《电子工程与创新发展》
你能否进得去还是个问题呢,别想了,好好学习吧
中央音乐学院好一些
二月吧,因为28天或者29天,没有别的月比这月天数还少了,题目中说她说的话最少,也是相对而言的
太乙近天都,连山到海隅。白云回望合,青霭入看无。分野中峰变,阴晴众壑殊。欲投人处宿,隔水问樵夫。
浅析经济学中的统计学论文
一、引言
随着社会的整体经济水平迅猛提升,社会发展对于经济型人才的需求量也在不断的增加。作为一名中学生,我们在进行中学课堂知识的学习过程中,应当明确自身的方向,进而有针对性的完善自身的不足之处。在中学数学课堂上全面的掌握统计学知识,熟练地应用在经济学领域中,为将来成为一名合格的经济学人才奠定稳定的基础。
二、经济学中,统计学的重要性
由于经济学具有复杂性和精确性的特点,因此需要将统计学应用于其系统的建立进程中,而统计学的准确、灵活的应用,则需要我们具备合格的数学理论基础,方能在经济学中找到其发展规律。由此可见,成为一名合格的、优秀的经济学人才,需要我们在中学数学课堂的学习中,尽可能的丰富自身的统计学知识,并且将学习到的统计学知识,灵活的应用于我们的日常学习生活当中,例如进行班费的管理工作、班级活动经费的统计工作、外出活动的经费预算与控制等等,在提升了我们的统计学知识应用能力的同时,实际生活中的锻炼也使得我们的综合素质和能力都得到了迅速的提升,为成为优秀的经济学人才打下了良好的基础。
三、探究经济学中统计学的运用方式
在明确了经济学中统计学的探究思考重要性后,可以使我们在学习高中数学的过程中,以更加明确、科学的方式培养自身的统计学理论掌握和应用能力,进而实现高效的自我提升。
1.发散自身的思维,有方向的锻炼统计学知识的掌握和应用能力
我们在中学数学课堂上学习统计学的相关理论知识过程中,应当注重自身的思维发散性和灵活性。很多同学在数学课堂上计算统计学习题的过程中,由于思路过于死板,因此无法根据老师所讲解的统计学理论内容和传授的理论学统计方式灵活的进行解题,进而认为统计学十分难以掌握,丧失了对于学习统计学的信心和兴趣。实际上这些同学是进入了学习思维上的误区。如果我们能够在数学课堂上进行发散思维,灵活的将数学知识应用于思考过程中,问题便能够迎刃而解。例如,我们在学习参数的过程中,可以将样本参数、方差以及函数的理论概念灵活的运用其中,进而明确统计学中的估量值和估量极值的概念,参数统计问题也就随着这些函数的灵活应用被成功的解答出来。
2.应用模型的建立,更加直观的、高效的掌握经济学中的统计学
当我们在学习统计学知识的过程中遭遇瓶颈时,也可以通过数学模型的建立帮助我们度过学习上的难关。由于数学模型具有直观性较强以及精确度较高的特点,因此数学模型的建立可以引导我们运用更加简洁的方式,理解经济学中的统计学理念,并且完成经济学中的统计学的学习。例如我们在统计班级内部同学的身高分布状况时,就可以建立数学统计模型,将身高标准分为几个区间,分别统计,这样,所得出来的统计结果会更加具有直观性。
开展经济学中统计学的学习方式探究,主要可以将经济学中的统计学掌握方式得以有效运用。发散自身的思维,有方向的学习统计学知识,数量的应用和掌握应用模型的建立,更加直观的、高效的掌握统计学的知识要点。通过研究可知,统计学的良好的学习和掌握,需要我们在中学学习课堂上充分的调动自身学习的'积极主动性,努力的去思考和探究老师所教授的内容,并且将其进行灵活的运用,在生活中,我们可以统计日常零用钱的消费,记录消费的种类与用途,这样,在月末的时候,就可以知道自己最大的支出模块,根据自己的支出总结,合理的调控各项支出比例,使消费更加合理化,各模块支出均衡,初步做一个简单的经济统计结果。掌握统计学,将使得我们在经济学行业中,充分的发挥自身的实力,体现出我们的个人能力和个人价值。
四、结束语
开展经济学中的统计学探究,首先应当明确探究它的重要性,进而进行学习掌握方式的探究和思考。进行经济学中的统计学探究可知,我们也应当在中学学习课堂上认真学习数学知识,良好的完成统计学的掌握,在中学数学课堂上熟练、全面的掌握统计学知识,实现自我综合素质的全面提升,才能使得我们在日后真正成长为社会所需要的经济学人才。
参考文献:
[1]刘明.统计学专业计量经济学教学中的问题探讨——以兰州商学院统计学专业计量经济学课程为例[J].陇东学院学报,2013.
