首页 > 期刊论文知识库 > 马达驱动毕业论文

马达驱动毕业论文

发布时间:

马达驱动毕业论文

一、项目提出的背景1.1 汽轮机'>300MW汽轮机电液控制系统 洛阳首阳山电厂二期2x汽轮机'>300MW汽轮机为日立公司TCDF-33.5亚临界压力、中间再热、双缸双排汽、冲动、凝汽式汽轮机,于1995年12月和1996年3月投产。汽轮机调节系统为数字电液调节(D—EHG),采用低压汽轮机油电液调节。执行机构的设置为1个高压油动机带动4个高压调速汽门,2个中压油动机带动2个中压调速汽门。每个油动机由一个电液伺服阀控制,1台汽轮机的3个油动机(CV、左右侧ICV)的电液伺服阀均为日本制造的Abex415型电液伺服阀。控制油和润滑油均采用同一油源即主油箱内的N32号防锈汽轮机油,在控制油路上安装一精密滤网(精度为51μm)。1.2 存在问题 首阳LU电厂3、4号机组从1995年试运开始,机组启动冲转过程中经常出现油动机突然不动的现象,经检查控制系统正常,信号传输正常,均为伺服阀故障所致,伺服阀更换后调节系统恢复正常。机组在带负荷稳定运行和中压调节门活动试验日寸,也出现油动机不动的情况及油动机全开或全关的现象, 检查均为伺服阀故障。 伺服阀出现故障必须进行更换,而这种调节系统设计形式伺服阀无法隔离,只能被迫停机更换。首阳山电厂3、4号机组由于伺服阀原因造成的停机:2000年分别为8次、5次,2001年分别为1次、2次;截止到2002年6月仅3号机组由于伺服阀原因造成的停机就达4次。对拆下来的故障伺服阀进行检查,发现其内部滤芯堵塞、喷嘴堵塞、滑阀卡涩。伺服阀内部滤芯堵塞引起伺服阀前置级控制压力过低,不能控制伺眼阀的第2级滑阀运动,致使油动机拒动(对控制信号不响应);喷嘴堵塞油动机关闭;伺服阀卡涩,使油动机保持在全开或全关位置。油质污染是造成上述故障的主要原因,油质污染造成伺阀卡涩的故障占伺服阀故障的85%[1]。1.3 油质状况及防止伺服阀卡涩的措施 由于3、4号机组试运时就经常发生伺服阀卡涩,移交生产后首阳山电厂对油质就非常重视,1996年成立了滤油班加强滤油管理,提高油质清洁度。伺服阀卡涩频率比试运时降低了许多,但次数还比较多。 日立《汽轮机维护手册》标明,伺服阀可在等于或低于NASl638第7级污染程度的油质中良好工作。二期油系统管路设计为套管形式,滤网后向伺服阀供油的控制油管位于润滑油回油管中无法取样监测,只能监视润滑油的清洁度。根据旧的《电厂用运行中汽轮机油质量标准》[2]中对油中机械杂质的要求是外观目视无杂质,1996年至今,每周化验3、4号机润滑油,油样透明、无杂质(有一段时间含少量水分,极少检查有杂质)。新的《电厂用运行中汽轮机油质量标准》[3]除要求外观目视油中无机械杂质外,对油质提出了更高要求:250MW及以上机组要求测试颗粒度,参考国外标准极限值NASl638规定8-9级或MOOG规定6级;有的汽轮机'>300MW汽轮机润滑系统和调速系统共用一个油箱,也用矿物汽轮机油,此时油中颗粒度指标应按制造厂提供的指标,测试周期为每6个月1次。2001年对3、4号机组汽轮机油取样讲行颗粒度分析,运行油颗粒度均合格(见表1)。 伺服阀卡涩引起停机,对机组安全性影响非常大,且伺服阀卡涩引起机组非计划停运影响电厂的经济性。首阳山电厂采取了以下临时措施: (1)定期更换伺服阀,超过3个月后遇到机组停机进行更换;(2)定期切换控制油滤芯,并对其清洗;(3)滤油机连续运行时提高油质清洁度;(4)加强油质检验。 从运行看,因伺服阀卡涩引起停机次数有所减少。但尚无从根本上解决问题,为此经分析、研究提出一系列改造设想,如“采用独立的控制油源”、“不停机更换伺服阀”等,但由于系统改造量大、改造费用高或技术上不可行而均放弃。经多方分析、调研,提出将伺服阀改型,选用抗污染性能较强的DDV阀的方案。二、Abex415型电液伺服阀2.1 工作原理 电液伺服阀是电液转换元件,又是功率放大元件,它把微小的电气信号转换成大功率的液压能输出,控制调速汽门的阀位。它的性能优劣对电液调节系统影响很大,是电液调节系统的核心和关键。该伺服阀为射流管式力反馈二级电液伺服阀,为四通阀门,其作用是控制进出液压系统的油量,使其与输入的电信号成比例,主要由阀体、转距电动机(线圈、电枢)、永久性磁铁、第1级射流管、压力反馈弹簧、第2级滑阀、“O”形环、外壳等组成(见图1)。 其工作原理:少量液压油从油源流经滤网,然后流经连接在力矩马达转子上的软管,最后从喷油嘴流出。从喷嘴出来的油喷到2根集油管上,2根油管分别连于滑阀的两端。无偏移时,每个集油管产生约二分之一的管道压力,因而无差压产生,所以滑阀平衡。电流流过力矩马达时即产生一定力矩,使力矩马达的转子转动一个小角度。若转子为反时针转动,则喷油管向右移动,引起更多的油喷到右边的集油管上,即产生压力,而左边集油管产生较小的压力。这样滑阀上出现压差,引起滑阀向左移动。滑阀一直向左移动直到回位弹簧产生的反力与力矩马达产生的力相等为止。这时滑阀处于一新的平衡位置。第2级电流成正比。如电流极性相反,则滑阀移到另一侧。