首页 > 期刊论文知识库 > 论文阅读目标检测综述

论文阅读目标检测综述

发布时间:

论文阅读目标检测综述

原文: Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// International Conference on Neural Information Processing Systems. MIT Press, 2015:91-99.

译文参考: Faster R-CNN论文翻译——中英文对照

目标检测网络依赖于Region Proposal算法假设目标位置,通过引入Region Proposal(网络RPN),与检测网络共享全图像卷积特征,使得Region Proposals的成本近乎为零。

如下图所示,图a采用的是图像金子塔(Pyramids Of Images)方法;图b采用的是滤波器金字塔(Pyramids Of Filters)方法;图c引入“锚”盒("Anchor" Boxes)这一概念作为多尺度和长宽比的参考,其可看作回归参考金字塔(Pyramids Of Regression References)方法,该方法可避免枚举图像、多尺度滤波器和长宽比。

为了将RPN与Fast R-CNN相结合,本文提出了一种新的训练策略:在region proposal任务和目标检测任务之间交替进行微调,同时保持proposals的固定。该方案能够快速收敛,两个任务之间并共享具有卷积特征的统一网络。

Faster R-CNN由两个模块组成:

RPN以任意大小的图像作为输入,输出一组矩形的目标proposals,每个proposals都有一个目标得分。在实验中,假设两个网络(RPN和Fast R-CNN)共享一组共同的卷积层,并研究了具有5个共享卷积层的 Zeiler和Fergus模型(ZF) ,以及具有13个共享卷积层的 Simonyan和Zisserman模型(VGG-16) 。

为了生成region proposals,对最后的共享卷积层输出的卷积特征图谱使用一个小网络。该网络以卷积特征图谱的 空间窗口作为输入,且每个滑动窗口映射到一个低维特征,所有空间位置共享全连接层。

该低维特征作为两个子全连接层———边界框回归层(box-regression layer, reg)和边界框分类层(box-classification layer, cls)的输入,其卷积核均为 大小。

对于每个滑动窗口位置,可同时预测多个region proposals,最大region proposals数为 。因此,reg层具有 个输出,用于编码k个边界框的坐标;cls层具有 个得分,用于估计每个proposal是目标或不是目标的概率。

Anchors:k个proposals相对于 个参考框是参数化形式。

anchor位于滑动窗口的中心,并与尺度和长宽比相关。默认情况,使用3个尺度和3个长宽比,在每个滑动位置产生 个anchors。对于大小为 的卷积特征图谱,共产生 个anchors。

基于anchor的方法建立在anchors金字塔(pyramid of anchors)上,参考多尺度和长宽比的anchor盒来分类和回归边界框,用于解决多尺度和多长宽比问题。

为了训练RPN,为每个anchor分配一个二值标签。

正标签:

负标签:IoU值低于。

对Fast R-CNN中的多任务损失进行最小化。图像的损失函数为:

其中, 是mini-batch数据中anchor的索引, 是第i个anchor作为目标的预测概率。若anchor为正标签,真值 ;反之, 。 是表示预测边界框4个参数化坐标的向量, 是正真值框的向量。分类损失 为两个类别的对数损失;回归损失 ,其中 为在 Fast R-CNN 一文中定义的鲁棒损失函数(平滑 )。 表示回归损失仅对正anchor激活,否则被禁用( )。cls和rge层的输出分别由 和 组成。该两项使用 和 进行标准化,并使用平衡参数 加权处理。等式中cls项根据mini-batch的大小进行归一化,而reg项根据anchor位置的数据进行归一化。默认情况下, 从而使得cls和reg项的权重大致相等。

对于边界框回归,采用 Rich feature hierarchies for accurate object detection and semantic segmentation 一文中的4个坐标参数化方法:

其中, 和 表示边界框的中心坐标及其宽和高。变量 和 分别表示预测边界框、anchor和真值框。

采样策略:以图像为中心。

在图像中随机采样256个anchors,用于mini-batch数据中损失函数的计算,正负样本的比例为 。

从标准差为的零均值高斯分布中提取权重来随机初始化所有的新网络层,而共享卷积层通过预训练ImageNet分类模型来初始化。同时,调整ZF网络的所有网络层,以及VGG网络的conv3_1之上的网络,用于节省内存的使用。对于60k的mini-batch数据,学习率为;对于PASCAL VOC数据集中的20k的mini-bacth数据,学习率为。随机梯度下降算法的动量设置为,重量衰减率为。

训练具有共享特征网络的三个方法:

版权印版权标识

文献综述是对某一方面的专题搜集大量情报资料后经综合分析而写成的一种学术论文,它是科学文献的一种。格式与写法文献综述的格式与一般研究性论文的格式有所不同。这是因为研究性的论文注重研究的方法和结果,特别是阳性结果,而文献综述要求向读者介绍与主题有关的详细资料、动态、进展、展望以及对以上方面的评述。因此文献综述的格式相对多样,但总的来说,一般都包含以下四部分:即前言、主题、总结和参考文献。撰写文献综述时可按这四部分拟写提纲,在根据提纲进行撰写工。前言部分,主要是说明写作的目的,介绍有关的概念及定义以及综述的范围,扼要说明有关主题的现状或争论焦点,使读者对全文要叙述的问题有一个初步的轮廓。主题部分,是综述的主体,其写法多样,没有固定的格式。可按年代顺序综述,也可按不同的问题进行综述,还可按不同的观点进行比较综述,不管用那一种格式综述,都要将所搜集到的文献资料归纳、整理及分析比较,阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述,主题部分应特别注意代表性强、具有科学性和创造性的文献引用和评述。总结部分,与研究性论文的小结有些类似,将全文主题进行扼要总结,对所综述的主题有研究的作者,最好能提出自己的见解。参考文献虽然放在文末,但却是文献综述的重要组成部分。因为它不仅表示对被引用文献作者的尊重及引用文献的依据,而且为读者深入探讨有关问题提供了文献查找线索。因此,应认真对待。参考文献的编排应条目清楚,查找方便,内容准确无误。关于参考文献的使用方法,录著项目及格式与研究论文相同,不再重复。

