首页 > 期刊论文知识库 > 基因编辑棉花的参考文献

基因编辑棉花的参考文献

发布时间:

基因编辑棉花的参考文献

质疑转基因的观点:请重点关注“绿色和平”组织的网站,还有反转斗士Jeffrey 的著作。赞同转基因的观点:请关注“孟山都”公司的网站,还有科普名人方舟子的博客。个人认为,支持转基因的公司或个人或多或少有商业利益在其中,而反对观点的科学性强一些。如果您有心作此方面研究,最好能调查一下,对于转基因食品(如大豆、玉米、玉米油等)1. 在我国鼓吹推广转基因最热心的专家看他们是否自己积极食用,2. 国家部委的子弟幼儿园是否积极食用,3. 看大型国际赛事和国际会议是否积极食用,也许,这才能够了解国家相关领导和专家对转基因食品的内心真实看法。

产经透视 转基因技术的研究综述及利弊关系张 兆 熙( 华中师范大学附属第一中学摘 要 湖北 武汉 430223) 转基因技术作为生命科学的前沿技术之一, 已经逐渐走入了人们的生活。转基因 技术可以认为是 在一定程度上通过科学技术手段让其他生物、 植物朝着对人类有利方向发展的技术。 通过对转基因技术的介绍 , 阐述了该技术的利弊关系, 指出只有通过正确的引导和规范管理, 才能很好地利用该技术, 使它为人类服务。 关键词 转基因技术 发展历程 利弊关系 文献标识码 中图分类号 Q78 B基因植株。 与农杆菌转化相比, 基因枪法转 化的一个主要优点是不受受体植物范围的 限制。 而且其载体质粒的构建也相对简单 , 因此也是目前转基因研究中应用较为广泛 的一种方法。 ( 3 ) 花粉管通道法。 在授粉后向子房注 射含目的基因的 DNA 溶液, 利用植物在开 花、 受精过程中形成的花粉管通道, 将外源 1 前言转基因技术是生命科学前沿的重要领 传转化” 均为转基因的同义词。 2.1 转基因植物技术 转 基 因 植 物 是 指 利 用 重 组 DNA 技 术 域之一。 自从人类耕种作物以来, 我们的祖 先就从未停止过作物的遗传改良。过去的 几千年里农作物改良的方式主要是对自然 突变产生的优良基因和重组体的选择和利 用, 通过随机和自然的方式来积累优良基 因。遗传学创立后近百年的动植物育种则 是采用人工杂交的方法 , 进行优良基因的 重组和外源基因的导入而实现遗传改良。 因此, 可以认为转基因技术是与传统技术 一脉相承的, 其本质都是通过获得优良基 因进行遗传改良。但在基因转移的范围和 效率上, 转基因技术与传统育种技术有两 点重要区别, 第一, 传统技术一般只能在生 物种内个体间实现基因转移, 而转基因技 术所转移的基因则不受生物体间亲缘关系 的限制; 第二, 传统的杂交和选择技术一般 是在生物个体水平上进行, 操作对象是整 个基因组, 所转移的是大量的基因, 不可能 准确地对某个基因进行操作和选择, 对后 代的表现预见性较差。而转基因技术所操 作和转移的一般是经过明确定义的基因, 功能清楚, 后代表现可准确预期。因此, 转 基因技术是对传统技术的发展和补充。将 两者紧密结合, 可相得 益彰, 大大地提高动 植物品种改良的效率。 将克隆的优良目的基因整合到植物的基因 组中, 并使其得以表达, 从而获得的具有新 的遗传性状的植物。 1983 年世界第一例 自 转 基 因 植 物 —烟 草 问 世 以 来 仅 20 多 年 —— 的时间, 转基因植物的研究和应用就已经 得到了迅猛的发展, 已有近 1000 例转基因 植物被批准进入田间试验, 涉及的植物物 种有 50 余个, 已 有 48 个转基因植物品种 被批准进行商业化生产。常见的转基因植 物技术有: 农杆菌是普遍 ( 1 ) 农杆菌介导转化法。 存在于土壤中的一种革兰氏阴性细菌, 它 能在自然条件下趋化性地感染大多数双子 叶植物的受伤部位, 并诱导产生冠瘿瘤或 发状根。根癌农杆菌和发根农杆菌的细胞 中 分 别 含 有 Ti 质 粒 和 Ri 质 粒 , 其 上 有 一 段 T- DNA, 农 杆 菌 通 过 侵 染 植 物 伤 口 进 入 细 胞 后 , 可 将 T- DNA 插 入 到 植 物 基 因 组 中。 因此, 农杆菌是一种天然的植物遗传转 化体系。人们将目的基因插入到经过改造 的 T- DNA 区, 借助农杆菌的感染实现外源 基因向植物细胞的转移与整合, 然后通过 细胞和组织培养技术, 再生出转基因植株。 农杆菌介导法起初只被用于双子叶植物 中, 近年来, 农杆菌介导转化在一些单子叶 植物( 尤其是水稻) 中也得到了广泛应用。 ( 2 ) 基因枪介导转化法。 利用火药爆炸 或高压气体加速 ( 这一加速设备被称为基 因枪) , 将包裹了带目的基因的 DNA 溶液 的高速微弹直接送入完整的植物组织和细 胞中, 然后通过细胞和组织培养技术, 再生 出植株, 选出其中转基因阳性植株即为转 DNA 导 入 受 精 卵 细 胞 , 并 进 一 步 地 被 整 合到受体细胞的基因组中, 随着受精卵的发 育而成为带转基因的新个体。该方法于 20 世纪 80 年代初期由我国学者周光宇提出, 我国目前推广面积最大的转基因抗虫棉就 是用花粉管通道法培育出来的。该法的最 大优点是不依赖组织培养人工再生植株, 技术简单, 不需要装备精良的实验室, 常规 育种工作者易于掌握。 2.2 转基因动物技术 转基因动物是指用实验导入的方法将 外源基因在染色体基因内稳定整合并能稳 定表达的一类动物。 1974 年, Jaenisch 应用 显微注射法, 在世界上首次成功地获得了 SV40DNA 转基因小鼠。其后, Costantini 将兔 - 珠蛋白基因注入小鼠的受精卵, 使受精 卵发育成小鼠, 表达出了兔卜珠蛋白; Palmiter 等 把 大 鼠 的 生 长 激 素 基 因 导 人 小鼠受精卵内, 获得“ 超级” 小鼠; Church 获得 了首例转基因牛。 到目前为止, 人们已经成 功地获得了转基因鼠、 、 羊、 、 羊、 鸡 山 猪 绵 牛、 蛙以及多种转基因鱼。 主要的转基因动 物技术包括有: ( 1 ) 原 核 显 微 注 射 法 , 又 称 DNA 显 微 注射法, 即通过显微操作仪将外源基因直 接用注射器注入受精卵, 利用外源基因整 合到 DNA 中, 发育成转基因动物。其创始 2 转基因技术的介绍转基因技术是指用人工分离和修饰过 的外源基因导入生物体的基因组中, 从而 使生物体的遗传性状发生改变的技术, 可 分为转基因动物与转基因植物两大分支。 人们常说的 “ 遗传工程” “ 、 基因工程” “ 、遗 收稿日期: 2006- 10- 08 PIONEERING WITH SCIENCE & TECHNOLOGY MONTHLY NO.11 2006 111 科技创业 月 刊 PIONEERING WITH SCIENCE & TECHNOLOGY MONTHLY 人是 Jaenisch 和 Mintz 等。 此方法目前应用 较普遍, 现在的转基因动物研究大都是在 但是, 人类对自然界的干预是否会造 成潜在的尚不可能预知的危险? 大量转基 因生物会不会破坏生物多样性? 转基因产 品会不会对人类健康造成危害? 