[2]韩春蕾,罗文海,相静.形成性评价在医学类院校统计学专业课程考核中的应用——以计量经济学课程为例[J].卫生职业教育,2015.
[3]王纯妍.浅议数学统计方法对现代经济社会的作用[A].北京中外软信息技术研究院.第三届世纪之星创新教育论坛论文集[C].北京中外软信息技术研究院,2016:1.
近十多年来,随着算法与控制技术的不断提高,人工智能正在以爆发式的速度蓬勃发展。并且,随着人机交互的优化、大数据的支持、模式识别技术的提升,人工智能正逐渐的走入我们的生活。本文主要阐述了人工智能的发展历史、发展近况、发展前景以及应用领域。 人工智能(Artificial Intelligence)简称AI,是麦卡赛等人在1956年的一场会议时提出的概念。 近几年,在“人机大战”的影响下,人工智能的话题十分的火热,特别是在“阿尔法狗”(AlphaGo)战胜李世石后,人们一直在讨论人是否能“战胜”自己制造的有着大数据支持的“人工智能”,而在各种科幻电影的渲染中,人工智能的伦理性、哲学性的问题也随之加重。 人工智能是一个极其复杂又令人激动的事物,人们需要去了解真正的人工智能,因此本文将会对什么是人工智能以及人工智能的发展历程、未来前景和应用领域等方面进行详细的阐述。 人们总希望使计算机或者机器能够像人一样思考、像人一样行动、合理地思考、合理地行动,并帮助人们解决现实中实际的问题。而要达到以上的功能,则需要计算机(机器人或者机器)具有以下的能力: 自然语言处理(natural language processing) 知识表示(knowledge representation) 自动推理(automated reasoning) 机器学习(machine learning) 计算机视觉(computer vision) 机器人学(robotics) 这6个领域,构成了人工智能的绝大多数内容。人工智能之父阿兰·图灵(Alan Turing)在1950年还提出了一种图灵测试(Turing Test),旨在为计算机的智能性提供一个令人满意的可操作性定义。 关于图灵测试,是指测试者在与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。进行多次测试后,如果有超过30%的测试者不能确定出被测试者是人还是机器,那么这台机器就通过了测试,并被认为具有人类智能。 图灵测试是在60多年前就已经提出来了,但是在现在依然适用,然而我们现在的发展其实远远落后于当年图灵的预测。 在2014年6月8日,由一个俄罗斯团队开发的一个模拟人类说话的脚本——尤金·古斯特曼(Eugene Goostman)成为了首个通过图灵测试的“计算机”,它成功的使人们相信了它是一个13岁的小男孩,该事件成为了人工智能发展的一个里程碑。 在2015年,《Science》杂志报道称,人工智能终于能像人类一样学习,并通过了图灵测试。一个AI系统能够迅速学会写陌生文字,同时还能识别出非本质特征,这是人工智能发展的一大进步。 ①1943-1955年人工智能的孕育期 人工智能的最早工作是Warren McCulloch和Walter Pitts完成的,他们利用了基础生理学和脑神经元的功能、罗素和怀特海德的对命题逻辑的形式分析、图灵的理论,他们提出了一种神经元模型并且将每个神经元叙述为“开”和“关”。人工智能之父图灵在《计算机与智能》中,提出了图灵测试、机器学习、遗传算法等各种概念,奠定了人工智能的基础。 ②1956年人工智能的诞生 1956年的夏季,以麦卡锡、明斯基、香农、罗切斯特为首的一批科学家,在达特茅斯组织组织了一场两个月的研讨会,在这场会议上,研究了用机器研究智能的一系列问题,并首次提出了“人工智能”这一概念,人工智能至此诞生。 ③1952-1969年人工智能的期望期 此时,由于各种技术的限制,当权者人为“机器永远不能做X”,麦卡锡把这段时期称作“瞧,妈,连手都没有!”的时代。 后来在IBM公司,罗切斯特和他的同事们制作了一些最初的人工智能程序,它能够帮助学生们许多学生证明一些棘手的定理。 