你文献综述具体准备往哪个方向写,题目老师同意了没,具体有要求要求,需要多少字呢?你可以告诉我具体的排版格式要求,文献综述想写好,先要在图书馆找好相关资料,确定好题目与写作方向。老师同意后在下笔,还有什么不了解的可以直接问我,希望可以帮到你,祝写作过程顺利。 如何做文献综述首先需要将“文献综述( Literature Review) ”与“背景描述 (Background Description) ”区分开来。我们在选择研究问题的时候,需要了解该问题产生的背景和来龙去脉,如“中国半导体产业的发展历程”、“国外政府发展半导体产业的政策和问题”等等,这些内容属于“背景描述”,关注的是现实层面的问题,严格讲不是“文献综述”。“文献综述”是对学术观点和理论方法的整理。其次,文献综述是评论性的( Review 就是“评论”的意思),因此要带着作者本人批判的眼光 (critical thinking) 来归纳和评论文献,而不仅仅是相关领域学术研究的“堆砌”。评论的主线,要按照问题展开,也就是说,别的学者是如何看待和解决你提出的问题的,他们的方法和理论是否有什么缺陷?要是别的学者已经很完美地解决了你提出的问题,那就没有重复研究的必要了。清楚了文献综述的意涵,现在说说怎么做文献综述。虽说,尽可能广泛地收集资料是负责任的研究态度,但如果缺乏标准,就极易将人引入文献的泥沼。技巧一:瞄准主流。主流文献,如该领域的核心期刊、经典著作、专职部门的研究报告、重要化合物的观点和论述等,是做文献综述的“必修课”。而多数大众媒体上的相关报道或言论,虽然多少有点价值,但时间精力所限,可以从简。怎样摸清该领域的主流呢?建议从以下几条途径入手:一是图书馆的中外学术期刊,找到一两篇“经典”的文章后“顺藤摸瓜”,留意它们的参考文献。质量较高的学术文章,通常是不会忽略该领域的主流、经典文献的。二是利用学校图书馆的“中国期刊网”、“外文期刊数据库检索”和外文过刊阅览室,能够查到一些较为早期的经典文献。三是国家图书馆,有些上世纪七八十年代甚至更早出版的社科图书,学校图书馆往往没有收藏,但是国图却是一本不少(国内出版的所有图书都要送缴国家图书馆),不仅如此,国图还收藏了很多研究中国政治和政府的外文书籍,从互联网上可以轻松查询到。技巧二:随时整理,如对文献进行分类,记录文献信息和藏书地点。做博士论文的时间很长,有的文献看过了当时不一定有用,事后想起来却找不着了,所以有时记录是很有必要的。罗仆人就积累有一份研究中国政策过程的书单,还特别记录了图书分类号码和藏书地点。同时,对于特别重要的文献,不妨做一个读书笔记,摘录其中的重要观点和论述。这样一步一个脚印,到真正开始写论文时就积累了大量“干货”,可以随时享用。技巧三:要按照问题来组织文献综述。看过一些文献以后,我们有很强烈的愿望要把自己看到的东西都陈述出来,像“竹筒倒豆子”一样,洋洋洒洒,蔚为壮观。仿佛一定要向读者证明自己劳苦功高。我写过十多万字的文献综述,后来发觉真正有意义的不过数千字。文献综述就像是在文献的丛林中开辟道路,这条道路本来就是要指向我们所要解决的问题,当然是直线距离最短、最省事,但是一路上风景颇多,迷恋风景的人便往往绕行于迤逦的丛林中,反面“乱花渐欲迷人眼”,“曲径通幽”不知所终了。因此,在做文献综述时,头脑时刻要清醒:我要解决什么问题,人家是怎么解决问题的,说的有没有道理,就行了。你的午间新闻方面方面文献综述具体准备往哪个方向写,题目老师同意了没,具体有要求要求,需要多少字呢?你可以告诉我具体的排版格式要求,文献综述想写好,先要在图书馆找好相关资料,确定好题目与写作方向。老师同意后在下笔,还有什么不了解的可以直接问我,希望可以帮到你,祝写作过程顺利。三、如何撰写开题报告问题清楚了,文献综述也做过了,开题报告便呼之欲出。事实也是如此,一个清晰的问题,往往已经隐含着论文的基本结论;对现有文献的缺点的评论,也基本暗含着改进的方向。开题报告就是要把这些暗含的结论、论证结论的逻辑推理,清楚地展现出来。写开题报告的目的,是要请老师和专家帮我们判断一下:这个问题有没有研究价值、这个研究方法有没有可能奏效、这个论证逻辑有没有明显缺陷。因此,开题报告的主要内容,就要按照“研究目的和意义”、“文献综述和理论空间”、“基本论点和研究方法”、“资料收集方法和工作步骤”这样几个方面展开。其中,“基本论点和研究方法”是重点,许多人往往花费大量笔墨铺陈文献综述,但一谈到自己的研究方法时但寥寥数语、一掠而过。这样的话,评审老师怎么能判断出你的研究前景呢?又怎么能对你的研究方法给予切实的指导和建议呢?对于不同的选题,研究方法有很大的差异。一个严谨规范的学术研究,必须以严谨规范的方法为支撑。在博士生课程的日常教学中,有些老师致力于传授研究方法;有的则突出讨论方法论的问题。这都有利于我们每一个人提高自己对研究方法的认识、理解、选择与应用,并具体实施于自己的论文工作中。一、文献综述概述文献综述是研究者在其提前阅读过某一主题的文献后,经过理解、整理、融会贯通,综合分析和评价而组成的一种不同于研究论文的文体。综述的目的是反映某一课题的新水平、新动态、新技术和新发现。从其历史到现状,存在问题以及发展趋势等,都要进行全面的介绍和评论。在此基础上提出自己的见解,预测技术的发展趋势,为选题和开题奠定良好的基础。二、文献综述的格式文献综述的格式与一般研究性论文的格式有所不同。这是因为研究性的论文注重研究的方法和结果,而文献综述介绍与主题有关的详细资料、动态、进展、展望以及对以上方面的评述。因此文献综述的格式相对多样,但总的来说,一般都包含以下四部分:即前言、主题、总结和参考文献。撰写文献综述时可按这四部分拟写提纲,再根据提纲进行撰写工作。前言部分,主要是说明写作的目的,介绍有关的概念及定义以及综述的范围,扼要说明有关主题的现状或争论焦点,使读者对全文要叙述的问题有一个初步的轮廓。主题部分,是综述的主体,其写法多样,没有固定的格式。可按年代顺序综述,也可按不同的问题进行综述,还可按不同的观点进行比较综述,不管用那一种格式综述,都要将所搜集到的文献资料归纳、整理及分析比较,阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述,主题部分应特别注意代表性强、具有科学性和创造性的文献引用和评述。总结部分,与研究性论文的小结有些类似,将全文主题进行扼要总结,提出自己的见解并对进一步的发展方向做出预测。三、文献综述规定1. 为了使选题报告有较充分的依据,要求硕士研究生在论文开题之前作文献综述。2. 在文献综述时,研究生应系统地查阅与自己的研究方向有关的国内外文献。通常阅读文献不少于30篇3. 在文献综述中,研究生应说明自己研究方向的发展历史,前人的主要研究成果,存在的问题及发展趋势等。4. 文献综述要条理清晰,文字通顺简练。5. 资料运用恰当、合理。文献引用用方括号"[ ]"括起来置于引用词的右上角。6. 文献综述中要有自己的观点和见解。鼓励研究生多发现问题、多提出问题、并指出分析、解决问题的可能途径。

