首页 > 期刊论文知识库 > 图像锐化算子的对比研究论文

图像锐化算子的对比研究论文

发布时间:

图像锐化算子的对比研究论文

拉普拉斯是2nd-order锐化,求二阶找zero-crossing为边界,效果不好,一般是做完高斯平滑再用拉普拉斯。一阶的有roberts,sobel等等,直接用的化效果比拉普拉斯好。

Roberts算子又称为交叉微分算法,它是基于交叉差分的梯度算法,通过局部差分计算检测边缘线条。常用来处理具有陡峭的低噪声图像,当图像边缘接近于正45度或负45度时,该算法处理效果更理想。其缺点是对边缘的定位不太准确,提取的边缘线条较粗。

Prewitt是一种图像边缘检测的微分算子,其原理是利用特定区域内像素灰度值产生的差分实现边缘检测。由于Prewitt算子采用3 3模板对区域内的像素值进行计算,而Robert算子的模板为2 2,故Prewitt算子的边缘检测结果在水平方向和垂直方向均比Robert算子更加明显。Prewitt算子适合用来识别噪声较多、灰度渐变的图像。

dst = filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]])

RSobel算子是一种用于边缘检测的离散微分算子,它结合了高斯平滑和微分求导。该算子用于计算图像明暗程度近似值,根据图像边缘旁边明暗程度把该区域内超过某个数的特定点记为边缘。Sobel算子在Prewitt算子的基础上增加了权重的概念,认为相邻点的距离远近对当前像素点的影响是不同的,距离越近的像素点对应当前像素的影响越大,从而实现图像锐化并突出边缘轮廓。Sobel算子的边缘定位更准确,常用于噪声较多、灰度渐变的图像。

Sobel算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。对噪声具有平滑作用,提供较为精确的边缘方向信息。因为Sobel算子结合了高斯平滑和微分求导(分化),因此结果会具有更多的抗噪性,当对精度要求不是很高时,Sobel算子是一种较为常用的边缘检测方法。

dst = Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]])

在进行Sobel算子处理之后,还需要调用convertScaleAbs()函数计算绝对值,并将图像转换为8位图进行显示

dst = convertScaleAbs(src[, dst[, alpha[, beta]]])

拉普拉斯(Laplacian)算子是n维欧几里德空间中的一个二阶微分算子,常用于图像增强领域和边缘提取。它通过灰度差分计算邻域内的像素,基本流程是:判断图像中心像素灰度值与它周围其他像素的灰度值,如果中心像素的灰度更高,则提升中心像素的灰度;反之降低中心像素的灰度,从而实现图像锐化操作。在算法实现过程中,Laplacian算子通过对邻域中心像素的四方向或八方向求梯度,再将梯度相加起来判断中心像素灰度与邻域内其他像素灰度的关系,最后通过梯度运算的结果对像素灰度进行调整。

Laplacian算子分为四邻域和八邻域,四邻域是对邻域中心像素的四方向求梯度,八邻域是对八方向求梯度。当邻域内像素灰度相同时,模板的卷积运算结果为0;当中心像素灰度高于邻域内其他像素的平均灰度时,模板的卷积运算结果为正数;当中心像素的灰度低于邻域内其他像素的平均灰度时,模板的卷积为负数。对卷积运算的结果用适当的衰弱因子处理并加在原中心像素上,就可以实现图像的锐化处理。

dst = Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]])

由于Sobel算子在计算相对较小的核的时候,其近似计算导数的精度比较低,比如一个33的Sobel算子,当梯度角度接近水平或垂直方向时,其不精确性就越发明显。Scharr算子同Sobel算子的速度一样快,但是准确率更高,尤其是计算较小核的情景,所以利用3*3滤波器实现图像边缘提取更推荐使用Scharr算子

Scharr算子又称为Scharr滤波器,也是计算x或y方向上的图像差分,在OpenCV中主要是配合Sobel算子的运算而存在的。Scharr算子的函数原型如下所示,和Sobel算子几乎一致,只是没有ksize参数.

dst = Scharr(src, ddepth, dx, dy[, dst[, scale[, delta[, borderType]]]]])

Canny边缘检测算子(多级边缘检测算法)是一种被广泛应用于边缘检测的标准算法,其目标是找到一个最优的边缘检测解或找寻一幅图像中灰度强度变化最强的位置。最优边缘检测主要通过低错误率、高定位性和最小响应三个标准进行评价。

Canny算子的实现步骤如下:

edges = Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient]]])

LOG(Laplacian of Gaussian)边缘检测算子也称为Marr&Hildreth算子,它根据图像的信噪比来求检测边缘的最优滤波器。该算法首先对图像做高斯滤波,然后再求其拉普拉斯(Laplacian)二阶导数,根据二阶导数的过零点来检测图像的边界,即通过检测滤波结果的零交叉(Zero crossings)来获得图像或物体的边缘。

LOG算子该综合考虑了对噪声的抑制和对边缘的检测两个方面,并且把Gauss平滑滤波器和Laplacian锐化滤波器结合了起来,先平滑掉噪声,再进行边缘检测,所以效果会更好。 该算子与视觉生理中的数学模型相似,因此在图像处理领域中得到了广泛的应用。它具有抗干扰能力强,边界定位精度高,边缘连续性好,能有效提取对比度弱的边界等特点。

图像锐化毕业论文参考书籍

美术学版画毕业论文参考文献范例

当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。以下是我精心整理的美术学版画毕业论文参考文献范例,欢迎阅读与收藏。

[1]周芜:《徽派版画史论集》,合肥:安徽人民出版社,1983年.

[2]郭味蕖:《中国版画史略》,上海书画出版社,2016年.

[3]郑振铎:《中国古代木刻画史略》,上海书店出版社,2010年.

[4]徐小蛮、王福康:《中国古代插图史》,上海古籍出版社,2007年.

[5]周亮:《周芜全集》,合肥:安徽美术出版社,2018年.

[6]杨柳:《晚明文化的“雅”与“谑”——明刻版画名品〈青楼韵语〉》,《西泠印社2015年秋季拍卖会古籍善本专场》,2015年.

[7]周心慧:《中国古代版刻版画史论集》,北京:学苑出版社,1998年.

[8]周芜:《中国古代版画展览图录——美术资料选辑(三)》,北京:中国美术家协会《美术家通讯》编辑组,中国古代版画研究会筹备会展出组,1984年.

[9][日]町田市立国际版画美术馆:《中国古代版画展》,町田:町田市立国际版画美术馆,1988年.

[10]曹凯.记录与实验:DV影像史[M].北京:中国人民大学出版社,2005:34-35.

[11]徐渭.南词叙录[G]//中国古典戏曲论着集成:三.北京:中国戏曲出版社,1959:240.

[12]李小彬.明万历间汪氏玩虎轩刻本《琵琶记》版画及其制作[D].杭州:中国美术学院,2017:6.

[13]俞为民.南戏琵琶记版本及其流变考述[J].文学遗产,1994(6):84-95.

[14]徐宏图.南戏《琵琶记》遗存考[J].浙江艺术职业学院学报,2005(1):36-52.

[15]郑国强,刘露,杨小竹.新媒体技术给广告带来的巨大影响.艺术科技,2013(11).

[16]屠隆.考盘余事[M].南京:凤凰出版社,2017:115.

[17]朱彝尊.明诗综[EB/OL].[2020-02-12].

[18]蒋炜.从高石山房刻本《目连救母》看万历初期徽州版画和金陵版画的关系[J].南京艺术学院学报(美术与设计),2012(5):36-39.

[19]蒋炜.晚明徽州版画风格的演变及其对周边地区的影响[J].艺术探索,2014(4):19-24.

[20]罗文茜.浅析版画艺术的设计形式.工业设计,2018(8).

[21]刘世德.古本小说丛刊:第2辑[M].北京:中华书局,1991:1.

[22]王秋桂.善本戏曲丛刊:第5辑[M].台北:台湾学生书局,1987:16.

[23]李娜.晚明的出版风尚与作为艺术品的书籍[J].江苏社会科学,2013(2):192-197.

[24]何卫平.中国当代美术二十讲[M].南京:东南大学出版社,2008:132.

[25]杨劲松.重叠肌理[M].石家庄:河北美术出版社,2002:71-78.