1958年,麦卡锡发表了“Program with Common Sense”的论文,文中他描述了“Advice Taker”,这个假想的程序可以被看作第一个人工智能的系统。 ④1966-1973人工智能发展的困难期 这个时期,在人工智能发展时主要遇到了几个大的困难。 第一种困难来源于大多数早期程序对其主题一无所知; 第二种困难是人工智能试图求解的许多问题的难解性。 第三种困难是来源于用来产生智能行为的基本结构的某些根本局限。 ⑤1980年人工智能成为产业 此时期,第一个商用的专家系统开始在DEC公司运转,它帮助新计算机系统配置订单。1981年,日本宣布了“第五代计算机”计划,随后美国组建了微电子和计算机技术公司作为保持竞争力的集团。随之而来的是几百家公司开始研发“专家系统”、“视觉系统”、“机器人与服务”这些目标的软硬件开发,一个被称为“人工智能的冬天”的时期到来了,很多公司开始因为无法实现当初的设想而开始倒闭。 ⑥1986年以后 1986年,神经网络回归。 1987年,人工智能开始采用科学的方法,基于“隐马尔可夫模型”的方法开始主导这个领域。 1995年,智能Agent出现。 2001年,大数据成为可用性。 在1997年时,IBM公司的超级计算机“深蓝”战胜了堪称国际象棋棋坛神话的前俄罗斯棋手Garry Kasparov而震惊了世界。 在2016年时,Google旗下的DeepMind公司研发的阿尔法围棋(AlphaGo)以4:1的战绩战胜了围棋世界冠军、职业九段棋手李世石,从而又一次引发了关于人工智能的热议,随后在2017年5月的中国乌镇围棋峰会上以3:0的战绩又战胜了世界排名第一的柯洁。 2017年1月6日,百度的人工智能机器人“小度”在最强大脑的舞台上人脸识别的项目中以3:2的成绩战胜了人类“最强大脑”王峰。1月13日,小度与“听音神童”孙亦廷在语音识别项目中以2:2的成绩战平。随后又在1月21日又一次在人脸识别项目中以2:0的成绩战胜了“水哥”王昱珩,更在最强大脑的收官之战中战胜了人类代表队的黄政与Alex。 2016年9月1日,百度李彦宏发布了“百度大脑”计划,利用计算机技术模拟人脑,已经可以做到孩子的智力水平。李彦宏阐述了百度大脑在语音、图像、自然语言处理和用户画像领域的前沿进展。目前,百度大脑语音合成日请求量亿,语音识别率达97%。 “深度学习”是百度大脑的主要算法,在图像处理方面,百度已经成为了全世界的最领先的公司之一。 百度大脑的四大功能分别是:语音、图像,自然语言处理和用户画像。 语音是指具有语音识别能力与语音合成能力,图像主要是指计算机视觉,自然语言处理除了需要计算机有认知能力之外还需要具备推理能力,用户画像是建立在一系列真实数据之上的目标用户模型。 工业是由德国提出来的十大未来项目之一,旨在提升制造业的智能化水平,建立具有适应性、资源效率及基因工程学的智慧工厂。 工业已经进入中德合作新时代,有明确提出工业生产的数字化就是“工业”对于未来中德经济发展具有重大意义。 工业项目主要分为三大主题:智能工厂、智能生产、智能物流。 它面临的挑战有:缺乏足够的技能来加快第四次工业革命的进程、企业的IT部门有冗余的威胁、利益相关者普遍不愿意改变。 但是随着AI的发展,工业的推进速度将会大大推快。 人工智能可以渗透到各行各业,领域很多,例如: ①无人驾驶:它集自动控制、体系结构、人工智能、视觉计算等众多技术于一体,是计算机科学、模式识别和智能控制技术高度发展的产物世界上最先进的无人驾驶汽车已经测试行驶近五十万公里,其中最后八万公里是在没有任何人为安全干预措施下完成的。英国政府也在资助运输研究实验室(TRL),它将在伦敦测试无人驾驶投递车能否成功用于投递包裹和其他货物,使用无人驾驶投递车辆将成为在格林威治实施的众多项目之一。 ②语音识别:该技术可以使让机器知道你在说什么并且做出相应的处理,1952年贝尔研究所研制出了第一个能识别10个英文数字发音的系统。在国外的应用中,苹果公司的siri一直处于领先状态,在国内,科大讯飞在这方面的发展尤为迅速。 ③自主规划与调整:NASA的远程Agent程序未第一个船载自主规划程序,用于控制航天器的操作调度。 ④博弈:人机博弈一直是最近非常火热的话题,深度学习与大数据的支持,成为了机器“战胜”人脑的主要方式。 ⑤垃圾信息过滤:学习算法可以将上十亿的信息分类成垃圾信息,可以为接收者节省很多时间。 ⑥机器人技术:机器人技术可以使机器人代替人类从事某些繁琐或者危险的工作,在战争中,可以运送危险物品、炸弹拆除等。 ⑦机器翻译:机器翻译可以将语言转化成你需要的语言,比如现在的百度翻译、谷歌翻译都可以做的很好,讯飞也开发了实时翻译的功能。 ⑧智能家居:在智能家居领域,AI或许可以帮上很大的忙,比如模式识别,可以应用在很多家居上使其智能化,提高人机交互感,智能机器人也可以在帮人们做一些繁琐的家务等。 专家系统是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题,简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。 知识库是专家系统质量是否优越的关键所在,即知识库中知识的质量和数量决定着专家系统的质量水平。一般来说,专家系统中的知识库与专家系统程序是相互独立的,用户可以通过改变、完善知识库中的知识内容来提高专家系统的性能。 机器学习(Machine Learning, ML)是一门涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等的多领域交叉学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是人工智能的核心,是使计算机具有智能的根本途径,也是深度学习的基础。 机器学习领域的研究工作主要围绕以下三个方面进行: (1)面向任务的研究 研究和分析改进一组预定任务的执行性能的学习系统。 (2)认知模型 研究人类学习过程并进行计算机模拟。 (3)理论分析 从理论上探索各种可能的学习方法和独立于应用领域的算法 机器学习是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。但是现有的计算机系统和人工智能系统没有什么学习能力,至多也只有非常有限的学习能力,因而不能满足科技和生产提出的新要求。 遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。它借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)进行随机化搜索,它是由美国的教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域,它是现代有关智能计算中的关键技术。 Deep Learning即深度学习,深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。是机器学习中一种基于对数据进行表征学习的方法。 他的基本思想是:假设我们有一个系统S,它有n层(S1,…Sn),它的输入是I,输出是O,形象地表示为:I =>S1=>S2=>…..=>Sn => O,如果输出O等于输入I,即输入I经过这个系统变化之后没有任何的信息损失,设处理a信息得到b,再对b处理得到c,那么可以证明:a和c的互信息不会超过a和b的互信息。这表明信息处理不会增加信息,大部分处理会丢失信息。保持了不变,这意味着输入I经过每一层Si都没有任何的信息损失,即在任何一层Si,它都是原有信息(即输入I)的另外一种表示。Deep Learning需要自动地学习特征,假设我们有一堆输入I(如一堆图像或者文本),假设设计了一个系统S(有n层),通过调整系统中参数,使得它的输出仍然是输入I,那么就可以自动地获取得到输入I的一系列层次特征,即S1,…, Sn。对于深度学习来说,其思想就是对堆叠多个层,也就是说这一层的输出作为下一层的输入。通过这种方式,就可以实现对输入信息进行分级表达了。 