一些科学 家们开始担心对生物、 植物生命进行的“ 任 意修改” 创造出的新型遗传基因和生物可 , 能会危害到人类。它们可能会对生态环境 造成新的污染, 即所谓的遗传基因污染, 而 这种新的污染源很难被消除。 还有, 转基因 农作物和以此为原材料制造的转基因食品 对人体的影响也尚未有定论。 目前, 国内外学者对转基因技术的负 面影响也作了大量研究, 出现了许多相关 报道, 如英国的权威科学杂志《 然》 登 自 刊 了 美 国 康 奈 尔 大 学 副 教 授 约 翰?罗 西 的 一 篇论文, 引起世界震惊。论文指出, 研究人 员在实验室里把抗虫害转基因 玉 米 “ 玉 BT 米” 的花粉撒在苦苣 菜叶上, 然后让蝴蝶幼 虫啃食这些菜叶。4 天之后, 有 44%的幼虫 死亡, 活着的幼虫身体较小, 并且没有精 神。而另一组幼虫啃食撒有普通玉米花粉 的菜叶, 就没有出现死亡率高或发育不良 的现象。论文据此推断, BT 转基 因 玉 米 花 粉中含有毒素。 另据报道, 英国伦理和毒性 中心的实验报告说, 与一般大豆相比, 耐除 草剂的转基因大豆中, 防癌的成分异黄酮 减少了。 与普通大豆相比, 两种转基因大豆 中的异黄酮成分减少了 12%~ 14% , 还有 巴 西坚果事件等。 面对国际上出现的种种关于转基因作 物的争议, 许多科学家、 学术团体纷纷以各 种形式发表对转基因技术的支持态度。由 美国 Tuskegee 大学 Prakash 教授 2000 年 1 月起草的题为 “ 科学家支持农业生物技术 的声明” 已征集到世界上 3 000 多位科学 , 家的签名, 其中包括 DNA 双螺旋结构的发 现者、 诺贝尔奖得主 James Watson , 绿色革 命 的 创 始 人 、 诺 贝 尔 奖 得 主 Norman Bor- 国 laug, 世 界 粮 食 奖 获 得 者 、 际 水 稻 研 究 所 首席育种家 Gurdev Khush 。该声明称, “ 对 植物负责任的遗传修饰既不新也不危险。 如抗病虫等诸多性状已通过有性杂交和细 胞培养的方法经常性地引入作物中。与传 统的方法相比较 , 通过重组 DNA 技术引入 新的或不同的基因并不一定会有新的或更 大的风险, 且商品化的产品的安全性则由 于目前的安全管理规则而得到了更进一步 的保障。遗传新技术为作物改进提供了更 大的灵活性和精确性。” 因此, 笔者认为和现代任何一项工业 技术一样, 转基因技术也具有两面性, 有长 亦有短。 在发展转基因技术等生物技术时, 应该扬长避短、 利避害、 范管理, 使转 趋 规 基因技术能够健康发展。 Palmiter 等 方 法 的 基 础 上 有 所 改 进 而 进 行 的。这种方法的特点是外源基因的导入整 合效率较高, 不需要载体, 直接转移目的基 它可以直 因, 目的基因的长度可达 100Kb 。 接获得纯系, 实验周期短。 但需要贵重精密 仪器, 技术操作较难, 并且外源基因的整合 位点和整合的拷贝数都无法控制, 易造成 宿主动物基因组的插入突变, 引起相应的 性状改变, 重则致死。 ( 2 ) 逆转录病毒载体法, 指将目的基因 重组到逆转录病毒载体上, 制成高浓度的 病毒颗粒, 人为感染着床前或着床后的胚 胎, 也可以直接将胚胎与能释放逆转录病 毒的单层培养细胞共孵育以达到感染的目 的, 通过病毒将外源目的基因插入整合到 这种逆转录病毒被 宿主基因组 DNA 中去。 用 重 组 DNA 技 术 修 饰 后 作 为 基 因 载 体 在 应用中优于微注射法之处为 : 无需要重排, 可在整合点整合转移基因的单个拷贝; 将 胚胎置于高浓度病毒容器中, 或者与被感 染的细胞体外共同培养, 或微注射鸡胚盘 里 , 整 合 有 逆 转 录 病 毒 的 DNA 的 胚 胎 率 高。 缺点是: 需要生产带有转基因的逆转录 病毒; 插入逆转录病毒的基因有一定的大 小限度; 所得转基因家畜的嵌合性很高, 而 需要广泛的杂交, 以建立转基因系; 转基因 的表达问题尚未解决。 ( 3 ) 胚胎干细胞介导法是将基因导入 胚胎于细胞; 然后将转基因的胚胎干细胞 注射于动物囊胚后可参与宿主的胚胎构 成, 形成嵌合体, 直至达到种系嵌合。其优 点是: 在将胚胎干细胞植入胚胎前, 可以在 体 外 选 择 一 个 特 殊 的 基 因 型 , 用 外 源 DNA 转染以后, 胚胎干细胞 可以被克隆, 继而可 以 筛 选 含 有 整 合 外 源 DNA 的 细 胞 用 于 细 胞融合, 由此可以得到很多遗 传上相同的 转基因动物。缺点就是许多嵌合体转基因 动物生殖细胞内不含有转基因。 目前, 胚胎 干细胞介导法在小鼠上应用比较成熟, 在 大动物上应用较晚。 4 转基因技术的发展展望当前条件下, 转基因技术还存在许多 不足, 还处于不断的发展与完善之中, 表现 在: 转基因表达水平低, 许多转基因的表达 强烈地位受着其宿主染色体上整合位点的 影响, 往往出现异位表达和个体发育不适 宜阶段表达, 影响转基因表达能力或基因 表达的组织特异性, 从而使大部分转基因 表达水平极低, 极少部分基因表达水平过 高; 难以控制转基因在宿主基因组中的行 为, 转基因随机整合于动物的基因组中, 可 能会引起宿生细胞染色体的插入突变, 还 会造成插入位点的基因片段丢失, 插入位 点周围序列的倍增及基因的转移, 也可能 激活正常状态下处于关闭状态的基因; 不 了解哪些基因控制 多数生理过程, 不了解 基因表达的发育控制和组织特异性控制的 机制; 制作转基因动 物的效率低, 这是目前 几乎所有从事转基因动物研究的实验室都 面临的问题, 也是制 约着这项技术广泛应 用的关键; 对传统伦理是一种挑战, 对人类 的生存有一定的负面 作用等。但笔者相信 只要通过科学家的进一步研究和各国对转 基因技术的规范管理 , 保证转基因技术的 研究和开发的健康而有序, 制定相关的法 律、 法规, 健全转基因生物 和转基因食品的 管理, 如对转基因作物进行监管, 对转基因 食品进行标识等, 应该更深 入的了解转基 因技术其中的奥秘, 只有更了解它才能利 用好它, 让我们的生活更加美 好和谐, 使公 众对转基因技术有一个较为科学的认识, 主动地接受转基因食品, 使转 基因技术贴 近民众, 造福于人类。 参考文献 1 2 3 陈吉美 . 转 基 因 植 物 的 研 究 进 展 〔J〕. 德 州 学 院 学报, 2004 ( 2 ) 文 平 , 王 仁 祥 . 转 基 因 植 物 研 究 进 展 〔J〕. 生 物 学教学, 2005 ( 12 ) 郭黠, 谢辉, 何 承 伟 . 转 基 因 动 物 研 究 进 展 〔J〕. 医学综述, 2006 ( 5 ) 3 转基因技术的利与弊科学家发明转基因技术的初衷是想利 ( 责任编辑 秋 实 林 洪) 用该技术造福人类, 既可加快农作物和家 畜品种的改良速度, 提高人类食物的品质, 又可以生产珍贵的药用蛋白, 为患病者带 来福音。 比如说, 抗虫的转基因玉米不会被 虫咬, 可以让人们放心食用; 将能产生人体 疫苗的基因转入植物食品, 人们就可以在 食用食物的同时增加自身对疾病的抵抗 力。