[26]殷双喜.影像与图像[J].美苑,2001(2):87-91.

[27]邱志杰.摄影之后的摄影[M].北京:中国人民大学出版社,2005:39-40.

[28]段世昌.基于实数编码遗传算法的版画艺术设计方法研究.现代电子技术,2019(13).

[29]罗博.徽派版画艺术形式在包装设计中的应用.广东蚕业,2019(1).

[30]张东东.论当代版画艺术的发展与创新.美与时代(中),2018(12).

版画论文开题报告范文

一、课题的提出

1、版画就是这样一种扎根民众之间,与人民生活紧密关联,为千家万户增色添喜的一种民间艺术形式。现代社会科技日益狂深,人们对民间的艺术尤其的关注,作为现代的中小学生更有这个责任去了解一些文化现象,有责任去把这样的文化艺术发扬光大。

2、综观现代的儿童艺术作品,儿童美术作品应该是反映自身生活的主体性表现活动,是一种本能也是孩子强烈表现自我生活欲望的一种活动,而现代社会的儿童艺术作品有很多不是出于自己本能的需要,是老师的需要,是比赛的需要,是大人的需要,这在很大的程度上阻碍了学生的发展,也束缚了学生对一些感兴趣的内容、现象的认识和研究。缺乏学生对其中作品的理解和认识。以往的"兴趣小组活动"更多地定位于学生的模仿操作能力上,很少有创作性的作品。模仿固然是必要的、也是必须的。比如说版画可以木版上刻,也可以用丝网制版,也可以用卡纸制版。特别是在最初的学习阶段尤其是这样。但是学生的学习如果总是停留在临摹阶段的话,就不是我们教学的最终目的。所以,如何进一步地挖掘学生的潜能、发挥学生的创造性,便成了我们应该解决的问题.。只有当教学内容系统地加以传授时,学生才能合乎目的地有效地展开学习,获得完整的知识;才能获得严密地展开理论思维与明智行为的能力;才能得到比较完满的情感熏陶。

二、课题研究目的和意义

1、总目标:借助传统的版画艺术的特点,包括:刻版的刀法、刻画内容的抽象艺术形象、刻制时的人物表现的内在品质等,通过学校的美术课堂来展示版画的优势、挖掘版画的艺术精神、开拓学生在绘画领域的表现,结合工艺的效果来研制、尝试一种新的绘画形式和效果。从而研究学校美术课堂的上的绘画辅导。

2、子目标:

学生发展目标

1、学生掌握传统版画的基本知识和基本技术。

2、通过学生的直接体验和感受,培养学生的学习兴趣和积极性,培养学生的审美意识和创新能力,培养学生的团队协作精神。

教师发展目标

1、教师在进行课程实践的过程中形成一定的教育理论和专业自主意识。

2、教师形成良好的课程意识以及掌握扎上实的课程理论。

3、教师掌握传统工艺和现代课程开发的知识、技术并形成相应的实际能力。

课题以学生的发展为根本目的,课题目标的实现以教师的发展为保障,以传统的版画课题的开发为基本手段。三位一体,共同构成课程的整体,同时还要达到以下的几点分类目标,了解传统的版画艺术的特点和特色,在日常的美术课堂中开发、研制新的版画形式。

共同发展目标

1、通过在尝试新的版画的过程中我们要将版画的艺术特色发挥出来,让版画在学生的绘画领域运用并有所创新。

2、借助版画的刻、印过程来培养学生的耐心、细致的品质,从而更好的发挥版画的艺术特点为学生美术学习服务。

3、发展新的版画艺术形式,表现美术学习的多元性质。

4、通过传统版画的研究达到要保护中国传统文化的意识,以版画为通道,开发新的美术学习形式和效果。

三、课题研究的任务和内容

1、该课题时以传统的版画艺术为出发和起使点,作为课题的研究的平台和基础,研究各式各样的版画形式和作品特色,让学生在造型、设计、表现领域有所创新,得到一种新的绘画形式和表现样式,开拓学生的文化视野,丰富学生的绘画表现层次、厚度,从而让学生在宽松的领域认识美术、学习美术、表现美术、研究美术。

2、研究出新的版画作品效果、版画的上课案例、课堂教学实录,激发学生的美术学习表现效果,改变传统的绘画辅导方式,使其得到更加多样的表现效果。

四、课题研究的对象和周期

1、实验以学校3、4年级的学生为研究对象,采用奇数班、偶数班对照分析的效果。

2、实验的'周期是1年内(20xx年2月-----20xx年2月)

五、课题的假设

1、传统的版画艺术在造型、设计领域的学习方式,及课堂教学等综合因素的作用。

2、自变量:在传统的版画形式下学生的美术学习活动。

3、因变量:传统版画形式、效果和现在的新的课程改革中的造型、设计、表现的结合,研究系列的传统和现代的有效结合的美术表现形式。

六.主要参加者的学术背景、研究经验、组织结构:

1、教研员引领由教师进修学校教研部负责人和美术教研员参与课题研究,在专业理论方面起到了引领、指导作用。

xxxx——小学美术教研员,小学高级美术教师。教育教学经验丰富,主持过课题试验,成果卓著。曾在国家级刊物上发表过多篇教育教学方面的论文。

2、专家引领

xxxx——中国美术家协会少儿美术艺术委员会专家组专家,中国少年儿童版画研究会会长。中国版画家协会理事。

3、课题成员

xxxx——小学高级教师及专业主管,个人荣获20多次国际及国内奖项,指导学生获得教育部及各类奖项若干,在全国核心刊物有论文发表及个人专著获奖

xxxx——小学美术教师兼大队辅导员,小学高级美术教师,曾参加过西安市、陕西省、全国的赛教课,分别荣获了一、二等奖。

xxxx——小学美术教师,区级骨干教师,有丰富的教学经验,专业性强,曾多次指导学生参加全国及省市的少儿书画大赛,成绩显著。

七,完成课题的保障条件:

1、专门成立了该课题领导小组,由小学美术学科教研员担任组长,成员包括相关部门领导和一线的学科骨干教师,课题小组实行统一管理,协调工作。

2、本课题由三所学校共同参与研究,学校有先进的校园网络,多媒体教室,教师电子阅览室,课件制作室,每个办公室都配备了电脑,为研究课题提供了必要的保障。

3、学校领导十分重视课题研究工作,给予了大量的帮助和支持,提供了经费保障。

4、课题小组的所有成员都是学校的骨干教师,有强烈的责任感,有敢于创新的精神。

八、课题研究的理论依据:

1、活动课程理论

“活动”是活动课程理论中的一个核心概念,它主要是指学校教育教学过程中学生自主参与的,以学生学习兴趣和内在需要为基础,以主动探索、变革、改造活动对象为特征,以实现学生主体能力综合发展为目的的主体实践活动。“活动课程”是通过一系列有计划有组织的学生主动活动,侧重直接经验和即时信息的习得,与学科课程相辅相成共同促进学生素质发展的课程形态。活动课程不仅在思想实质上与素质教育是一致的,而且为素质教育的实施与深化提供了可行的途径。由于活动课程具有实践性、整体性、开放性等特点,对学生动手实践能力,促进学生知、情、意的全面发展和主体力量的发展具有明显优势。因此,美育界提出了以活动中心的美育方法论原则,作为审美教育的一种形式的版画教学同样具有多种活动要素。因此,其培养学生创新和审美品质的教育价值可以也只有以活动为载体才能发挥出来。

2、美育理论

美育是普通教育系统中的有机组成部分。任何以培养全面发展的个性为目标的教育都不可缺少审美教育这种特殊的过程和行为。美育有较为充分和直接地体现了现代教育的目标和宗旨,它把促进个体的平衡发展和健康成长作为自己的基本职能,以人格和情感的塑造为目的,并力图使人的各种潜能得到协调而和谐的发展,进而使这种作用自觉地渗透到不同的教育行为之中。美育的这种功能是一种系统的开放结构,它直接作用于个体的情感生活和人格模式。美育是青少年成长期不可缺少的重要文化营养,也是教育行为及基础教育过程中非常重要的感性教育与人生教育的有效途径。美育过程主要以意向和情感的激发与交流为基础,因此美育活动首先依赖一种特殊的学习方法及审美体验。审美体验是一种综合性的审美反映,需要感知、想象、情感、思维等心理能力的积极主动地参与和协同作用。因此美育界提出了以活动为中心的美育方法论原则。因为活动无疑是增进学生审美体验的有效方式。

