首页 > 期刊论文知识库 > 概率与数理统计研究进展论文

概率与数理统计研究进展论文

发布时间:

概率与数理统计研究进展论文

[1]李晓康,郭三刚,. 概率论与数理统计课程的改革与实践[J]. 价值工程,2011,(7). [2]谷武扬,. 关于概率论与数理统计教材中数学期望的注解[J]. 淮阴师范学院教育科学论坛,2006,(3). [3]沈晓婧,周介南,. 概率论与数理统计课程改革的创新机制[J]. 高等数学研究,2011,(1). [4]郭淑妹,郭杰,张宁,. 浅谈《概率论与数理统计》教学[J]. 科技创新导报,2011,(9). [5]周铁军,李晨,王敏,. 概率论与数理统计精品课程建设的实践[J]. 成功(教育),2011,(3). [6]宗琮,. 财经类专业概率论与数理统计的教学方法探讨[J]. 科教文汇(上旬刊),2011,(1). [7]王淑玲,卓丽,. 概率论与数理统计的有效课堂教学[J]. 考试周刊,2011,(6). [8]朱学红,. 概率论与数理统计教学方法浅谈[J]. 中国科教创新导刊,2011,(2). [9]冯建中,谢朝荣,艾莉萍,. 《概率论与数理统计》分级教学研究[J]. 考试周刊,2011,(14). [10]周玲,罗党,张清年,. 浅谈概率论与数理统计教学中学生学习兴趣的培养[J]. 中国电力教育,2011,(7). 要哪篇?我发你邮箱

概率论与数理统计课程的改革与实践论文

摘要: 讨论了概率论与数理统计课程教学改革的必要性与重要性,提出了课程改革的思路与原则,并总结了该课程改革与实践取得的效果。

Abstract: The necessity and importance of teaching reform of the course of probability and mathematical statistics were discussed, ideas and principles of curriculum reform were put forward, and the achieved effect of this curriculum’s reform and practice was summarized.

关键词: 概率论与数理统计;改革;实践

Key words: probability and mathematical statistics; reform; practice

概率论与数理统计是工程、人文、经济、社会等领域研究和处理随机现象的一门重要的随机数学,是目前数学专业大学本科阶段乃至其它理工类专业的唯一一门随机数学的必修课。自上个世纪六十年代引入大学课堂以来,它对于传承人类科学文明、培养人才的综合素质能力、解决实际问题的实践动手能力等起到了非常重要的作用。在信息社会高度发达的今天,随机数学的基本理论与方法作为信息采集、加工、利用的重要的理论基础和方法论基础,已经成为现代专业人才重要的必不可少的知识构成。文献[1-3]对该课程的改革与实践进行了探讨。本文就该课程的特点,结合我院(系)学生的特点就该课程改革与实践的必要性,具体思路与原则,以及改革实践的效果做一探讨。

1 概率论与数理统计课程教学改革的必要性与重要性

教学内容、手段、方法的陈旧反映出教育思想的落后,转变教育思想和更新教育观念是进行一切改革的先导。传统的数学教育理念重视教学过程的理论性,严谨性,逻辑性。但对于学生应用数学的理论和方法解决实际问题能力的培养从教和学两个侧面有所忽视。

现在,有一种流行的教育教学方法称为“案例教学”。“案例教学”就是通过实际问题的描述、假设、建模与求解,演示理论与方法的应用过程。数学上,这样的教学方式就是所谓的‘问题解决’的数学建模的思想。这种方法不拘泥于对理论和方法的阐述,更注重对理论与方法的实际应用过程的展示:包括问题的描述、所涉及的变量及其相互关系、问题的假设与简化、问题的数学模型的建立与求解。

信息社会的加速来临,在实际生活和科技工作中,海量、庞杂的数据不断产生,但是有用的信息并不会自动生成,它需要数学工作者利用数据采集、整理、分析与处理的工具,去发现有用的信息,以解决实际问题。数据采集与信息分析与处理的数学基础就是《概率论与数理统计》这门数学类专业的必修课程,这也是其它理工科专业的一门必修课程,只是对数学专业的`要求既注重理论又兼顾方法的实际应用,而对其它理工科专业,这门课程主要注重方法的应用。

但是,《概率论与数理统计》这门课程不同于以往学习的确定性数学,对于第一次接触这门课程的学生,理解起来会很困难,更不用说去利用它去进行统计数据的采集、整理、处理、分析等。因此,单从这点考虑,我们就有必要对其教学方法、手段等进行改革。从本门课程的应用目的角度来考虑,也必须进行改革,以增加实践性教学环节,培养学生应用概率论与数理统计的理论和方法解决实际问题的能力。

从培养学生利用数学的理论和方法、基于统计数据,建立和求解数学模型的能力的角度看,这完全符合现代大众化高等教育的目的,也符合我校的办学指导思想。

《概率论与数理统计》是其它随机数学的理论和方法的基础,这些课程是:多元统计分析、时间序列分析、随机过程,基于支持向量机的现代非参数统计学习方法等,为了这些知识和方法的学习与应用,我们也必须改变教学方式,为学生打下坚实继续学习的基础。

2 概率论与数理统计课程教学改革的思路与原则

通过以上的分析,我们认为概率论与数理统计课程的改革必须首先改变教学方法,抛弃那种古板的、填鸭式的、纯粹的重视逻辑推理而不重视应用的传统的教学观念,而采取不仅重视理论与方法的学习,为后继课程的学习打下良好基础,又能激发学生学习兴趣,同时还能培养学生应用所学理论和方法解决实际问题的能力的培养。

因此,概率论与数理统计课程的改革是一项系统工程,既要考虑课程本身理论与方法的学习,还要也兼顾后继课程的学习(有些课程是研究生的必修课),又要考虑学生应用理论与方法解决实际问题能力的培养,还要使得学生学习起来兴趣盎然。应用系统工程原理,从理论、实践、计算能力等全方位改革和建设,不能只重视某一个环节,而应从整体上思考。

在学时有限的约束条件下,我们必须改革教学内容,教学方法和教学手段,以期达到预期的改革目的。改革过程必须培养一批从事《概率论与数理统计》课程的课堂教学、实验教学的人才,积累改革的成果,不断总结经验。改革过程不会一番风顺,遇到非议也是可以理解的。但是,改革的决策一旦确定,就要毫不犹豫的进行下去。

3 概率论与数理统计课程教学改革的内容与措施

首先确定合理的教学学时,经过大家集思广益,制定了相应的教学大纲,使教学改革有法可依。为了达到上述改革目标,我们对教材的内容进行必要的增加和删减。由于,《概率论与数理统计》课程是大学生接触的第一门研究随机现象及其规律的数学学科,不同于以往的确定性数学,学生理解起来是相当困难的。为此,考虑到实际课时和课程的难度,在课堂教学中,借助于多媒体技术和计算机编程技术,增加了对一些随机现象的直观演示。删除掉一些陈旧的知识,比如关于一些定理的证明,或者保留这些证明,作为自学内容,提供给有能力学习的学生。这也起到因材施教的目的。经过多年的实践,编写了自己的教材《概率论与数理统计》(陕西师范大学出版社出版),该教材是国家面向21世纪规划教材。

为了达到培养学生利用计算机和数学软件,以及应用概率论与数理统计的理论和方法解决实际问题的能力,我们在自己编写的教材中,首次引入了SAS(Statistical Analysis Systems)高级程序设计语言。

为了使得课堂教学生动、有趣、直观以及指导学生的学习,我们研制开发了多媒体课件,并编写了与本门课程配套的课程学习指导教材。

为了达到培养学生的收集数据、整理数据、建立数学模型、利用相关的理论与方法解决实际问题的能力之目的,我们增加实践性教学环节。从1997级开始,我们在全国首次开设了《概率论与数理统计》的实验教学环节,并且编写相应实验教学大纲和实验指导书,使实验课有纲可循,有事可做而不流于形式。

为了培养学生的综合应用随机数学解决实际问题的能力,我们构建了以《概率论与数理统计》为核心的课程群,包括《多元统计分析》、《时间序列分析》、《教育测量与统计学》、《随机过程》、《数学模型与数学实验》、《数学软件》等选修课程,大大丰富了学生随机数学的理论与方法解决实际问题的数据处理与分析的能力及数学建模能力。

为了开拓学生的视野,在学年论文和毕业论文中,我们加强指导,向学生介绍了一种现代非参数统计学习方法:《基于支持向量机的统计学习方法》,将这种方法用于相关关系的学习中。

为了达到培养学生学习《概率论与数理统计》课程及其课程群的学习及其解决实际问题的能力,我们连续多年组织了对我校参加全国大学生数学建模竞赛的学生的培训工作,特别是随机数学解决实际问题能力的培养。

由于我们改革教学的内容,增加了实验教学环节,并注重学生平时能力的培养,所以我们改革考核方式:学生平时作业及考勤占总成绩的20%,实验占20%,课程考试占60%。

为了传承我们的改革成果,我们注意在改革中积累经验,培养人才,使我们的改革有了传承、继续推进的后备人才,形成本门课程及其课程群的年龄、学历层次和职称结构合理的教师队伍,有博士1个,硕士3个,学士5个;教授1个,副教授6个,讲师2个。

4 概率论与数理统计课程教学改革与实践的效果

通过几年来的改革实践,概率论与数理统计的教学取得了较显著的效果。教学内容、方法手段的改革增加了学生学习该课程的兴趣,使学生真正体会到该课程的内容在工农业生产以及科学研究中的应用价值,充分调动了学生学习的主动性,激发了学生的创造性思维,增加了学生应用概率统计方法解决实际问题的能力。该课程的改革与实践取得了良好的教学效果,提高了教学质量,得到了学生的认可和赞同,问卷调查表明90%以上的学生对现在的教学方式和考试方法给予肯定,大多数学生都认为概率统计课在各学科中有较重要的应用。说明同学们对该门课程的思想方法和应用性有了较深刻的认识,教学改革的总体方向是正确的。

随着本课程及相关课程的深入改革,有许多学生在学年论文及毕业论文的选题上倾向于采用《概率论与数理统计》课程的理论与方法。与本课程相关的多篇毕业论文被评为校级优秀论文

此外,本课程的任课教师还积极组织、培训、指导学生参加全国大学生数学建模竞赛并取得优异成绩。

参考文献:

[1]朱松涛.师专数学系《概率论与数理统计》课程教学的改革实践[J].数学通报,1998,(4).