Anchorfree的输出可以有多个。它是一种网络安全解决方案,它可以帮助您保护您的网络流量,并且可以防止您的网络流量被窃取或拦截。它可以让您在网络上自由浏览,而不必担心被攻击者攻击或拦截。Anchorfree的输出可以通过它的安全服务器来实现,它可以帮助您访问被墙的网站,并且可以提供更安全的网络连接。此外,Anchorfree还提供了一些其他的安全功能,例如VPN,可以帮助您更好地保护您的网络安全。

目标检测论文阅读

论文原文:

YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:

如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:

每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:

其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。

每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)

举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:

在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:

等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。

得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。

1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。

2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。

3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。

4、损失函数公式见下图:

在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:

解决方法:

只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。

作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为(ImageNet2012 validation set),与GoogleNet模型准确率相当。

然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。

作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}= 。

作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为,学习速率延迟为。Learning schedule为:第一轮,学习速率从缓慢增加到(因为如果初始为高学习速率,会导致模型发散);保持速率到75轮;然后在后30轮中,下降到;最后30轮,学习速率为。

作者还采用了dropout和 data augmentation来预防过拟合。dropout值为;data augmentation包括:random scaling,translation,adjust exposure和saturation。

YOLO模型相对于之前的物体检测方法有多个优点:

1、 YOLO检测物体非常快

因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。

2、 YOLO可以很好的避免背景错误,产生false positives

不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。

3、 YOLO可以学到物体的泛化特征

当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。

尽管YOLO有这些优点,它也有一些缺点:

