋开发等方面。这是我为大家整理的关于机器人的科技论文,供大家参考!机器人的科技论文篇一:《浅谈智能移动机器人》 摘要:随着科技的进步,智能机器人性能不断地完善,移动机器人的应用范围也越来越广,广泛应用于军事、排险、农业、救援、海洋开发等。介绍了常见智能移动机器人的基本系统组成及其相关的一些技术,提出一种能够应用于智能移动机器人的越障机构,并简单阐述了其工作原理。在对智能机器人有一定了解的基础上,论述了智能移动机器人的研究现状及其发展动向。 关键词:智能移动机器人越障避障伸展收缩 1 引言 上世纪60年代智能机器人的出现开辟了智能生产自动化的新时代。在工业机器人问世50多年后的今天,机器人已被人们看作是不可缺少的一种生产工具。由于传感器、控制、驱动及材料等领域的技术进步开辟了机器人应用的新领域。智能移动机器人是机器人学中的一个重要分支。 2 智能移动机器人的基本系统组成及其相关技术 由于智能移动机器人在危险与恶劣环境以及民用等各方面具有广阔的应用前景,使得世界各国非常关注它的发展。其共同的五大系统组成要素为:(1)机械机构单元是智能移动机器人的骨架,机器人所有的模块都依靠其支撑,机械机构单元的结构,性能,强度直接影响着整个机器人的稳定性。随着科技发展和新型材料的研制开发,使得智能机器人产品的结构性能有了很大提高,机械机构的各项工艺性及尺寸设计都向着更加合理高效,更加轻便美观,更加环保节能,更加安全可靠等方向发展。(2)动力与驱动单元为智能移动机器人提供动力来源。(3)环境感知单元相当于智能移动机器人的五官,机器人通过感知单元对周围的环境进行感知识别及各种参数的收集,然后通过转换成控制模块可以识别的光电信号,输入到控制单元进行数据处理。(4)执行机构单元为智能移动机器人执行部分,能根据控制中心的命令执行命令,完成任务。不同的机器人有着不同的执行机构,执行机构的设计影响着对要执行动作的效率,精度,稳定性,可靠性等。(5)信息处理与控制单元作为整个机械系统的核心部分,它如人的大脑一样,调控着整个系统,一切的活动都由它指挥。将来自传感器部分采集到的信息进行集中汇总,存储,对所有信息分析,规划决策,输出命令。使机器人有目的的运行。 智能移动机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合机电系统。它是传感器技术,控制技术,移动技术,信息处理、人工智能、电子工程、计算机工程等多学科的重要研究成果,从某种意义上讲是机器发展进化过程中的产物,是目前科学技术发展最活跃的领域之一。 3 一种越障机器人 我们设计的移动机器人(图1)有很好的机动性能,前导轮、前轮和后轮可以实现独立升降运动。前导轮(如图1)由通过曲柄圆盘的转动角度控制摇杆的摆动角度,带动相关的平面连杆机构运动,从而实现前导向轮的伸展和收缩实现攀越。机器人两侧的侧边驱动机构为平面连杆-滑块越障机构,前后轮(如图1)分别通过导杆在槽中的移动,带动平面连杆机构的运动,实现前后轮的伸展和收缩,实现越障功能。本机器人通过尺寸的设计可以实现较大的越障高度,通过合理的控制轮摆动的角度还能实现多种类型障碍物的攀越。 4 智能移动机器人的应用概况 随着科技的进步,机器人的功能不断完善,智能移动机器人的应用范围也大大拓宽,不仅在工业、农业、医疗、服务等行业中得到广泛的应用,而且在排险、海洋开发和宇宙探测领域等有害与危险场合(如辐射、灾区、有毒等)得到很好的应用。 陆地智能移动机器人 20世纪60年代后期,苏美为了完成对宇宙空间的占领,完成月球探测计划,各自研制开发并应用了移动机器人,通过移动机器人实现对外星土壤的样本采集和土壤分析等各种任务。陆地智能移动机器人的出现是为了帮助人类完成无法完成的任务。陆地移动机器人也广泛应用于军事,可以完成排除爆炸物,扫雷,侦查,清除障碍物等等,近年来智能移动机器人也开始渐渐融入人们的日常生活。 水下智能移动机器人 近年来,人们对资源的渴求加大,开始对原子能和海洋资源的开发,加之水下环境十分复杂(能见度差,定位困难,流体变化等),水下智能移动机器人在海底资源探测上的优势使之受到关注。近年德国基尔大学的科学家研制出新型深水机器人“ROV Kiel 6000”,这架深水机器人能够下探到6000米深的海底,寻找神秘的深水生物和“白色黄金”可燃冰。 仿生智能移动机器人 近年来,全球许多机器人研究机构越来越多的关注仿生学与机构的研究工作.在某些情况下仿生机器人尤其独特优势,例如,蛇形机器人重心低,能够模仿蛇的动作,穿梭在能够穿梭在受灾现场和其他复杂的地形中能够帮助人类完成各种任务。除此之外还有仿生宠物狗、仿生鱼、仿生昆虫等。 