[2]邓华玲等.概率论与数理统计课程的改革与实践[J].大学数学,2004,(1).

[3]陈新美等.《概率论与数理统计》教学改革与实践[J].湖南科技学院学报,2006,(11).

论文> 工业技术 > 一般工业技术 > 工程基础科学 > 工程数学 > 概率论、数理统计的应用论文 下属分类: 运筹学的应用 | 工程控制论 | 可靠性理论 | ·《可重构装配线建模、平衡及调度研究》 ·《粒子群算法的改进与应用研究》 ·《压力容器用钢疲劳可靠性研究》 ·《稳健设计及其在工业中的应用》 ·《基于概率的结构动力拓扑优化设计研究》 ·《基于随机模拟试验的稳健优化设计方法研究》 ·《复杂系统可靠性工程相关理论及技术研究》 ·《故障部件不可修复如新的线形相邻n中连续k系统的可靠性分析》 ·《基于目标和空间正交分解的布局启发式算法的研究》 ·《考虑失效相关时不可修复工程系统的可靠性分析》 ·《多维数值积分的数论方法及其在结构可靠度分析中的应用》 ·《三维位势场快速多极边界元法》 ·《大规模动态过程优化的拟序贯算法研究》 ·《不确定性结构的分析方法研究》 ·《非线性结构随机分析数值模拟的方法研究》

概率论与数理统计研究性论文

概率论与数理统计硕士毕业论文新课改背景下的师专“概率论与数理统计”教学研究 基于概率论及数理统计对间歇式能源功率平滑输出的研究 信息技术与本科概率统计课程整合的实验研究 本科概率论试验课程设计初探基于随机模拟试验的稳健优化设计方法研究 随机变量序列部分和乘积的几乎处处中心极限定理 AQSI序列的强极限定理几类相依混合随机变量列的大数律和L~r收敛性 现代经济计量学建立简史 任意随机变量序列的相关定理新建电气化铁路电能质量影响预测研究 鞅差与相依随机变量序列部分和精确渐近性 ND序列若干收敛性质的研究证券组合投资决策的均匀试验设计优化研究 相依随机变量序列部分和收敛速度行为两两NQD随机变量阵列加权和的收敛性 数值计算的统计确认研究与初步应用 基于证据理论的足球比赛结果预测方法 城市工业用地集约利用评价与潜力挖掘 节理化岩体边坡稳定性研究 随机变分不等式及其应用基于模糊综合评价的靶场实时光测数据质量评估基于路径的加权地域通信网可靠性研究 LNQD样本近邻估计的大样本性质 20CrMoH齿轮弯曲疲劳强度研究我国股票市场与宏观经济之间的协整分析 一类Copula函数及其相关问题研究 乐透型彩票N选M中奖号码的概率分析 协整理论在汽车发动机系统故障诊断中的应用 2010年上海世博会会展中断风险分析和保险建议 贝儿康有限公司激励设计研究 云模型在系统可靠性中的应用研究离散更新模型破产概率及赤字的上下界估计 输电线微风振动与疲劳寿命电器产品模糊可靠性分析中模糊可靠度的研究 变分不等式及变分包含解的存在性与算法 隧道测量误差控制方案的研究 塔式起重机臂架可靠性分析软件开发分布式认证跳表及其在P2P分布式存储系统中的应用 房地产行业企业所得税纳税评估实证研究 具有预测能力的呼叫中心系统的设计与实现 PVAR模型在研究经济增长与能源消费关系中的应用 基于有限元的深基坑组合型围护结构可靠度分析 一些带有偏序结构的完全码

论文> 工业技术 > 一般工业技术 > 工程基础科学 > 工程数学 > 概率论、数理统计的应用论文下属分类: 运筹学的应用 | 工程控制论 | 可靠性理论 | ·《可重构装配线建模、平衡及调度研究》·《粒子群算法的改进与应用研究》·《压力容器用钢疲劳可靠性研究》·《稳健设计及其在工业中的应用》·《基于概率的结构动力拓扑优化设计研究》·《基于随机模拟试验的稳健优化设计方法研究》·《复杂系统可靠性工程相关理论及技术研究》·《故障部件不可修复如新的线形相邻n中连续k系统的可靠性分析》·《基于目标和空间正交分解的布局启发式算法的研究》·《考虑失效相关时不可修复工程系统的可靠性分析》·《多维数值积分的数论方法及其在结构可靠度分析中的应用》·《三维位势场快速多极边界元法》·《大规模动态过程优化的拟序贯算法研究》·《不确定性结构的分析方法研究》·《非线性结构随机分析数值模拟的方法研究》

概率论与数理统计课程的改革与实践论文

摘要: 讨论了概率论与数理统计课程教学改革的必要性与重要性,提出了课程改革的思路与原则,并总结了该课程改革与实践取得的效果。

Abstract: The necessity and importance of teaching reform of the course of probability and mathematical statistics were discussed, ideas and principles of curriculum reform were put forward, and the achieved effect of this curriculum’s reform and practice was summarized.

关键词: 概率论与数理统计;改革;实践

Key words: probability and mathematical statistics; reform; practice

概率论与数理统计是工程、人文、经济、社会等领域研究和处理随机现象的一门重要的随机数学,是目前数学专业大学本科阶段乃至其它理工类专业的唯一一门随机数学的必修课。自上个世纪六十年代引入大学课堂以来,它对于传承人类科学文明、培养人才的综合素质能力、解决实际问题的实践动手能力等起到了非常重要的作用。在信息社会高度发达的今天,随机数学的基本理论与方法作为信息采集、加工、利用的重要的理论基础和方法论基础,已经成为现代专业人才重要的必不可少的知识构成。文献[1-3]对该课程的改革与实践进行了探讨。本文就该课程的特点,结合我院(系)学生的特点就该课程改革与实践的必要性,具体思路与原则,以及改革实践的效果做一探讨。

1 概率论与数理统计课程教学改革的必要性与重要性

教学内容、手段、方法的陈旧反映出教育思想的落后,转变教育思想和更新教育观念是进行一切改革的先导。传统的数学教育理念重视教学过程的理论性,严谨性,逻辑性。但对于学生应用数学的理论和方法解决实际问题能力的培养从教和学两个侧面有所忽视。

现在,有一种流行的教育教学方法称为“案例教学”。“案例教学”就是通过实际问题的描述、假设、建模与求解,演示理论与方法的应用过程。数学上,这样的教学方式就是所谓的‘问题解决’的数学建模的思想。这种方法不拘泥于对理论和方法的阐述,更注重对理论与方法的实际应用过程的展示:包括问题的描述、所涉及的变量及其相互关系、问题的假设与简化、问题的数学模型的建立与求解。

信息社会的加速来临,在实际生活和科技工作中,海量、庞杂的数据不断产生,但是有用的信息并不会自动生成,它需要数学工作者利用数据采集、整理、分析与处理的工具,去发现有用的信息,以解决实际问题。数据采集与信息分析与处理的数学基础就是《概率论与数理统计》这门数学类专业的必修课程,这也是其它理工科专业的一门必修课程,只是对数学专业的`要求既注重理论又兼顾方法的实际应用,而对其它理工科专业,这门课程主要注重方法的应用。

但是,《概率论与数理统计》这门课程不同于以往学习的确定性数学,对于第一次接触这门课程的学生,理解起来会很困难,更不用说去利用它去进行统计数据的采集、整理、处理、分析等。因此,单从这点考虑,我们就有必要对其教学方法、手段等进行改革。从本门课程的应用目的角度来考虑,也必须进行改革,以增加实践性教学环节,培养学生应用概率论与数理统计的理论和方法解决实际问题的能力。

从培养学生利用数学的理论和方法、基于统计数据,建立和求解数学模型的能力的角度看,这完全符合现代大众化高等教育的目的,也符合我校的办学指导思想。

《概率论与数理统计》是其它随机数学的理论和方法的基础,这些课程是:多元统计分析、时间序列分析、随机过程,基于支持向量机的现代非参数统计学习方法等,为了这些知识和方法的学习与应用,我们也必须改变教学方式,为学生打下坚实继续学习的基础。

2 概率论与数理统计课程教学改革的思路与原则

通过以上的分析,我们认为概率论与数理统计课程的改革必须首先改变教学方法,抛弃那种古板的、填鸭式的、纯粹的重视逻辑推理而不重视应用的传统的教学观念,而采取不仅重视理论与方法的学习,为后继课程的学习打下良好基础,又能激发学生学习兴趣,同时还能培养学生应用所学理论和方法解决实际问题的能力的培养。