地处盆地,属于温带大陆性气候,昼夜温差大,降水量少,适宜大量长绒棉的生产,受雨水减产的影响少。人口较东部沿海城市少(地广人稀),适宜大面积的农业生产。亚欧第二铁路大陆桥通过,方便农产品运送。政府支持西部大开发,经济上的资金援助。

DOI:

microhomology-mediated end-joining (MMEJ)

DNA double-strand break (DSB)

local accumulation of DSB repair molecules (LoAD) system

homologous recombination (HR)

non-homologous end-joining (NHEJ)

homology-independent targeted integration (HITI) system

precise integration into target chromosome (PITCh) system

single-strand template repair (SSTR)

Gaps: 以往的研究从未在多个基因组位点同时产生多种模式或多个报告基因的组合。基因插入在每个位点独立进行,在不同的基因位点上进行双或三重敲入需要一定的步骤。

横向比较: CRISPR-Cas9基因标记使用的方法有(1)同源修复HR,(2)非同源end-joining NHEJ,(3)微同源介导的end-joining MMEJ。虽然HR的方法可以非常精准的knockin,但它的载体的构建和效率远低于end-joining的方法。

工作简介 :

[图片上传失败...(image-b8ca62-82)]

原因在于:MS2可以与RNA结合,从而报告RNA的情况,将MS2与CtIP融合,可将CtIP导向到sgRNA所在的位置,形成一个滞留,发挥CtIP增加MMEJ的功效,从而造成了更多的DNA断裂,插入效率增加。

之前我看过一篇文章,说的是CRISPR-Cas9的效果由于P53的存在而大打折扣,而P53对抗HDR是CRISPR-Cas9造成DSB无法被修复,从而介导了CRISPR-Cas9的细胞毒性。那么就会有以下两种情况:(1)P53存在时,CRISPR-Cas9效果不好,且有细胞毒性;(2)P53敲除时,CRISPR-Cas9效率增加,但有致癌的风险。以此引发临床安全性的思考,提醒在人体上使用CRISPR-Cas9治疗需要注意的安全性问题,从而以一个相对简单的故事,发表在了Nature Medicine上。所以,我们在使用基因编辑工具的时候,需要注意一下它的细胞毒性情况。

老板亲自传授的文献阅读方法

(1)FACS结果显示,没有毒性:首先转入已被证实具有细胞毒性的载体来作为对照,MS2-CtIP组没有对细胞增殖产生影响,而ZFN组有。

(2)如我前面所说,DSB如无法被修复,则是细胞毒性。在这里作者也使用DSB修复实验来代表细胞毒性实验,首先使用依托泊苷诱导DSB,然后使用anti-γ-H2AX染色来查看修复情况,发现MS2-CtIP组DSB修复活性显著高于对照组。

以上结果表明,MS2-CtIP是通过诱导DSB修复来达到低(无)细胞毒性的效果。

我就不写了。。。因为我没看明白,嘤嘤嘤。

第一部分主要讲基因编辑系统的构建及基本情况,接下来就要讲一讲它作为一个基因编辑工具的基本素养了。

太多啦!简单说一下,就是对比了MMEJ和NHEJ它们在精确敲入,非精确敲入和未敲入这三个方面的情况,得到MMEJ几乎完败NHEJ的结论咯。 看看这图画得多漂亮!

回归前面说的Gaps,同时对多个基因进行编辑呢?结果显示是可以高效、准确的对多个基因进行编辑。这部分是灰常灰常棒的。

学习一下人家的思路~

创新点在于MS2的定位效应,MS2-CtIP的增强效应,MMEJ的精巧性。

参考文献: Nakade S, Mochida K, Kunii A, et al. Biased genome editing using the local accumulation of DSB repair molecules system[J]. Nature communications, 2018, 9(1): 3270.

基因编辑的参考文献

DOI:

microhomology-mediated end-joining (MMEJ)

DNA double-strand break (DSB)

local accumulation of DSB repair molecules (LoAD) system

homologous recombination (HR)

non-homologous end-joining (NHEJ)

homology-independent targeted integration (HITI) system

precise integration into target chromosome (PITCh) system

single-strand template repair (SSTR)

Gaps: 以往的研究从未在多个基因组位点同时产生多种模式或多个报告基因的组合。基因插入在每个位点独立进行,在不同的基因位点上进行双或三重敲入需要一定的步骤。

横向比较: CRISPR-Cas9基因标记使用的方法有(1)同源修复HR,(2)非同源end-joining NHEJ,(3)微同源介导的end-joining MMEJ。虽然HR的方法可以非常精准的knockin,但它的载体的构建和效率远低于end-joining的方法。

工作简介 :

[图片上传失败...(image-b8ca62-82)]

原因在于:MS2可以与RNA结合,从而报告RNA的情况,将MS2与CtIP融合,可将CtIP导向到sgRNA所在的位置,形成一个滞留,发挥CtIP增加MMEJ的功效,从而造成了更多的DNA断裂,插入效率增加。

之前我看过一篇文章,说的是CRISPR-Cas9的效果由于P53的存在而大打折扣,而P53对抗HDR是CRISPR-Cas9造成DSB无法被修复,从而介导了CRISPR-Cas9的细胞毒性。那么就会有以下两种情况:(1)P53存在时,CRISPR-Cas9效果不好,且有细胞毒性;(2)P53敲除时,CRISPR-Cas9效率增加,但有致癌的风险。以此引发临床安全性的思考,提醒在人体上使用CRISPR-Cas9治疗需要注意的安全性问题,从而以一个相对简单的故事,发表在了Nature Medicine上。所以,我们在使用基因编辑工具的时候,需要注意一下它的细胞毒性情况。

老板亲自传授的文献阅读方法

(1)FACS结果显示,没有毒性:首先转入已被证实具有细胞毒性的载体来作为对照,MS2-CtIP组没有对细胞增殖产生影响,而ZFN组有。

(2)如我前面所说,DSB如无法被修复,则是细胞毒性。在这里作者也使用DSB修复实验来代表细胞毒性实验,首先使用依托泊苷诱导DSB,然后使用anti-γ-H2AX染色来查看修复情况,发现MS2-CtIP组DSB修复活性显著高于对照组。

以上结果表明,MS2-CtIP是通过诱导DSB修复来达到低(无)细胞毒性的效果。

我就不写了。。。因为我没看明白,嘤嘤嘤。

第一部分主要讲基因编辑系统的构建及基本情况,接下来就要讲一讲它作为一个基因编辑工具的基本素养了。

太多啦!简单说一下,就是对比了MMEJ和NHEJ它们在精确敲入,非精确敲入和未敲入这三个方面的情况,得到MMEJ几乎完败NHEJ的结论咯。 看看这图画得多漂亮!