5 智能移动机器人的发展方向及前景 影响移动机器人发展的因素主要有:导航与定位技术,多传感器信息的融合技术,多机器人协调与控制技术等因而移动机器人技术发展趋势主要包括: (1)高智能情感机器人。随着科学技术的发展,人们对人机交互的技术的要求越来越高,具有人类智能的情感移动机器人是移动机器人未来发展趋势。目前的移动机器人只能说是具有部分的智能,人们渴望能够出现安全可靠的能够沟通交流的高智能的机器人。虽然现在要实现高智能情感机器人还非常的困难,但是终有一天,随着科学技术的突破,它将成为现实。 (2)高适应性多功能化的机器人。机器人的出现是为人类服务的,自然界中还有好多未知的世界等着我们开拓,各种危险的复杂多变的环境,人类无法涉足,因此人们也迫切希望有能够代替人类的机器人出现,高适应性多功能化的机器人也必将是机器人的发展方向之一。 (3)通用服务型的机器人。随着科学技术的发展,机器人也是应该越来越容易融入人们日常生活中的,在日常生活中为人们服务。例如在家庭中,机器人可以帮助人们做各种家务,和人们生活关系密切。 (4)特种智能移动机器人。根据不同应用领域,不同的目的,设计各种各样特种智能移动机器人是未来发展方向,如纳米机器人,宇宙探索机器人,深海探索机器人,娱乐机器人等等。 6 结束语 总之,智能移动机器人涉及到传感器技术,控制技术,移动技术,信息处理、人工智能、控制工程等多学科技术。未来智能移动机器人走向生活,安全可靠,操作简单是其趋势。尽管智能移动机器人以惊人的速度在发展着,但是实现高适应性,智能化,情感化,多功能化的移动机器人还有很长的路要走。 参考文献: [1]谢进,万朝燕,杜立杰.机械原理(第2版)[M].北京:高等 教育 出版社,2010. [2]陈国华.机械机构及应用[M].北京:机械工业出版社,2008. [3]徐国保,尹怡欣,周美娟.智能移动机器人技术现状及展望[J].机器人技术与应用,2007(2). [4]肖世德,唐猛,孟祥印,等.机电一体化系统监测与控制[M].四川:西南交通大学出版社,2011. 机器人的科技论文篇二:《浅谈机器人设计 方法 》 摘要:机器人是人类完成智能化中非常重要的工具,随着时代的发展,机器人已经在世界有了一定的发展,甚至很多国家机器人已经运用到实际的生活中去。而机器人的设计方法无疑是很多人非常感兴趣的问题,因此本文针对机器人的设计方法进行了详细的探索。 关键词机器人;设计;方法 1.前言 纵观人类的发展史,工具的进步才能带动人类的文明,如今设计朝着智能化的方向在发展,机器人就是人类在发展智能化过程洪重要的产物,因此机器人常用的设计方法是设计师们必备的工具。 2.控制系统的硬件设计 在现代科学技术不断发展的背景之下,工业现场所涉及到的重体力劳动量不断提升。当中部分劳动任务的实现单单依靠人力是很难实现的。而为了良好的完成工业现场的相关生产作业任务。就需要通过对机器人装置的研究与应用来实现机器人控制系统的硬件部分主要由5个模块组成:控制模块、循迹模块、避障模块、电机驱动模块、电源模块。 (1)控制系统模块。ATmega128为基于AVR RISC结构的8位低功耗CMOS微处理器,运算速度快,具有多路PWM输出,可将测速、避障等电路产生的输入信号进行处理,并输出控制信号给驱动放大电路,从而控制电机转速,此方式产生的PWM信号比用定时器中断产生的PWM信号实时性更好,而且不会占用系统的定时器资源。 (2)循迹模块。循迹是指小车在比赛场地上循白色引导线线行走,循迹模块的原理图如图2所示。循迹模块采用灰度传感器,发射管为普通LED灯,接收管为光敏三极管3DU33。工作原理为:不同颜色的物体对LED发射光反射不同的亮度,光敏三极管3DU33接收这些不同亮度的光线,就会呈现不同的电压Vx。Vx输入到比较器LM339的同相端,并与电位器设定的电压V0相比较,当Vx>V0时,比较器输出高电平,当Vx循迹机器人前后两端均是由7个灰度传感器组成的循迹模块。其中,中间三个灰度传感器起巡线的作用,两端的灰度传感器起探测弯道作用,剩下两个灰度传感器交替进行巡线和探测弯道。实验证明,这样的灰度传感器的布置图,机器人循迹的效果好,且“性价比”非常高。 (3)避障模块。避障模块主要使用的是红外发射接收传感器,当红外感应避障模块靠近物体时,输出低电平信号;当没有感应到物体时,输出高电平信号。将该信号线接入到单片机的控制端口,控制程序就能起到探测障碍物的作用,当在机器人行进的路径上就可以发现有障碍物并及时避开绕行。 (4)驱动模块。循迹避障机器人要求行走灵活、反应快速,因此要求驱动电机具有“转速快、制动及时”等特点。