因此,概率论与数理统计课程的改革是一项系统工程,既要考虑课程本身理论与方法的学习,还要也兼顾后继课程的学习(有些课程是研究生的必修课),又要考虑学生应用理论与方法解决实际问题能力的培养,还要使得学生学习起来兴趣盎然。应用系统工程原理,从理论、实践、计算能力等全方位改革和建设,不能只重视某一个环节,而应从整体上思考。

在学时有限的约束条件下,我们必须改革教学内容,教学方法和教学手段,以期达到预期的改革目的。改革过程必须培养一批从事《概率论与数理统计》课程的课堂教学、实验教学的人才,积累改革的成果,不断总结经验。改革过程不会一番风顺,遇到非议也是可以理解的。但是,改革的决策一旦确定,就要毫不犹豫的进行下去。

3 概率论与数理统计课程教学改革的内容与措施

首先确定合理的教学学时,经过大家集思广益,制定了相应的教学大纲,使教学改革有法可依。为了达到上述改革目标,我们对教材的内容进行必要的增加和删减。由于,《概率论与数理统计》课程是大学生接触的第一门研究随机现象及其规律的数学学科,不同于以往的确定性数学,学生理解起来是相当困难的。为此,考虑到实际课时和课程的难度,在课堂教学中,借助于多媒体技术和计算机编程技术,增加了对一些随机现象的直观演示。删除掉一些陈旧的知识,比如关于一些定理的证明,或者保留这些证明,作为自学内容,提供给有能力学习的学生。这也起到因材施教的目的。经过多年的实践,编写了自己的教材《概率论与数理统计》(陕西师范大学出版社出版),该教材是国家面向21世纪规划教材。

为了达到培养学生利用计算机和数学软件,以及应用概率论与数理统计的理论和方法解决实际问题的能力,我们在自己编写的教材中,首次引入了SAS(Statistical Analysis Systems)高级程序设计语言。

为了使得课堂教学生动、有趣、直观以及指导学生的学习,我们研制开发了多媒体课件,并编写了与本门课程配套的课程学习指导教材。

为了达到培养学生的收集数据、整理数据、建立数学模型、利用相关的理论与方法解决实际问题的能力之目的,我们增加实践性教学环节。从1997级开始,我们在全国首次开设了《概率论与数理统计》的实验教学环节,并且编写相应实验教学大纲和实验指导书,使实验课有纲可循,有事可做而不流于形式。

为了培养学生的综合应用随机数学解决实际问题的能力,我们构建了以《概率论与数理统计》为核心的课程群,包括《多元统计分析》、《时间序列分析》、《教育测量与统计学》、《随机过程》、《数学模型与数学实验》、《数学软件》等选修课程,大大丰富了学生随机数学的理论与方法解决实际问题的数据处理与分析的能力及数学建模能力。

为了开拓学生的视野,在学年论文和毕业论文中,我们加强指导,向学生介绍了一种现代非参数统计学习方法:《基于支持向量机的统计学习方法》,将这种方法用于相关关系的学习中。

为了达到培养学生学习《概率论与数理统计》课程及其课程群的学习及其解决实际问题的能力,我们连续多年组织了对我校参加全国大学生数学建模竞赛的学生的培训工作,特别是随机数学解决实际问题能力的培养。

由于我们改革教学的内容,增加了实验教学环节,并注重学生平时能力的培养,所以我们改革考核方式:学生平时作业及考勤占总成绩的20%,实验占20%,课程考试占60%。

为了传承我们的改革成果,我们注意在改革中积累经验,培养人才,使我们的改革有了传承、继续推进的后备人才,形成本门课程及其课程群的年龄、学历层次和职称结构合理的教师队伍,有博士1个,硕士3个,学士5个;教授1个,副教授6个,讲师2个。

4 概率论与数理统计课程教学改革与实践的效果

通过几年来的改革实践,概率论与数理统计的教学取得了较显著的效果。教学内容、方法手段的改革增加了学生学习该课程的兴趣,使学生真正体会到该课程的内容在工农业生产以及科学研究中的应用价值,充分调动了学生学习的主动性,激发了学生的创造性思维,增加了学生应用概率统计方法解决实际问题的能力。该课程的改革与实践取得了良好的教学效果,提高了教学质量,得到了学生的认可和赞同,问卷调查表明90%以上的学生对现在的教学方式和考试方法给予肯定,大多数学生都认为概率统计课在各学科中有较重要的应用。说明同学们对该门课程的思想方法和应用性有了较深刻的认识,教学改革的总体方向是正确的。

随着本课程及相关课程的深入改革,有许多学生在学年论文及毕业论文的选题上倾向于采用《概率论与数理统计》课程的理论与方法。与本课程相关的多篇毕业论文被评为校级优秀论文。

此外,本课程的任课教师还积极组织、培训、指导学生参加全国大学生数学建模竞赛并取得优异成绩。

参考文献:

[1]朱松涛.师专数学系《概率论与数理统计》课程教学的改革实践[J].数学通报,1998,(4).

[2]邓华玲等.概率论与数理统计课程的改革与实践[J].大学数学,2004,(1).

[3]陈新美等.《概率论与数理统计》教学改革与实践[J].湖南科技学院学报,2006,(11).

概率论与数理统计论文

论文> 工业技术 > 一般工业技术 > 工程基础科学 > 工程数学 > 概率论、数理统计的应用论文下属分类: 运筹学的应用 | 工程控制论 | 可靠性理论 | ·《可重构装配线建模、平衡及调度研究》·《粒子群算法的改进与应用研究》·《压力容器用钢疲劳可靠性研究》·《稳健设计及其在工业中的应用》·《基于概率的结构动力拓扑优化设计研究》·《基于随机模拟试验的稳健优化设计方法研究》·《复杂系统可靠性工程相关理论及技术研究》·《故障部件不可修复如新的线形相邻n中连续k系统的可靠性分析》·《基于目标和空间正交分解的布局启发式算法的研究》·《考虑失效相关时不可修复工程系统的可靠性分析》·《多维数值积分的数论方法及其在结构可靠度分析中的应用》·《三维位势场快速多极边界元法》·《大规模动态过程优化的拟序贯算法研究》·《不确定性结构的分析方法研究》·《非线性结构随机分析数值模拟的方法研究》

请问楼主是要自己写还是需要找人写发,如果是后者的话,那么就需要仔细谨慎的甄别选择,在时候宽裕的前提下,小心上当上。建议楼主去(中国期刊库)看看,也许会有想要的收获,可以去咨询一下论文发表方面的信息。谢谢,希望能够采纳。求一个关于概率方面的论文题目和论文大概内容-爱问知识人你要是大学生的话,在学校的图书馆有相应的论文下载系统,你可以去试试,要是你还是找不到的话,你再联系我,我帮你下几个 现在我的资料里给你下了几个,你自己看看吧现在要确定论文题目,我是数学系的,最好是写数值计算或者概率论这方面的比如《关于整超越动力系统的不动点的数值计算》,或者《复平面上超越方程根的求解方法》等概率论与数理统计方向有哪些论文题目你不妨从数理统计的角度去,可以分析的比较多。比如:三大分布在某一方面的应用,在知网上挺多的。光写一个分布就可以写很多了。假设检验,估计,EM算法之类的都可以写如果一定要从概率论,那不妨研究一下比较典型的概率问题,比如为什么同班同学生日在同一天的概率很高很多地方的,从理论的角度对于一个学生确实太难了,不如多多从应用的角度入手。概率论与数理统计论文题目有哪些题目是没有什么硬性规定的关于概率论方面的小论文-爱问知识人如果您仅仅需要文献,那就不用看.您可以去我个人中心(点我名字进去),按照上边的"老君论文资料查找方法"来查找和下载您所需要的论文资料.字少找