回归前面说的Gaps,同时对多个基因进行编辑呢?结果显示是可以高效、准确的对多个基因进行编辑。这部分是灰常灰常棒的。

学习一下人家的思路~

创新点在于MS2的定位效应,MS2-CtIP的增强效应,MMEJ的精巧性。

参考文献: Nakade S, Mochida K, Kunii A, et al. Biased genome editing using the local accumulation of DSB repair molecules system[J]. Nature communications, 2018, 9(1): 3270.

环状RNA(circular RNAs, circRNAs)是一类由mRNA 前体(pre-mRNA)经反向剪接形成的共价闭合环状非编码RNA。CircRNA最早是在上世纪70年代在病毒中被发现,但是由于早期RNA文库制备广泛使用polyA富集的方式(circRNA没有游离的5’和3’末端),以及RNA-seq读数要求以线性方式与基因组对齐的计算算法,导致大量circRNA的信息被遗漏,使得人们一度认为环状 RNA 只是错误剪接的副产物,对circRNA的关注并不高。 随着高通量测序技术和生物信息学的发展,成千上万种circRNA被发现,围绕着circRNA的基础研究也越来越多。大量研究表明circRNA在哺乳动物细胞中具有内生、丰富、保守、稳定等特点,并经常表现出组织或时空特异性,可以通过多种机制参与机体生长发育调控,以及疾病的发生和发展。因此,近年来circRNA逐渐成为非编码RNA研究领域的热点。 根据circRNA序列的来源,可以分为3类: 1. 序列全部来源于外显子,称为Exonic circRNAs   2.  序列来源于外显子和内含子,称为EIciRNAs   3. 序列全部来源于内含子,称为ciRNAs。 circRNA是由mRNA前体(pre-mRNA)经反向剪接(back-splicing)形成的,目前报道的成环模型主要有以下3种: · 内含子反向互补序列驱动环化环化 外显子两端的侧翼内含子含有多对反向互补序列,反向互补序列促使内含子序列配对,使得下游的剪接供体(Splice-Donor)与上游的剪接受体(Splice-Acceptor)靠近,从而结合形成环状RNA。(图1.左) · RNA结合蛋白驱动环化 环化外显子两端的侧翼内含子含有RNA结合蛋白(RBPs)识别的基序,RBP分别与两翼内含子特异基序结合后,会形成二聚体,促进两翼内含子互相靠近,进而连接成环。(图1.右) · 套索驱动环化 mRNA前体剪接时,会发生外显子跳读事件,产生包含外显子和内含子的套索中间体,随后该中间体发生反向剪接,形成环状RNA。(图2.) circRNA最常见的功能是作为miRNA海绵体与miRNA结合,从而影响miRNA对基因的调控。比如研究得比较多的小脑退行性相关蛋白基因(CDR1)反义链转录的环状RNA分子: Cdr1as,它包含约70个miR-7 的结合位点和1个miR-671结合位点,其中与miR-7的结合方式是非完全互补,只是结合,不会被AGO2蛋白介导降解,而与miR-671的结合方式是完美的互补。当Cdr1as高表达时,miR-7被结合,无法抑制原癌基因的mRNA,从而上调原癌基因的表达,导致癌症的发生。当miR-671高表达时,Cdr1as被降解,miRNA得到释放,与原癌基因mRNA结合,起到基因下调的作用,抑制癌症的发生。(图3.) 很多环状RNA上含有蛋白结合的位点,可以作为蛋白的海绵体。如RNA剪切因子MBL,可结合亲本基因第二外显子,促使其环化形成circ-Mbl,circ-Mbl又能与MBL结合,降低MBL有效浓度,减少MBL生成。 除了作为miRNA及蛋白海绵体,circRNA还可以作为支架蛋白促进酶的共定位、结合转录因子抑制靶基因表达、参与亲本基因表达调控、在特定的情况下还可以翻译出多肽。根据参与的功能不同,circRNA所处的细胞定位也不同,如作为miRNA或蛋白海绵体时,circRNA需由细胞核运输到细胞基质起作用,而参与亲本基因表达调控或结合转录因子抑制靶基因时,circRNA常在细胞核中起作用。 (参考文献:Kristensen, L. S., Andersen, M. S., Stagsted, L. V., Ebbesen, K. K., Hansen, T. B., & Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics, 20(11), 675-691.) 随着越来越多内源性的circRNA被发现在人体组织中有着广泛表达,circRNA与疾病的关系逐渐成为焦点。目前研究最多的是circRNA与实体瘤之间的关系,促进肿瘤生成的一些circRNA,如头颈部鳞状细胞癌中的circPvt1;结直肠癌,食道鳞状细胞癌和肝细胞癌中的cirs-7(CDr1as)。抑制肿瘤的circRNA,如胶质母细胞瘤中的circsMARCA5 and circ-SHPRH。还有一些circRNA在不同组织或不同细胞所起的作用可能不同,如circHiPK3,在直肠癌中是原癌基因,但是在膀胱癌中又是抑制癌细胞的。 除了癌症,研究还发现circRNA与糖尿病,心血管疾病,慢性炎症和神经系统疾病都有密切的关系。相信随着生物技术的发展以及越来越多对circRNA的深入研究,circRNA的形成和作用机理可以更加清晰,在疾病预防,检测及治疗方面也可以起到重要的作用。 circRNA敲除方案比较难设计,一般会使用以下两种方法: 方案一:将两条gRNA分别设计在circRNA exon的两端,直接敲除环化的外显子序列。这种方案虽然敲除彻底,但是在敲除circRNA的同时,也会影响到编码蛋白的亲本基因,需要根据具体的实验目的考虑是否可行。   方案二:通过破坏circRNA成环来达到敲除的目的。需要先找到circRNA的成环元件,成环元件一般位于被环化外显子两端的长侧翼内含子中。找到成环元件后,在两端设计gRNA进行敲除,既不破坏编码基因的外显子,又可以实现circRNA的敲除(图4.) 应用案例: circ-HIPK3是人体细胞内含量丰富的一种环状RNA,它可以与多种miRNA结合,作为细胞生长的调节剂,影响肿瘤的形成。为了验证circ-HIPK3成环的机制,需要找到侧翼内含子中的成环元件,对上下游预测的两个成环元件分别设计一对sgRNA,利用CRISPR/Cas9系统将预测的成环元件进行敲除,检测circRNA表达情况是否发生变化。经过PCR和RT-QPCR验证,发现下游成环元件敲除后,circHIPK3表达明显下调,而上游成环元件敲除后,circHIPK3的表达不仅没有下调还有所升高。推测可能是上游的成环元件序列太多,预测的不准确。为了进一步验证是其他成环元件驱动的成环,将gRNA3或gRNA4分别与gRNA5或gRNA6共注射,敲除成环元件上游大片段内含子。RT-QPCR结果显示circHIPK3表达确实下降了,说明上游是由其他的成环元件起到成环的作用。 (参考文献:Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., ... & Liang, L. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature communications, 7(1), 1-13.) 在研究circRNA功能的方法中,最经典的抑制circRNA的方法是通过RNAi的方式(shRNA)进行敲降。为了避免影响到mRNA,设计方案时需将干扰序列设计在反向剪接位点(BSS)处。 源井生物通过设计高效的shRNA,用慢病毒法将干扰载体转入细胞中,根据最佳药筛浓度对细胞进行药物筛选,直到对照组细胞全部死亡,获得circRNA敲降的稳定细胞株。 应用案例: 用siRNA进行敲降后,通过检测细胞增殖凋亡情况,说明circ-HIPK3敲除后抑制细胞增殖。首先设计三组实验,分别针对HIPK3 mRNA线性转录本、circ-HIPK3环状转录本和两种转录本共有部分设计siRNA,并在HEK-293 T细胞系上验证设计的siRNA只干扰相应的转录本。 利用增殖凋亡检测试剂盒:CCK-8和EdU进行细胞增殖凋亡检测,结果显示HIPK3 mRNA敲降后不明显影响细胞增殖,而circ-HIPK3敲降后,会明显抑制细胞增殖。 (参考文献:Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., ... & Liang, L. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature communications, 7(1), 1-13.) circRNA过表达一直有成环效率低,容易错配成环等难点。通过优化侧翼成环框架,如成环元件、QKI等RBP的结合位点,使circRNA准确高效环化。过表达后仍需要检测是否成功成环,以及线性mRNA是否表达。为了研究一种新环状RNA 载体表达 系统的成环效率,选择小鼠circRtn4环状基因在多种细胞系(包括Hela,N2a,HEK293)中进行表达验证。根据不同细胞系中进行的RT-QPCR实验数据显示,新载体系统pCircRNA-DMo-Rtn4成环效率在几种不同的细胞系中均比普通的载体系统(pCircRNA-BE-Rtn4)要高效得多。Northern Blotting是检测circRNA的金标准,探针通常跨反向剪接位点设计。但由于Northern Blotting需要的circRNA量非常大,耗时间精力,而且探针一般是放射性标记,操作上比较困难。常用的检测方案还是用RT-PCR或者是RT-QPCR,引物设计在反向剪接位点两端。(图9.)