2.2 主要特点 (1)该阀为射流管式力反馈二级放大电液伺服阀;(2)低滞环,高分辨率;(3)灵敏度高,线性好且控制精度高;(4)控制油采用润滑油同一油源即主油箱内的N32号防锈汽轮机油,对油质要求高且抗污染能力差。 2.3 主要技术规范 伺服阀的型号、。 三、DDV伺服阀技术介绍 工作原理 DDV伺服阀由集成块电子线路、直线马达、阀芯、阀套等几部分构成(见图2)。其工作原理为:一个电指令信号施加到阀芯位置控制器集成块上,电子线路在直线马达产生一个脉宽调制(PWM)电流,震荡器使阀芯位置传感器(LVDT)励磁。经解调后的阀芯位置信号和指令位置信号进行比较,阀芯位置控制器产生一个电流输出给力矩马达,力矩马达驱动阀芯,一直使阀芯移动到指令位置。阀芯的位置与指令信号大小成正比。伺服阀的实际流量Q是阀芯位置与通过阀芯计量边的压力降的函数。 永磁直线马达结构。其工作原理:直线马达是一个永磁的差动马达,永磁提供部分所需的磁力,直线马达所需的电流明显低于同量级的比例电磁线圈所需的电流。直线马达具有中性的中位,因为它一偏离中位就会产生力和行程,力和行程与电流成正比,,自线马达在向外伸出的过程巾必须克服高刚度弹簧所产生的对中力与外部的附加力(即液动力及由污染引起的摩擦力)。在直线马达返回中位时,对中弹簧力是和马达产生的力同方向的,等于给阀芯提供了附加的驱动力,因此使DDV伺服阀对污染的敏感性大为降低。直线马达借助对,卜弹簧回中,不需外加电流。停电、电缆损坏或紧急停机情况下,伺服阀均能自行回中,无需外力推动。3.2 主要特点 DDV阀是MOOG公司最新研制成功的新型电液伺服阀,目前已由MOOGGmbH(德国)公司进行批量生产。它是一种直接驱动式伺服阀,用集成电路实现阀芯位置的闭环控制。阀芯的驱动装置是永磁直线力马达,对中弹簧使阀芯保持在中位,直线力马达克服弹簧的对中力使阀芯在2个方向都可偏离中位,平衡在一个新的位置,这样就解决了比例电磁线圈只能在一个方向产:生力的不足之处。阀芯位置闭环控制电子线路与脉宽调制(PWM)驱动电子线路固化为一块集成块,用特殊的连接技术固定在伺服阀内,因此该伺服阀无需配套电子装置就能对其进行控制。 DDV阀与“射流管式伺服阀”(或“双喷嘴力反馈两级伺服阀”)相比,其最大特点是:(1)无液压前置级;(2)用大功率的直线力马达替代丁小功率的力矩马达;(3)用先进的集成块与微型位置传感器替代了工艺复杂的机械反馈装置一力反馈杆与弹簧管;(4)低的滞环,高的分辨率;(5)保持了带前置级的两级伺服阀的基本性能与技术指标;(6)对控制油质抗污染能力大大提高;(7)降低运行维护成本。3.3 主要技术参数 DDV伺服阀的型号、参数 四、技术改造方案及设备安装调试 通过技术改造实现的目标:(1)彻底解决伺服阀卡涩;(2)不改变调节系统的调节特性;(3)具有高的可靠性、安全性;(4)改造量小。 改造方案:(1)将汽轮机的CV、左右侧ICV伺服阀均改为DDV型伺服阀。(2)机械方面:因2种伺服阀形状、开孔尺寸及安装尺寸不同,在伺服阀与执行器间加装连接用的油路集成块,并在集成块上安装进油滤网。(3)热工方面:安装电源及信号转换箱,接受HITASS的D-EHG控制信号(±8mA)和2路220V交流电源(一路UPS,一路保安段),将控制信号(±8mA)变为电压信号(±10V)作为DDV的控制信号,交流220V转换为直流24V作为DDV的电源。 通过静止试验表明,调节系统静态特性达到与改型前试验数值基本一致,表明伺服阀改为DDV阀后,整个控制系统调节方法、调节性能无变化。改型前后静态试验数据 为检验伺服阀改为DDV阀后是否安全,能否保证失电状况下执行器关闭,进行了失电试验:加一开启信号,执行器开启;就地拔去信号接头,执行器自行关闭。五、运行实践及经济分析 4号机组自2001年9月运行至今,机组启停多次,调节系统可靠稳定,没有发生一次因伺服阀卡涩而造成机组的非计划停运。 技术改造后对机组安全、经济方面的影响。安全性:避免了伺服阀卡涩,极大地提高了机组的安全性、可靠性且机组非计划停运次数大大减少;经济性:技术改造除增加发电量外,每年约可节约费用74万元。技术改造费为每台机20万元,2台机组共40万元。1台机组1年就可收回2台机组的全部投资,经济效益显著。六、结 论 实际运行情况表明:该项技术改造在于汽轮机电液控制系统与润滑油系统同用一个油源,提高了适用性及抗污染能力,解决了电液伺服阀卡涩问题,大大减少了机组非计划停运次数,有明显的经济效益。可在同类日立00MW汽轮机的电液控制系统推广、实施。 目前国内机组电液控制系统工作液采用磷酸酯抗燃油的较多,而磷酸酯抗燃油与透平油相比理化性能要求严格、价格昂贵且维护复杂,尤其是磷酸酯抗燃油废液目前不能处理,其污染等同核污染,对人体健康有一定的危害。考虑到这些因素,机组电液控制系统工作液由抗燃油向汽轮机油系统发展是大趋势。 虽然DDV阀对油质污染的敏感性大为降低,但油质清洁度下降,会降低伺服阀计量边使用寿命,所以加强油质化学监督一点也不能放松。同时建议机组进行一次甩负荷试验,以进一步检验DDV阀的甩负荷特性。