是2篇?各一份还是什么? 概率论与数理统计”是理工科大学生的一门必修课程,由于该学科与生活实践和科学试验有着紧密的联系,是许多新发展的前沿学科(如控制论、信息论、可靠性理论、人工智能等)的基础,因此学好这一学科是十分重要的。� “概率论与数理统计”的学习应注重的是概念的理解,而这正是广大学生所疏忽的,在复习时几乎有近一半以上学生对“什么是随机变量”、“为什么要引进随机变量”仍说不清楚。对于涉及随机变量的独立,不相关等概念更是无从着手,这一方面是因为高等数学处理的是“确定”的事件。如函数y=f(x),当x确定后y有确定的值与之对应。而概率论中随机变量X在抽样前是不确定的,我们只能由随机试验确定它落在某一区域中的概率,要建立用“不确定性”的思维方法往往比较困难,如果套用确定性的思维方法就会出错。由于基本概念没有搞懂,即使是十分简单的题目也难以得分。从而造成低分多的现象。另一方面由于概率论中涉及的计算技巧不多,除了古典概型,几何概型和计算二维随机变量的函数分布时如何确定积分上、下限有一些计算的难点,其他的只是数值或者积分、导数的计算。因而如果概念清楚,那么解题往往很顺利且易得到正确答案,这正是高分较多的原因。� 根据上面分析,启示我们不能把高等数学的学习方法照搬到“概率统计”的学习上来,而应按照概率统计自身的特点提出学习方法,才能取得“事半功倍”的效果。下面我们分别对“概率论”和“数理统计”的学习方法提出一些建议。�一、 学习“概率论”要注意以下几个要点 1. 在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例如为什么要引进“随机变量”这一概念。这实际上是一个抽象过程。正如小学生最初学数学时总是一个苹果加2个苹果等于3个苹果,然后抽象为1+2=3.对于具体的随机试验中的具体随机事件,可以计算其概率,但这毕竟是局部的,孤立的,能否将不同随机试验的不同样本空间予以统一,并对整个随机试验进行刻画?随机变量X(即从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概率,不同的随机试验可由不同的随机变量来刻画。 此外若对一切实数集合B,知道P(X∈B)。 那么随机试验的任一随机事件的概率也就完全确定了。所以我们只须求出随机变量X的分布P(X∈B)。 就对随机试验进行了全面的刻画。它的研究成了概率论的研究中心课题。故而随机变量的引入是概率论发展历史中的一个重要里程碑。类似地,概率公理化定义的引进,分布函数、离散型和连续型随机变量的分类,随机变量的数学特征等概念的引进都有明确的背景,在学习中要深入理解体会。� 2. 在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差异要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从样本空间到实轴的单值实函数X(w),但它不同于一般的函数,首先它的定义域是样本空间,不同随机试验有不同的样本空间。而它的取值是不确定的,随着试验结果的不同可取不同值,但是它取某一区间的概率又能根据随机试验予以确定,而我们关心的通常只是它的取值范围,即对于实轴上任一B,计算概率P(X∈B),即随机变量X的分布。只有理解了随机变量的内涵,下面的概念如分布函数等等才能真正理解。又如随机事件的互不相容和相互独立两个概念通常会混淆,前者是事件的运算性质,后者是事件的概率性质,但它们又有一定联系,如果P(A)。P(B)>0,则A,B独立则一定相容。类似地,如随机变量的独立和不相关等概念的联系与差异一定要真正搞懂。� 3. 搞懂了概率论中的各个概念,一般具体的计算都是不难的,如F(x)=P(X≤x),EX,DX等按定义都易求得。计算中的难点有古典概型和几何概型的概率计算,二维随机变量的边缘分布fx(x)=∫-∞∞ f(x,y)dy,事件B的概率P((X,Y)∈B)=∫∫Bf(x,y)dxdy,卷积公式等的计算,它们形式上很简单,但是由于f(x,y)通常是分段函数,真正的积分限并不再是(-∞,∞)或B,这时如何正确确定事实上的积分限就成了正确解题的关键,要切实掌握。� 4. 概率论中也有许多习题,在解题过程中不要为解题而解题,而应理解题目所涉及的概念及解题的目的,至于具体计算中的某些技巧基本上在高等数学中都已学过。因此概率论学习的关键不在于做许多习题,而要把精力放在理解不同题型涉及的概念及解题的思路上去。这样往往能“事半功倍”。二、 学习“数理统计”要注意以下几个要点� 1. 由于数理统计是一门实用性极强的学科,在学习中要紧扣它的实际背景,理解统计方法的直观含义。了解数理统计能解决那些实际问题。对如何处理抽样数据,并根据处理的结果作出合理的统计推断,该结论的可靠性有多少要有一个总体的思维框架,这样,学起来就不会枯燥而且容易记忆。例如估计未知分布的数学期望,就要考虑到① 如何寻求合适的估计量的途径,②如何比较多个估计量的优劣?这样,针对①按不同的统计思想可推出矩估计和极大似然估计,而针对②又可分为无偏估计、有效估计、相合估计,因为不同的估计名称有着不同的含义,一个具体估计量可以满足上面的每一个,也可能不满足。掌握了寻求估计的统计思想,具体寻求估计的步骤往往是“套路子”的,并不困难,然而如果没有从根本上理解,仅死背套路子往往会出现各种错误。� 2. 许多同学在学习数理统计过程中往往抱怨公式太多,置信区间,假设检验表格多而且记不住。事实上概括起来只有八个公式需要记忆,而且它们之间有着紧密联系,并不难记,而区间估计和假设检验中只是这八个公式的不同运用而已,关键在于理解区间估计和假设检验的统计意义,在理解基础上灵活运用这八个公式,完全没有必要死记硬背。

小学数学统计与概率研究论文

指导思想加强学习,更新观念,确立新课程标准的基本理念,坚定不移地实施以培养学生创新意识、探索意识和实践能力为重心的素质教育。转变教研理念,改进教研方法,优化教研模式,积极探索在新课程改革背景下小学数学教研工作新体系。二、工作重点本学期是我市进入基础教育课程改革省级实验区第二个学期,在上学期取得一定成效的基础上,本学期小学数学教研工作的重点仍然是紧紧围绕课程改革来展开活动。重点是:加强学习,明确新课程的理念与目标以课标为准绳,解读现行教材突出学生主体,改革课堂教学多元化多方位完善评价体系。加强教研组建设,积极开展教学研究活动三、具体措施1、加强教师培训工作,进一步确立新课程标准的基本理念。当前,课改实验已进入第二学期,教师的观念有了一些变化,但也应认识到,教学理念的切实转变,基本理念的真正确立,不是一朝一夕就能解决的,所以,本学期仍然要加强教师的培训,学习《数学课程标准》,进一步确立新课程标准的基本理念和课程目标:⑴数学课程理念:突出体现基础性、普及性和发展性。⑵数学学科理念:数学有助于学生终身学习的愿望和能力的发展。⑶数学学习理念:动手实践、自主探索和合作交流是学生学习数学的重要方式。观察、实验、猜测、验证、推理与交流是学生学习数学的主要形式。⑷数学教学活动理念:在数学教学活动中,学生是学习的主人,教师是数学学习的组织者、引导者与合作者。⑸数学评价理念:要关注学习结果,更要关注学习过程;关注学习水平,更要关注学习中的情感与态度,帮助学生认识自我,建立信心。⑹现代信息技术理念:运用它们,使学生有更多精力投入到现实的、探索性的数学活动中去。在进行“数与代数”、“空间与图形”、“统计与概率”及“实践与综合应用”四方面内容学习时,强调学生的数学活动,并注意发展学生的数感、符号感、空间观念、统计观念,以及应用意识与推理能力。本学期打算邀请特级教师或专家来我市作课程改革的专题讲座,帮助广大教师确立新课标的基本理念,促使观念的转变。2、认真钻研教材,创造性地使用教材苏教版国标本小学数学教材是江苏小学数学教育界诸多专家的智慧结晶,集中体现新课程标准的新理念,是对新课程标准的最好解读,是进行新课程标准培训的极好素材。在教学中,教师要充分发挥主观能动性,钻研教材,驾驭教材,在领会编者意图的基础上创造性的使用教材,用活教材,并注意在进行数学事实、数学概念等显性知识教学的同时,注意隐性的数学课程内容(如数感、符号感、空间观念、统计观念、应用意识、推理能力等)的渗透,使数学教学真正落脚于学生的可持续发展上。本学期初准备进行一次全市的新教材培训,传达省培训有关精神,帮助广大教师更好领会新教材,理解新教材。3、改革课堂教学,努力体现新理念课堂始终是素质教育的主阵地,是学生焕发活力的地方,所以,一切数学活动都应以学生为主体,努力创设学生动手实践、自主探索、合作交流的学习氛围,让学生在观察、实验、猜测、验证、推理与交流中领会知识、感悟知识、经历过程,并注意培养学生的问题意识,在使学生心理有安全感、自由感的环境中充分发展其问题意识、解决问题的实践能力、探索意识与创新意识。改革备课管理机制,提倡教学过程两分法备课(一年级实验教师必须两分法备课)要改变以往传统的“复习、新授、巩固”的教学模式,取代以学生“观察、实验、猜测、验证、推理、交流”为主要学习形式的学习活动,努力做到让学生动手实践、自主探索与合作交流。在提倡学生合作的同时,也积极提倡教师间的合作交流,集体备课是其中的一种形式,要积极探索集体备课的有效形式,防止一人备课,其它人照搬的简单化现象,注意集体备课时合作交流的过程资料的积累(如参与教师的教材分析、结构设计改革的发言,组内的讨论记录等)。加强课堂教学后的反思、教学后记的撰写。教学后记的撰写可以从正反两方面分析教学中的得与失、原因分析、改进对策等,而不仅仅是对某一教学环节的评析,至于教材的分析工作应放在备课之前进行,把它放在教学后记之中是不妥当的。本学期,要继续抓好课堂教学的调研工作,重点是新课程实验年级,3月上中旬和4月中旬要对三所不同类型的学校的起始年级的课堂教学情况进行集中调研,4月要安排一次全市数学专题研讨活动,重点对新课程实施过程中发现的课堂教学存在的重点问题、热点问题和疑难问题进行研讨。计划本学期还将组织一次98届及以后青年数学教师的评优课活动(各校推荐一名教师参加市级评比,分南北两组同时进行。)和一次现场教学设计评比活动(各校推荐一名数学教师参赛,当场根据统一印发的一份教材独立备课,不得携带教参之类书籍,允许电脑打印)。4、完善评价体系,构建新的评价机制构建科学合理的数学教学评价机制是课程改革成功的关键,也是教学改革导向的指挥棒,只有同步进行教学评价改革,才能把新课程标准的理念落到实处。当前应把过程性评价和发展性评价作为评价体系的突破口,力求落实新课程标准的评价理念。教师在评价学生的学习时,既可让学生开展自评和互评,也可以让家长和社区有关人员参与评价过程,而不仅仅局限于教师对学生的评价,评价手段和形式应多样化,既可用书面考试、口头表达、实践操作、活动报告等方式,也可用课堂观察、课后访谈、作业分析、建立学生成长记录等方式。评价的策略可概括为“注重过程、促进发展、强调多元”注重过程,就是把学生的学习看作一个系统,注重在学习过程中加强对学生学习质量的评价和监控,并及时对学生学习情况提出努力方向、改进措施,改变只关注一张试卷评价学生学习优劣的不良倾向。促进发展,就是确立一切评价都是为了促进每一个学生发展的理念,把学生的学习过程看作是一个发展的过程,逐步完善的过程,自我激励、自我提高、相互促进、共同进步的过程。强调多元,就是避免单一的评价方式和手段,力求做到五个结合:师生自评与师生多元评价结合,评语评价与等级评价相结合,个体评价与集体评价相结合,差异性评价与共同发展性评价相结合,静态评价与动态评价相结合。对教师的课堂教学评价,应转变理念,突破一切限制,关注一个核心,即你的课堂教学是否体现新课程标准的理念,有效促进学生发展。本学期要在上学期的课堂教学评价表(讨论稿)的基础上,进一步修改和完善,然后作为试行稿下发全市各校。对学生的考查,应有利于切实发展学生的数感、符号感、空间观念、统计观念、应用意识和推理能力,增进学生对运算意义的理解,应重视口算,加强估算,鼓励算法多样化,避免繁杂的运算和对应用题进行机械的程式化的叙述“算理”。5、加强教研组建设,切实提高教研效率加强教研组建设,是提高教学管理效率的一项有效措施。教研工作要上台阶,提水平,必须做到教研活动的经常化、专题化、系列化。有计划,重过程,讲提高,在“研”字上下功夫,在“实”字上花力气,紧紧围绕数学教研组的研究课题,发挥教研组的作用,提高教师素质,促进教学质量的提高。6、加强学生辅导,促进全面发展各校要面向全体学生,积极辅导困难学生,使他们在原有水平上得到提高,做好毕业班的总复习工作,有针对性地查漏补缺,落实新理念,着眼于学生的发展,全面提高教学质量。并与此同时,注重发挥学生特长,建立特长生档案,希望各校继续加大力度,加强辅导,发挥学生聪明才智,力争在本学期的小数报杯等竞赛中取得好成绩。在原有基础上再续辉煌。