我们设计制作的循迹避障机器人采用中鸣公司的JMP-BE-3508I驱动板模块,其输入电压为11V到24V,最大输出电流为20A,满足快速前进、制动、转弯的要求。并且电机速度达到500rpm,堵转力矩为,具有很强的刹车功能。利用单片机的四路PWM输出信号,分别控制四个轮子的转速。并采用“四轮驱动”、“差速转弯”的方式实现机器人的前进、后退与转弯。 (5)电源模块。循迹机器人的电源模块主要实现以下三大功能:①稳定输出5V工作电压。故我们设计制作的电源模块以7805芯片为核心,把输入电压截止到5V。②提供足够的电流。7805芯片最大输出电流为,而循迹机器人需要较大电流,所以我们使用了两片7805芯片分别对控制系统和外部设备进行供电。③滤波。在7805芯片的输入、输出端分别并联104贴片电容和10μF的电解电容,过滤高频、低频信号。 3.软硬件模块开发流程和界面程序 (1)图像处理模块:照相机实时捕捉图像,处理转化后和初始图像进行处理比较,找出图像中差异的位置通过TCP传输。 (2)TCP通信模块:视觉系统通过以太网连接贝加莱控制器,控制器可以作客户机或服务器实时传输数据,:定义结构体用于视觉系统传输位姿给机器人和机器人实时反馈位姿和信号状态数据给视觉系统。 (3)位置转换模块:把视觉系统的位姿转换为机器人的位姿传输给机器人,控制机器人运行。 (4)轨迹规划模块:进行运动轨迹规划和速度规划,根据机器人当前的位置和目标位置,选择最优的运动轨迹(直线、圆弧、不规则曲线等运动轨迹),然后对轨迹、速度进行插补,插补值调用机器人运动学算法计算轨迹的可靠性,再把实时插补的位置、速度传送给运动控制模块。 (5)运动控制模块:根据实时插补的值结合加速度、加加速度等控制参数给驱动器。 (6)伺服模块:根据控制器所发送数据,结合各伺服控制参数,驱动电机以最快响应和速度运行到各个位置。 4.机器人精度标定和视觉软件处理 精度标定 精度的标定包括机器人精度标定 和机器人相对于视觉照相机位置标定 。机器人运动前,需要用激光跟踪仪标定准确各轴杆长、零点、减速比、耦合比等机械参数,给运动学、控制器系统,机器人才能按理论轨迹运行准确。行到指定点。 通过三点法、六点法标定机器人相对于视觉照相机的X、Y、Z方向距离给位置转化模块,确定机器人坐标系相对于照相机坐标系的转化关系。 视觉处理软件 包括固定视觉系统标定模块和移动视觉系统标定模块 。视觉系统安装在固定位置相当于给机器人建立照相机一个用户坐标系,此模块用于运算机器人和固定视觉系统之间位姿转换关系。视觉系统安装在机器人末端法兰位姿相当于给机器人建立照相机一个工具坐标系,随着机器人运动而实时改变位置,此模块用于运算机器人和动态视觉系统之间位姿转换关系。 实时处理传输机器人、视觉系统和以太网的运行通信状态以及出错状态处理。 人机界面设计及实现 当机器人出现故障,不能自动移动位置时,比如碰到硬件限位或出现碰撞现象时,此时可以进入手动页面,选择机器人操作,移动机器人到指定位置。对于新建码垛工艺线,需要配置系统参数、位置信息、以及产品参数,等必要的信息。码垛数据编辑与创建的功能,产品覆盖了袋子、箱子,以及可变数量抓取的功能。可以添加产品数量,改变产品方向,单步数量修改,产品位置移动以及旋转等设置。本页面中,示例生成了每层五包的袋装产品,编号从1到5,可以通过调整编号的顺序,达到改变产品的实际码垛顺序。 5.结束语 总之,在进行机器人的设计过程中,要根据设计的用途进行针对性的设计,对于设计过程中出现的问题要及时的采用上述的思维方法进行解决,随着机器智能化的推广,无疑机器人的设计在未来会有更广阔的天空。 参考文献: [1]张海平,陈彦. Wincc在打包机人机界面中的设计与应用[J].HMI与工业软件,2012(3):70-72. [2]朱华栋,孔亚广.嵌入式人机界面的设计[J].中国水运,2008(11):125-126. [3]金长新,李伟.基于Windows CE的车载电脑系统人机界面的实现[J].微计算机信息,2005(21):132-134. 机器人的科技论文篇三:《浅谈igm焊接机器人的故障处理》 [摘 要]机器人技术综合了计算机、控制理论、机构学、信息和传感技术、人工智能等多学科而形成的高新技术。本文通过介绍igm焊接机器人的工作原理,以及在实际工作中机器人的常见故障现象,对故障产生的原因进行分析,并提出了相应的维修方法。 [关键词]igm焊接机器人 工作原理 故障处理 0 前言 机器人技术是综合了计算机、控制理论、机构学、信息和传感技术、人工智能等多学科而形成的高新技术。这门新型技术的介入,对维修技术人员提出了更高要求。