深度学习的主要技术有:线性代数、概率和信息论;欠拟合、过拟合、正则化;最大似然估计和贝叶斯统计;随机梯度下降;监督学习和无监督学习深度前馈网络、代价函数和反向传播;正则化、稀疏编码和dropout;自适应学习算法;卷积神经网络;循环神经网络;递归神经网络;深度神经网络和深度堆叠网络; LSTM长短时记忆;主成分分析;正则自动编码器;表征学习;蒙特卡洛;受限波兹曼机;深度置信网络;softmax回归、决策树和聚类算法;KNN和SVM; 生成对抗网络和有向生成网络;机器视觉和图像识别;自然语言处理;语音识别和机器翻译;有限马尔科夫;动态规划;梯度策略算法;增强学习(Q-learning)。 随着人工智能的发展,人工智能将会逐渐走入我们的生活、学习、工作中,其实人工智能已经早就渗透到了我们的生活中,小到我们手机里的计算机,Siri,语音搜索,人脸识别等等,大到无人驾驶汽车,航空卫星。在未来,AI极大可能性的去解放人类,他会替代人类做绝大多数人类能做的事情,正如刘慈欣所说:人工智能的发展,它开始可能会代替一部分人的工作,到最后的话,很可能他把90%甚至更高的人类的工作全部代替。吴恩达也表明,人工智能的发展非常快,我们可以用语音讲话跟电脑用语音交互,会跟真人讲话一样自然,这会完全改变我们跟机器交互的办法。自动驾驶对人也有非常大的价值,我们的社会有很多不同的领域,比如说医疗、教育、金融,都会可以用技术来完全改变。 [1] Russell,.人工智能:一种现代的方法(第3版)北京:清华大学出版社,2013(重印) [2]库兹韦尔,人工智能的未来杭州:浙江人民出版社, [3]苏楠.人工智能的发展现状与未来展望[J].中小企业管理与科技(上旬刊),2017,(04):107-108. [4]王超.从AlphaGo的胜利看人工智能的发展历程与应用前景[J].中国新技术新产品,2017,(04):125-126. [5]朱巍,陈慧慧,田思媛,王红武.人工智能:从科学梦到新蓝海——人工智能产业发展分析及对策[J].科技进步与对策,2016,(21):66-70. [6]王江涛.浅析人工智能的发展及其应用[J].电子技术与软件工程,2015,(05):264. [7]杨焱.人工智能技术的发展趋势研究[J].信息与电脑(理论版),2012,(08):151-152. [8]张妮,徐文尚,王文文.人工智能技术发展及应用研究综述[J].煤矿机械,2009,(02):4-7. [9]王永忠.人工智能技术在智能建筑中的应用研究[J].科技信息,2009,(03):343+342. [10]李德毅,肖俐平.网络时代的人工智能[J]中文信息学报,2008,(02):3-9. [11]李红霞.人工智能的发展综述[J].甘肃科技纵横,2007,(05):17-18 [12]孙科.基于Spark的机器学习应用框架研究与实现[D].上海交通大学,2015. [13]朱军,胡文波.贝叶斯机器学习前沿进展综述[J].计算机研究与发展,2015,(01):16-26. [14]何清,李宁,罗文娟,史忠植.大数据下的机器学习算法综述[J].模式识别与人工智能,2014,(04):327-336. [15]郭亚宁,冯莎莎.机器学习理论研究[J].中国科技信息,2010,(14):208-209+214. [16]陈凯,朱钰.机器学习及其相关算法综述[J].统计与信息论坛,2007,(05):105-112. [17]闫友彪,陈元琰.机器学习的主要策略综述[J].计算机应用研究,2004,(07):4-10+13. [18]张建明,詹智财,成科扬,詹永照.深度学习的研究与发展[J].江苏大学学报(自然科学版),2015,(02):191-200. [19]尹宝才,王文通,王立春.深度学习研究综述[J].北京工业大学学报,2015,(01):48-59. [20]刘建伟,刘媛,罗雄麟.深度学习研究进展[J].计算机应用研究,2014,(07):1921-1930+1942 [21]马永杰,云文霞.遗传算法研究进展[J].计算机应用研究,2012,(04):1201-1206+1210. [22]曹道友.基于改进遗传算法的应用研究[D].安徽大学,2010