1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。

2、YOLO容易产生物体的定位错误。

3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

小目标检测论文阅读

人生是一条漫长的小径,目标像一只萤火虫照亮着我前进,尽管它离我很远很远,可是我依然能够看见它散发出来的光芒。因为,我坚信:每一个人都有自己的目标,包括一切生物。老鼠的目标是能够偷到许多好吃的;抓到更多的老鼠,得到主人的赞赏;猪的目标是饱餐一顿再光荣死去,它们也有,更何况我们这一群人类呢!我曾经在一本书上看到过这样一个故事:有一对年轻的夫妇,他们有两个孩子,一个叫莎拉,一个叫迈克尔。当莎拉六岁的时候、迈克尔六岁时,父母决定为他们小狗抱会啦以后,他们专门聘请了一位驯兽师来训练它。在第一次训练开始之间,训练师问他们:“小狗的目标是什么?”夫妻两面面相觑,颇感意外,他们一脸迷惑地嘟嚷着说:“一只小狗还有什么目标?他的目标当然就是当一只狗狗了!”因为他们实在想不出,作为一只狗,还能有什么另外的目标?驯兽师极为严肃的摇了摇头说:“每只小狗都得有一个目标,否则我们根本无法训练它。你们是想训练它守门,还是和孩子们一道玩耍,或者只是作为你们的一个宠物?我必须知道这些。这就是它的目标。”在驯兽师的精心引导下,这只小狗被成功的训练成孩子的好朋友,它可爱的举止、忠诚的品性和敏锐的洞察力,使它成为这个家庭中不可缺少的重要成员。最重要的是,通过驯兽师,这对夫妇会学会了怎样教育自己的孩子:为他们树立目标。他们的教育最终没有令人失望:小莎拉成了一家电台的主播,而迈克尔则成了纽约市第108任市长——迈克尔·布隆伯格。他们永远记住驯兽师的一句话:一只小狗也要有自己的目标——更何况是一个人呢?听了这个故事,想必大家都已经有了目标吧!没错,人生是一次航行,唯有哪些目标明确的人,他们的到达才是自己的期望。没有目标的人不过是在盲目的跟从——他们到达了,却不会有任何的收获——因为他们不知道为社么到达那里。所以,你不要把别人的期待当成自己的目标,你有你的方向,沿着你的方向出发、前进,你的终点才有意义。的一生总有许多大大小小的目标,因为有了这些目标,我们为之奋斗,为之拼搏。目标就好像是人生航船上的帆,带我们乘风踏浪。而目标再升华一个层次,就是理想。理想就像是人生航船上的方向盘,给我们指引方向,带我们一路领先。因为有了理想,我们就有了克制自己欲望的砝码;因为有了理想,我们就更坚定了自己的信念,乘风破浪,一路领先!并非说理想就有一个,然而当你功名成就的那一天你,你会发现,真正让你成功地理想只有一个。世界上的多数人并非是成功者,不是因为他们的天资愚钝或懒惰,只是因为他们没有找到一个属于自己的理想。或许有的人就是不顾一切的抄袭各个名人的理想当做自己的理想;或许有的人活了大半辈子还不知道自己为什麽而活,为什麽而奔碌;还有的人就是特别会投机取巧,特别贪婪的人,他们把所有的一切都当做自己的理想,想着,这一样不成功可以换另一样,然而就这样换来换去,他最后一样也不会成功!因为他总是把一颗心分成好多份。目标和理想本就是一个递进的关系,就像英语里的最高级一样。理想就是目标的最高级。所以理想不是想什么就是什么,它也要切合实际,先从小目标做起,然后再完成大理想,这样的理想才会实现。或许这就是理想的真谛吧!确的方向引领你走上正确的道路,而不怀好意的指路人就会将你带进凶险的泥潭,让你走上不归路。生活中,有多少人是因为他人的引诱或怂恿而走上违法犯罪的道路呢? 路有很多种,也有许多不同的走法,做人也是一样的。一个人可以平平淡淡的度过一生,可以碌碌终生,也可以辉煌一生,不同的生活是因为当初他们的目标不同,选择的方向不同。传说,世界上原本只有一种鸟,它们共同生活了一段时间后,就各奔东西了。后来,其中一些鸟儿看见了地上金灿灿的麦粒,就兴奋的落在了地上,变成了鸡。其中一些希望有一个遮风挡雨,温暖舒适的家,就高兴的落在了树枝上,变成了麻雀。还有几只鸟儿仍然在不停的飞着,不一会儿它们就飞上了蓝天,钻进了厚厚的云层。这时,大部分鸟儿都飞倦了,它们看到这美丽的云彩就停了下来,落在了下来,成了燕子。但飞翔并没有结束,还有几只心高气傲的鸟儿仍不知疲倦的飞着,它们的方向始终是向着太阳的,它们努力的飞啊飞啊,终于成了一只只健将有力,搏击长空的雄鹰。因为目的不同,方向不同,心中的理想不同,原来相同的鸟儿今后却有着截然不同的生活。那么我们应该做哪种鸟呢?如果让我选择,那么我一定会选择做一只雄鹰,原因很简单,在追求心中的那个“太阳”时难免会遇到各种各样的困难和挫折,但只要我们勇敢的面对它们,克服它们,我们不仅能变得更坚强,更富有经验,而且还会使我们个人素质得到提高,心灵得到升华,这样就算自己失败了,未能实现梦想也没有什么关系了,因为,这些经历已经使你整个人得到升华,这对于你今后的人生来说是一笔宝贵的财富。 生活可能会面临很多选择,有时像一道选择题,有时像一道连线题,有时没有选择,而像一道填空题。选择题如果选错了,不要紧,因为它不影响下一道题;而连线题就稍微有些。(议论文) 复杂了,有时稍不留神就可能导致你满盘皆输,因此第一步的连线显得格外重要,定要慎重;至于填空题就不必说了,它需要你仔细研究,顾全大局,每一个空都要为下一个空而着想,否则就前后不一,驴唇不对马嘴。《三字经》中说道:人之初,性本善。孟子也认为“人性本善”。是呀,人天生就是善良的,可为什么现在社会中有不少坏人呢?我想,他们是没有做好人生的第一道选择题吧。 有一个关于三个商人的故事。从前,有三个商人,他们决定分别去经商,看谁赚钱最多。第一个商人首先发现了一个商机,他发现非洲人没有鞋子穿,于是他激动地订购了大批鞋子运往非洲销售。结果,他的鞋子无人问津,因为非洲太热,人们从来不穿鞋。最终他当然赔本了。第二位商人也同样发现了一个商机,原来波斯人没有吃过大蒜。于是他满载着两袋大蒜去觐见波斯国王,国王尝过他的大蒜后赞不绝口,并邀请大臣们一同品尝,甚至说这是无上的美味。国王盛情款待了他,并以一头驮着两袋金子的驴作为赏赐来表示自己的谢意,这位商人高兴地返回了。第三位商人听说后心想:葱的味道不也是很鲜美吗?不如我就带着大葱去波斯,他信心十足地来到波斯,将葱献给国王,国王对此也同样赞不绝口,甚至说葱比蒜的味道还要鲜美。他认为金子不足以表达他的谢意了,于是就和大臣们商量,以一口袋蒜作为对第三位商人的赏赐。最后,这位商人气急败坏的返回了。这三位商人同样抓住了商机,但为什么结局却迥然不同呢?原因是第一位商人没有选对方向,没有考虑到非洲的特点,所以他失败了;第二位商人他发现波斯没有蒜,他选对了方向,所以他成功了;而第三位商人虽然也看准了方向,但他没有抓住时机,如果他早去一步,那么两袋金子花落谁家就不一定了。呼应点题纵观我所说的,我只想表达一个想法:选对方向,抓住时机,走好人生的第一步,树立一个远大的目标并为之奋斗,只要做到以上几点,那么,成功舍你其谁?人生如白驹过隙,一切都不在经意间悄然消逝,我们不应该碌碌无为,应该做一番大事,要做大事,就要有人生的目标。目标对一个人的成功至关重要。它使天真的孩童看到未来的希望,它使愚昧的凡人看清前进的方向,使自己更有智慧;它使受挫的失败者找到前进的动力,使自己更坚强。因此,人生要有目标。周恩来因为有“为中华之崛起而读书”的目标,所以他从小发奋学习,刻苦读书,救百姓于水火之中,成为了一代伟人;鲁迅因为有立志改变中国现状的目标,所以他毅然地弃医从文,用自己手中的笔与恶势力作斗争,唤醒亿万麻木的中国人,成为思想的领导者;岳飞因为有“精忠报国”的目标,所以他远赴边疆,抑制匈奴,保家卫国,曾写下“待从头,收拾归山河,朝天阙”的志向,成为铁骨铮铮的一员武将。古今中外,做出一番大事的人,必定是有人生目标的人。有了人生目标,才能使他们成为伟人,有了人生目标,才能使他们被受万人尊崇;有了人生目标,才能使他们实现自己的理想与抱负。他们用自己的成功诠释着一个道理:人生要有目标。如果没有目标,吞蛹就不会作茧自缚,备受折磨,等待破壳而出,把翔飞的梦想留给明天;如果没有目标,蚌就不会忍受痛苦,历经煎熬,积累美丽,把耀眼瑰丽的珍珠留给明天;如果没有目标,种子就不会深埋地下,历经寒冬,冲破土层,将生命的绿意伸向蓝天;如果没有目标,水珠就不会流入小溪,奔向江河,汇入大海,使其永不枯竭;如果没有目标,陨石就不会冲向大气层,划破茫茫夜空,焕发璀璨迷人的光芒,化为流星,让瞬间成为永恒;如果没有目标,大雁就不会冲破阻碍,团结协作,一往无前的飞向南方。