作者从Jackson实验室购买了 Ppia -/- 小鼠,与野生型小鼠(WT)一起,经过脂多糖(LPS)0、6h、12h、24h、3d、5d、7d的诱导,形成了不同时间点的小鼠肺炎模型。首先通过组织病理学染色实验(图1A),对不同时间点小鼠的肺部切片进行了病理性评分(图1B),同时,对相同时间点的肺干湿质量变化(图1C)和肺指数(图1D)进行统计,发现他们的结果惊人相似,由此说明 Ppia 编码的CypA在炎症的不同阶段发挥着不同的作用。 由于细胞因子在炎症反应中起着重要作用,为了检测这些细胞因子在炎症模型中的表现情况,作者分别提取了 Ppia -/- 和WT小鼠肺部、支气管肺泡灌洗液(BALF)、血清中的mRNA,通过qPCR、ELISA以及免疫组化实验,分别检测了肺部细胞因子Il1b(图1E),以及BALF(图1F)、血清(图1G)和肺部(图1H和图1I)的分泌细胞因子IL-1β的表达量,发现WT小鼠不同部位中这两个细胞因子在6h、12h、24h时的表达量均高于 Ppia -/- 小鼠,而到3d、5d、7d后的表达量出现了反转。除此以外,作者还检测了其他细胞因子在不同部位的表达量。总而言之,所有实验结果表明,在LPS诱导的炎症小鼠模型中,CypA主要通过调节IL-1β的表达量来控制其在炎症不同阶段中的作用。 为了进一步确定CypA为什么能在炎症早期促进IL-1β的表达,首先查阅文献可知,CypA可以通过调节NF-κB中的p65来促进促炎细胞因子的产生。这里作者选择了经典的小鼠原代细胞系——骨髓来源巨噬细胞(BMDM),人源非小细胞肺癌细胞系A549和炎症研究的人源经典细胞系THP-1 (THP-1/ P PIA -/-   细胞由源井提供) ,通过CRIPR-Cas9、干扰等方法,获得对应的 PPIA 敲除或敲降的突变细胞系。随后,通过LPS对这些WT和突变细胞系进行处理来模拟肺炎,分别在0、2h、4h、6h、8h检测并比较了在小鼠模型中检测过的细胞因子Il1b或IL1B的mRNA表达量(图S2A-C);又通过免疫印迹,分析了0、4h、8h、12h时CypA、pro-IL-1β的蛋白表达量(图S2D-F),以及0、15min、30min、60min时磷酸化的p65的表达量(图S2G-I)。由此说明,CypA是通过增加p65的磷酸化水平来提高 Il1b 和 IL1B 的表达,以及pro-IL-1β的含量。为了进一步确定CypA是怎么促进IL-1β的表达,作者对CypA的PPIase活性功能域进行了突变(R55A),检测了与PPIA敲除细胞系相同的成分(S2J-L),显示出与PPIA敲除时一致的结果,由此说明,在炎症早期阶段,CypA介导的IL-1β表达的增强需要其酶的活性。 THP-1基因编辑细胞作为研究免疫和炎症的典型工具细胞,却时常面临转染难、单克隆生长率低等困难,源井生物历经上百例真实项目摸索总结,对THP-1细胞的基因编辑体系进行针对性优化,大幅提升THP-1的基因编辑成功率。 点击查看更多基因编辑细胞细节,助您进行疾病的病理生理学研究和高通量药物筛选 >> 根据前人研究结果可知,IL-1β最初是作为一种不活跃的促细胞因子(pro-IL-1β)合成的,一旦二级信号被激活,pro-IL-1β则被NLRP3/ASC/caspase-1炎性小体切割成有活性的IL-1β。因此,作者进一步研究了CypA是否对pro-IL-1β的加工具有影响。首先通过在BMDM/ Ppia -/- (图2A)、THP-1/ P PIA -/- (图S3A)、A549/CypA-(图S3B)模型中的ELISA实验可知,当ATP刺激炎症小体激活时,CypA突变型细胞系中IL-1β的表达是显著低于对应WT细胞系的。 ( 2 ) LPS 诱导的炎症消退阶段中, CypA 的抑制作用 有报道指出,在没有如ATP的二级信号的刺激下,IL-1β的加工和释放是低效的,且大多数合成的产物都被留在细胞内,要么不被处理,要么被降解。为了探究CypA为什么能在炎症晚期阶段抑制IL-1β的表达,作者随后研究了CypA对pro-IL-1β稳定性的影响。首先还是利用免疫印迹法,直接检测了BMDM/ Ppia -/- (图2B)、THP-1/ P PIA -/- (图S3C)、293T/CypA-、模型中pro-IL-1β的表达量,结果表明,CypA能加速上述三个WT细胞中内源pro-IL-1β的降解。随后,将带有FLAG标签的pro-IL-1β表达载体转染到293T,并用DMSO、MG132和NH4Cl处理(图2C),比较发现,MG132能促进pro-IL-1β的降解,由此说明pro-IL-1β的降解是由泛素-蛋白酶体途径降解,且这个过程不依赖于CypA的PPIase活性(图S3E)。 ( 3 ) CypA 影响 pro-IL-1 β泛素化 有研究报道,K63连接泛素化的pro-IL-1β对炎性小体的激活和IL-1β的分泌具有重要作用。因此,为了验证CypA是否影响pro-IL-1β的泛素化,作者实施了泛素化实验,通过免疫印迹的方法,在293T和BMDM细胞中发现,在没有ATP刺激下,CypA对pro-IL-1β的K48连接泛素化具有显著影响(图2D、图S3F),但当ATP单独作用时,CypA则逐渐增加pro-IL-1β的K63连接泛素化(图2E、图S3G)。 ( 4 ) pro-IL-1 β关键泛素化位点验证 为了进一步验证pro-IL-1β的关键泛素化位点,通过质谱分析,找到了K73、K132、K143这三个潜在的泛素化位点。免疫印迹实验证明,K73R、K132R和K143R突变导致pro-IL-1β的K48连接泛素化减少,而K132R、K143R突变导致pro-IL-1β的K63连接泛素化减少(图2F)。仍不能确定哪个才是pro-IL-1β加工的关键泛素化位点。于是作者将NLRP3、ASC和caspase-1与pro-IL-1β的野生型或突变型共转染293T细胞,并用ATP刺激,通过免疫印迹(图2G)和ELISA(图2H)实验发现,K143R突变会阻止pro-IL-1β剪切成活性的IL-1β,从而判断K143是pro-IL-1β加工的关键位点。随后再次通过免疫印迹检测转染了编码野生型pro-IL-1b-myc及其不同突变基因载体的293T(图2I),发现K132和K143是pro-IL-1β降解的关键位点。 综上所述,这些数据表明,在炎症激活期,有高浓度ATP的刺激下,CypA主要通过增强K143位点的K63连接泛素化来促进pro-IL-1β的加工;而在炎症缓解期,低浓度ATP环境下,CypA主要通过促进pro-IL-1β在K132和K143位点处K48泛素化来加速pro-IL-1β的降解。 当然,作者的研究不止步于此,后续利用类似的方法,通过精心的实验设计与对比,对IL-1β诱导的炎症模型进行了更加系统的研究,揭示了CypA加剧IL-1β诱导的炎症机制,阐明了CypA在IL-1β诱导的II型上皮间质转化(EMT)肺修复中作用,为未来对与炎症相关疾病的治疗提供了更系统的理论基础,及相关靶点筛选的方向。