3、现代课程改革理论

现代的课程改革以学生的发展为自己的课程目标,学生的发展是综合的有机体即:学生在造型、设计、表现、综合探索的综合运用的发展,新课程改革以学生的全面发展为自己的首要任务,因此作为一种传统的版画工艺更能很好的体现新课程改革的思想。以传统民间版画艺术与小学美术教育的整合为切入点,拓宽传统版画审美文化和表现内容,构建适合学生的版画创作活动体系。通过剪版画创作活动引导学生积极参与文化的传承与交流,开发学生非智力因素,陶冶情操,提高审美能力,促进学生个性的和谐发展。传统和现代的结合才能发挥课程改革的精神。

九、课题组要研究内容和方法:

(一)准备阶段(20xx年2月--20xx年4月)

课题立项准备,设计课题研究方案;成立课题组,明确分工。

1、开展问卷、座谈等调查形式,了解学生、教师、家长对该研究课题内容的认识,对传统版画创作、传统工艺等进行客观分析。组织成员学习,明确课题研究的意义,学习相关的课程理论和版画创作教学的理论。

2、撰写“小学版画创作活动课程开发”研究方案。

3、制定子课题计划并讨论交流,挖掘研究的难点重点。

(二)实施阶段(20xx年5月--20xx年10月)

1、各子课题按计划实施研究工作,认真做好各类活动、个案等资料的收集、整理工作。

2、进行学生版画创作。

3、编写版画创作活动课程指导思想和意义,修改并完善研究方案。

4、在版画创作教学的实践中,形成较为完整的教学设计系列并积累优秀活动案例。

(三)具体的工作重点和要求:

1、20xx年2月-20xx年4月

了解版画创作艺术的内涵、特点,感受版画艺术作品的特色。如:构图新颖化、机理多样化、色彩厚重化;深刻的思想内涵等。以欣赏版画作品、了解版画创作方法为主要的课堂任务。

在这个阶段有主要的版画创作作品欣赏教案和课堂教学照片为准。

2、20xx年5月-20xx年10月

研究制版形式的多样表现内容,学习木刻版画、水印版画等。重点是把握版画创作的工艺和形式、效果。

该阶段的以作品展览、教师的上课、学生的作品为主要的依据手段。

(三)、结题阶段(20xx年11月----20xx年2月):

1、整理、汇编活动案例及优秀版画创作作品。

2、撰写研究报告。

十、成果预设

1、以一种综合艺术的形式来展示版画创作的艺术特色,主要是形成著作或论文。

2、相关的展览、作品集。

美术教育版画论文范文

【摘 要】与知识相比,想象力具有独特的特征;知识是有限的,而想象力是无限的。在少儿版画美术教育中,随着孩子们的想象力的不断地拓展,其想象力的奇特,构思的大胆,手法的自由,尽情宣泄的色彩不受任何束缚,让孩子们画出来最动人、最精彩的个性之作。版画有其它美术绘画的共律,也有着艺术的自律,在少儿版画美术教育实践中,共律、个律的艺术素质通过不断积累,将孕育出更多的艺术内涵和技艺发展的空间。

【关键词】版画;教育;意义;作用

一、绪论

美术教育在少儿教育里是一个重要的组成部分,它也是培养一个孩子全面发展成为祖国栋梁的一个重要开端,同时也是培养孩子的素质教育和审美教育的主要手段。随着国家教育部美术课程标准以及国家教育部艺术课程标准不断发展,美术教育课程不断改革创新,少儿的美术教育也在不断发展、不断的尝试和探索中。

二、少儿版画教学的重要性和意义

版画制作中的随机应变是培养一个人的综合能力的最有效的途径。随着社会改革的进一步深化,新时代向我们提出更新、更高的要求,社会各领域急需的是具有良好素质的人才。少儿在版画学习过程中不仅学习了版画的制作技巧,且还学习了观察、认识世界的能力,同时也学会了用头脑思考,学会了创新,培养了勇于探索的精神。

三、如何上好少儿版画课,提高孩子们的版画知识艺术素质

1、动员孩子们主动动脑思考,观察分析,注重启迪少儿对版画艺术的求知欲望

要上好少儿版画课,教师就要全身心的投入,注重启迪少儿对版画艺术的求知欲望。在教师的引导下,使少儿有意识、有目的地通过视觉器官感知事物,用脑思考并进行比较。例如:版画活动《北大荒的土地》中,教师引导少儿观看版画《北大荒的土地》,画面非常简单,就是宽阔的农田,让孩子们通过版画连想以往看到的一望无边的农田原野,引导少儿从上到下,从整体到局部、用图形进行归纳总结,在此基础上进行版画活动,让少儿有了一定的感性经验后创造性地表现出了各种不同的土地田野,在贯彻了审美性原则、灵活性原则中充满了童真。

2、通过教师的讲解演示,因材施教,突出课堂教学的科学性,引导少儿对版画艺术产生形象思维

教师的讲解演示,是实际示范操作与语言解释相配合,通过把事物的发展变化显示出来,使少儿了解与掌握版画的形状、颜色、结构、特征以及绘制步骤。教师讲解时,语言要清晰生动,精练准确,富有启发性,演示时要熟练,清楚而恰到好处。同时把技能技巧告诉少儿。

例如结合实物讲解版画《葵花》。老师在讲解版画《葵花》时,重点讲解葵花的形状,葵花的高低、前后、疏密,并运用实物照片演示前后关系,先画什么?后画什么?挡住的部分怎么画?几句话少儿很快就明白和理解了什么是重叠,掌握和了解了重叠的构图的表现方法。例如版画《蝴蝶》。通过观看图片,丰富少儿的感性经验。运用范画向幼儿讲解蝴蝶的对称。再通过教具演示来讲解化解难点。最后幼儿在操作过程中,教师具体讲解指导。讲解与演示相配合,讲解的过程也是观察的过程。

3、丰富课堂教学的游戏性,寓教于乐,激发少儿对版画艺术创作的兴趣和爱好

丰富课堂教学的游戏性,就是教师在美术教学活动中以娱乐或玩的方式进行,使少儿饶有兴致地反复学习和操作的方法。

由于少儿的年龄小,身体发育不完善,要掌握一种知识和技能往往需要反复多次的练习才能形成,游戏练习法就是让幼儿在轻松愉快、无思想负担的情境下进行美术活动,使之维持长久的兴趣,从而获得知识和技能。

可以运用涂色游戏,由教师画出轮廓,幼儿涂色进行。也可以通过添画游戏,由教师画出主要形象,幼儿添画相关的线条、形象。还可以通过情景游戏,由教师设计、创设游戏情节(或情景),让幼儿在玩玩耍耍中学习、掌握绘画方法。

4、加强教学的延续性,因势利导,逐步巩固少儿版画知识基本功底的艺术基础

教学中应该重视教材的纵向与横向的联系,像写作文一样要注意承前启后,因势利导,逐步巩固少儿版画知识基本功底的艺术基础。

教学时还要注意材料中剪贴彩纸画向剪贴纸版画底板过度,拓印向单色再向套色的过度,做到循序渐进。要突出版画特点及教材中各课的特殊性进行教学。要用范画中可让学生认识到黑白木刻版画的特点,简洁、黑白对比强烈、单纯和鲜明等特点,重点让学生在游戏中对“版味”“纸味”有初步的认识。由于学生的个人能力与特点的不同,教学中也要注重针对性。同年龄不同程度的学生,也要因人而教,深化教学。

四、结论

在学习版画的过程中,孩子们不仅学习了版画的制作技巧,而且还学会了观察、认识世界,学会了用头脑思考,学会了创新,培养了勇于探索的精神。我们应该吸取发达国家认识和发展版画教学的先进经验,注重我国版画美术教育工作,特别应该注重我国少儿版画美术教育工作,通过因势利导,给予孩子们及时培养,因材施教,因地制宜,寓教于乐,把学习与技法的机械性与游戏联系起来。这样,让孩子们从小就就能够积累更多的美术语言表达、评论、欣赏及表现创造等多种能力,努力促进我国少儿版画美术教育实现可持续发展。

【参考文献】

[1]龚雪桦,熊炳燕,扈鸿燕,等.《幼儿园版画教学的研究与实践》课题研究报告[R/OL].