数学教学是让学生了解自己的知识、能力水平,弥补缺陷,纠正错误,完善知识系统和思维系统,提高分析和解决问题的能力的过程。下面我给大家带来2021各阶段数学教学论文题目参考,希望能帮助到大家!

中职数学教学论文题目

1、线性方程的叠加原理及其应用

2、作为函数的含参积分的分析性质研究

3、周期函数初等复合的周期性研究

4、“高等代数”知识在几何中的应用

5、矩阵初等变换的应用

6、“高等代数”中的思想 方法

7、中职数学教学中的数学思想和方法

8、任N个自然数的N级排列的逆序数

9、“高等代数”中多项式的值,根概念及性质的推广

10、线性变换“可对角化”的条件及“对角化”方法

11、数域概念的等价说法及其应用

12、中职数学教学与能力培养

13、数学能力培养的重要性及途径

14、论数学中的基本定理与基本方法

15、论电脑、人脑与数学

16、论数学中的收敛与发散

17、论小概率事件的发生

18、论高等数学与初等数学教学的关系

19、论数学教学中公式的教学

20、数学教学中学生应用能力的培养

21、数学教与学的心理探究

22、论数学思想方法的教与学

23、论数学家与数学

24、对称思想在解题中的应用

25、复数在中学数学中应用

26、复变函数论思想方法在中学数学教学中的应用

27、复变函数论思想方法在中学数学竞赛中的应用

28、代数学基本定理的几种证明

29、复变函数的洛必达法则

30、复函数与实函数的级数理论综述

31、微积分学与哲学

32、实数完备性理论综述

33、微积分学中辅助函数的构造

34、闭区间上连续函数性质的推广

35、培养学生的数学创新能力

36、教师对学生互动性学习的影响

37、学生数学应用意识的培养

38、数学解题中的 逆向思维 的应用

39、数学直觉思维的培养

40、数学教学中对学生心理素质的培养

41、用心理学理论指导数学教学

42、开展数学活动课的理论和实践探索

43、《数学课程标准》解读

44、数学思想在数学教学中的应用,学生思维品质的培养

45、数形结合思想在中学数学中的应用

46、运用化归思想,探索解题途径

47、谈谈构造法解题

48、高等数学在中学数学中的应用

49、解决问题的策略思想--等价与非等价转化

50、挖掘题中的隐含条件解题

51、向量在几何证题中的运用

52、数学概念教学初探

53、数学 教育 中的问题解决及其教学途径

54、分类思想在数学教学中的作用

55、“联想”在数学中的作用研究

56、利用习题变换,培养学生的思维能力

57、中学数学学习中“学习困难生”研究

58、数学概念教学研究

59、反例在数学教学中的作用研究

60、中学生数学问题解决能力培养研究

61、数学教育评价研究

62、传统中学数学教学模式革新研究

63、数学研究性学习设计

64、数学开放题拟以及教学

65、数学课堂 文化 建设研究

66、中职数学教学设计及典型课例分析

67、数学课程标准的新增内容的尝试教学研究

68、数学课堂教学安全采集与研究

69、中职数学选修课教学的实话及效果分析

70、常微分方程与初等数学

71、由递推式求数列的通项及和向量代数在中学中的应用

72、浅谈划归思想在数学中的应用

73、初等函数的极值

74、行列式的计算方法

75、数学竟赛中的不等式问题

76、直觉思维在中学数学中的应用

77、常微分方程各种解的定义,关系及判定方法

78、高等数学在中学数学中的应用

79、常微分方程的发展及应用

80、充分挖掘例题的数学价值和 智力开发 功能

小学数学教学论文题目参考

1、小学数学教师几何知识掌握状况的调查研究

2、小学数学教师教材知识发展情况研究

3、中日小学数学“数与代数”领域比较研究

4、浙江省Y县县域内小学数学教学质量差异研究

5、小学数学教师教科书解读的影响因素及调控策略研究

6、中国、新加坡小学数学新课程的比较研究

7、小学数学探究式教学的实践研究

8、基于教育游戏的小学数学教学设计研究

9、小学数学教学中创设有效问题情境的策略研究

10、小学数学生活化教学的研究

11、数字 故事 在小学数学课堂教学中的应用研究

12、小学数学教师专业发展研究

13、中美小学数学“统计与概率”内容比较研究

14、数学文化在小学数学教学中的价值及其课程论分析

15、小学数学教师培训内容有效性的研究

16、小学数学课堂师生对话的特征分析

17、小学数学优质课堂的特征分析

18、小学数学解决问题方法多样化的研究

19、我国小学数学新教材中例题编写特点研究

20、小学数学问题解决能力培养的研究

21、渗透数学思想方法 提高学生思维素质

22、引导学生参与教学过程 发挥学生的主体作用

23、优化数学课堂练习设计的探索与实践

24、实施“开放性”教学促进学生主体参与

25、数学练习要有趣味性和开放性

26、开发生活资源,体现数学价值

27、对构建简洁数学课堂的几点认识和做法

28、刍议“怎样简便就怎样算”中的“二指技能”现象

29、立足现实起点,提高课堂效率

30、宁缺毋滥--也谈课堂教学中有效情境的创设

31、如何让“生活味”的数学课堂多一点“数学味”