基因编辑

基因编辑又称基因组编辑或基因组工程是一种新兴的比较精确的能对生物体基因组特定目标基因进行修饰的一种基因工程技术。

ZFNZFN,即锌指核糖核酸酶,由一个 DNA 识别域和一个非特异性核酸内切酶构成。DNA 识别域是由一系列 Cys2-His2锌指蛋白(zinc-fingers)串联组成(一般 3~4 个),每个锌指蛋白识别并结合一个特异的三联体碱基。锌指蛋白源自转录调控因子家族(transcription factor family),在真核生物中从酵母到人类广泛存在,形成alpha-beta-beta二级结构。其中alpha螺旋的16氨基酸残基决定锌指的DNA结合特异性,骨架结构保守。对决定DNA结合特异性的氨基酸引入序列的改变可以获得新的DNA结合特异性。多个锌指蛋白可以串联起来形成一个锌指蛋白组识别一段特异的碱基序列,具有很强的特异性和可塑性,很适合用于设计ZFNs。与锌指蛋白组相连的非特异性核酸内切酶来自FokI的C端的96个氨基酸残基组成的DNA剪切域(Kim et al., 1996)。FokI是来自海床黄杆菌的一种限制性内切酶,只在二聚体状态时才有酶切活性(Kim et al., 1994),每个FokI单体与一个锌指蛋白组相连构成一个ZFN,识别特定的位点,当两个识别位点相距恰当的距离时(6~8 bp),两个单体ZFN相互作用产生酶切功能。从而达到 DNA 定点剪切的目的。TALENTALENs中文名是转录激活因子样效应物核酸酶,TALENs是一种可靶向修饰特异DNA序列的酶,它借助于TAL效应子一种由植物细菌分泌的天然蛋白来识别特异性DNA碱基对。TAL效应子可被设计识别和结合所有的目的DNA序列。对TAL效应子附加一个核酸酶就生成了TALENs。TAL效应核酸酶可与DNA结合并在特异位点对DNA链进行切割,从而导入新的遗传物质。相对锌指核酸酶(zinc-finger nuclease, ZFN)而言,TALEN能够靶向更长的基因序列,而且也更容易构建。但是直到现在,人们一直都没有一种低成本的而且公开能够获得的方法来快速地产生大量的TALENs。CRISPRCRISPR是生命进化历史上,细菌和病毒进行斗争产生的免疫武器,简单说就是病毒能把自己的基因整合到细菌,利用细菌的细胞工具为自己的基因复制服务,细菌为了将病毒的外来入侵基因清除,进化出CRISPR系统,利用这个系统,细菌可以不动声色地把病毒基因从自己的染色体上切除,这是细菌特有的免疫系统。微生物学家10年前就掌握了细菌拥有多种切除外来病毒基因的免疫功能,其中比较典型的模式是依靠一个复合物,该复合物能在一段RNA指导下,定向寻找目标DNA序列,然后将该序列进行切除。许多细菌免疫复合物都相对复杂,其中科学家掌握了对一种蛋白Cas9的操作技术,并先后对多种目标细胞DNA进行切除。以往研究表明,通过这些介入,CRISPR能使基因组更有效地产生变化或突变,效率比TALEN(转录激活因子类感受器核酸酶)等其他基因编辑技术更高。但最近研究发现,虽然CRISPR有许多优点,在人类癌细胞系列中,它也可能产生大量“误伤目标”,尤其是对不希望改变的基因做修改。三种系统的比较那么,可能会有人疑问了,既然如此,这三种系统的区别和联系又是什么呢?小编特意从有效性,特异性,载体性及其它四个方面,进行了一个小小的总结。有效性在不同的基因位点基因靶向性的有效性都是不同的,并且这也依赖于每种细胞的转染的效率。因此,只能点对点的比较靶向位点,细胞系和转染方法,这样的比较才有意义。基于我们课题组和其他课题组的ZFN和TALENs的靶向效率的实验,我们在细胞系水平上进行了比较,虽然他们可能与不同的突变特征有关。Chen的课题组的最近的研究进行了大规模的体外分析,发现TALENs在使用与上下游相关的序列的时候比ZFNs显著的具有更多的突变产生。另一个组比较了TALENs和CRISPRs在人类ESCs细胞中的情况,观察到,通过用CRISPR更换掉TALENs,在其他方面条件相同的情况下,通过产生更多的基因突变的克隆,本质上提高了效率。最近,功能上重新编码的TALENs(reTALENs)已经得到了发展,并且在人类的iPSCs细胞中的基因编辑的有效性相比较于CRISPR得到了提高。但是这个研究发现,CRISPR比reTALENs能够实现7-8倍的同源重组效率,并且其一定程度的比HE更有效率,挡雨ODN捐赠者进行比较。特异性ZFN和TALENs都是作为二聚体发挥作用的,其特异性是由DNA绑定的区域决定的,这个区域在每个剪切位点最多可以识别36bp。然而,在在II型CRISPR系统中的Cas9是由一种RNA引导的核酸,它的特异性是由PAM和PAM上游的20个引导核苷酸决定的。这表明,3’12个碱基的“种子序列”是最关键的,而剩下的8个碱基(非种子序列)甚至PAM序列都是可以错配的。ZFN的特异性由一种不带偏见的全基因组分析进行,并且发现存在频率低,但是可以检测到的脱靶事件的发生,其可以定义为一个高度有限的一部分。已经有研究表明,TALENs有比ZFN更低的细胞毒性和脱靶效率。基于这个研究,TALENs诱导的CCR5特异性突变在CCR5的对偶基因上发生率是17%,而在高度同源的CCR2位点上只有1%。相反,CCR5特异性的ZFN的活性在这两个位点是相在当的,CCR5位点的突变频率是14%,而CCR2的是12%。几个研究也报告了,CRISPR/Cas系统在细胞毒性评价或者DSB诱导的检测(即,H2AX免疫染色)中都没有明显的脱靶现象。然而,最近的研究发现,CRISPR诱导的靶向不同的人类细胞的基因出现了显著的脱靶现象。例如,靶向CCR5的CRSIPR/Cas9系统偶到的在CCR2上的脱靶切除的突变率为5-20%,这是非常接近之前讨论的CCR5靶向的ZFN诱导的突变率。三个其他的小组利用更系统的方法在人类细胞中评估了CRISPR的脱靶活性,其结果表明CRISPR可能能够发生目标不匹配,从而在预测的脱靶位点上引入微缺失或者插入(插入缺失)。此外,靶向位点的定位和内涵能够显著的影响gRNA识别他们的靶向目标,而在基因组序列中的“脱靶序列”也是一样的。已经有报告说,脱靶效应能够通过小心的控制Cas9的mRNA的浓度来克服。此外,在基因编辑的时候使用配对的Cas9的切口酶已经表明能够显著的减少至少1500倍的脱靶活性。病毒为基础的传递ZFN基因可以通过慢病毒和腺病毒进行传递。当前,ZFNs导入体细胞是通过共转染两个慢病毒载体,每个载体编码一个功能性异源二聚体对的一个单体。相反,腺病毒,但不是基于HIV的慢病毒,载体使用与TALEN的基因的传递,因为TALENs的大尺寸和TALE重复序列的种应用。Cas9也是一个较大的基因,并且其酶促死的版本也可以通过慢病毒进行传递,虽然也盛行的Cas9的稳定的表达对于细胞的毒性依然是不清楚的。其他方面ZFNs和TALENs都能够在切割时产生粘性末端,因此可以使用标签绑定,如果具有互补突出部分的双链寡聚核苷酸(dsODN)是可以进行预测的。ZFNs和TALENs都可以在捐赠的质粒的基因组中引入同一个核酸靶向位点来实现。ZFNs和TALENs通过采取同源二聚体的方式从而获得优势,绑定门通过设计实现了重组(Ob-LiGaRe)。这种方法在使用的质粒中倒置了两半的核酸酶的结合位点,这是在没有改变接头区的方向实现的,因此通过相同的ZFN/TALEN碱基对能够阻止连接产物的消化。因为CRISPR产生了一个非粘性末端,直接连接会遇到挑战。最近的文章表明,具有Cas9n的gRNAs的碱基对能够诱导具有徒步部分的DSBs,并且促进dsODN的高效率的NHEJ介导的插入。虽然至今还没有出版,但是进入的转基因大小的DNA能够通过引入在目标质粒的CRISPR/Cas9靶向位点的具有CRISPR/Cas的基因组使用。CRISPR/Cas系统相比较于ZFNs和TALENs具有几个优势,例如易于构建,花费低,并且产物具有可扩展性,并且能够用于多个靶向基因组位点。