[2]张广慧.木版画工作室[M].湖北美术出版杜,1999.

[3]美术文献[M].湖北美术出版社.

[4]隋丞.材料与技法丛书:版画[M].辽宁美术出版社,1997.

[5]《国家教育美术课程标准》.

[6]《国家教育部艺术课程标准》.

下面的都是毕业论文范文,有用的话,请给我红旗LMX2350/LMX2352芯片简介及电路设计基于LMX2306/16/26 芯片简介及应用电路设计 基于LT5500f 的 GHzLNA/混频器电路设计基于LT5517 40MHZ到90NHZ 积分解调器的设计基于LT5527的400MHz至高信号电平下变频混频器电路设计基于LT5572的芯片简介及应用电路设计基于LT5516的芯片简介及应用电路设计 基于MAX2039的芯片简介及应用电路设计 基于MAX2102/MAX2105芯片简介及应用电路设计基于MAX2106 芯片简介及应用电路设计 基于MAX2323/MAX2325 的芯片简介及应用电路设计 基于MAX2338芯片简介及应用电路设计 基于MAX2511的芯片简介及应用电路设计 基于MAX2685的芯片简介及应用电路设计 基于MAX2753的芯片简介及应用电路设计基于MAX9981芯片简介及应用电路设计基于MAX9994的芯片简介及应用电路设计 基于MAX9995的芯片简介及应用电路设计基于MC12430的芯片简介及应用电路设计基于MC88920芯片简介及应用电路设计基于MPC97H73的简介及电路设计基于MPC9229 芯片简介及应用电路设计 基于mpc9239芯片简介及应用电路设计 基于MPC9992 芯片简介及应用电路设计基于mpc92433芯片的简介及应用电路设计基于TQ5121的无线数据接收器电路设计基于TQ5135的芯片简介及应用电路设计基于TQ5631 3V PCS波段CDMA射频放大混频器电路设计语音信号处理技术及应用网络文档发放与认证管理系统网络配置管理对象分析与应用三维激光扫描仪中图像处理快速算法设计基于分形的自然景物图形的生成图像压缩编码基于奇异值分解的数字图像水印算法研究数字图象融合技术汽车牌照定位与分割技术的研究焦炉立火道温度软测量模型设计加热炉的非线性PID控制算法研究直接转矩控制交流调速系统的转矩数字调节器无线会议系统的设计温度检测控制仪器简易远程心电监护系统基于LabVIEW的测试结果语音表达系统程控交换机房环境监测系统设计单片机控制的微型频率计设计基于DSP的短波通信系统设计(射频单元)等精度数字频率计不对称半桥直直变换器仿真研究基于MATLAB的直流电动机双闭环调速系统无线传输应变型扭矩仪模糊控制在锅炉焊接过程中的应用三层结构的工作流OA的应用与实现基于的永磁直线电机的有限元分析及计算音频信号的数字水印技术低压CMOS零延迟1:11时钟发生器基于ADF4116/4117/4118的芯片简介及应用电路设计ADF4193芯片简介及应用电路设计LMX2310U/LMX2311U/LMX2312U/LMX2313U芯片简介及应用电路设计MAX2754芯片简介及应用电路设计MPC92432芯片简介及应用电路设计高增益矢量乘法器基于400MSPS 14-Bit,直接数字合成器AD9951基于900MHz低压LVPECL时钟合成器的电路设计基于 MAX2450芯片简介及应用电路设计基于AD831低失真有源混频器的电路设计基于AD7008的芯片简介及应用电路设计基于AD8341 芯片简介及应用电路设计基于AD8348的50M-1000M正交解调器基于AD8349的简介及应用电路设计基于AD9511的简介及电路应用基于AD9540的芯片简介及电路设计基于AD9952的芯片简介和应用电路设计基于ADF436的集成数字频率合成器与压控振荡器基于ADF4007简介及电路设计基于ADF4110/ADF4111/ADF4112/ADF4113上的应用电路设计基于ADF4154的芯片简介及应用电路设计基于ADF4360-0的芯片简介及应用电路设计基于ADF4360-3电路芯片简介及应用电路设计基于ADF4360-6的简介及应用电路设计基于ADF4360-7的集成整形N合成器的压控振荡器基于ADL5350的简介及应用电路设计基于CMOS 200 MHZ数字正交上变频器设计基于CMOS 的AD9831芯片数字频率合成器的电路设计基于CX3627ERDE的芯片简介及应用电路设计基于CXA3275Q的芯片简介及应用电路设计基于CXA3556N的芯片简介及应用电路设计基于IMA-93516的芯片简介及应用电路设计VPN技术研究UCOSII在FPGA上的移植IPTV影音信号传输网络设计GSM移动通信网络优化的研究与实现 FSK调制系统DSP处理GPS接收数据的应用研究Boot Loader在嵌入式系统中的应用ADS宽带组网与测试基于FPGA的IIR滤波器设计MP3宽带音频解码关键技术的研究与实现基本门电路和数值比较器的设计编码器和译码器的设计智力竞赛抢答器移位寄存器的设计与实现四选一数据选择器和基本触发器的设计四位二进制加法器和乘法器数字钟的设计与制作数字秒表的设计数控分频器及其应用汽车尾灯控制器的设计交通灯控制器的设计简易电子琴的设计简单微处理器的设计DSP最小系统的设计与开发基于消息队列机制(MSMQ)的网络监控系统基于DSP的电机控制的研究基于数学形态学的织物经纬密度的研究纱条均匀度测试的研究 图像锐化算法的研究及其DSP实现 手写体数字识别有限冲击响应滤波器的设计及其DSP实现 同步电机模型的MATLAB仿真USB通信研究及其在虚拟仪器中的应用设计WLAN的OFDM信道估计算法研究采用S12交换机支持NGN下MEGACO呼叫流程的设计基于语音信号预测编码的数据压缩算法的研究与实现基于小波变换数字图像水印盲算法基于小波变换和神经网络的短期负荷预测研究嵌入式系统建模仿真环境PtolemyII的研究与应用分布式计算环境的设计与实现复合加密系统中DES算法的实现大学自动排课算法设计与实现基于AES的加密机制的实现基于AES算法的HASH函数的设计与应用基于DM642的视频编码器优化和实现基于Huffman编码的数据压缩算法的研究与实现基于internet的嵌入式远程测控终端研制基于Matlab的FMCW(调频连续波)的中频正交处理和脉冲压缩处理 基于MATLAB的对称振子阻抗特性和图形仿真基于windows的串口通信软件设计基于粗糙集和规则树的增量式知识获取算法自适应蚁群算法在DNA序列比对中的应用远程监护系统的数据记录与传输技术研究基于分布式体系结构的工序调度系统的设计基于活动图像编码的数据压缩算法的设计与实现基于宽带声音子带编码的数据压缩算法的设计与实现基于网络数据处理XML技术的设计基于小波变换的数据压缩算法的研究与实现基于小波变换的配电网单相接地故障定位研究及应用英特网上传输文件的签名与验证程序

图像算法研究论文

图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!

图像分割技术研究

摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。

关键词:图像分割、阈值、边缘检测、区域分割

中图分类号: 文献标识码: A

1引言

随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。

2图像分割方法

图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。

基于灰度特征的阈值分割方法

阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。

这类方法主要包括以下几种:

(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。

(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。

(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。

边缘检测分割法

基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。

基于区域的分割方法

基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。

区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。

结合特定工具的图像分割技术

20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。

基于数学形态学的分割算法

分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。

基于模糊数学的分割算法

目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。

这类方法主要有广义模糊算子与模糊阈值法两种分割算法。

(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。

(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。

基于遗传算法的分割方法

此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。

基于神经网络分割算法

人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。

图像分割中的其他方法

前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。

(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。

(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的

(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。

(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。

3图像分割性能的评价

图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。

4图像分割技术的发展趋势

随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。

参考文献

[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003

[2] 章毓晋.图像分割[M].北京:科学出版社,2001.

[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.