32、有效教学,让数学课堂更精彩

33、提高数学课堂教学效率之我见

34、为学生营造一片探究学习的天地

35、和谐课堂,让预设与生成共精彩

36、走近学生,恰当提问--谈数学课堂提问语的优化策略

37、谈小学数学课堂教学中教师对学生的评价

38、课堂有效提问的初步探究

39、浅谈小学数学研究性学习的途径

40、能说会道,为严谨课堂添彩

41、小学数学教学中的情感教育

42、小学数学学困生的转化策略

43、新课标下提高日常数学课堂效率的探索

44、让学生参与课堂教学

45、浅谈新课程理念下如何优化数学课堂教学

46、数学与生活的和谐之美

47、运用结构观点分析教学小学应用题

48、构建自主探究课堂,促进学生有效发展

49、精心设计课堂结尾巩固提高教学效果

50、浅谈数学课堂提问艺术

51、浅谈发式教学在小学数学教学中的运用

52、浅谈数学课堂中学生问题意识的培养

53、巧用信息技术,优化数学课堂教学

54、新课改下小学复式教学有感

55、让“对话”在数学课堂中焕发生命的精彩

56、小学几何教学的几点做法

初中数学教学论文题目

1、翻转课堂教学模式在初中数学教学中的应用研究

2、数形结合思想在初中数学教学中的实践研究

3、基于翻转课堂教学模式的初中数学教学设计研究

4、初中数学新教材知识结构研究

5、初中数学中的研究性学习案例开发实施研究

6、学案导学教学模式在初中数学教学中的实践与研究

7、从两种初中数学教材的比较看初中数学课程改革

8、信息技术与初中数学教学整合问题研究

9、初中数学学习困难学生学业情绪及其影响因素研究

10、初中数学习题教学研究

11、初中数学教材分析方法的研究

12、初中数学教师课堂教学目标设计的调查研究

13、初中数学学习障碍学生一元一次方程应用题解题过程及补救教学的个案研究

14、初中数学教师数学教学知识的发展研究

15、数学史融入初中数学教科书的现状研究

16、初中数学教师课堂有效教学行为研究

17、数学史与初中数学教学整合的现状研究

18、数学史融入初中数学教育的研究

19、初中数学教材中数学文化内容编排比较研究

20、渗透数学基本思想的初中数学课堂教学实践研究

21、初中数学教师错误分析能力研究

22、初中数学优秀课教学设计研究

23、初中数学课堂教学有效性的研究

24、初中数学数形结合思想教学研究与案例分析

25、新课程下初中数学教科书的习题比较研究

26、中美初中数学教材难度的比较研究

27、数学史融入初中数学教育的实践探索

28、初中数学课堂教学小组合作学习存在的问题及对策研究

29、初中数学教师数学观现状的调查研究

30、初中数学学困生的成因及对策研究

31、“几何画板”在初中数学教学中的应用研究

32、数学素养视角下的初中数学教科书评价

33、北师大版初中数学教材中数形结合思想研究

34、初中数学微课程的设计与应用研究

35、初中数学教学生成性资源利用研究

36、基于问题学习的初中数学情境教学模式探究

37、学案式教学在初中数学教学中的实验研究

38、数学文化视野下的初中数学问题情境研究

39、中美初中数学教材中习题的对比研究

40、基于人教版初中数学教材中数学史专题的教学探索

41、初中数学教学应重视学生直觉思维能力的培养

42、七年级学生学习情况的调研

43、老师,这个答案为什么错了?--由一堂没有准备的探究课引发的思考

44、新课程背景下学生数学学习发展性评价的构建

45、初中数学学生学法辅导之探究

46、合理运用数学情境教学

47、让学生在自信、兴趣和成功的体验中学习数学

48、创设有效问题情景,培养探究合作能力

49、重视数学教学中的生成展示过程,培养学生 创新思维 能力

50、从一道中考题的剖析谈梯形中面积的求解方法

51、浅谈课堂教学中的教学机智

52、从《确定位置》的教学谈体验教学

53、谈主体性数学课堂交流活动实施策略

54、对数学例题教学的一些看法

55、新课程标准下数学教学新方式

56、举反例的两点技巧

57、数学课堂教学中分层教学的实践与探索

58、新课程中数学情境创设的思考

59、数学新课程教学中学生思维的激发与引导

60、新课程初中数学直觉思维培养的研究与实践

2021各阶段数学教学论文题目相关 文章 :

★ 优秀论文题目大全2021

★ 大学生论文题目大全2021

★ 大学生论文题目参考2021

★ 优秀论文题目2021

2021毕业论文题目怎么定

★ 2021教育学专业毕业论文题目

★ 2021优秀数学教研组工作总结5篇

★ 2021数学教学反思案例

★ 2021交通运输方向的论文题目及选题

★ 小学数学教学论文参考(2)

小学三年级的数学论文数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.

数学高中统计与概率研究论文

[1]李晓康,郭三刚,. 概率论与数理统计课程的改革与实践[J]. 价值工程,2011,(7). [2]谷武扬,. 关于概率论与数理统计教材中数学期望的注解[J]. 淮阴师范学院教育科学论坛,2006,(3). [3]沈晓婧,周介南,. 概率论与数理统计课程改革的创新机制[J]. 高等数学研究,2011,(1). [4]郭淑妹,郭杰,张宁,. 浅谈《概率论与数理统计》教学[J]. 科技创新导报,2011,(9). [5]周铁军,李晨,王敏,. 概率论与数理统计精品课程建设的实践[J]. 成功(教育),2011,(3). [6]宗琮,. 财经类专业概率论与数理统计的教学方法探讨[J]. 科教文汇(上旬刊),2011,(1). [7]王淑玲,卓丽,. 概率论与数理统计的有效课堂教学[J]. 考试周刊,2011,(6). [8]朱学红,. 概率论与数理统计教学方法浅谈[J]. 中国科教创新导刊,2011,(2). [9]冯建中,谢朝荣,艾莉萍,. 《概率论与数理统计》分级教学研究[J]. 考试周刊,2011,(14). [10]周玲,罗党,张清年,. 浅谈概率论与数理统计教学中学生学习兴趣的培养[J]. 中国电力教育,2011,(7). 要哪篇?我发你邮箱

++99++9+9

概率论与数理统计课程的改革与实践论文

摘要: 讨论了概率论与数理统计课程教学改革的必要性与重要性,提出了课程改革的思路与原则,并总结了该课程改革与实践取得的效果。

Abstract: The necessity and importance of teaching reform of the course of probability and mathematical statistics were discussed, ideas and principles of curriculum reform were put forward, and the achieved effect of this curriculum’s reform and practice was summarized.

关键词: 概率论与数理统计;改革;实践

Key words: probability and mathematical statistics; reform; practice

概率论与数理统计是工程、人文、经济、社会等领域研究和处理随机现象的一门重要的随机数学,是目前数学专业大学本科阶段乃至其它理工类专业的唯一一门随机数学的必修课。自上个世纪六十年代引入大学课堂以来,它对于传承人类科学文明、培养人才的综合素质能力、解决实际问题的实践动手能力等起到了非常重要的作用。在信息社会高度发达的今天,随机数学的基本理论与方法作为信息采集、加工、利用的重要的理论基础和方法论基础,已经成为现代专业人才重要的必不可少的知识构成。文献[1-3]对该课程的改革与实践进行了探讨。本文就该课程的特点,结合我院(系)学生的特点就该课程改革与实践的必要性,具体思路与原则,以及改革实践的效果做一探讨。

1 概率论与数理统计课程教学改革的必要性与重要性

教学内容、手段、方法的陈旧反映出教育思想的落后,转变教育思想和更新教育观念是进行一切改革的先导。传统的数学教育理念重视教学过程的理论性,严谨性,逻辑性。但对于学生应用数学的理论和方法解决实际问题能力的培养从教和学两个侧面有所忽视。

现在,有一种流行的教育教学方法称为“案例教学”。“案例教学”就是通过实际问题的描述、假设、建模与求解,演示理论与方法的应用过程。数学上,这样的教学方式就是所谓的‘问题解决’的数学建模的思想。这种方法不拘泥于对理论和方法的阐述,更注重对理论与方法的实际应用过程的展示:包括问题的描述、所涉及的变量及其相互关系、问题的假设与简化、问题的数学模型的建立与求解。

信息社会的加速来临,在实际生活和科技工作中,海量、庞杂的数据不断产生,但是有用的信息并不会自动生成,它需要数学工作者利用数据采集、整理、分析与处理的工具,去发现有用的信息,以解决实际问题。数据采集与信息分析与处理的数学基础就是《概率论与数理统计》这门数学类专业的必修课程,这也是其它理工科专业的一门必修课程,只是对数学专业的`要求既注重理论又兼顾方法的实际应用,而对其它理工科专业,这门课程主要注重方法的应用。

但是,《概率论与数理统计》这门课程不同于以往学习的确定性数学,对于第一次接触这门课程的学生,理解起来会很困难,更不用说去利用它去进行统计数据的采集、整理、处理、分析等。因此,单从这点考虑,我们就有必要对其教学方法、手段等进行改革。从本门课程的应用目的角度来考虑,也必须进行改革,以增加实践性教学环节,培养学生应用概率论与数理统计的理论和方法解决实际问题的能力。

从培养学生利用数学的理论和方法、基于统计数据,建立和求解数学模型的能力的角度看,这完全符合现代大众化高等教育的目的,也符合我校的办学指导思想。

《概率论与数理统计》是其它随机数学的理论和方法的基础,这些课程是:多元统计分析、时间序列分析、随机过程,基于支持向量机的现代非参数统计学习方法等,为了这些知识和方法的学习与应用,我们也必须改变教学方式,为学生打下坚实继续学习的基础。

2 概率论与数理统计课程教学改革的思路与原则

通过以上的分析,我们认为概率论与数理统计课程的改革必须首先改变教学方法,抛弃那种古板的、填鸭式的、纯粹的重视逻辑推理而不重视应用的传统的教学观念,而采取不仅重视理论与方法的学习,为后继课程的学习打下良好基础,又能激发学生学习兴趣,同时还能培养学生应用所学理论和方法解决实际问题的能力的培养。

因此,概率论与数理统计课程的改革是一项系统工程,既要考虑课程本身理论与方法的学习,还要也兼顾后继课程的学习(有些课程是研究生的必修课),又要考虑学生应用理论与方法解决实际问题能力的培养,还要使得学生学习起来兴趣盎然。应用系统工程原理,从理论、实践、计算能力等全方位改革和建设,不能只重视某一个环节,而应从整体上思考。

在学时有限的约束条件下,我们必须改革教学内容,教学方法和教学手段,以期达到预期的改革目的。改革过程必须培养一批从事《概率论与数理统计》课程的课堂教学、实验教学的人才,积累改革的成果,不断总结经验。改革过程不会一番风顺,遇到非议也是可以理解的。但是,改革的决策一旦确定,就要毫不犹豫的进行下去。

3 概率论与数理统计课程教学改革的内容与措施

首先确定合理的教学学时,经过大家集思广益,制定了相应的教学大纲,使教学改革有法可依。为了达到上述改革目标,我们对教材的内容进行必要的增加和删减。由于,《概率论与数理统计》课程是大学生接触的第一门研究随机现象及其规律的数学学科,不同于以往的确定性数学,学生理解起来是相当困难的。为此,考虑到实际课时和课程的难度,在课堂教学中,借助于多媒体技术和计算机编程技术,增加了对一些随机现象的直观演示。删除掉一些陈旧的知识,比如关于一些定理的证明,或者保留这些证明,作为自学内容,提供给有能力学习的学生。这也起到因材施教的目的。经过多年的实践,编写了自己的教材《概率论与数理统计》(陕西师范大学出版社出版),该教材是国家面向21世纪规划教材。

为了达到培养学生利用计算机和数学软件,以及应用概率论与数理统计的理论和方法解决实际问题的能力,我们在自己编写的教材中,首次引入了SAS(Statistical Analysis Systems)高级程序设计语言。