如何保证焊接机器人的可靠性、稳定性,发挥机器人的最大优势,针对机器人的故障维修及设备维护保养工作就尤显重要。 1 igm焊接机器人组成及工作原理 igm焊接机器人的组成 igm焊接机器人是从事焊接(包括切割与喷涂)的工业机器人,它加工精细、动作灵巧、焊接精度高、焊缝成形好。在机械行业中得到了广泛的应用。 igm焊接机器人工作原理 igm焊接机器人内部轴控制原理:通过数字伺服板DSE-IBS处理当前位置的校准、位置驱动、速度驱动等信息,处理后的信息送馈到伺服驱动器,由伺服驱动器内部的脉宽调制器调制,然后放大输出推动伺服电机。伺服电机运动的同时,编码器同步运行,并把采集的位置角度信息反馈给RDW控制板,通过RDW板的增量计算、数据整定后的位置信息回馈给DSE-IBS板,做下一个周期的计算处理,此过程反复进行从而实现了实时位置的更迭过程。 2 igm焊接机器人故障诊断及分析 焊接机器人故障类型 焊接机器人故障类型可分为软件故障和硬件故障,由机器软件造成的故障,如系统停机 死机 的现象;由机器硬件造成的故障,如驱动单元、电气元件各模块的故障。就故障现象可分为人为故障和自然故障、突发故障三大类。对于维修来说,自然故障和突发故障的排除就显得困难,因为这种维修不仅仅针对故障单元本身,还要对系统进行改进,这就需要周密分析,对故障诊断进行优化和改进,避免排除过的故障重复出现,使系统进一步稳定可靠。 igm焊接机器人常见故障处理 机器人开机后示教器无报警信息,但机械手无法正常引弧。首先检查系统是否送丝送气,发现送丝系统无法手动送丝,保护气瓶有压力,但是焊枪喷嘴处无保护气。再检查机械手焊接电缆、引弧板及送丝板,都没有发现故障。这说明机械手的功能是正常的,可能是焊接回路不通畅。可以通过测量焊接回路阻抗来判断焊接回路是否正常。 回路阻抗的测试步骤: i把连接工件的地线接好,保证地线夹与工件接触部分干净良好; ii接通机器人电柜电源,将福尼斯焊机电源开关拨至“I”位置; iii在焊机二级菜单内选择“r”功能。 iv取下焊枪喷嘴,拧上导电嘴,将导电嘴贴紧工件表面。需要注意的是,测量过程中要确保导电嘴与工件接触处的洁净。测量进行时,送丝机和冷却系统不启动; v轻按焊枪开关或点动送丝键。焊接回路阻抗值测算完成。测量过程中,右显示屏显示“run”; vi焊接回路测算结束后显示屏显示测量值。测得的焊接回路阻抗是18 Ω(正常值以<20Ω为佳),说明焊接机器人的焊接回路的通畅的。再断电、通电调试,焊接机器人能正常引弧,应该是回路测试过程中通过连接接地夹、拆卸喷嘴、导电嘴等将回路未正常接触处接通了。 igm机器人在焊接过程中,引弧困难、焊接电流极不稳定,且经常断弧,反复出现“Arc fault”电弧故障。 i检查接地电缆,测量回路电阻值为Ω,正常 值以<20Ω为佳。 ii检查焊丝直径(Ф)与送丝轮的公称直径相匹配。 iii焊丝材料(G2Si)与焊接方式及焊接母材相匹配。 iv后观察焊枪喷嘴处,存在大量粉尘的切粉,手动送出的焊丝不光滑平整,有小量弯曲及伤丝情况,说明送丝不畅。 v对送丝阻力进行检测。将送丝锁紧杆、压紧杆打开,手盘焊丝盘将焊丝收回,发现阻力很大。多为送丝软管堵塞或软管与机械手夹角过大造成。 vi检查送丝轮磨损情况,V型送丝槽不易过深过宽,以正好放置一根Ф规格的焊丝为佳,间隙过大,将影响送丝的稳定性,焊接电流的稳定性。拆下送丝轮,发现送丝轮磨损严重,圆度误差较大,送丝槽过深。送丝机构一旦出现失控,就会高速送丝,焊接电源得不到正常的信号反馈(送丝速度的反馈采用光电测速),不能提供稳定的电流、电压,造成不能正常焊接。更换送丝轮、送丝软管,并进行压力调整,故障解除,焊接正常。 igm机器人回零参数自动丢失。igm机器人在下一次开机时,回零参数自动丢失,重新校零、输入参数,保存参数反复丢失。检查示教电缆、接口、程序、轴卡、RDW板指示灯全部正常,检查后备电池(缓冲电瓶,用于关机或意外掉电情况下,为系统提供短时间供电,进行信息的存储)测量电压值,一个为,一个为12 V,总电压为21 V,正常值为24V,更换一组电池后一切正常,再未出现数据丢失现象。 突发故障的分析及处理 该故障无可预见性,事发突然。实际工作中出现最多。多为受环境影响的系统故障,如焊接机器人控制部分电路板故障、稳压 电源故障 、通讯故障等,反映在机器人在工作时突然报警且无法消除报警。重新启动又恢复正常,但不久又出现报警,这类故障造成整个系统不稳定。 为了进一步判断驱动器的好坏,缩小故障范围, 对编码器进行检查,RCI系列的机器人各轴所使用的编码器是绝对编码器,它是一种电磁部件,可以传递旋转角度的信息,由两个固定绕组(sin绕组和cos绕组)及一个参考绕组组成,原理基本上同旋转变压器相似。