由中国信息协会主办,中国信息界杂志社承办的“2010中国中小企业信息化与成长力推进高峰论坛”在北京隆重召开!论坛主题:抓住两化融合发展契机,以信息化提升中小企业成长力。鹏为软件凭借多年专注专业中小企业CRM,以及在CRM软件领域的突出表现,摘得“2010年度中国软件最佳CRM软件提供商”奖项,也是全国唯一一家CRM软件厂商获此殊荣。鹏为客户关系管理CRM:1、客户伙伴信息整合、合同管理、业务过程控制、进销存、OA协同办公2、积累业务数据、业绩量化评价体系、跟踪销售活动、分析市场和销售3、增值应用:短信平台、电子传真、电话秘书、网络电话、电子商务鹏为软件厦门分公司:厦门市鹏力信息技术有限公司
中心成立以来,为推动我国中小企业对外合作交流,帮助中小企业提高竞争能力,多次召开全国工作会,布置工作,交流经验,组织经贸活动,举办各类国际会议和大型国内外展览,开展培训咨询,取得了丰硕成果。(一) 建立并扩大对外合作渠道截止2010年底,中心共组织国际交流近400批,13000多人次。中心已与俄罗斯、美国、法国、德国、意大利、澳大利亚、西班牙、日本、韩国、土耳其、越南、马来西亚、智利等十几个国家和地区的有关机构建立了合作关系,有较密切的业务往来。中心与国外相关机构签订合作协议21份,推动了中小企业的交流。在2001年APEC中小企业部长会议和工商论坛会议(由原国家经贸委负责主办)期间,创立了“APEC中小企业服务联盟”,联盟秘书处设在中心,为进一步加强APEC区域中小企业合作创造了有利条件。(二) 举办大型经贸交流活动截止2010年底,主办或承办大型经贸活动30次,利用外资协议金额106亿美元,实际利用额94亿美元。如1992年、1994年在天津和北京举办了国际中小企业新产品新技术展览暨合作洽谈会(中国境内首次举办中小企业展览会);此后多年先后在常州、苏州、广西等举办中小企业博览会(交易会);1998年、2004年、2006年、2008年、2010年在烟台、青岛和福州举办了五届APEC中小企业技术交流暨展览会;1999年、2005年承办了在莫斯科举行的“中国中小企业产品展览会”和“中国中小企业纺织品、服装展览会”。中心还承担了“亚欧会议中小企业部长级会议”的筹办工作,承办了“第四届中德高技术对话论坛”、“第一届中日节能环保综合论坛”等多个国际会议。(三) 加强对中小企业人员的培训从1991年开始,中心举办了多种形式的中小企业厂长、经理培训班和研讨会。截止到2010年底,组织了近340期各种培训班、培训中小企业经营管理者53350余名,其中引智培训50多期,培训人员4000多人;援外培训近70期,来自100多个发展中国家的2230多位经贸管理官员和中小企业代表来华研修和考察;利用政府扶持资金免费培训3万余名中小企业经营管理者和专业技术人员。中心组织的中德政府间合作项目、援外培训项目和面向全国举办的“中国中小企业竞争力讲堂”、“中国中小企业大讲堂”曾先后受到商务部、发改委、国资委、财政部等部门及领导的表扬,受到了中小企业经营管理者的欢迎。(四) 做好信息和咨询服务为了帮助中小企业获取信息,中心创办了《中国中小企业》杂志,编辑出版了《中国中小企业年鉴》、《中国行业企业百强》、《中国中小企业走出去服务指南》、《中国中小企业推荐目录》等。在中小企业司的支持下,中心承担了“国家中小企业信息化公共服务平台”的建设工作,利用现代网络工具为中小企业提供信息、咨询和技术等服务。中心还成立了专家咨询委员会,整合社会资源,为中小企业战略制订、融资服务、品牌培育、园区建设等提供咨询服务。由中心指导建设的天津中小企业发展园、国家新能源产业和中小企业科技创新与成果转化(连云港)示范园区等已成为中小企业集聚和区域经济振兴的重要载体。(五) 承担研究工作受国家发改委、财政部、工信部、国资委等委托,承担了“利用外资设立民营企业担保基金”(三期)、“中小企业实施走出去战略研究”、“中小企业对外投资合作风险防范研究”、“推动中小企业信息化建设的政策研究”、“节能减排技术在中小企业推广应用的政策研究”、“欧洲行业组织在促进中小企业节能降耗中的作用”、“中国中小企业经济发展指数”、“东北非公有制经济发展调研”、“帮助中小企业获得政府采购对策研究”和“中国中小企业管理运营发展报告”等十多个课题的研究工作。通过调研,中心形成了一支涉及中小企业发展多方面的社会化专家队伍,积累了经验,促进了服务水平提高。