·风力发电电能变换装置的研究 ·电流继电器设计 ·基于DSP的电力谐波测量装置的研究 ·电力现场图像监测系统设计 ·电力现场监测系统的设计 ·电力电子CAI课件的研制 ·电加热炉PLC温度自适应控制系统的研究 ·电加热反应釜生产过程控制 ·电机自动试验系统设计 ·电机起动方法及其软起动的研究 ·基于虚拟仪器的电机变频实验系统 ·电动汽车驱动电机及控制系统 ·电动机智能软起动控制系统的研究与设计(PLC) ·低压断路器智能式脱扣器设计 ·低压断路器操动机构的设计及优化 ·低压动态无功补偿装置的设计 ·低压变压器及其继电保护设计 ·倒立摆系统控制研究 ·倒立摆控制系统开发

太天真了??这样就可以要到论文了?

摘要 : 信息时代的高新技术推动了传统产业的迅速发展,在机械工业自动化中出现了一些运动控制新技术:全闭环交流伺服驱动技术、直线电机驱动技术、可编程计算机控制器、运动控制卡等。本文主要分析和综述了这些新技术的基本原理、特点以及应用现状等。 关键词:伺服驱动技术,直线电机,可编程计算机控制器,运动控制 1 引言 信息时代的高新技术流向传统产业,引起后者的深刻变革。作为传统产业之一的机械工业,在这场新技术革命冲击下,产品结构和生产系统结构都发生了质的跃变,微电子技术、微计算机技术的高速发展使信息、智能与机械装置和动力设备相结合,促使机械工业开始了一场大规模的机电一体化技术革命。 随着计算机技术、电子电力技术和传感器技术的发展,各先进国家的机电一体化产品层出不穷。机床、汽车、仪表、家用电器、轻工机械、纺织机械、包装机械、印刷机械、冶金机械、化工机械以及工业机器人、智能机器人等许多门类产品每年都有新的进展。机电一体化技术已越来越受到各方面的关注,它在改善人民生活、提高工作效率、节约能源、降低材料消耗、增强企业竞争力等方面起着极大的作用。 在机电一体化技术迅速发展的同时,运动控制技术作为其关键组成部分,也得到前所未有的大发展,国内外各个厂家相继推出运动控制的新技术、新产品。本文主要介绍了全闭环交流伺服驱动技术(Full Closed AC Servo)、直线电机驱动技术(Linear Motor Driving)、可编程序计算机控制器(Programmable Computer Controller,PCC)和运动控制卡(Motion Controlling Board)等几项具有代表性的新技术。2 全闭环交流伺服驱动技术 在一些定位精度或动态响应要求比较高的机电一体化产品中,交流伺服系统的应用越来越广泛,其中数字式交流伺服系统更符合数字化控制模式的潮流,而且调试、使用十分简单,因而被受青睐。这种伺服系统的驱动器采用了先进的数字信号处理器(Digital Signal Processor, DSP),可以对电机轴后端部的光电编码器进行位置采样,在驱动器和电机之间构成位置和速度的闭环控制系统,并充分发挥DSP的高速运算能力,自动完成整个伺服系统的增益调节,甚至可以跟踪负载变化,实时调节系统增益;有的驱动器还具有快速傅立叶变换(FFT)的功能,测算出设备的机械共振点,并通过陷波滤波方式消除机械共振。 一般情况下,这种数字式交流伺服系统大多工作在半闭环的控制方式,即伺服电机上的编码器反馈既作速度环,也作位置环。这种控制方式对于传动链上的间隙及误差不能克服或补偿。为了获得更高的控制精度,应在最终的运动部分安装高精度的检测元件(如:光栅尺、光电编码器等),即实现全闭环控制。比较传统的全闭环控制方法是:伺服系统只接受速度指令,完成速度环的控制,位置环的控制由上位控制器来完成(大多数全闭环的机床数控系统就是这样)。这样大大增加了上位控制器的难度,也限制了伺服系统的推广。目前,国外已出现了一种更完善、可以实现更高精度的全闭环数字式伺服系统 , 使得高精度自动化设备的实现更为容易。其控制原理如图1所示。该系统克服了上述半闭环控制系统的缺陷,伺服驱动器可以直接采样装在最后一级机械运动部件上的位置反馈元件(如光栅尺、磁栅尺、旋转编码器等),作为位置环,而电机上的编码器反馈此时仅作为速度环。这样伺服系统就可以消除机械传动上存在的间隙(如齿轮间隙、丝杠间隙等),补偿机械传动件的制造误差(如丝杠螺距误差等),实现真正的全闭环位置控制功能,获得较高的定位精度。而且这种全闭环控制均由伺服驱动器来完成,无需增加上位控制器的负担,因而越来越多的行业在其自动化设备的改造和研制中,开始采用这种伺服系统。 3 直线电机驱动技术 直线电机在机床进给伺服系统中的应用,近几年来已在世界机床行业得到重视,并在西欧工业发达地区掀起"直线电机热"。 在机床进给系统中,采用直线电动机直接驱动与原旋转电机传动的最大区别是取消了从电机到工作台(拖板)之间的机械传动环节,把机床进给传动链的长度缩短为零,因而这种传动方式又被称为"零传动"。正是由于这种"零传动"方式,带来了原旋转电机驱动方式无法达到的性能指标和优点。 1. 高速响应 由于系统中直接取消了一些响应时间常数较大的机械传动件(如丝杠等),使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。 2. 精度 直线驱动系统取消了由于丝杠等机械机构产生的传动间隙和误差,减少了插补运动时因传动系统滞后带来的跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。 3. 