原文: Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]// International Conference on Neural Information Processing Systems. MIT Press, 2015:91-99.

译文参考: Faster R-CNN论文翻译——中英文对照

目标检测网络依赖于Region Proposal算法假设目标位置,通过引入Region Proposal(网络RPN),与检测网络共享全图像卷积特征,使得Region Proposals的成本近乎为零。

如下图所示,图a采用的是图像金子塔(Pyramids Of Images)方法;图b采用的是滤波器金字塔(Pyramids Of Filters)方法;图c引入“锚”盒("Anchor" Boxes)这一概念作为多尺度和长宽比的参考,其可看作回归参考金字塔(Pyramids Of Regression References)方法,该方法可避免枚举图像、多尺度滤波器和长宽比。

为了将RPN与Fast R-CNN相结合,本文提出了一种新的训练策略:在region proposal任务和目标检测任务之间交替进行微调,同时保持proposals的固定。该方案能够快速收敛,两个任务之间并共享具有卷积特征的统一网络。

Faster R-CNN由两个模块组成:

RPN以任意大小的图像作为输入,输出一组矩形的目标proposals,每个proposals都有一个目标得分。在实验中,假设两个网络(RPN和Fast R-CNN)共享一组共同的卷积层,并研究了具有5个共享卷积层的 Zeiler和Fergus模型(ZF) ,以及具有13个共享卷积层的 Simonyan和Zisserman模型(VGG-16) 。

为了生成region proposals,对最后的共享卷积层输出的卷积特征图谱使用一个小网络。该网络以卷积特征图谱的 空间窗口作为输入,且每个滑动窗口映射到一个低维特征,所有空间位置共享全连接层。

该低维特征作为两个子全连接层———边界框回归层(box-regression layer, reg)和边界框分类层(box-classification layer, cls)的输入,其卷积核均为 大小。

对于每个滑动窗口位置,可同时预测多个region proposals,最大region proposals数为 。因此,reg层具有 个输出,用于编码k个边界框的坐标;cls层具有 个得分,用于估计每个proposal是目标或不是目标的概率。

Anchors:k个proposals相对于 个参考框是参数化形式。

anchor位于滑动窗口的中心,并与尺度和长宽比相关。默认情况,使用3个尺度和3个长宽比,在每个滑动位置产生 个anchors。对于大小为 的卷积特征图谱,共产生 个anchors。

基于anchor的方法建立在anchors金字塔(pyramid of anchors)上,参考多尺度和长宽比的anchor盒来分类和回归边界框,用于解决多尺度和多长宽比问题。

为了训练RPN,为每个anchor分配一个二值标签。

正标签:

负标签:IoU值低于。

对Fast R-CNN中的多任务损失进行最小化。图像的损失函数为:

其中, 是mini-batch数据中anchor的索引, 是第i个anchor作为目标的预测概率。若anchor为正标签,真值 ;反之, 。 是表示预测边界框4个参数化坐标的向量, 是正真值框的向量。分类损失 为两个类别的对数损失;回归损失 ,其中 为在 Fast R-CNN 一文中定义的鲁棒损失函数(平滑 )。 表示回归损失仅对正anchor激活,否则被禁用( )。cls和rge层的输出分别由 和 组成。该两项使用 和 进行标准化,并使用平衡参数 加权处理。等式中cls项根据mini-batch的大小进行归一化,而reg项根据anchor位置的数据进行归一化。默认情况下, 从而使得cls和reg项的权重大致相等。