[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.

点击下页还有更多>>>图像分割技术论文

数字图像处理方面了解的了。

数字图像压缩技术的研究及进展摘要:数字图像压缩技术对于数字图像信息在网络上实现快速传输和实时处理具有重要的意义。本文介绍了当前几种最为重要的图像压缩算法:JPEG、JPEG2000、分形图像压缩和小波变换图像压缩,总结了它们的优缺点及发展前景。然后简介了任意形状可视对象编码算法的研究现状,并指出此算法是一种产生高压缩比的图像压缩算法。关键词:JPEG;JPEG2000;分形图像压缩;小波变换;任意形状可视对象编码一 引 言 随着多媒体技术和通讯技术的不断发展,多媒体娱乐、信息高速公路等不断对信息数据的存储和传输提出了更高的要求,也给现有的有限带宽以严峻的考验,特别是具有庞大数据量的数字图像通信,更难以传输和存储,极大地制约了图像通信的发展,因此图像压缩技术受到了越来越多的关注。图像压缩的目的就是把原来较大的图像用尽量少的字节表示和传输,并且要求复原图像有较好的质量。利用图像压缩,可以减轻图像存储和传输的负担,使图像在网络上实现快速传输和实时处理。 图像压缩编码技术可以追溯到1948年提出的电视信号数字化,到今天已经有50多年的历史了[1]。在此期间出现了很多种图像压缩编码方法,特别是到了80年代后期以后,由于小波变换理论,分形理论,人工神经网络理论,视觉仿真理论的建立,图像压缩技术得到了前所未有的发展,其中分形图像压缩和小波图像压缩是当前研究的热点。本文对当前最为广泛使用的图像压缩算法进行综述,讨论了它们的优缺点以及发展前景。二 JPEG压缩 负责开发静止图像压缩标准的“联合图片专家组”(Joint Photographic Expert Group,简称JPEG),于1989年1月形成了基于自适应DCT的JPEG技术规范的第一个草案,其后多次修改,至1991年形成ISO10918国际标准草案,并在一年后成为国际标准,简称JPEG标准。1.JPEG压缩原理及特点 JPEG算法中首先对图像进行分块处理,一般分成互不重叠的 大小的块,再对每一块进行二维离散余弦变换(DCT)。变换后的系数基本不相关,且系数矩阵的能量集中在低频区,根据量化表进行量化,量化的结果保留了低频部分的系数,去掉了高频部分的系数。量化后的系数按zigzag扫描重新组织,然后进行哈夫曼编码。JPEG的特点优点:(1)形成了国际标准;(2)具有中端和高端比特率上的良好图像质量。缺点:(1)由于对图像进行分块,在高压缩比时产生严重的方块效应;(2)系数进行量化,是有损压缩;(3)压缩比不高,小于50。 JPEG压缩图像出现方块效应的原因是:一般情况下图像信号是高度非平稳的,很难用Gauss过程来刻画,并且图像中的一些突变结构例如边缘信息远比图像平稳性重要,用余弦基作图像信号的非线性逼近其结果不是最优的。2. JPEG压缩的研究状况及其前景 针对JPEG在高压缩比情况下,产生方块效应,解压图像较差,近年来提出了不少改进方法,最有效的是下面的两种方法:(1)DCT零树编码 DCT零树编码把 DCT块中的系数组成log2N个子带,然后用零树编码方案进行编码。在相同压缩比的情况下,其PSNR的值比 EZW高。但在高压缩比的情况下,方块效应仍是DCT零树编码的致命弱点。(2)层式DCT零树编码 此算法对图像作 的DCT变换,将低频 块集中起来,做 反DCT变换;对新得到的图像做相同变换,如此下去,直到满足要求为止。然后对层式DCT变换及零树排列过的系数进行零树编码。 JPEG压缩的一个最大问题就是在高压缩比时产生严重的方块效应,因此在今后的研究中,应重点解决 DCT变换产生的方块效应,同时考虑与人眼视觉特性相结合进行压缩。三 JEPG2000压缩 JPEG2000是由ISO/IEC JTCISC29标准化小组负责制定的全新静止图像压缩标准。一个最大改进是它采用小波变换代替了余弦变换。2000年3月的东京会议,确定了彩色静态图像的新一代编码方式—JPEG2000图像压缩标准的编码算法。1.JPEG2000压缩原理及特点 JPEG2000编解码系统的编码器和解码器的框图如图1所示。编码过程主要分为以下几个过程:预处理、核心处理和位流组织。预处理部分包括对图像分片、直流电平(DC)位移和分量变换。核心处理部分由离散小波变换、量化和熵编码组成。位流组织部分则包括区域划分、码块、层和包的组织。 JPEG2000格式的图像压缩比,可在现在的JPEG基础上再提高10%~30%,而且压缩后的图像显得更加细腻平滑。对于目前的JPEG标准,在同一个压缩码流中不能同时提供有损和无损压缩,而在JPEG2000系统中,通过选择参数,能够对图像进行有损和无损压缩。现在网络上的JPEG图像下载时是按“块”传输的,而JPEG2000格式的图像支持渐进传输,这使用户不必接收整个图像的压缩码流。由于JPEG2000采用小波技术,可随机获取某些感兴趣的图像区域(ROI)的压缩码流,对压缩的图像数据进行传输、滤波等操作。2.JPEG2000压缩的前景 JPEG2000标准适用于各种图像的压缩编码。其应用领域将包括Internet、传真、打印、遥感、移动通信、医疗、数字图书馆和电子商务等。JPEG2000图像压缩标准将成为21世纪的主流静态图像压缩标准。四 小波变换图像压缩1.小波变换图像压缩原理小波变换用于图像编码的基本思想就是把图像根据Mallat塔式快速小波变换算法进行多分辨率分解。其具体过程为:首先对图像进行多级小波分解,然后对每层的小波系数进行量化,再对量化后的系数进行编码。小波图像压缩是当前图像压缩的热点之一,已经形成了基于小波变换的国际压缩标准,如MPEG-4标准,及如上所述的JPEG2000标准 。2.小波变换图像压缩的发展现状及前景 目前3个最高等级的小波图像编码分别是嵌入式小波零树图像编码(EZW),分层树中分配样本图像编码(SPIHT)和可扩展图像压缩编码(EBCOT)。(1)EZW编码器 1993年,Shapiro引入了小波“零树”的概念,通过定义POS、NEG、IZ和ZTR四种符号进行空间小波树递归编码,有效地剔除了对高频系数的编码,极大地提高了小波系数的编码效率。此算法采用渐进式量化和嵌入式编码模式,算法复杂度低。EZW算法打破了信息处理领域长期笃信的准则:高效的压缩编码器必须通过高复杂度的算法才能获得,因此EZW编码器在数据压缩史上具有里程碑意义。(2)SPIHT编码器 由Said和Pearlman提出的分层小波树集合分割算法(SPIHT)则利用空间树分层分割方法,有效地减小了比特面上编码符号集的规模。同EZW相比,SPIHT算法构造了两种不同类型的空间零树,更好地利用了小波系数的幅值衰减规律。同EZW编码器一样,SPIHT编码器的算法复杂度低,产生的也是嵌入式比特流,但编码器的性能较EZW有很大的提高。(3)EBCOT编码器优化截断点的嵌入块编码方法(EBCOT)首先将小波分解的每个子带分成一个个相对独立的码块,然后使用优化的分层截断算法对这些码块进行编码,产生压缩码流,结果图像的压缩码流不仅具有SNR可扩展而且具有分辨率可扩展,还可以支持图像的随机存储。比较而言,EBCOT算法的复杂度较EZW和SPIHT有所提高,其压缩性能比SPIHT略有提高。小波图像压缩被认为是当前最有发展前途的图像压缩算法之一。小波图像压缩的研究集中在对小波系数的编码问题上。在以后的工作中,应充分考虑人眼视觉特性,进一步提高压缩比,改善图像质量。并且考虑将小波变换与其他压缩方法相结合。例如与分形图像压缩相结合是当前的一个研究热点。五 分形图像压缩 1988年,Barnsley通过实验证明分形图像压缩可以得到比经典图像编码技术高几个数量级的压缩比。