动刚度高 由于"直接驱动",避免了启动、变速和换向时因中间传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时也提高了其传动刚度。 4. 速度快、加减速过程短 由于直线电动机最早主要用于磁悬浮列车(时速可达500Km/h),所以用在机床进给驱动中,要满足其超高速切削的最大进个速度(要求达60~100M/min或更高)当然是没有问题的。也由于上述"零传动"的高速响应性,使其加减速过程大大缩短。以实现起动时瞬间达到高速,高速运行时又能瞬间准停。可获得较高的加速度,一般可达2~10g(g=),而滚珠丝杠传动的最大加速度一般只有~。5. 行程长度不受限制 在导轨上通过串联直线电机,就可以无限延长其行程长度。 6. 运动动安静、噪音低 由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。 7. 效率高 由于无中间传动环节,消除了机械摩擦时的能量损耗,传动效率大大提高。 直线传动电机的发展也越来越快,在运动控制行业中倍受重视。在国外工业运动控制相对发达的国家已开始推广使用相应的产品,其中美国科尔摩根公司(Kollmorgen)的 PLATINNM DDL系列直线电机和SERVOSTAR CD系列数字伺服放大器构成一种典型的直线永磁伺服系统,它能提供很高的动态响应速度和加速度、极高的刚度、较高的定位精度和平滑的无差运动;德国西门子公司、日本三井精机公司、台湾上银科技公司等也开始在其产品中应用直线电机。4 可编程计算机控制器技术 自20世纪60年代末美国第一台可编程序控制器(Programming Logical Controller,PLC)问世以来,PLC控制技术已走过了30年的发展历程,尤其是随着近代计算机技术和微电子技术的发展,它已在软硬件技术方面远远走出了当初的"顺序控制"的雏形阶段。可编程计算机控制器(PCC)就是代表这一发展趋势的新一代可编程控制器。 与传统的PLC相比较,PCC最大的特点在于它类似于大型计算机的分时多任务操作系统和多样化的应用软件的设计。传统的PLC大多采用单任务的时钟扫描或监控程序来处理程序本身的逻辑运算指令和外部的I/O通道的状态采集与刷新。这样处理方式直接导致了PLC的"控制速度"依赖于应用程序的大小,这一结果无疑是同I/O通道中高实时性的控制要求相违背的。PCC的系统软件完美地解决了这一问题,它采用分时多任务机制构筑其应用软件的运行平台,这样应用程序的运行周期则与程序长短无关,而是由操作系统的循环周期决定。由此,它将应用程序的扫描周期同外部的控制周期区别开来,满足了实时控制的要求。当然,这种控制周期可以在CPU运算能力允许的前提下,按照用户的实际要求,任意修改。 基于这样的操作系统,PCC的应用程序由多任务模块构成,给工程项目应用软件的开发带来很大的便利。因为这样可以方便地按照控制项目中各部分不同的功能要求,如运动控制、数据采集、报警、PID调节运算、通信控制等,分别编制出控制程序模块(任务),这些模块既独立运行,数据间又保持一定的相互关联,这些模块经过分步骤的独立编制和调试之后,可一同下载至PCC的CPU中,在多任务操作系统的调度管理下并行运行,共同实现项目的控制要求。 PCC在工业控制中强大的功能优势,体现了可编程控制器与工业控制计算机及DCS(分布式工业控制系统)技术互相融合的发展潮流,虽然这还是一项较为年轻的技术,但在其越来越多的应用领域中,它正日益显示出不可低估的发展潜力。5 运动控制卡 运动控制卡是一种基于工业PC机 、 用于各种运动控制场合(包括位移、速度、加速度等)的上位控制单元。它的出现主要是因为:(1)为了满足新型数控系统的标准化、柔性、开放性等要求;(2)在各种工业设备(如包装机械、印刷机械等)、国防装备(如跟踪定位系统等)、智能医疗装置等设备的自动化控制系统研制和改造中,急需一个运动控制模块的硬件平台;(3)PC机在各种工业现场的广泛应用,也促使配备相应的控制卡以充分发挥PC机的强大功能。 运动控制卡通常采用专业运动控制芯片或高速DSP作为运动控制核心,大多用于控制步进电机或伺服电机。一般地 , 运动控制卡与PC机构成主从式控制结构:PC机负责人机交互界面的管理和控制系统的实时监控等方面的工作 ( 例如键盘和鼠标的管理、系统状态的显示、运动轨迹规划、控制指令的发送、外部信号的监控等等);控制卡完成运动控制的所有细节(包括脉冲和方向信号的输出、自动升降速的处理、原点和限位等信号的检测等等)。运动控制卡都配有开放的函数库供用户在DOS或Windows系统平台下自行开发、构造所需的控制系统。因而这种结构开放的运动控制卡能够广泛地应用于制造业中设备自动化的各个领域。 这种运动控制模式在国外自动化设备的控制系统中比较流行,运动控制卡也形成了一个独立的专门行业,具有代表性的产品有美国的PMAC、PARKER等运动控制卡。在国内相应的产品也已出现,如成都步进机电有限公司的DMC300系列卡已成功地应用于数控打孔机、汽车部件性能试验台等多种自动化设备上。6 结束语 计算机技术和微电子技术的快速发展,推动着工业运动控制技术不断进步,出现了诸如全闭环交流伺服驱动系统、直线电机驱动技术、可编程计算机控制器、运动控制卡等许多先进的实用技术,为开发和制造工业自动化设备提供了高效率的手段。这也必将促使我国的机电一体化技术水平不断提高。