将X12插头拔下,分别测量11-12、13-5、14-4端子阻值,结果没有一项有阻值,说明编码器出现异常。 找到12轴伺服电机,检查发现编码器插头锁紧并帽已退出,插头连接松动。将插头重新安插,锁紧到位,再次测量11-12端子阻值为94Ω,13-5端子阻值为65Ω,14-4端子阻值为65Ω,9-10端子阻值为600Ω,说明各绕组正常。上电后,驱动可正常打开,故障解除。 3 结束语 维修工作是理论指导实践,实践促进理论的一个反复过程,理论实践的有机结合才会使维修人员更加深入,更加准确的判断处理各种故障。工作中维修人员必须具有独立思考分析判断的能力,操作中一定要注意观察,不可盲目更改焊接机器人设定、跳线等状态,要养成做工作记录的好习惯,归纳 总结 各类故障现象以及处理过程,积累故障诊断和维修方面的 经验 ,以提高维修水平。 参考文献 [1] 戴光平.《焊接机器人故障诊断及维修技术》. 重庆:中国嘉陵工业股份有限公司,2003. [2] 中国焊接协会成套设备与专业机具分会. 《焊接机器人实用手册》.机械工业出版社,2014. [3] 李德民.《焊接机器人的故障维修》. 长春:长客股份制造中心,2011. 猜你喜欢: 1. 关于科技论文的范文 2. 关于计算机的科技论文3000字 3. 数学科技论文800字 4. 自动化科技论文题目与范文
我的论文,基于STM32的多关节机器人设计,图文详细,绝对满足你的需求
网页链接
机器人控制技术论文篇二 智能控制在机器人技术中的应用 摘要:机器人的智能从无到有、从低级到高级,随着科学技术的进步而不断深人发展。计算机技术、 网络技术 、人工智能、新材料和MEMS技术的发展,智能化、网络化、微型化发展趋势凸显出来。本文主要探讨智能控制在机器人技术中的应用。 关键词:智能控制 机器人 技术 1、引言 工业机器人是一个复杂的非线性、强耦合、多变量的动态系统,运行时常具有不确定性,而用现有的机器人动力学模型的先验知识常常难以建立其精确的数学模型,即使建立某种模型,也很复杂、计算量大,不能满足机器人实时控制的要求。智能控制的出现为解决机器人控制中存在的一些问题提供了新的途径。由于智能控制具有整体优化,不依赖对象模型,自学习和自适应等特性,用它解决机器人等复杂控制问题,可以取得良好效果。 2、智能机器人的概述 提起智能机器人,很容易让人联想到人工智能。人工智能有生物学模拟学派、心理学派和行为主义学派三种不同的学派。在20世纪50年代中期,行为主义学派一直占统治地位。行为主义学派的学者们认为人类的大部分知识是不能用数学方法精确描述的,提出了用符号在计算机上表达知识的符号推理系统,即专家系统。专家系统用规则或语义网来表示知识规则。但人类的某些知识并不能用显式规则来描述,因此,专家系统曾一度陷人困境。近年来神经网络技术取得一定突破,使生物模拟学派活跃起来。智能机器人是人工智能研究的载体,但两者之间存在很大的差异。例如,对于智能装配机器人而言,要求它通过视觉系统获取图纸上的装配信息,通过分析,发现并找到所需工件,按正确的装配顺序把工件一一装配上。因此,智能机器人需要具备知识的表达与获取技术,要为装配做出规划。同时,在发现和寻找工件时需要利用模式识别技术,找到图样上的工件。装配是一个复杂的工艺,它可能要采用力与位置的混合控制技术,还可能为机器人的本体装上柔性手腕,才能完成任务,这又是机构学问题。智能机器人涉及的面广,技术要求高,是高新技术的综合体。那么,到底什么是智能机器人呢?到目前为止,国际上对智能机器人仍没有统一的定义。一般认为,智能机器人是具有感知、思维和动作的机器。所谓感知,即指发现、认识和描述外部环境和自身状态的能力。如装配作业,它要能找到和识别所要的工件,需要利用视觉传感器来感知工件。同时,为了接近工件,智能机器人需要在非结构化的环境中,认识瘴碍物并实现避障移动。这些都依赖于智能机器人的感觉系统,即各种各样的传感器。所谓思维,是指机器人自身具有解决问题的能力。比如,装配机器人可以根据设计要求,为一个复杂机器找到零件的装配办法及顺序,指挥执行机构,即动作部分去装配完成这个机器,动作是指机器人具有可以完成作业的机构和驱动装置。因此,智能机器人是一个复杂的软件、硬件的综合体。虽然对智能机器人没有统一的定义,但通过对具体智能机器人的考察,还是有一个感性认识的。 3、智能机器人的体系结构 智能机器人的体系结构主要包括硬件系统和软件系统两 个方面。由于智能机器人的使用目的不同,硬件系统的构成也不尽相同。