1990年,Barnsley的学生提出局部迭代函数系统理论后,使分形用于图像压缩在计算机上自动实现成为可能。1. 分形图像压缩的原理 分形压缩主要利用自相似的特点,通过迭代函数系统(Iterated Function System, IFS)实现。其理论基础是迭代函数系统定理和拼贴定理。 分形图像压缩把原始图像分割成若干个子图像,然后每一个子图像对应一个迭代函数,子图像以迭代函数存储,迭代函数越简单,压缩比也就越大。同样解码时只要调出每一个子图像对应的迭代函数反复迭代,就可以恢复出原来的子图像,从而得到原始图像。2.几种主要分形图像编码技术 随着分形图像压缩技术的发展,越来越多的算法被提出,基于分形的不同特征,可以分成以下几种主要的分形图像编码方法。(1)尺码编码方法 尺码编码方法是基于分形几何中利用小尺度度量不规则曲线长度的方法,类似于传统的亚取样和内插方法,其主要不同之处在于尺度编码方法中引入了分形的思想,尺度 随着图像各个组成部分复杂性的不同而改变。(2)迭代函数系统方法 迭代函数系统方法是目前研究最多、应用最广泛的一种分形压缩技术,它是一种人机交互的拼贴技术,它基于自然界图像中普遍存在的整体和局部自相关的特点,寻找这种自相关映射关系的表达式,即仿射变换,并通过存储比原图像数据量小的仿射系数,来达到压缩的目的。如果寻得的仿射变换简单而有效,那么迭代函数系统就可以达到极高的压缩比。(3)A-E-Jacquin的分形方案 A-E-Jacquin的分形方案是一种全自动的基于块的分形图像压缩方案,它也是一个寻找映射关系的过程,但寻找的对象域是将图像分割成块之后的局部与局部的关系。在此方案中还有一部分冗余度可以去除,而且其解码图像中存在着明显的方块效应。3.分形图像压缩的前景 虽然分形图像压缩在图像压缩领域还不占主导地位,但是分形图像压缩既考虑局部与局部,又考虑局部与整体的相关性,适合于自相似或自仿射的图像压缩,而自然界中存在大量的自相似或自仿射的几何形状,因此它的适用范围很广。六 其它压缩算法 除了以上几种常用的图像压缩方法以外,还有:NNT(数论变换)压缩、基于神经网络的压缩方法、Hibert扫描图像压缩方法、自适应多相子带压缩方法等,在此不作赘述。下面简单介绍近年来任意形状纹理编码的几种算法[10]~ [13]。(1)形状自适应DCT(SA-DCT)算法 SA-DCT把一个任意形状可视对象分成 的图像块,对每块进行DCT变换,它实现了一个类似于形状自适应Gilge DCT[10][11]变换的有效变换,但它比Gilge DCT变换的复杂度要低。可是,SA-DCT也有缺点,它把像素推到与矩形边框的一个侧边相平齐,因此一些空域相关性可能丢失,这样再进行列DCT变换,就有较大的失真了[11][14][15]。(2)Egger方法 Egger等人[16][17]提出了一个应用于任意形状对象的小波变换方案。在此方案中,首先将可视对象的行像素推到与边界框的右边界相平齐的位置,然后对每行的有用像素进行小波变换,接下来再进行另一方向的小波变换。此方案,充分利用了小波变换的局域特性。然而这一方案也有它的问题,例如可能引起重要的高频部分同边界部分合并,不能保证分布系数彼此之间有正确的相同相位,以及可能引起第二个方向小波分解的不连续等。(3)形状自适应离散小波变换(SA-DWT) Li等人提出了一种新颖的任意形状对象编码,SA-DWT编码[18]~[22]。这项技术包括SA-DWT和零树熵编码的扩展(ZTE),以及嵌入式小波编码(EZW)。SA-DWT的特点是:经过SA-DWT之后的系数个数,同原任意形状可视对象的像素个数相同;小波变换的空域相关性、区域属性以及子带之间的自相似性,在SA-DWT中都能很好表现出来;对于矩形区域,SA-DWT与传统的小波变换一样。SA-DWT编码技术的实现已经被新的多媒体编码标准MPEG-4的对于任意形状静态纹理的编码所采用。 在今后的工作中,可以充分地利用人类视觉系统对图像边缘部分较敏感的特性,尝试将图像中感兴趣的对象分割出来,对其边缘部分、内部纹理部分和对象之外的背景部分按不同的压缩比进行压缩,这样可以使压缩图像达到更大的压缩比,更加便于传输。七 总结 图像压缩技术研究了几十年,取得了很大的成绩,但还有许多不足,值得我们进一步研究。小波图像压缩和分形图像压缩是当前研究的热点,但二者也有各自的缺点,在今后工作中,应与人眼视觉特性相结合。总之,图像压缩是一个非常有发展前途的研究领域,这一领域的突破对于我们的信息生活和通信事业的发展具有深远的影响。参考文献:[1] 田青. 图像压缩技术[J]. 警察技术, 2002, (1):30-31.[2] 张海燕, 王东木等. 图像压缩技术[J]. 系统仿真学报, 2002, 14(7):831-835.[3] 张宗平, 刘贵忠. 基于小波的视频图像压缩研究进展[J]. 电子学报, 2002, 30(6):883-889.[4] 周宁, 汤晓军, 徐维朴. JPEG2000图像压缩标准及其关键算法[J]. 现代电子技术, 2002, (12):1-5.[5] 吴永辉, 俞建新. JPEG2000图像压缩算法概述及网络应用前景[J]. 计算机工程, 2003, 29(3):7-10.[6] J M Shaprio. Embedded image coding using zerotree of wavelet coefficients[J]. IEEE Trans. on Signal Processing, 1993, 41(12): 3445-3462.[7] A Said, W A Pearlman. A new fast and efficient image codec based on set partitioning in hierarchical trees[J]. IEEE Trans. on Circuits and Systems for Video Tech. 1996, 6(3): 243-250.[8] D Taubman. High performance scalable image compression with EBCOT[J]. IEEE Transactions on Image Processing, 2000, 9(7): 1158–1170.[9] 徐林静, 孟利民, 朱建军. 小波与分行在图像压缩中的比较及应用. 中国有线电视, 2003, 03/04:26-29.[10] M Gilge, T Engelhardt, R Mehlan. Coding of arbitrarily shaped image segments based on a generalized orthogonal transform[J]. Signal Processing: Image Commun., 1989, 1(10): 153–180.[11] T Sikora, B Makai. Shape-adaptive DCT for generic coding of video[J]. IEEE Trans. Circuits Syst. Video Technol., 1995, 5(1): 59–62.[12] T Sikora, S Bauer, B Makai. Efficiency of shape-adaptive 2-D transforms for coding of arbitrarily shaped image segments[J]. IEEE Trans. Circuits Syst. Video Technol., 1995, 5(3): 254–258.[13]邓家先 康耀红 编著 《信息论与编码》