驱动电源毕业论文

学校,和市级或市级以上的职业鉴定所和学校。都可以有设备提供给你用的。只要你有钱,装备绝对全。不过我看你要的都是小部件。可以去淘宝和关广村上买呀。。很便宜来着。。像我在深圳,要小元器件,直接可以去华强北。你也可以自己看看你那边有没有大点的电子交易场所。

==================论文写作方法===========================

论文网上没有免费的,与其花人民币,还不如自己写,万一碰到人的,就不上算了。

写作论文的简单方法,首先大概确定自己的选题,然后在网上查找几份类似的文章,通读一遍,对这方面的内容有个大概的了解!

参照论文的格式,列出提纲,补充内容,实在不会,把这几份论文综合一下,从每篇论文上复制一部分,组成一篇新的文章!

然后把按自己的语言把每一部分换下句式或词,经过换词不换意的办法处理后,网上就查不到了,祝你顺利完成论文!

PLC控制步进电机的软硬件设计与应用

两种方式,共阴和共阳,一般说来直接加上上拉电阻或下拉电阻就可以了吧,电源5V左右

驱动桥总装毕业论文

厢式汽车底盘改装设计【摘要】根据用户需求,使厢式汽车具有各种功能,必须对其底盘进行改造。文章在分析底盘改装设计内容和要求的基础上,对车架后悬的改装,千斤顶的安装,油箱的移位等提出改造设计方案,并提出了操作注意事项。【关键词】底盘;改装设计;注意事项0引言厢式汽车是具有独立的封闭结构车厢或与驾驶室联成一体的整体式封闭结构车厢,装备有专用设施,用于载运人员、货物或承担专门作业的专用汽车厢式汽车主要由二类汽车底盘、车厢,连接装置等组成。多数情况下,生产厢式汽车的专用汽车改装厂自己不生产底盘,而是从生产汽车的主机厂购买二类汽车底盘,回厂后根据需要对底盘进行改装设计。为了满足用户提出的要求,保证厢式车具有各种各样的功能,需要对底盘进行这样那样的改装设计总结笔者多年来的工作经验,底盘改装项目主要有车架后悬的改变、加装千斤顶、油箱移位、移动横梁、移动汽液管等。改装时,总的原则是不影响、不降低原二类底盘的性能,不允许随意改变底盘轴距、轮距,保证改装后底盘的强度性能。改装设计应使原来底盘的保养部位、润滑点、注油口、蓄电池和驾驶室翻转操纵机构易于接近,便于操作,不能损坏原底盘上为用户正确使用而设置的各种标识,不应使底盘的维修及保养变得困难[1]。1车架后悬的改造后悬改装设计车架后悬的改造有两种情况,1)后悬缩短。2)后悬加长。按照GB7258《机动车运行安全技术条件》[2]要求,客车及封闭式车厢的车辆后悬不得超过轴距的65%,最大不得超过。对于特殊改装汽车,除了满足上述条件外,为了保证车辆越野性,还要满足离去角要求,GJB219B《军用通信车通用规范》[3]中规定,底盘改装后离去角不得小于26°。一般情况下,车架后端至上装车厢后端的距离不得超过400 mm。当缩短车架后悬时,要保留后横梁或直接利用后横梁附近之前的横梁,同时注意不能损坏板簧后吊耳的连接。当加长车架后悬时,后横梁至前一横梁的距离不应大于1 200mm~1 400 mm,必要时在延长的空间内纵向增加辅助横梁。不论缩短还是加长车架后悬,改制后的后横梁在车架大梁前大约50mm左右(见图1)。后悬加长设计时,为了保证车架的强度,要采用与原车架纵横梁同型号、规格的材料,材料的性能、质量应符合相应标准的规定,一般车架都选用16MnL专用材料。后悬改装操作注意事项后悬改装时要移动后横梁或增加辅助横梁,横梁与纵梁上下翼联接最好采用铆接方式。铆接具有工艺简单、抗震、耐冲击和牢固可靠等优点。如果采用螺栓联接,要注意螺栓应采用强度等级不低于级的螺栓,螺母应采用自锁螺母,整体上要保证强度和防松要求。纵梁加长一般采用焊接方式,为了确保车架加长不出现质量问题,一般企业都制定了《车辆改装车架接长专用工艺规程》,其中规定了焊接人员、设备、材料、操作方法等,每批产品改装前都要做焊缝强度试验,试验合格后,才允许按照工艺要求进行施工。试样材料与被接长的纵梁一致,一般都是16MnL,按照下图制作两件(见图2)。两件对接立焊,采用J507或J502焊条,分两次焊完,底层采用!( mm焊条,顶层采用(!4 mm焊条,电流I=110~170A。焊缝要求如下(图3)。