结构是以人为原型设计的。系统主要包括视觉系统、行走机构、机械手、控制系统和人机接口。如图1所示: 视觉系统 智能机器人利用人工视觉系统来模拟人的眼睛。视觉系统可分为图像获取、图像处理、图像理解3个部分。视觉传感器是将景物的光信号转换成电信号的器件。早期智能机器人使用光导摄像机作为机器人的视觉传感器。近年来,固态视觉传感器,如电荷耦合器件CCD、金属氧化物半导体CMOS器件。同电视摄像机相比,固体视觉传感器体积小、质量轻,因此得到广泛的应用。视觉传感器得到的电信号经过A/D转换成数字信号,即数字图像。单个视觉传感器只能获取平面图像,无法获取深度或距离信息。目前正在研究用双目立体视觉或距离传感.器来获取三维立体视觉信息。但至今还没有一种简单实用的装置。数字图像经过处理,提取特征,然后由图像理解部分识别外界的景物。 行走机构 智能机器人的行走机构有轮式、履带式或爬行式以及类人型的两足式。目前大多数智能机器人.采用轮式、履带式或爬行式行走机构,实现起来简单方便。1987年开始出现两足机器人,随后相继研制了四足、六足机器人。让机器人像人类一样行走,是科学家一直追求的梦想。 机械手 智能机器人可以借用工业机器人的机械手结构。但手的自由度需要增加,而且还要配备触觉、压觉、力觉和滑觉等传感器以便产生柔软、.灵活、可靠的动作,完成复杂作业。 控制系统 智能机器人多传感器信息的融合、运动规划、环境建模、智能推理等需要大量的内存和高速、实时处理能力。现在的冯?诺曼结构作为智能机器人的控制器仍然力不从心。随着光子计算机和并行处理结构的出现,智能机器人的处理能力会更高。机器人会出现更高的钾能。 人机接口 智能机器人的人机接口包括机器人会说、会听以及网络接日、话筒、扬声器、语音合成和识别系统,使机器人能够听懂人类的指令,能与人以自然语言进行交流。机器人还需要具有网络接n,人可以通过网络和通讯技术对机器.人进行控制和操作。 随着智能机器人研究的不断深入、越来越多的各种各样的传感器被使用,信息融合、规划,问题求解,运动学与动力学计算等单元技术不断提高,使智能机器人整体智能能力不断增强,同时也使其系统结构变得复杂。智能机器人是一个多CPU的复杂系统,它必然是分成若干模块或分层递阶结构。在这个结构中,功能如何分解、时间关系如何确定、空间资源如何分配等问题,都是直接影响整个系统智能能力的关键问题。同时为了保证智能系统的扩展,便于技术的更新,要求系统的结构具有一定开放性,从而保证智能能力不断增强,新的或更多传感器可以进入,各种算法可以组合使用口这便使体系结构本身变成了一个要研究解决的复杂问题。智能机器人的体系结构是定义一个智能机器人系统各部分之间相互关系和功能分配,确定一个智能机器人或多个智能机器人系统的信息流通关系和逻辑上的计算结构。对于一个具体的机器人而言,可以说就是这个机器人信息处理和控制系统的总体结构,它不包括这个机器人的机械结构内容。事实上,任何一个机器人都有自己的体系结构。目前,大多数工业机器人的控制系统为两层结构,上层负责运动学计算和人机交互,下层负责对各个关节进行伺服控制。 参考文献: [1]左敏,曾广平. 基于平行进化的机器人智能控制研究[J]. 计算机仿真,2011,08:15-16. [2]陈赜,司匡书. 全自主类人机器人的智能控制系统设计[J]. 伺服控制,2009,02:76-78. [3]康雅微. 移动机器人马达的智能控制[J]. 装备制造技术,:102-103. 看了“机器人控制技术论文”的人还看: 1. 搬运机器人技术论文 2. 机电控制技术论文 3. 关于机器人的科技论文 4. 工业机器人技术论文范文(2) 5. 机器人科技论文
外观缺陷视觉检测系统是一种利用机器视觉技术对物体表面进行检测的系统。其工作原理通常分为以下几个步骤:
随着社会的发展,企业对物体质量要求越来越高,基于图像处理的标签质量检测系统越来越被人们所看重。然而,标签在生产过程中,由于受到生产机器精度等因素的影响,生产出来的标签有很多质量问题,比如:少印。因此标签缺陷检测越来越重要。本论文主要针对对标签视觉检测系统的软件算法设计,使检测图像与标准图像进行相减,从而提取出缺陷部分,解决标签少印的问题。整个少印缺陷的检测过程不需要人工进行费力的对比,此过程由软件自行处理,人们只需要对检测出的标签进行确认,实现人工与智能化的完美结合,保证标签质量的目的。
由于砌体结构的来源广泛,施工设备和施工工艺较简单,可以不用大型,能较好地连续施工,还可以大量地节约木材、水泥和钢材,相对造价低廉,因而得到广泛应用。许多住宅、办公楼、学校、医院等单层或多层就是采用砖、石或砌块墙体和钢筋混...