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

图像拼接的算法研究论文

本文研究了无人机(UAV)遥感图像拼接过程中重叠区域的不匹配问题。为了解决这个问题,首先通过将双重匹配与随机抽样共识(RANSAC)方法相结合来过滤特征点。其次,为了保证每幅图像与全景照片的投影关系的一致性,我们提出了一种局部拼接的方法。为了避免随着图像数量的增加透视变化累积而导致图像倾斜的错误,我们建立了图像旋转坐标系,并将图像之间的关系限制为平移和旋转。用坐标原点的相对位置来表示平移距离,通过迭代求解最优旋转角度。最后,图像的重叠部分通过线性加权融合。通过实验结果验证,本文提出的方法在大量图像的情况下能够保证更快的处理速度和更高的处理精度,从而达到理想的拼接效果。 近年来,随着计算机视觉的不断进步,图像拼接技术在海洋和矿产勘探、遥感勘探、医学成像、效果生成、虚拟现实等方面得到了广泛的应用。许多航拍遥感图像可以通过配备摄像头的无人机在地面拍摄得到。通常,由于无人机飞行高度、相机焦距等因素,单幅图像存在信息量少、全局分辨率低等问题。因此,要获得广角高分辨率的照片,就需要研究全景图像拼接技术。Brown 在 2003 年引入了著名的 AutoSitich 算法,很快就被用于商业产品,如 Photoshop。但是,该算法假定图像的重叠区域没有深度变化。2013 年,萨拉戈萨 J 等人。将图像拆分为密集的网格,并为每个网格使用单个更改,称为网格变形。该方法在一定程度上解决了图像变形、尺寸缩放、重定向等问题。 图像拼接技术一般分为图像几何校正、图像预处理、图像对齐、图像融合四个步骤。由于相机镜头的畸变,需要对无人机的图像进行校正,使得到的图像满足个别地图的投影关系。图像预处理是几乎所有图像处理技术的重要组成部分,包括去噪、灰度变化等。这个过程可以降低匹配难度,提高匹配精度。然而,对于无人机遥感图像的拼接,图像匹配和图像融合是成功的关键。 图像匹配技术是图像拼接的基础。1975年米尔格拉姆提出了计算机拼接技术。于是,在重叠区域寻找最优接缝线就成为一个重要的研究方向。同年,Kuslin 提出了一种相位相关方法,通过傅里叶变化将图像转换到频域,并利用功率谱计算平移。1987 年,Reddy 提出了一种扩展的相位相关方法,该方法可以计算图像的平移和旋转关系并解决图像缩放问题。图像拼接的另一个分支是基于图像特征。1988年Harris提出经典的Harris点检测算法,它使用特定的旋转不变性哈里斯点进行特征匹配。2004 年,Lowe 提出了一种完美的尺度不变特征变换算法(SIFT),对平移、旋转、尺度缩放、不均匀光照等图像领域应用最广泛的技术具有良好的适应性。C Aguerrebere 根据输入图像的 SNR 条件给出的问题难度级别显示不同的行为区域。Wu通过建立模型,将深度学习和进化算法应用于遥感图像的拼接,实现概率意义上的全局优化。 图像融合技术是遥感图像拼接技术中的另一项核心技术,分为像素级融合、特征级融合、决策级融合。像素级融合仍然是现阶段最常用的图像融合方法之一。 对于无人机的遥感图像,存在图像数量多、光照条件多变等问题。每次拼接过程中的小错误都难以避免。随着图像数量的增加,误差不断累积,图像拼接后期会出现图像失真和重影。S Bang 创建高质量全景图,过滤掉视频的模糊帧,选择关键帧,并校正相机镜头失真。Zhang 提出了基于 STIF 的 GA-SIFT 并给出了一种自适应阈值方法来解决计算量大和拼接时间长的问题。李明基于动态规划解决无人机侧视问题寻找最佳接缝线。然而,当图像数量逐渐增加时,现有的拼接算法存在误差累积。 也有一些基于网格变形的图像拼接算法,但计算量太大。在本文中,图像被匹配两次以过滤特征点以提高准确度。拼接问题对应于通过坐标系转换的旋转角度解,应用高斯-牛顿迭代计算最优旋转角度。此外,我们练习局部匹配方法以减少错误并使用加权融合来实现过度平滑。 SIFT特征点不仅在空间尺度和旋转上保持不变,而且在光照和视角变化的条件下,还具有优异的抗干扰能力和良好的稳定性。为了实现空间尺度的不变性,SIFT特征点可以根据物体远看小而模糊,反之大而清晰的特点,建立高斯金字塔模型。差分金字塔 (DoG) 是通过计算金字塔中相邻两层图像之间的差异来获得的。使用函数拟合在 DOG 空间中测试极值。通过对确定场中基于SIFT特征点的梯度信息进行统计,选择加权幅度最大的梯度方向作为主梯度方向。通过将特征点与其主梯度方向相关联,可以解决图像特征点的旋转不变性问题。最后,利用特征点周围像素的信息建立一个128维的向量作为特征点的描述符。 提取特征点后,需要对两幅图像的特征点进行匹配。通过特征点成对匹配,可以计算出两个特征点对应的描述符之间的欧氏距离,选择欧氏距离最小的点作为匹配点对。为了减少不匹配的发生率, 被用作正确匹配的阈值。具有大于 的描述符欧几里得距离的匹配点对被消除。 RANSAC 是特征点匹配中最常用的方法之一。它首先从匹配结果中随机选择四对特征点并计算单应矩阵。其次,根据上一步得到的单应矩阵,计算第一幅图像在第二幅图像中的重投影坐标,并计算该坐标与第二幅图像中匹配点对坐标的距离。通过设置距离阈值记录所有匹配点对中正确匹配特征点对的个数。重复上面的过程,最终留下与最多点对数的正确匹配。 高斯-牛顿迭代是求解非线性最小二乘优化问题的算法之一,可以描述为: 我们选择一个初始值,然后不断更新当前优化变量以减小目标函数值。高斯-牛顿迭代的主要思想是对函数 进行一阶泰勒展开,计算 及其雅可比矩阵 对应的函数值。使用 和 计算 的增量,直到 足够小。 加权平均法是图像融合中简单有效的方法之一。第一幅图像和第二幅图像重叠区域的像素值由两幅图像像素的加权求和得到,表示为: 其中:越接近 img1, 的值越大。 的值从1逐渐变为0,重叠区域从第一幅图像逐渐过渡到第二幅图像,从而实现画面的平滑过渡。照片的加权平均融合因其直观的简单性和快速的运行速度而被广泛使用和图像拼接。 对于两幅图像的拼接,由于无人机的遥感相机通常安装在一个稳定的平台上,通过选择合适的坐标系,将图像对齐问题转化为单幅图像旋转问题,如图1所示。 此外,大多数具有相关高光频的常用相机通常在连续帧之间具有较大的重叠区域。因此,在图像拼接过程中,第 幅图像在全局位置上的投影关系,不仅受第 幅图像的影响,还与 图像相关。为了保证图像变形的一致性,首先将 张图像拼接在一起,然后将结果整合到整幅图像中。大量的实验测试证明,当i设置为3时效果最佳。整个过程如图图2。 图像中的特征点有很多种,本文使用最常见的SIFT特征点。我们提取并匹配两张输入图像的特征点,结果如下所示。 特征点的匹配精度直接影响旋转角度的计算,因此使用前必须对特征点对进行过滤。鉴于过滤特征点的方法很多,本文先将左图与右图进行匹配,再将右图与左图进行匹配。两次相同结果配对的匹配点将被保留。在此基础上,使用RANSAC方法对结果进行优化,成功匹配了上图中的121个特征点。 从无人机拍摄的两张照片之间通常存在旋转和平移。为了独立优化旋转角度,我们首先建立如图 5所示的坐标系。 以图像匹配成功的特征点坐标值的平均值作为该坐标的原点,坐标轴与像素坐标系的两个坐标轴平行。根据公式(3),特征点从图像坐标系转换为图像旋转坐标系: 其中 为滤波后的特征对的总数, 为特征点在原始图像坐标系中的坐标值,并且 是新的值。 在计算图像的旋转角度之前,我们首先需要分析图像的缩放比例。由飞行高度引起的尺寸变化将在轴上具有相同的缩放比例。因此,根据所有特征点与图像旋转坐标系原点的欧氏距离比,可以计算出两幅图像之间的缩放比例,对图像进行缩放和改变。 图像缩放后,计算图像旋转的角度。高斯牛顿迭代的方式计算旋转角度的最优解。首先设置目标函数: 通过迭代选择最优的 使得: 使用误差函数 的泰勒展开进行迭代。 其中 根据 我们可以发现增量值 每次迭代。最终,当我们计算出的 满足条件时,停止迭代过程。可以使用最佳旋转角度和旋转中心来求解图像的变换矩阵。 由于拍摄图像时光线不均匀,连续两张图像之间可能存在一些颜色差异。此外,图像旋转不可避免地存在小误差,因此我们练习线性加权融合以消除两幅图像之间的拼接线和色度变化。图像的重叠是按距离加权的,这样拼接结果自然是从img1到img2过度了。 我们利用OpenCV的功能从遥感图像中提取SIFT特征点并进行匹配。从Stitch拼接功能、基于透视变化的图像拼接结果以及本文的拼接速度的对比可以看出,本文采用的方法具有一定的优越性。 从表1数据可以看出,在拼接少量图像时,三种算法的拼接结果相似,没有出现明显的拼接误差。但是,Stitcher 算法比其他两种拼接方法花费的时间要多得多。 图 11很明显,随着图像数量的增加,基于透视变换的图像拼接算法出现了严重的失配。然而,本文采用的方法取得了比较满意的结果,因为在无人机拍摄的图像中,地面上的所有特征都可以近似地视为在同一平面上。根据透视变换,无人机的远近抖动会引入图像拼接导致错误。图像数量的不断增加会导致错误的积累,从而导致严重的失配。另外,这使得程序中断,从而无法完成所有60幅图像的拼接。假设同一平面上图片的仿射变化会更符合无人机遥感图像的实际情况。最后,可以通过线性加权融合来解决误差问题,以提高拼接效果。考虑到stitch算法耗时过长,本文不会对两者进行比较。 在上面的图 12 中,使用 100 张图像来测试本文中的方法。图像的仿射变换是通过计算围绕图像特征点中心的旋转角度来进行的。变换后的图像采用线性加权融合后,可以得到大量图像数据处理后的结果。拼接自然,符合人类视觉体验。 我们在网络上跑了一组数据,结果如下。 鉴于以上实验结果,该方法具有一定的抗干扰能力,可以高速运行。与高度集成的Stitcher和基于透视变换的图像拼接结果相比,我们可以发现,基于透视变化的图像拼接结果随着图像数量的增加而逐渐变差。然而,尽管拼接效果很好,但 Stitcher 需要更长的处理时间。 在本文中,我们研究了无人机遥感图像的拼接技术,主要贡献可以总结如下: 通过实验结果可以看出,本文提出的方法比现有方法具有更好的实时性,对于相机平面与成像平面平行的情况具有更好的拼接效果。