一、毕业论文的选题选题是论文写作的首要环节。选题的好坏直接关系到论文的学术价值和使用价值,新颖性、先进性、开创性、适用性以及写作的难易程度等。下面重点谈谈选题的原则:1.要客观需要,颇有价值。选题要根据我国经济建设的需要,具有重大的理论和实用价值。例如“企业联盟问题研究”,就是这样。正如一汽集团李启祥副总经理说,我国汽车与国外的汽车竞争,无论是技术、质量、品牌、功能、成本和规模经济等都比不过人家,只能靠一体化,战略联盟,与“大众”合资进入世界大汽车集团,靠国外发展自己。因此,关于战略联盟的研究,既满足了我国经济建设的需要,又具有重大的理论和实用价值。2.要捕捉灵感,注重创新。论文的生命在于创新。创新的含义非常广泛,是指一种新的观点,创立新说,新的论据(新材料),新的补充,新的方法,新的角度。也有人说创新指研究的内容是新的,方法是新的,内容与方法都是新的。还有人认为创新指独特见解,提出前人未曾提出过的问题,纠正前人的错误观点,对前人成果进一步深化、细化、量化和简化等。由上可见,一篇论文总要有一点创新,否则就算不上真正的论文。创新靠灵感,灵感靠积累。只有在长期的艰苦砥砺中才能偶然产生一点思想的火花,而这稍纵即逝的思想火花就可能变成学术创新的起点。

具体的范文模板链接: 提取码: ne8r

转向驱动桥在四驱越野车中是指具有转向功能的驱动桥。其主要功能一是把分动器传出的功率经其减速后传递给车轮使车轮转动;二是通过转向器把方向盘所受的转矩传递给转向杆从而使车轮转向。改革开放以来, 随着汽车工业的飞速发展,人民生活水平的提高,高速公路、高等级公路的不断建设,汽车正逐渐进入家庭,成为人们生活的一部分。同时随着我国加入世界贸易组织,通用、福特、日产、丰田……一批世界一流汽车生产企业纷纷进入中国,市场竞争日趋激烈.入世后,技术竞争将是我国汽车工业面临的最大挑战。本课题是结合科研进行工程设计。由于四驱越野车的普及,因而对于转向驱动桥是非常需要的。为了让越野车能更好的适应野外的行驶,对于转向驱动桥提出了以下要求:a.车轮转向要达到45°b.方向盘向各边能转动圈c.前轮采用麦弗逊悬架在老师的指导下,首先进行了方案论证。经过讨论与研究,对于桥壳部分改变了以前的非断开式,最终确定对于主减速器部分仍采用整体式而两端分别装一球面滚轮式万向节。在转向节部分采用球笼式万向节,转向器采用循环球式转向器。由于转向驱动桥最终要于其它部分组合在一起组成四驱车,所以整个设计过程要考虑最终的组装。我们根据厂方提供的数据首先对驱动桥进行了详细的分析。然后根据分析的结果,计算各部分的轴向力、扭矩、传动比以及功率。进而对各部分进行设计。转向驱动桥改变了以往的非断开式桥壳,使其更适和在一些非平坦路面上行驶。本课题新颖实用,在技术上有较大改进,具有较强的竞争力。本转向驱动桥将具有很大的市场前景。考文献参[1] 胡迪青, 梁高福,胡于进,李成刚. 重型越野车驱动桥智能设计系统[J]. 华中理工大学学报,1999,(11):27-30.[2] 胡迪青, 易建军, 胡于进, 李成刚. 基于模块化的越野汽车驱动桥方案设计及性能综合评价[J]. 机械设计与制造工程,2000,(03): 12-15.[3] 陈效华, 余剑飞, 龙思源. 驱动桥集成建模系统概要设计[J]. 汽车工程,2003,(01):42-43.[4] 吴瑞明, 周晓军, 赵明岩, 潘明清. 汽车驱动桥的疲劳检测分析[J]. 汽车工程,2003,(03):21-24.[5] 王红, 方晓红, 谷书伟, 王明训. 东方红LF80-904WD前驱动桥的结构改进[J]. 拖拉机与农用运输车,2001,(01):44-45.[6] 高梦熊. 地下装载机驱动桥壳强度计算[J]. 工程机械,2002,(08):33-34.[7] 曲补和!030009. 地下矿车用驱动桥的国产[J]. 山西机械,1999,(S1):33-35.[8] 陈家瑞. 汽车构造(上册) [M]. 北京:机械工业出版社,2000.[9] 陈家瑞. 汽车构造(下册) [M]. 北京:机械工业出版社,2000.[10] 王望予. 汽车设计[M]. 北京:机械工业出版社,2000.[11] 徐灏主编. 新编机械设计师手册[M].北京:机械工业出版社,1995.[12] 汽车工程手册编辑委员会. 汽车工程手册:(设计篇) [M]. 北京:人民交通出版社,2001.[13] 汽车工程手册编辑委员会. 汽车工程手册:(基础篇) [M]. 北京:人民交通出版社,2001.[14] 成大先. 机械设计手册[M]. (1~4册)北京:化学工业出版社,1993.[15] 何光里. 汽车运用工程师手册[M]. 北京:人民交通出版社,1999.[16] 甘永力. 几何量公差与检测[M]. 上海:科学技术出版社,2001.[17] 刘惟信. 汽车车桥设计[M]. 北京:清华出版社,2003.[18] 陈秀宁, 施高义. 机械设计课程设计[M]. 浙江:浙江大学出版社,1995.[19] 王宗荣. 工程图学[M]. 北京:机械工业出版社,2001.[20] 徐锦康. 汽车设计[M]. 北京:机械工业出版社, 转向驱动桥总装图 4WD-YY-04-00-00 A02 主减速器 4WD-YY-04-01-00 A03 转向器 4WD-YY-04-02-00 A14 转向器壳体 4WD-YY-04-02-01 A15 上盖 4WD-YY-04-02-02 A36 螺杆 4WD-YY-04-02-03 A37 摇臂轴 4WD-YY-04-02-04 A38 螺母 4WD-YY-04-02-05 A39 侧盖 4WD-YY-04-02-06 A310 从动齿轮 4WD-YY-04-01-01 A311 行星齿轮 4WD-YY-04-01-02 A412 半轴齿轮 4WD-YY-04-01-03 A4