砖混结构建筑的砌体施工质量控制摘要:在砖混结构房屋建设中,砖体砌筑的施工量很大,而且又为承重结构,所以加强对砖砌体在施工过程中的质量控制非常必要。砖砌体由砖和砂浆组成。除应采用符合质量要求的原材料外,还必须对影响砌筑质量的主要因素:砖的浇水湿润程度,砂浆饱满度,临时间断处接槎是否牢固,组砌形式和水平灰缝厚度等进行严格的质量检查、监督和控制。本文主要讨论影响砖砌体施工质量的主要因素及质量控制措施。关键词:砖混结构;强度;质量控制一、砖砌体施工中存在的主要问题1、砖浇水湿润程度不够砖在砌筑前浇水湿润是一道不可少的工序。砖浇湿后,灰缝中砂浆的水份不会很快被砖吸收,从而使砂浆强度正常地增长,并且增强了砖与砂浆间的粘结,还能使砂浆保持一定的流动性,从而便于操作,有利于保证砌体的砂浆密实饱满。但是,如果砖浇水过湿,或对砖现浇水现用,砖表面的水不能渗进砖内,滞留在砖面上形成水膜,使砌筑砂浆流动性增大,砌体内的砖产生滑动使砌体变形,墙面平整度不易控制,而且使清水墙墙面不能保持清洁。因此,对砖的含水率应该控制在一定范围,而且还要规范浇水的方法。砖浇水湿润后的理想含水量为饱和含水率的2/3,约1 0%一1 5%。在工地检查中,以将砖砍断,其断面四周的饮水深度达到1 0-2 0 m m即可。对砖浇水不应在使用时临时浇水,应提前1天浇水湿透。严禁干砖上墙。2、水平灰缝砂浆不饱满砖砌体的水平灰缝砂浆饱满度是影响砌体强度的一个很重要因素,水平灰缝砂浆饱满度不合格的砌体,当荷载作用时,砖在砌体中与砂浆接触的几个局部面积上,集中承受上部传下来的荷载,使其处于受弯、受剪和局部受压的复杂受力状态。由于砖的厚度小,且为受压脆性材料,其抗弯抗剪性能差,当砖处于受弯、受剪和局部受压状态时,容易造成提早开裂,使砖砌体丧失承载能力。在工地检查中,采用“百格网”法检查水平灰缝饱满度不低于8 0%即可。3、留槎接槎不符合要求留槎的方法是否合理,接槎是否牢固,直接影响砖墙的砌筑质量,即建筑物的整体性,对于抗震设防的建筑物更是一个关键问题。砖砌体留槎存在以下几个问题:1)因砌砖不立皮数杆,先砌筑外墙4个墙角(立头角),再砌山墙和纵墙的墙身,这时就出现了留槎,而且普遍留的是直槎,不是斜槎。2)内外墙不同时砌筑已成普遍现象,且又留的是直槎,少数的还留阴槎。3)留设的斜槎不符台要求,有的只在墙身下面1 m左右留斜槎,上面仍为直槎。4)留直槎时,也不按规范规定设置拉结钢筋:如采用冷拨钢丝作拉结筋;拉结钢筋长度不够;拉结筋的间距不保证;拉结筋的末端也不加工成弯钩等等。5)接槎质量马虎,接槎处砖不顺直砂浆也不饱满,有的几乎没有砂浆。4、组砌形式错误砖砌体一般多是受压的,因此要考虑砌体的整体性与稳定性。砌体中的丁砖数量多,就能增强横向拉结力。错误的组砌形式、包心砌筑砖柱、多皮通缝等都会影响砌体的质量。有的工程砌砖随意组砌,许多砖柱采用包心砌法,并且内心还填以碎砖。由于随意组砌,碎砖又集中使用,因此在很多工程的墙体中出现多皮通缝,最多的达十多皮。5、砖和砂浆的强度不能保证影响砖砌体的强度除有操作的因素外,主要取决于砖和砂浆的强度。因此对砖混结构房屋建筑的墙体质量保证,首先要对砖和砂浆质量进行控制。近几年,有的工程在砖砌体施工前,对砖的强度不进行检验,砂浆不试配、不按配比配制。在发生事故后,才知道砖与砂浆的强度达不到设计要求。6、构造柱夹层、断开在七度地震设防地区的多层砖混结构房屋建筑中,纵横墙交接处需设置钢筋棍凝土构造柱,以增强建筑物的抗震能力。