对于边界框回归,采用 Rich feature hierarchies for accurate object detection and semantic segmentation 一文中的4个坐标参数化方法:

其中, 和 表示边界框的中心坐标及其宽和高。变量 和 分别表示预测边界框、anchor和真值框。

采样策略:以图像为中心。

在图像中随机采样256个anchors,用于mini-batch数据中损失函数的计算,正负样本的比例为 。

从标准差为的零均值高斯分布中提取权重来随机初始化所有的新网络层,而共享卷积层通过预训练ImageNet分类模型来初始化。同时,调整ZF网络的所有网络层,以及VGG网络的conv3_1之上的网络,用于节省内存的使用。对于60k的mini-batch数据,学习率为;对于PASCAL VOC数据集中的20k的mini-bacth数据,学习率为。随机梯度下降算法的动量设置为,重量衰减率为。

训练具有共享特征网络的三个方法:

版权印版权标识

小目标问题在物体检测和语义分割等视觉任务中一直是存在的一个难点,小目标的检测精度通常只有大目标的一半。

CVPR2019论文: Augmentation for small object detection 提到了一些应对小目标检测的方法,笔者结合这篇论文以及查阅其它资料,对小目标检测相关技巧在本文进行了部分总结。

小目标的定义: 在MS COCO数据集中,面积小于 32*32 的物体被认为是小物体。

小目标难以检测的原因: 分辨率低,图像模糊,携带的信息少。由此所导致特征表达能力弱,也就是在提取特征的过程中,能提取到的特征非常少,这不利于我们对小目标的检测。

1、由于小目标面积太小,可以放大图片后再做检测,也就是在尺度上做文章,如FPN(Feature Pyramid Networks for Object Detection),SNIP(An Analysis of Scale Invariance in Object Detection – SNIP)。

Feature-Fused SSD: Fast Detection for Small Objects, Detecting Small Objects Using a Channel-Aware Deconvolutional Network 也是在多尺度上做文章的论文。

2、在Anchor上做文章(Faster Rcnn,SSD, FPN都有各自的anchor设计),anchor在设置方面需要考虑三个因素:

anchor的密度: 由检测所用feature map的stride决定,这个值与前景阈值密切相关。

anchor的范围: RetinaNet中是anchor范围是32~512,这里应根据任务检测目标的范围确定,按需调整anchor范围,或目标变化范围太大如MS COCO,这时候应采用多尺度测试。

anchor的形状数量: RetinaNet每个位置预测三尺度三比例共9个形状的anchor,这样可以增加anchor的密度,但stride决定这些形状都是同样的滑窗步进,需考虑步进会不会太大,如RetinaNet框架前景阈值是时,一般anchor大小是stride的4倍左右。

该部分anchor内容参考于:

3、在ROI Pooling上做文章,文章SINet: A Scale-Insensitive Convolutional Neural Network for Fast Vehicle Detection 认为小目标在pooling之后会导致物体结构失真,于是提出了新的Context-Aware RoI Pooling方法。

4、用生成对抗网络(GAN)来做小目标检测:Perceptual Generative Adversarial Networks for Small Object Detection。

1、从COCO上的统计图可以发现,小目标的个数多,占到了,但是含有小目标的图片只有,大目标所占比例为,但是含有大目标的图像却有。这说明有一半的图像是不含小目标的,大部分的小目标都集中在一些少量的图片中。这就导致在训练的过程中,模型有一半的时间是学习不到小目标的特性的。

此外,对于小目标,平均能够匹配的anchor数量为1个,平均最大的IoU为,这说明很多情况下,有些小目标是没有对应的anchor或者对应的anchor非常少的,即使有对应的anchor,他们的IoU也比较小,平均最大的IoU也才。

如上图,左上角是一个anchor示意图,右上角是一个小目标所对应的anchor,一共有只有三个anchor能够与小目标配对,且配对的IoU也不高。左下角是一个大目标对应的anchor,可以发现有非常多的anchor能够与其匹配。匹配的anchor数量越多,则此目标被检出的概率也就越大。

实现方法: 1、Oversampling :我们通过在训练期间对这些图像进行过采样来解决包含小对象的相对较少图像的问题(多用这类图片)。在实验中,我们改变了过采样率和研究不仅对小物体检测而且对检测中大物体的过采样效果

2、Copy-Pasting Strategies:将小物体在图片中复制多分,在保证不影响其他物体的基础上,增加小物体在图片中出现的次数(把小目标扣下来贴到原图中去),提升被anchor包含的概率。

如上图右下角,本来只有一个小目标,对应的anchor数量为3个,现在将其复制三份,则在图中就出现了四个小目标,对应的anchor数量也就变成了12个,大大增加了这个小目标被检出的概率。从而让模型在训练的过程中,也能够有机会得到更多的小目标训练样本。

具体的实现方式如下图:图中网球和飞碟都是小物体,本来图中只有一个网球,一个飞碟,通过人工复制的方式,在图像中复制多份。同时要保证复制后的小物体不能够覆盖该原来存在的目标。

网上有人说可以试一下lucid data dreaming Lucid Data Dreaming for Multiple Object Tracking ,这是一种在视频跟踪/分割里面比较有效的数据增强手段,据说对于小目标物体检测也很有效。