为了使得课堂教学生动、有趣、直观以及指导学生的学习,我们研制开发了多媒体课件,并编写了与本门课程配套的课程学习指导教材。

为了达到培养学生的收集数据、整理数据、建立数学模型、利用相关的理论与方法解决实际问题的能力之目的,我们增加实践性教学环节。从1997级开始,我们在全国首次开设了《概率论与数理统计》的实验教学环节,并且编写相应实验教学大纲和实验指导书,使实验课有纲可循,有事可做而不流于形式。

为了培养学生的综合应用随机数学解决实际问题的能力,我们构建了以《概率论与数理统计》为核心的课程群,包括《多元统计分析》、《时间序列分析》、《教育测量与统计学》、《随机过程》、《数学模型与数学实验》、《数学软件》等选修课程,大大丰富了学生随机数学的理论与方法解决实际问题的数据处理与分析的能力及数学建模能力。

为了开拓学生的视野,在学年论文和毕业论文中,我们加强指导,向学生介绍了一种现代非参数统计学习方法:《基于支持向量机的统计学习方法》,将这种方法用于相关关系的学习中。

为了达到培养学生学习《概率论与数理统计》课程及其课程群的学习及其解决实际问题的能力,我们连续多年组织了对我校参加全国大学生数学建模竞赛的学生的培训工作,特别是随机数学解决实际问题能力的培养。

由于我们改革教学的内容,增加了实验教学环节,并注重学生平时能力的培养,所以我们改革考核方式:学生平时作业及考勤占总成绩的20%,实验占20%,课程考试占60%。

为了传承我们的改革成果,我们注意在改革中积累经验,培养人才,使我们的改革有了传承、继续推进的后备人才,形成本门课程及其课程群的年龄、学历层次和职称结构合理的教师队伍,有博士1个,硕士3个,学士5个;教授1个,副教授6个,讲师2个。

4 概率论与数理统计课程教学改革与实践的效果

通过几年来的改革实践,概率论与数理统计的教学取得了较显著的效果。教学内容、方法手段的改革增加了学生学习该课程的兴趣,使学生真正体会到该课程的内容在工农业生产以及科学研究中的应用价值,充分调动了学生学习的主动性,激发了学生的创造性思维,增加了学生应用概率统计方法解决实际问题的能力。该课程的改革与实践取得了良好的教学效果,提高了教学质量,得到了学生的认可和赞同,问卷调查表明90%以上的学生对现在的教学方式和考试方法给予肯定,大多数学生都认为概率统计课在各学科中有较重要的应用。说明同学们对该门课程的思想方法和应用性有了较深刻的认识,教学改革的总体方向是正确的。

随着本课程及相关课程的深入改革,有许多学生在学年论文及毕业论文的选题上倾向于采用《概率论与数理统计》课程的理论与方法。与本课程相关的多篇毕业论文被评为校级优秀论文。

此外,本课程的任课教师还积极组织、培训、指导学生参加全国大学生数学建模竞赛并取得优异成绩。

参考文献:

[1]朱松涛.师专数学系《概率论与数理统计》课程教学的改革实践[J].数学通报,1998,(4).

[2]邓华玲等.概率论与数理统计课程的改革与实践[J].大学数学,2004,(1).

[3]陈新美等.《概率论与数理统计》教学改革与实践[J].湖南科技学院学报,2006,(11).

统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。下文是我为大家整理的关于统计相关论文的范文,欢迎大家阅读参考!

浅谈概率在统计学中的应用

摘 要:概率是研究随机现象的数学学科,其理论严谨、 应用广泛、 发展迅速。目前,概率的理论与方法已广泛应用于 统计学中,主要是从正态分布、小概率事件两方面介绍了概率在统计学中的一些应用。

关键词:随机现象;事件;样本;母体;正态分布;小概率原理

统计学主要分为描述性统计学和推断性统计学。给定一组数据统计学可以摘要并且描述这些数据,这个用法称为描述性统计学。另外,观察者以数据的形式建立起一个用以解释其随机性和不确定性的数学模型,以之来推论研究中的步骤及母体,这种用法被称为应用统计学。另外,还有一个叫做数理统计学的学科专门用来讨论这门科目背后的理论基础。

同一仪器多次测量同一物体的重量,所得的结果彼此总是略有差异,这是由于诸如测量仪器受大气影响,观察者身体或 心理上的变化等等偶然因素引起的。同样的,同一门炮向同一目标发射多发同种炮弹,弹落点也不一样,因为炮弹制造时的种种偶然因素对炮弹质量也会有影响。此外,炮筒位置的误差,天气条件的微小变化等等都影响弹落点。再如从某生产线上用同一种工艺生产出来的灯泡寿命也是有差异的等等。

总之所举这些现象的一个共同点是:在基本条件不变的情况下,经过一系列试验或观察会得到不同的结果。换句话说,就个别的试验结果或观察结果而言,它会时而出现这种结果,时而出现那种结果,呈现出一种偶然性。这种现象称为随机现象。对于随机现象通常关心的是在试验或观察中某个结果是否出现,这种结果称为随机事件,简称事件。为了实际的理由选择研究团体的子集代替研究母体的每一笔资料,这个子集称作样本。推论统计学被用来将资料中的数据模型化,计算它的几率并且做出对于母体的推论,这个推论可能以对或错的答案呈现(假设检验)出对未来观察的预测,关联性的预测,或是将关系模式化(回归)。

随机现象有其偶然性的一面,也有其必然性的一面。这种必然性表现为大量试验中随机事件出现的频率的稳定性,即一个随机事件的频率常在某个固定的常数附近摆动,这种规律我们称之为统计规律性。频率的稳定性说明随机事件发生的可能性的大小是随机事件本身所固有的,不随人们的意志而改变的一种客观属性,因此可以对它进行度量。对于一个随机事件A用一个数p(A)来表示该事件发生的可能性的大小,这个数p(A)就称为随机事件A的概率,因此概率度量了随机事件发生的可能性的大小。

如果样本足以代表母体,那么由样本所做的推论和结论可以引申到整个母体之上,统计学提供了许多方法来估计和修正样本资料过程中的随机性(误差)。要了解随机性的一定几率必须具备基本的数学观念。数理统计是应用数学的分支,它使用几率论来分析并且验证统计的理论基础。

概率在统计学中有着重要的作用,包括总体、抽样研究、统计描述、统计推断、正态分布规律等,正态分布是概率中最重要的一种分布。一方面正态分布是自然界最常见的一种分布,例如测量的误差;炮弹弹落点的分布;人的生理特征的尺寸:身长、体重等;农作物的收获量;工厂产品的尺寸:直径、长度、宽度、高度,都近似服从正态分布。

一般来说若影响某一个数量指标的随机因素很多,而每个因素所起的作用又不太大,则服从正态分布这点可以用概率论的极限定理来加以证明。另一方面正态分布具有许多良好的性质,许多分布可用正态分布来近似,另外一些分布又可由正态分布来导出,因此在理论研究中,正态分布十分重要。如利用正态分布规律统计学校的成绩分布,得出一个阶段的学生总体是否进步,然后寻找原因,得出改进办法。分析一年 经济的发展,预测来年的收入。找出影响发展的主要因素,寻求改进的方法等等。

小概率事件即发生概率很小的事件(p≤),在统计学中有着重要的应用,这样的事件理论上发生的可能性则几乎为零。如买彩票中大奖,就是典型的小概率事件,也许每一期均会有大奖开出(可能性很小),但对于每一个彩民来说,他买一注中大奖的可能性(小概率事件在一次试验中就发生的概率几乎没有。其实,这就是小概率事件在统计学上应用的重要理论依据——小概率原理。)即小概率事件在一次试验中发生的可能性很小,如果真的发生了,根据统计学可怀疑其真实性。

如某接待站在一天内共接待5人单独来访,结果这5人全在周一到访,由此能否推断接待站有规定的接待日?假定没有规定的接待日,一个来访者在五天中任何一天来访都是等可能的用Am(m=1,2,3,4,5,)表示“一周接待了m个人,全都是周一来访”事件,Am的概率如下表示:

事件 A1概率 事件 A2概率

事件 A3概率 事件 A4概率

事件 A5概率

5个人都在周一来访的概率为,大约万分之三。现在概率很小的事件在一次试验中发生了,于是怀疑假定的正确性,从而推断接待站有规定的接待日。

公元1814年,拉普拉斯在他的新作中,记载了一个有趣的统计,世界上男婴与女婴的出生比值是22∶21,即在出生的婴儿中,男婴占,女婴占,可奇怪的是1745-1784年四十年间统计巴黎男婴的出生率时,却得到另一个比是25∶24,男婴占,与前者相差,对于这千分之一点八的微小差异,进行调查研究,发现巴黎人有“重女轻男”的现象,有抛弃男婴的陋习,以至于歪曲了出生率,经过修正出生比依然是22∶21。统计学依据小概率原理作出结论的正确性很高,但也存在犯错误的风险(较低)。

小概率原理在统计上有着非常重要的应用。如假设检验结论的判断,假设检验是用样本信息推测总体的一种统计推断方法,由于抽样误差的存在,样本信息和总体特征间可能不尽相同,所以假设检验实际上就是判断待比较各方的差别是不是由抽样误差造成的。假设检验中p值的大小反映的就是差别由抽样误差造成的概率。在假设检验中就是通过比较p值与检验水准a(通常设为)的大小关系,从而做出差别有无统计学意义。