驱动桥维修毕业论文

学术堂整理了一份汽车系毕业论文范文,供大家进行参考:范文题目《浅谈混合动力汽车的检测与维修》摘要:目前已研制成功并投入使用的混合动力电动汽车主要是内燃机与蓄电池混合的混合动力电动汽车,它被称为油电混合动力汽车。首先,随着汽车电控化程度的提高,特别是未来混合动力汽车、纯电动汽车以及燃料电池汽车的发展,汽车的主要故障将出现在电路方面,面对复杂、纷乱的汽车电路时,只有具备了过硬的理论知识后才有可能将它们理清楚、弄明白,才有可能进一步的形成正确的诊断思路,找到正确的维修方法。我们知道不同的混合动力系统其结构和工作原理各不相同,这就使得不同的混合动力汽车其检测与维修的方法也会有很大的差异。关键词:混合动力汽车,检测,维修混合动力电动汽车的英文是“Hybrid Electric Vehicle”,简称“HEV”。根据国际机电委员会下属的电力机动车技术委员会的建议,混合动力电动汽车是指有两种或两种以上的储能器、能源或转换器作驱动能源,至少有一种能提供电能的车辆称为混合动力电动汽车。目前已研制成功并投入使用的混合动力电动汽车主要是内燃机与蓄电池混合的混合动力电动汽车,它被称为油电混合动力汽车。本论文所述的混合动力汽车也只局限于这类油电混合动力汽车。所谓油电混合动力电动汽车(以下简称混合动力汽车),是指采用传统的内燃机和电动机(电池) 做为动力源,通过使用热能和电力两套系统驱动汽车。混合动力汽车采用的内燃机既可是汽油机也可以是柴油机,而使用的电动系统包括高效强化的电动机、发电机和蓄电池。两套系统的联合使用使得内燃机、电动机都可在高效区经济内运行,输出功率相对稳定。燃油提供了车辆运行所需的大部分能量来源,而辅助动力单元即动力电池通过电机使车辆具有更好的动力性和经济性。一、混合动力汽车的检测与维修概述汽车维修工作主要分为保养、机械维修、电器及电控系统维修、钣金和喷漆这几个部分。对于混合动力汽车来说,它与传统的内燃机汽车的主要差别在于增加了一套电驱动系统,这套系统的增加使得原本就复杂的电控系统变得更加复杂,电器及电控系统的维修难度之大不言而喻。由于增加了一套电驱动系统并对原有内燃机汽车的结构作了相应的改造,这决定了混合动力汽车必将产生出新的特有的故障类型,原本适用于传统内燃机汽车的一些维修经验、诊断思路和检测方法在混合动力汽车上可能将不再适用,所以,作为一名维修人员如果墨守成规、依赖经验,不注重理论知识的学习和诊断思维的培养,将很快被淘汰。那么我们应该如何来面对接下来的挑战呢?首先,随着汽车电控化程度的提高,特别是未来混合动力汽车、纯电动汽车以及燃料电池汽车的发展,汽车的主要故障将出现在电路方面,面对复杂、纷乱的汽车电路时,只有具备了过硬的理论知识后才有可能将它们理清楚、弄明白,才有可能进一步的形成正确的诊断思路,找到正确的维修方法。其次,多观察、多比较。在掌握相关理论知识的基础上要回到实践当中来,多观察、多比较。仔细观察汽车的结构,认真的比较它与传统的内燃机汽车的异同点,将理论与实践紧密的连接起来。再次,勤总结。混合动力汽车必然会出现不同于现有传统内燃机汽车的特有的故障类型,应该在维修实践中将其详细的记录下来并认真的分析和总结,日积月累便能形成一套适合于混合动力汽车的行之有效的维修方法。二、混合动力汽车的检测与维修我们知道不同的混合动力系统其结构和工作原理各不相同,这就使得不同的混合动力汽车其检测与维修的方法也会有很大的差异。本文以丰田普锐斯混合动力汽车为例简单的介绍一下与混合动力汽车的检测与维修相关的问题。1、普锐斯混合动力汽车检测与维修注意事项普锐斯采用的是高压电路,动力电池组的额定电压为,发电机和电动机发出(或使用)的电压为500V。在普锐斯的电路系统中,高压电路的线束和连接器都为橙色,而且蓄电池等高压零件都贴有“高压”的警示标志,注意!不要触碰这些配线。论文格式。在检修过程中一定要严格按照正确的操作步骤操作。