基于无人机拍摄图片的检测目前也是个热门研究点(难点是目标小,密度大)。 相关论文: The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking(数据集) Drone-based Object Counting by Spatially Regularized Regional Proposal Network Simultaneously Detecting and Counting Dense Vehicles from Drone Images Vision Meets Drones: A Challenge(数据集)

1: 2: 3: 4: 5: 6: 7:

目标检测的综述论文范文

对于目标检测方向并不是特别熟悉,本文记录一下RCNN, fast-RCNN, faster-RCNN, mask-RCNN这4篇有关目标检测的论文笔记和学习心得。

R-CNN的意思就是Region based,主要思路就是根据一张图像,提取多个region,再将每个Region输入CNN来进行特征的提取。因此RCNN就可以分为 Region proposals , Feature extraction 两个主要部分,提取的特征就可以输入任意一个分类器来进行分类。 模型的流程图如下:

在训练的时候,首先使用的是已经训练好的CNN网络作为特征提取器,但是由于预训练是在分类数据集上,因此在应用到检测之前要做finetune。也就是说,为了将用ImageNet数据集训练的网络应用到新的任务(检测),新的数据集(region)上,作者将原来的CNN最后的1000类的fc层,更改为了 层, 代表待检测的物体的类别数。然后,对于所有的region,如果它和ground truth的重叠率大于,就认为是正类。 对于分类器的训练,作者发现选择多大的IoU来区分正类和负类非常关键。并且,对于每一类,都会训练一个分类器。

框的回归非常重要,在对每一个region proposal使用分类器进行打分评价之后,作者使用一个回归器来预测一个新的框作为结果。这个回归器使用的特征是从CNN中提取的特征。回归器的训练中,输入是 region proposal 的 和ground truth的 ,目标是学习一种变换,使得region proposal通过该变换能够接近ground truth。同时,希望这种变换拥有尺度不变性,也就是说尺度变化的话,变换不会改变。 如下图所示,每一个regressor会学习一组参数,特征输入是pool 5的特征输出,拟合的目标是 。

Fast-RCNN 主要解决的问题是在RCNN中对于每一个region proposal都进行特征提取,会产生非常多的冗余计算,因此可以先对一张图像进行特征提取,再根据region proposal在相应的特征上进行划分得到对应region的特征(映射关系)。 这样便可以实现共享计算提高速度,但是与SPPnets不同,SPPnets在一副图像得到对应的特征后,从这张图像的特征上proposal对应的部分,采用空间金字塔池化,如下图:

RoI pooling的方法很简单,类似于空间金字塔pooling,它将proposal部分对应卷积层输出的特征(称之为RoI,因为用于做pooling的特征是 region of interest,也就是我们感兴趣的区域)划分成 块,然后对每一块求最大值,最终得到了一个 的特征图。可以看出,它只是空间金字塔pooling的一部分。 但是SPP-nets的空间金字塔也是可以求导的,那么它到底不好在哪里呢?因为当每一个RoI都可能来源于不同的图像的时候(R-CNN和SPPnets的训练策略是从一个batch的不同图像中,分别挑选一个proposal region),SPPNets的训练非常地低效,这种低效来源于在SPPnets的训练中,每个RoI的感受野都非常地大,很可能对应了原图的整个图像,因此,得到的特征也几乎对应了整张图像,所以输入的图像也就很大。 为了提高效率,Fast-RCNN首先选取 个图像,再从每个图像上选择 个RoI,这样的效率就比从每个图像提取一个RoI提高了 倍。

为了将分类和框回归结合起来,作者采用了多任务的loss,来进行联合的训练。具体来说就是将分类的loss和框回归的loss结合起来。网络的设计上非常直接,就是将RoI得到的特征接几个FC层后,分别接不同的输出层。对应于分类部分,特征会接一个softmax输出,用于分类,对于框回归部分,会接一个输出4维特征的输出层,然后分别计算loss,用于反向传播。loss的公式如下:

回归的target可以参考前面的R-CNN部分。

notes

为什么比fast还fast呢?主要原因是在这篇论文中提出了一个新的层:RPN(region proposal networks)用于替代之前的selective search。这个层还可以在GPU上运算来提高速度。 RPN的目的:

为了能够进行region proposal,作者使用了一个小的网络,在基础的卷积层输出的特征上进行滑动,这个网络输入大小为 ,输入后会映射(用 的卷积)为一个固定长度的特征向量,然后接两个并联的fc层(用 的卷积层代替),这两个fc层,一个为box-regressoin,一个为box-classification。如下图:

在每一个滑动窗口(可以参考 ),为了考虑到尽可能多的框的情况,作者设计了anchors来作为region proposal。anchors就是对于每一个滑动窗口的中心位置,在该位置对应的原图位置的基础上,按照不同的尺度,长宽比例框出 个不同的区域。然后根据这些anchors对应的原始图像位置以及区域,和ground truth,就可以给每一个滑动窗口的每一个anchor进行标记,也就是赋予label,满足一定条件标记为正类(比如和ground truth重叠大于一个值),一定条件为负类。对于正类,就可以根据ground truth和该anchor对应的原图的区域之间的变换关系(参考前面的R-CNN的框回归),得到回归器中的目标,用于训练。也就是论文中的loss function部分:

自然地,也就要求RPN的两个并联的FC层一个输出2k个值用于表示这k个anchor对应的区域的正类,负类的概率,另一个输出4k个值,用于表示框回归的变换的预测值。

对于整个网络的训练,作者采用了一种叫做 4-step Alternating Training 的方法。具体可以参考论文。

与之前的检测任务稍有不同,mask r-cnn的任务是做instance segmentation。因此,它需要对每一个像素点进行分类。 与Faster R-CNN不同,Faster R-CNN对每一个候选框产生两个输出,一个是类别,一个是bounding box的offset。Mask R-CNN新增加了一个输出,作为物体的mask。这个mask类似于ps中的蒙版。