(一)题名(Title,Topic)题名又称题目或标题。题名是以最恰当、最简明的词语反映论文中最重要的特定内容的逻辑组合。论文题目是一篇论文给出的涉及论文范围与水平的第一个重要信息,也是必须考虑到有助于选定关键词不达意和编制题录、索引等二次文献可以提供检索的特定实用信息。论文题目十分重要,必须用心斟酌选定。有人描述其重要性,用了下面的一句话:“论文题目是文章的一半”。对论文题目的要求是:准确得体:简短精炼:外延和内涵恰如其分:醒目。(二)作者姓名和单位(Authoranddepartment)这一项属于论文署名问题。署名一是为了表明文责自负,二是记录作用的劳动成果,三是便于读者与作者的联系及文献检索(作者索引)。大致分为二种情形,即:单个作者论文和多作者论文。后者按署名顺序列为第一作者、第二作者……。重要的是坚持实事求是的态度,对研究工作与论文撰写实际贡献最大的列为第一作者,贡献次之的,列为第二作者,余类推。注明作者所在单位同样是为了便于读者与作者的联系。(三)摘要(Abstract)论文一般应有摘要,有些为了国际交流,还有外文(多用英文)摘要。它是论文内容不加注释和评论的简短陈述。其他用是不阅读论文全文即能获得必要的信息。摘要应包含以下内容:①从事这一研究的目的和重要性;②研究的主要内容,指明完成了哪些工作;③获得的基本结论和研究成果,突出论文的新见解;④结论或结果的意义。(四)关键词(Keywords)关键词属于主题词中的一类。主题词除关键词外,还包含有单元词、标题词的叙词。主题词是用来描述文献资料主题和、给出检索文献资料的一种新型的情报检索语言词汇,正是由于它的出现和发展,才使得情报检索计算机化(计算机检索)成为可能。主题词是指以概念的特性关系来区分事物,用自然语言来表达,并且具有组配功能,用以准确显示词与词之间的语义概念关系的动态性的词或词组。技巧—:依据学术方向进行选题。论文写作的价值,关键在于能够解决特定行业的特定问题,特别是在学术方面的论文更是如此。因此,论文选择和提炼标题的技巧之一,就是依据学术价值进行选择提炼。技巧二:依据兴趣爱好进行选题。论文选择和提炼标题的技巧之二,就是从作者的爱好和兴趣出发,只有选题符合作者兴趣和爱好,作者平日所积累的资料才能得以发挥效用,语言应用等方面也才能熟能生巧。技巧三:依据掌握的文献资料进行选题。文献资料是支撑、充实论文的基础,同时更能体现论文所研究的方向和观点,因而,作者从现有文献资料出发,进行选题和提炼标题,即成为第三大技巧。技巧四:从小从专进行选题。所谓从小从专,即是指软文撰稿者在进行选则和提炼标题时,要从专业出发,从小处入手进行突破,切记全而不专,大而空洞。11.参考文献格式要规范,严谨,基本要求超过三十篇(工程硕士20)。12.所有参考文献必须在论文中有引用的地方。13.所有图形公式都要自己完成,拷贝、复制是不允许的。14.尽量不要用我或者我们这样的字眼,也就是口语化的东西要杜绝。15.图形都要有英文的title。16.页眉需要有下面信息。17.摘要和目录是专家评审的主要翻阅的地方,一定要让摘要和目录体现所做工作和创新点,所以摘要和目录的编写很重要,往往容易被忽视!18.表格需要有编号并至于表格的上方,不同于图形的放置于下方。19.论文的结构一般是背景介绍·研究现状现有算法、技术、手段或方法的缺陷和不足提出的新的算法、协议、方法、技术或手段对自己提出的方法、技术或手段进行实践、分析和比较结论和展望20.论文撰写时,一定要注意书面语气,不要有口语化的成分,很多同学没有培养这方面的能力,写的内容过于口语化,应注意!