基因编辑技术形式有:

1、同源重组

同源重组(Homologous recombination)是最早用来编辑细胞基因组的技术方法。同源重组是在DNA的两条相似(同源)链之间遗传信息的交换(重组)。

2、核酸酶

基因编辑的关键是在基因组内特定位点创建DSB。常用的限制酶在切割DNA方面是有效的,但它们通常在多个位点进行识别和切割,特异性较差。为了克服这一问题并创建特定位点的DSB。

基因编辑技术的应用:

基因编辑和牛体外胚胎培养等繁殖技术结合,允许使用合成的高度特异性的内切核酸酶直接在受精卵母细胞中进行基因组编辑。 CRISPR -Cas9进一步增加了基因编辑在动物基因靶向修饰的应用范围。CRISPR-Cas9允许通过细胞质直接注射从而实现对哺乳动物受精卵多个靶标的一次性同时敲除(KO)。

单细胞基因表达分析已经解决了人类发育的转录路线图,从中发现了关键候选基因用于功能研究。使用全基因组转录组学数据指导实验,基于CRISPR的基因组编辑工具使得干扰或删除关键基因以阐明其功能成为可能。

以上内容参考:百度百科—基因编辑技术

什么是基因编辑?

转基因棉花的研究现状论文

从20世纪70年代中期开始,就有人尝试用各种办法向动物体内转移外源基因。如将牛奶成分中特有的基因转移到白鼠体内,这些外来基因在白鼠体内重组后,白鼠分泌的乳汁便含有牛奶成分。这种通过人工方法获得外来基因的白鼠,称为转基因鼠。 转基因动物技术的核心,是把遗传的功能单位——基因转移到动物体内,使它成为动物体内的一部分。被转移的基因可以来自同种或异种动物,也可以来自植物或微生物。这样一来,就打破了物种之间的界线,也可以说动物能与植物、微生物杂交了。不过目前的杂交是低水平的,只限于主管一两个性状的一两个基因。随着科学技术的发展,一次可以转移的遗传信息将越来越多,那时就可以实现真正意义上的动植物之间的杂交。从科学上讲,这将是一个大突破。 目前,世界上已报道了多种生产转基因动物的方法,但真正成熟并可以稳定生产转基因动物的方法只有两种,即显微注射DNA的方法和精子介导的基因转移法。 显微注射DNA的方法是对单细胞的胚胎进行基因操作,涉及复杂的操作步骤。首先是要准确掌握母畜的性周期,在此基础上加以人工调节,使母畜在预先确定的时间排卵,保证获得大量的刚刚受精的单细胞胚胎。第二步是用手术或非手术的方法收集单细胞胚胎,经短暂的离心处理后,放在显微镜下用口径1 μm玻璃微管向细胞核注射500~600拷贝基因。然后把经过DNA注射的胚胎移植到另外一头处于相同性周期的母畜的体内。经过这样处理后,在后代中就会出现1%~3%的转基因动物。效率虽然不高,但结果相当稳定。全世界已在各种动物身上进行了上万次的试验,都能生产出转基因动物。 精子介导的基因转移是把精子作适当处理后,使其具有携带外源基因的能力。然后,用携带有外源基因的精子给发情母畜授精。在母畜所生的后代中,就有一定比例的动物是整合了外源基因的转基因动物。同显微注射方法相比,精子介导的基因转移有两个优点:首先是它的成本很低,只有显微注射法成本的1/10。其次,由于它不涉及对动物进行手术处理,因此,可以用生产牛群或羊群进行试验,以保证每次试验都能够获得成功。 生产转基因动物的研究自20世纪90年代以来日趋活跃,转基因动物技术的实用意义是:①生产出性状优良的家畜家禽,如长得快的,繁殖力高的,能抗病的等;②利用动物体作为反应器,生产珍贵的蛋白质,如一些只能从人体内提取的蛋白质;③利用动物作研究模型,比如,知道高血压症是由某种原因造成,可以生产一些高血压小鼠,让医生在小鼠身上试用各种疗法;④生产玩赏动物,如同猫一样大的小马,如同鼠一样大的兔子,以及各种不同毛色和花纹的观赏动物。 在转基因动物方面,我国也取得了许多可喜的成果,目前已获得了转基因鱼、兔、鸡等多种转基因动物。1998年2月中国科学家又获得了在所分泌的乳汁中含有蛋白凝血因子X的转基因山羊。