与Faster R-CNN类似的是,Mask R-CNN同样采用RPN来进行Region Proposal。但是在之后,对于每一个RoI,mask r-cnn还输出了一个二值化的mask。

不像类别,框回归,输出都可以是一个向量,mask必须保持一定的空间信息。因此,作者采用FCN来从每个RoI中预测一个 的mask。

由于属于像素级别的预测问题,就需要RoI能够在进行特征提取的时候保持住空间信息,至少在像素级别上能够对应起来。因此,传统的取最大值的方法就显得不合适。 RoI Pooling,经历了两个量化的过程: 第一个:从roi proposal到feature map的映射过程。 第二个:从feature map划分成7*7的bin,每个bin使用max pooling。

为此,作者使用了RoIAlign。如下图

为了避免上面提到的量化过程

可以参考

作者使用ResNet作为基础的特征提取的网络。 对于预测类别,回归框,mask的网络使用如下图结构:

整体看完这几篇大佬的论文,虽说没有弄清楚每一个实现细节,但是大体上了解了算法的思路。可以看出,出发点都源于深度神经网络在特征提取上的卓越能力,因此一众大神试图将这种能力应用在检测问题中。从R-CNN中简单地用于特征提取,到为了提高速度减少计算的Fast R-CNN,再到为了将region proposal集成进入整个模型中,并且利用GPU加速的RPN,也就是Faster R-CNN。再到为了应用于instance segmentation任务中,设计的RoIAlign和mask。包括bounding box regression,pooling层的设计,训练方法的选择,loss的设计等等细节,无一不体现了大师们的思考和创造力。 可能在我们这些“拿来”者的眼中,这些方法都显得“理所应当”和巧妙,好用,但是,它们背后隐藏的选择和这些选择的思考却更值得我们学习。 以及,对待每一个问题,如何设计出合理的解决方案,以及方案的效率,通用性,更是应该我们努力的方向。

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

目标检测论文精读

论文: Sparse R-CNN: End-to-End Object Detection with Learnable Proposals

论文认为,目前的目标检测算法可以按预设框的多少分为两种:

上述两种方法都会预测大量的结果,需要进行NMS后处理,而在训练的时候会存在many-to-one的问题,并且anchor的设置对性能的影响很大。   于是,很多研究开始探讨稀疏(sparse)检测,比如近期的DETR算法。该算法不需要预设anchor,并且预测的结果可直接输出,不需要后处理。但论文认为DETR并不是真正的稀疏检测,因为DETR在各位置提取特征时,需要与全图的上下文进行交互,而真正的稀疏检测应该满足sparse boxes和sparse features,即较少的初始框设定以及框之间不需要过多的特征互动。   为此,论文提出了Sparse R-CNN,如图1c所示,仅需设定少量anchor即可进行检测,而且能够进行set prediction,免去NMS等后处理,其核心主要包含以下几点:

Sparse R-CNN的推理流程如图3所示,输入图片、可学习的proposal boxes以及可学习的proposal features,根据proposal boxes提取对应的RoIAlign特征,dynamic head将proposal features转换为卷积核参数,对RoIAlign特征进一步提取特征,再进行后续的分类和回归。整体的思想和Fast RCNN很像,将selective search替换为proposal boxes,再增加其它更强的模块。

论文采用FPN-ResNet作为主干网络,输出多层特征,每层特征的维度都是256。采用更复杂的主干网络可以获得更好的性能,但论文与Faster R-CNN对齐,采用标准的实现。

Sparse R-CNN的核心是采用数目固定的小批量可学习proposal boxes( )作为region proposal,而非RPN。每个box为4-d参数,在0~1范围内,值为归一化的中心点坐标、宽度和高度。这些参数在训练过程中通过反向传播进行更新,包含了训练集目标位置的统计信息,可用于推理时的初步目标位置猜测。

尽管4维的proposal box能够直观地表示目标的定位,但缺少了目标的信息,比如目标的姿态和形状,所以论文引入proposal feature( )进行补充。proposal features是高维的可学习向量,与proposal boxes一一对应,用于丰富目标的RoIAlign特征。

Dynamic instance interactive head的结构如图4所示,每个proposal box都有一个专属的预测head。给定 个proposal boxes和 个proposal features,先通过RoIAlign提取每个box的 维特征,Dynamic instance interactive head将其对应的 维proposal feature转换为卷积参数,使用这个卷积参数对RoIAlign特征进行提取,得到目标的 维特征,最后经过简单的3层感知机进行分类与回归。   Dynamic instance interactive head也可以使用类似Cascade R-CNN那样的级联模式进一步的提升性能,将输出的新回归框和 维特征作为下一次迭代的proposal box和proposal feature即可。

Sparse R-CNN的训练采用set prediction的形式,将固定数量的预测结果与GT之间进行二分图最优的匹配,然后计算损失值,完整的损失函数为:

各模块对比实验。

性能与收敛性。

在COCO上进行对比。

Sparse R-CNN贯彻了稀疏的思想,只提供少量初始框,可进行Set prediction,颠覆了当前密集预测的检测思路,整体框架十分简洁,跟Fast RCNN有点像,十分值得大家阅读。

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

论文里的目标值就是你要围绕什么目标写论文啊,要达到什么水平

  • 索引序列
  • 论文阅读目标检测综述
  • 目标检测论文阅读
  • 小目标检测论文阅读
  • 目标检测的综述论文范文
  • 目标检测论文精读
  • 返回顶部