如果p值小于a统计学则认为差别由抽样误差造成的概率很低,那么根据小概率原理认为,小概率事件在一次抽样中就发生的可能性几乎为零,所以判定差别可能是由于比较各方在本质上的不同导致的。否则认为差别是由抽样误差造成的。在这里检验水准是在假设检验前认为设定的,是研究者能够承受的本次假设检验放弃真错误的概率,也可以理解为是研究者设立的小概率事件的概率。而p值则是通过计算,即在检验假设成立的情况下,差别是由抽样误差造成的概率。

统计在现代化 管理和 社会生活中的地位日益重要,随着社会经济和科学技术的发展统计在现代化国家管理和企业管理中的地位越来越重要,人们的日常生活都离不开统计,统计的影响是这样巨大,故与之密切相关的概率的作用也越来越重要。

浅谈统计学基础教学方法与学生应用能力的培养

摘要:统计学基础知识是一门研究数据的技术性学科,具有综合性,抽象性及应用面广等特点,通过该课程的教学能培养学生运用统计工具,系统的分析问题和解决问题的能力。在中职教学中需结合本学科的特点,不断改进教学方法,提高学生综合应用统计知识的能力。

关键词:统计学教学方法设计能力培养

统计学基础知识是一门研究数据的技术性学科,学科内容中的调查研究和分析处理问题的方法,不仅应用于各项工作中,也用于其他学科研究过程中的数据搜集、整理、分析并得出结论。故统计学具有综合性,抽象性,应用面广等特点,通过该课程的教学能培养学生运用统计工具,系统的分析问题和解决问题的能力。现结合本学科的特点探讨其教学方法和学生应用能力的培养。

一、统计学基础课程教学的特点

统计学基础也是社会经济统计学原理,其学科内容的特点:一是基本概念多,理论讲授上较抽象;二是指标类别多,初学时严格划清各种指标内涵难;三是调查分析方法多,正确理解和选择恰当的调查方法难;四是正确的调查方式、方法指标体系的设置,统计范围的界定与是否得出反映事物的正确结论直接相关;五是科学设置调查事物的指标体系又与弄清反映该事物的客观内在本质的相关指标直接相关。因此,对年龄小,分析能力差的中职学生教学对象来讲,即便从概念上掌握了统计学的原理,如果不结合实际的统计案例资料和采用恰当的教学方法,就很难达到正确应用统计知识解决现实社会经济中问题的目的,甚至会因为错误使用方法,得出对事物评判的错误结论。

二、结合本学科知识的特点采用适当的教学方法,增强应用能力的培养

在教学中,首先通过对教材内容体系的全面分析和教学对象知识结构的分析,以及学生对统计学知识学习的兴趣、理解的深度和掌握应用情况的总结,在教学中的不同环节恰当地实施不同的教学方法。

1、通过学科内容体系导入与工作任务联系,提升学生学习兴趣

在讲授本学科内容时,首先给学生介绍统计学基础教材内容的基本框架:统计学的涵义、研究对象、性质、职能和研究的基本方法。其次是介绍学科知识体系:统计学中的基本概念,统计资料调查整理的方式方法,统计数据的显示与提供,以及提供的统计数字资料运用多种指标法进行分析(总量指标法--反映事物的规模状况,平均指标法--反映事物的集中趋势及一般规律,相对指标法--反映事物的纵向横向比较和事物之间的联系,标准差法--反映事物中总体单位标志值之间的离散趋势和程度,分析事物之间的差异。统计指数法--反映事物中各种直接因素的影响。

时间数列法--反映事物在时间段上的发展变化趋势。抽样调查法--统计专门调查方法中最科学的方法。相关回归分析法--分析事物中的因果关系。)通过内容体系的简单讲解导入,让学生在学习具体理论知识前就对该学科有一个总体感性认识,产生兴趣。带着要通过掌握统计知识去解决实际问题的意识和目的去学习。

2、让学生的学习从理性认识过渡到感性认识,增强应用能力

我在教学中介绍统计学的基本概念和统计调查方法内容时,除对每个知识点进行举例说明外,一部分知识讲完后,给出几个典型的统计调查方案让学生弄清在这些调查方案中所涉及的统计总体、总体范围的界定、总体单位、标志、指标以及采用的哪种调查方式等。这不仅让学生把抽象的统计学概念知识从理性认识过渡到了感性认识,而且通过这些案例还进一步让学生明白了调查方式的选用必须要根据调查对象和要解决的问题适当选取,而不是什么调查目的,什么事物都可以用任何一种调查方式。只有正确选用统计方式、方法去调查分析客观事物才能得出正确的结论,才能具备正确利用统计知识去分析解决问题的能力。

3、综合指标应用与典型资料结合法,提高学生的应用能力在讲授综合指标法时,对每一种指标的理解都是

分别举例说明让学生理解该指标的含义和作用。为了让学生能正确理解和区分每一种指标的作用,在所有指标介绍完后,我选用了国民经济年度统计公报资料作为案例,让学生从统计公报资料中找出学习过的每一种综合指标,如:2007年全国GDP总值,人口数等是总量指标。本年度GDP完成百分比是计划完成相对指标,本年度GDP比上年度增长百分比是动态相对指标。人均GDP是强度相对指标。

GDP构成比例是结构相对指标。五年中平均每年增长的百分比是后面要学习的平均发展速度和平均增长速度的应用。通过这样的案例,学生不仅对各种综合指标法的应用有了正确的理解,而且把各种指标的理解认识变成了应用能力,同时还对后面学习动态数列知识奠定了基础。在教学中很好地起到了巩固理解知识和预习下一教学环节内容的潜在作用。还起到了掌握知识综合性的效果。通过这样一个案例,学生进一步明确,研究一个总体的问题时,可以对问题的不同方面运用多种指标进行分析,弄清事物之间客观存在的关联,这些都必须用一定的统计数据来说话。因此进一步强调了学生学习统计知识的必要性,也让他们认识到统计学知识的科学性和实用性。

4、新旧知识在现实案例中的综合运用,提升学生应用能力

在讲授统计指数的内容时,传授给学生统计指数编制的基本方法的原理,教材中举例的商品价格、商品量、以及职工工资水平指数的编制都仅仅是一种计算基本方法的介绍。要培养学生应用能力还必须结合实际统计指数编制的案例进行讲解,让学生能够将理论知识及其计算方法应用到实际工作中去,所以我特意在理论知识和计算方法讲完后,介绍实际工作中零售物价指数的编制。这个经济指数也是民众普遍关注的问题,与人们生活水平息息相关。

告诉学生,物价指数的编制运用了抽样调查的知识,实际工作中不可能对每一种商品都采价调查,而是分大类商品,在商场和集贸市场分别采价。例如集贸市场的蔬菜价格每周至少要采集三次,每次要采集成交价的三人次,进入零售商品物价指数编制的价格实际上是一个多次简单平均的价格,而每天某种商品的三个价格要简单平均,每周三次的平均价格再简单平均。商场的商品价格如较稳定可用期初和期末的平均。通过这样一个案例,既给学生传授了新知识,又复习巩固了平均指标计算方法的具体应用,不仅日常生活中用,而且在经济研究中应用非常广泛。进一步告诉学生加权平均法和调和平均法在编制物价指数和其他社会经济现象指数中的应用。

5、典型调查案例教学法,培养学生综合应用统计知识,分析解决问题的能力

教学中我把学生应用统计知识,分析问题能力的培养放在抽样技术的教学内容中,抽样技术的基本理论也是抽象的。如,抽样误差,抽样平均误差,抽样的组织方式。针对研究对象的特点,都必须具体问题具体分析,而抽样误差的计算既涉及到平均指标的计算又涉及到标准差的计算,新旧知识的交替如何培养学生应用新旧知识计算、分析问题,解决问题是教学的难点。

为了突破这个难点,我在教学中利用了一个草席质量抽样调查的案例,这个案例体现了从制定调查方案中的调查方式的确定,采用主要标志划类,简单随机抽样原则,到调查实施的步骤:草席宽度分类,登记原验级等级,编顺序号,确定抽样总体,计算全级总体标准差,决定抽样数目,设计计算表格,决定样本号,现场调查中的统一验级标准。

验级过程:由5人分别验级,级数的最后确定采用众数办法,5人验级中的3人验级标准为准。以上这些都具有前面介绍的抽样调查方式的代表性,而又用到了平均指标和众数的方法。同时,在计算草席平均等级时,还用到了品质标志值平均指标的计算,即将等级品质标志值过渡成数量标志来计算该批不同尺寸草席的平均等级,再计算抽样指标与原验级指标之间的误差。

这样一个复杂的抽样调查过程和指标的计算结果,更清晰的告诉学生要说明和解决的问题:由于收购草席时,验级人员在判断标准上的误差带来了草席等级误差与价格的差异。而由于误差的存在,根据此抽样调查结果计算出的整个库存草席的总价值与实际价值的差异巨大。对导致这样的结果,进一步结合政策市场以及人为等多种因素进行分析,查找了原因并提出了切实可行的解决方案,促使了草席的收购价实相符。

通过以上几方面的教学方法设计,能让学生对统计学有更全面的认识,对学科基础内容有一个总体框架性把握,让那些学生在学习时感觉模糊的概念和繁杂的理论通过这几个教学环节的反复巩固和练习也逐步变得清晰,并大大提高了其综合应用统计知识的能力。

  • 索引序列
  • 概率与数理统计研究进展论文
  • 概率论与数理统计研究性论文
  • 概率论与数理统计论文
  • 小学数学统计与概率研究论文
  • 数学高中统计与概率研究论文
  • 返回顶部