在构造柱周围的砖砌体需砌成马牙槎,使砖砌体能与构造柱衔接牢固形成整体。但现在却有不少施工人员在浇注构造柱混凝土前,不清理砌砖时落入构造柱中的砂浆或垃圾,致使构造柱出现夹层,甚至断开的情况。有的工程构造柱不对正贯通,层与层之间相互错位;构造柱与砌体没有加设拉结筋;砌体与构造柱的交接处也没有留马牙槎;致使设置的构造柱不仅不能起着增强建筑物的抗震能力,反而起着削弱作用。这种潜在的危险在遇有地震等外力的作用时,就会首先引起建筑物毁坏。二、砖砌体施工的质量控制措施1、组织施工人员学习应用规范要保证砖砌体的施工质量,就一定要严格地按“规范”的要求施工。如“规范”中对于临时间断留槎方法、构造柱的施工方法、水平灰缝的控制都有明确要求,但有些施工人员并不掌握和了解“规范”;有些队伍施工中出现先砌外墙、后砌内横墙、再砌内纵墙的“三步”砌筑法,就是没有真正掌握“规范”要领。因此要组织广大基层施工人员学习“规范”,使他们能够熟悉“规范”,并准确地应用。2、严格控制进场材料质量砖的品种、强度等级必须符合设计要求。用于清水墙、柱表面的砖,应边角整齐、色泽均匀。配制砂浆的各种原材料质量、等级必须符合设计要求。3、改进操作工艺,采用合适的砌筑方法水平灰缝砂浆饱满度很大程度是取决于砌筑方法,从目前的施工情况来看,采用“三一”砌砖法(一铲灰、一块砖一挤揉),这种砌筑方法只要砂浆稠度适当,一般是能使砂浆饱满度达到8 0%以上,而且竖缝也能挤进砂浆。能够较好地控制水平灰缝的饱满度。4、坚持和发扬传统的施工工艺多年来砌体施工中采取了一些有效措施,如设置皮数杆,随时吊靠墙体的垂直度和平整度、3 7 c m砖墙两面挂线,当天搅拌砂浆当天用完,干砖不上墙等。通过多年的实践证明,这些传统工艺对于水平灰缝厚度、墙面的平整度、垂直度等指标可以有效的控制,应该继续采用。5、加强施工过程中关键工序的检查检查砌体使用的砖是否符合要求,砂浆是否经过试配和按配比配合;砌体临时间断处是否衔接牢固,构造柱是否有夹层与断柱情况,是否与砌体衔接牢固;组砌形式是否有严重缺陷(如包心砌筑砖柱)。对地震设防区的砖砌体更要严格要求,一般情况下不允许临时间断处留直槎。对砌筑质量差、不能保证砌体整体性与稳定性的,一定要进行处理。
文献综述的文献可以到图书馆找,图书馆收藏的文献比较多,查阅文献后将其整理出来。也可以在知网下载文献,不过要钱。
用中国知网怎么查文献综述:
首先进入中国知网的网站,可以直接在检索栏中输入想要检索的文献综述格式,也可以利用知网的高级检索功能进行文献筛选。对于选定的文献综述格式,可以单击标题进入详细页面,找到文献的DOI,复制其中内容。
然后打开另一网站SCI-HUB,将先前复制的内容粘贴至检索栏进行检索,就可以找到文献综述。
知网查重包括哪些?
包括论文正文、原创说明、摘要、图标及公式说明、参考文献、附录、实验研究成果、结语、引言、专利、文献、注释,以及各种表格。
大多数高校在每年毕业季时,都会统一发通知说明学校的毕业论文规范和查重说明,学校会统一下发论文样式等内容,一般会详细说明查重的范围。要是学校有具体的要求,那提交到学校的时候必须按照学校所要求的来。
知网查重原理
知网查重是按照连续出现13个字符类似就会判为重复的标准计算论文重复率。如果学生抄袭了他人论文中的句子或者段落,知网查重系统在对其进行查重时,就会识别出重复部分,并计算到论文的总重复率之中。
因此建议学生在写作论文时不可出现抄袭等学术不端行为,防止因为出现过多重复部分从而使论文总重复率上升很多。