新闻学的毕业论文提纲
一段充实而忙碌的大学生活即将结束,大家都知道毕业生要通过最后的毕业论文,毕业论文是一种比较重要的检验学生学习成果的形式,那么大家知道正规的毕业论文怎么写吗?以下是我收集整理的新闻学的毕业论文提纲,欢迎大家分享。
题目:新媒体环境下新闻报道的二次伤害研究
目录
第一章、绪论
第一节、研究背景与意义
一、研究背景
二、研究意义
第二节、研究内容、方法及创新
一、研究内容
二、研究方法
三、创新之处
第三节、“二次伤害”概念界定
第四节、国内外相关研究综述
一、国外研究现状
二、国内研究现状
第二章、时异势殊:新媒体扩大“二次伤害”
第一节、新媒体为新闻二次伤害提供“平台”
一、新传播者:传受一体,主体多元
二、新传播内容:包罗万象,不可计数
三、新传播渠道:开放共享,扩大影响
四、新受众细分:匿名虚拟,促进舆论
五、新传播效果:即时互动,满足需求
第二节、新媒体环境下二次伤害的'方式
一、轰炸式采访
二、透明化报道
三、加工性传播
四、网络暴力式反馈
第三节、新媒体扩大二次伤害影响
一、对新闻当事人的伤害
二、损害媒体公信力
三、对受众的伤害
四、影响社会公平公正
第三章、过犹不及:“姚贝娜事件”中的二次伤害
第一节、姚贝娜事件发展始末
第二节、姚贝娜事件中“二次伤害”现象探析
一、新闻媒体造成“二次伤害”的表现
二、新媒体环境下受众造成“二次伤害”的表现
第三节、姚贝娜事件相关结论
一、新闻采访时媒体应遵循伦理道德
二、新媒体环境下受众应提高媒介素养
第四章、追根溯源:新媒体二次伤害成因
第一节、媒体原因
一、采写过程中新闻伦理意识淡薄
二、信息把关弱化
三、新闻生产流程简化
四、传播过程异化
第二节、社会原因
一、经济利益下的“新闻大战”
二、大众文化对媒体的消费
三、新媒体技术上为“二次伤害”提供条件
四、新媒介素养教育缺乏
第三节、受众原因
一、受众新闻生产过程非理性化
二、阅听兴趣偏猎奇
第四节、当事人原因
一、过于依赖媒体
二、缺乏维权意识
第五章、因事制宜:减少二次伤害现象
第一节、传媒制度的“他律”
一、加强新闻立法及网络管理
二、加强学术研究
三、制订相关传媒内部职业规范细则
四、提高公民新媒介素养
第二节、新闻从业者的“自律”
一、加强新闻从业者的职业道德意识
二、加大监督力度
三、理性对待受众需求
四、坚持正面引导
第三节、新媒体时代受众的“自律”
一、辨别媒介信息
二、理性看待各类突发事件
结语
参考文献
致谢
引用分“直接引用”和“间接引用”。“直接引用”引用的是诗句,一般应当注明。“间接引用”是引用原诗句的意思,则可注明或不注明。但重要的论文,通常也以注明为好。