图像拼接的目标是创建看起来自然的马赛克,没有因相对相机运动、照明变化和光学像差而可能出现的伪影。在本文中,我们提出了一种新颖的拼接方法,该方法在整个目标图像上使用平滑拼接场,同时考虑到所有局部变换变化。计算扭曲是完全自动化的,并使用局部单应性和全局相似性变换的组合,两者都是相对于目标估计的。我们通过线性化单应性并慢慢将其更改为全局相似性来减轻非重叠区域中的透视失真。所提出的方法很容易推广到多幅图像,并允许自动获得全景中的最佳视角。它对参数选择也更加稳健,因此与最先进的方法相比更加自动化。使用各种具有挑战性的案例证明了所提出方法的好处。 图像拼接是计算机视觉中古老且广泛使用的算法之一。获得尽可能自然、没有伪影的图像马赛克是非常重要的,尽管解释全景图或马赛克的自然外观存在主观性。 早期的方法是估计单应变换,但容易导致错位和重影。作者提出了一种新方法,该方法结合了多种技术,使全景图看起来更自然。减轻 As-Projective-As-Possible (APAP) 中发生的透视失真拼接,重叠区域中对应点的子集自动估计全局相似性变换。在重叠区域中的单应性和全局相似性之间进行平滑插值,并在非重叠区域中使用线性化单应性(仿射)和全局相似性变换类似地进行外推。两个拼接场(单应线性化单应性和全局相似性)的平滑组合帮助实现: 目标图和参考图分别为 和 ,匹配点对分别为 和 ,由 到 的单应 表示为 在齐次坐标中表示 和 ,单应性可以由 的矩阵 表示。(5)中的 的矩阵中只有两行是相互独立的,对于 对匹配点对, 可以表示为: 其中 和 是(5)中矩阵的前两行,并且同时限制 保证单应矩阵只有8个自由度。 APAP中作者用局部加权的方式修改(6)式,在 处的的局部单应性可以表示为 重写为 其中 ,在APAP中权重采用高加权的方式获取,在靠近 的位置权重大,远离的位置权重小,即 其中 。 需要注意的是局部单应性只能在参考图和目标图重叠的区域计算。非重叠区域的单应变换采用重叠区域的权重的线性组合获得,因此需要谨慎选择合适的偏置以防外推伪影。 由于高斯加权的各向同性性质,会导致“波浪”效应,而选择适当的偏移会导致良好的结果。即使在这种情况下,APAP 的非重叠区域的透视失真也很明显。本文作者使用在重叠区域中没有偏移的移动 DLT 来估计局部单应性,并使用单应性线性化外推到非重叠区域,减少透视失真。 非重叠区域的单应变换会产生极不自然的尺度变化,用1维的透视变换来理解 若用一系列点对估计参数 ,在可用点对范围之外, 和 也是非线性的。在2维透视变换中扭曲会更加严重。 对于图像,锚点 附近的任意一点 的单应泰勒级数展开可以表示成 其中 为单应 在 点处的雅可比矩阵。 在非重叠区域计算 的 线性化并不容易。而重叠区域和非重叠区域的边界可能存在多个点,不知道在何处计算雅可比矩阵,因此在边界将锚点线性化并计算加权平均。 边界处的一系列锚点 ,线性化的加权组合表示为 为高斯权重 或Student权重 ,由于Student分布尾部衰减更慢,当q远离锚定点时,所有锚定点都被赋予类似的加权,表现更加鲁棒。 使用所有点匹配查找全局相似性变换可能会导致非最优解,特别是当重叠区域包含不同的图像平面时。这个问题在下图中很明显,它显示了SPHP的缝合结果。 作者通过以下方式分割对应点来计算参考图像和目标图像之间的最佳相似性变换的方法。在获得特征点匹配后,首先使用带有阈值 的RANSAC去除异常值。然后,使用带有阈值 的 RANSAC 找到具有最大内点的平面的单应性,其中 ,删除这些内点。重复这个过程,直到内点的数量小于η. 每组匹配的内点用于计算单个相似性变换。然后,检查对应于变换的旋转角度并选择具有最小旋转角度的旋转角度。 拼接结果出现不自然的区域用一下方式更新全局相似变换。 其中 为第 个局部单应性, 表示更新后的局部单应性 为全局相似变换, 和 为权重系数,上标 表示目标图像, 表示参考图像,限制 ,且都在0~1之间,用下式计算: 其中 为目标图像扭曲后在 方向上的投影点。 和 分别为目标图像和参考图像的中心点。 和 为 的最小和最大值,其中 为最终全景图的第 个位置。 使用全局相似性变换更新目标图像的扭曲会导致参考图像和先前对齐的目标图像之间的重叠区域不对齐。因此,我们需要通过适当地将变化从目标图像传播到参考图像来补偿这些变化。现在可以获得参考图像的局部变换,如下所示:在这项工作中,我们提出了一种新颖的拼接方法,该方法使用从局部单应性或其线性化版本和全局相似变换导出的平滑拼接场。结果表明,我们的方法提供了更自然的全景图,在重叠区域没有可见的视差,并减轻了非重叠区域的透视失真问题。此外,它较少依赖于参数的选择并自动计算适当的全局相似性变换。与现有方法的实验比较表明,与最先进的方法相比,所提出的方法产生了最好的缝合。未来的研究发展将包括在存在大运动时补偿视差,这可以通过将切缝方法集成到该框架中来执行。

图像的提取算法研究论文

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!

图像分割技术研究

摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。

关键词:图像分割、阈值、边缘检测、区域分割

中图分类号: 文献标识码: A

1引言

随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。

2图像分割方法

图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。

基于灰度特征的阈值分割方法

阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。

这类方法主要包括以下几种:

(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。

(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。

(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。

边缘检测分割法

基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。

基于区域的分割方法

基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。

区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。

结合特定工具的图像分割技术

20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。

基于数学形态学的分割算法

分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。

基于模糊数学的分割算法

目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。

这类方法主要有广义模糊算子与模糊阈值法两种分割算法。

(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。

(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。

基于遗传算法的分割方法

此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。

基于神经网络分割算法

人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。

图像分割中的其他方法

前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。

(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。

(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的

(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。

(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。

3图像分割性能的评价

图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。

4图像分割技术的发展趋势

随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。

参考文献

[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003

[2] 章毓晋.图像分割[M].北京:科学出版社,2001.

[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.

[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.

点击下页还有更多>>>图像分割技术论文

  • 索引序列
  • 图像锐化算子的对比研究论文
  • 图像锐化毕业论文参考书籍
  • 图像算法研究论文
  • 图像拼接的算法研究论文
  • 图像的提取算法研究论文
  • 返回顶部