转基因。【一、什么是转基因食品】转基因食品,就是指科学家在实验室中,把动植物的基因加以改变,再制造出具备新特征的食品种类。比如,在普通西红柿里加入一种在北极生长的海鱼的抗冻基因,于是这种深受大家喜爱的食品,在冬天就能保存更长的时间,从而大大延长保鲜期。关于转基因食品的话题,迅速分解成两大阵营,赞同它的人认为科技的进步能大大提高我们的生活水平,而反对它的人们认为,转基因食品会产生预期不到的中毒或者过敏反应。]“转基因食品”(GM FOOD)如今已经在世界上多个国家成了环境和健康的中心议题。并且,它还在迅速分裂着大众的思想阵营:赞同它的人认为科技的进步能大大提高我们的生活水平,而畏惧它的人则认为科学的实践已经走得“太快”了。那么,什么是“转基因食品”呢?转基因食品,就是指科学家在实验室中,把动植物的基因加以改变,再制造出具备新特征的食品种类。许多人已经知道,所有生物的DNA上都写有遗传基因,它们是建构和维持生命的化学信息。通过修改基因,科学家们就能够改变一个有机体的部分或全部特征。不过,到目前为止,这种技术仍然处于起步阶段,并且没有一种含有从其它动植物上种植基因的食物,实现了大规模的经济培植。同时许多人坚持认为,这种技术培育出来的食物是“不自然的”。世界上第一种基因移植作物是一种含有抗生素药类抗体的烟草,1983年得以培植出来。又过了十年,第一种市场化的基因食物才在美国出现,它就是可以延迟成熟的番茄作物。一直到1996年,由这种番茄食品制造的番茄饼,才得以允许在超市出售。为什么一些人认为转基因技术或许对人类健康有害呢?批评者认为,目前我们对基因的活动方式了解还不够透彻。我们没有十足的把握控制基因调整后的结果。批评者担心突然的改变会导致有毒物体的产生,或激发过敏现象。另外还有人批评科学家所使用的DNA会取自一些携带病毒和细菌的动植物,这可能引发许多不知名的疾病。我们应该相信我们所吃的食物吗?为了确保消费者的安全和维持信心,所有食品都必须经过一系列的检测管理程序。检测程序的目的是在食品上市前就发现问题。如果消费者不幸因为所吃的食品而得病,这往往是因为食品生产线存在问题。【二、转基因食品的危害】中科院《科学新闻》发表的一篇文章,将转基因食物“可能”对人类健康的危害总结为三点:一,转基因作物中的毒素可引起人类急、慢性中毒或产生致癌、致畸、致突变作用; 二,作物中的免疫或致敏物质可使人类机体产生变态或过敏反应; 三,转基因产品中的主要营养成份、微量营养成份及抗营养因子的变化,会降低食品的营养价值,使其营养结构失衡。 中国大豆的50%是进口的转基因大豆,它们主要来自于美国和阿根廷,这些大豆主要用来榨油。“我们吃的豆油、豆腐、豆浆等等,其实都是转基因的,我们一直在吃。”陈章良说 事实上,中国是世界第四大转基因作物播种国。2001年,全世界的转基因作物播种面积超过5000万公顷,中国为60万公顷。 《商务周刊》从农业部获知,目前,中国已批准商品化的转基因作物有4种:棉花、西红柿、甜椒、矮牵牛花。其中食品只有西红柿、甜椒两种。中国农业生物技术学会理事长朱鑫泉告诉记者,由于甜椒缺乏优良品种,并未播种,但全国确实有几万亩转基因西红柿。 国家环保总局南京环境科学研究所研究员薛达元认为,转基因棉花也应该算是食品,因为棉籽可以榨油。在部分农村,农民吃的就是棉籽油。农业部转基因安全管理办公室的数据显示:2002年,中国转基因棉花达到150万公顷,已经占棉花产量的1/3。 此外,在全国各地,特别 以北京市郊为最密集,还分布着大量的“转基因试验田”,总面积有100万亩左右。 同时,中国每年从国外进口的农作物中,也有不少含有转基因成份。据农业部公布的信息显示:2001年,中国进口油菜籽万吨,绝大部分来自于加拿大、澳大利亚,而加拿大是世界上转基因油菜籽种植面积超过2/3的国家。 不过,比起大豆来,这还不是一个惊人的数字。2002年1月至9月,中国进口大豆458万吨,进口对象高度集中,主要依赖于美国、阿根廷和巴西,三国分别占到进口总量的41%、36%和23%。美国大豆的70%为转基因大豆,阿根廷的转基因大豆占90%(只有巴西政府禁止播种转基因大豆)。由此可推算,中国约80%的进口大豆为转基因大豆。这些大豆主要都被用来榨油。希望我的回答对你有帮助,哪里不符合我可以帮你修改。

截至2010年,我国已审定转基因抗虫棉品种200多个,河北、山东、河南、安徽等棉花主产省抗虫棉种植率超过95%,全国累计推广种植2100万公顷,新增产值超过440亿元,农民增收250亿元。同时还减少了农药的使用,保护了农田环境。

基因编辑工程

基因编辑是一种新兴的比较精确的能对生物体基因组特定目标基因进行修饰的一种基因工程技术。目前最高效最常用的基因编辑方法是利用CRISPR/Cas9技术进行体内体外的基因编辑。这个系统的原理是利用gRNA特异性识别靶序列,并引导Cas9核酸内切酶对靶序列的PAM上游进行切割,从而造成靶位点DNA双链断裂,随之利用细胞的非同源末端连接(NHEJ)或同源重组(HDR)的方式对切割位点进行修复,实现DNA水平的敲除、敲入或点突变。

基因编辑可以应用在生物科学领域,来帮助人类解决一些难以解决的疾病。对人体是有益的。

什么是基因编辑?

基因编辑技术,可以用于编辑动植物甚至病毒的基因。通过改变基因让其改变性状,对人来说当然是有益的,不过目前这个技术并不完善。如果人类真正的掌握了基因编辑技术,那么就相当于掌握了任何物种的生物源代码,可以随意改变其性状向人类有益的地方发展。

  • 索引序列
  • 基因编辑棉花的参考文献
  • 基因编辑的参考文献
  • 基因编辑
  • 转基因棉花的研究现状论文
  • 基因编辑工程
  • 返回顶部