在检修过程中(如安装或拆卸零部件、对车辆进行检查等)必须注意以下几点:(1)对高压系统进行操作时首先应将车辆电源开关关闭;(2)穿好绝缘手套(戴绝缘手套前一定要先检查手套,不能有破损,哪怕针眼大的也不行,不能有裂纹,不能有老化的迹象,也不能是湿的);(3)将辅助蓄电池的负极电缆断开(在此之前应先查看故障码,有必要的化将故障码保存或记录下来,因为与传统内燃机汽车一样,断开蓄电池负极电缆故障码将被清除);(4)拆下检修塞,并将检修塞放在衣袋里妥善保管,这样可以避免其他人员误将检修塞装回原处,造成意外;(5)拆下检修塞后不要操作电源开关,否则可能损坏混合动力ECU;(6)拆下检修塞后至少将车辆放置5分钟后再进行其他操作,因为至少需要5分钟的时间对变频器内的高压电容器进行放电;(7)在进行高压系统的作业时,应在醒目的地方摆放警告标志,以提醒他人注意安全;(8)不要随身携带任何金属物体或其他导电体,以免不小心掉落引起线路短路;(9)拆下任何高压配线后应立刻用绝缘交代将其包好,保证其完全绝缘;(10)一定要按规定扭矩将高压螺钉端子拧紧。扭矩过大或过小都有可能导致故障;(11)完成对高压系统的操作后,在重新安装检修赛前,应再次确认在工作平台周围没有遗留任何零件或工具,并确认高压端子已拧紧,连接器已插好。论文格式。2、普锐斯的基本检修程序(1)车辆进入车间。(2)分析各户所述的故障。(3)将智能诊断仪II连接到车辆的诊断插座上。(4)读取故障码和定格数据,并将其记录下来。如果出现与CAN通信系统有关的故障码则应首先检查并修复CAN通信。(5)清除故障码。(6)故障症状确认。若故障未出现则进行故障症状模拟;若故障出现则查看故障码及相关数据流以获取相关信息。(7)进行基本检查,查阅相关资料。(8)根据故障现象、故障码、相关数据流并结合其他的检测手段进行故障诊断,找出故障原因。(9)排除故障。(10)确认故障排除。3、普锐斯混合动力汽车混合动力控制系统的检测与维修(1)对混合动力汽车控制系统进行操作前必须弄清楚混合动力汽车控制系统的组成和工作原理并结合电路图和相关的维修资料严格按规范的操作步骤进行。(2)普锐斯混合动力系统的相关检查①检查变频器查看故障码;清除故障码;戴上绝缘手套;关闭电源开关;拆下检修塞;拆下变频器盖,断开端子A和B。将电源开关拨到IG位置,此时会产生互锁开关系统的故障码;在线束侧用电压表测电压,同时用欧姆表测电阻。②检查转换器(戴上绝缘手套操作)若混合动力系统警告灯、主警告灯和充电警告灯同时点亮,则检查故障码并进行相应的故障排除。③检查速度传感器用欧姆表测量端子间的电阻,其值应符合标准值,否则更换变速驱动桥总成。④检查温度传感器用欧姆表测量端子间的电阻,应符合标准值,否则更换变速驱动桥总成。⑤检查加速踏板位置信号将电源开关拨到IG位置;用电压表测量混合动力车辆控制ECU连接器B中相应端子的电压,应符合标准值,否则更换加速踏板连杆总成。4、普锐斯混合动力汽车电池系统的检测与维修普锐斯混合动力汽车电池系统主要由以下几部分组成:动力电池组、12V辅助电池、电池ECU、冷却系统、电流传感器、检修塞系统主继电器等组成。动力电池组:普锐斯采用的是镍-氢动力电池组,它具有高功率密度和常使用寿命的特点。该电池组由28个电池模块串联而成,每个模块由6个1V或2V的单节电池串联而成。所以整个电池组共168个单节电池,可以得到的高电压。论文格式。电池ECU:电池ECU的功能是用来检测电池组的充电状态(SOC)、温度、电压、电流以及是否漏电,并将这些信息发送到HV ECU(混合动力ECU)。电池ECU还负责控制冷却风扇的工作,确保电池组处于正常的温度范围内。电池组冷却系统:电池组冷却系统由冷却风扇,一个进气温度传感器和3个位于电池内的温度传感器以及通风管路组成。3个温度传感器和一个进气温度传感器随时检测蓄电池及进气口的进气温度,若温度升高到一定值,电池ECU将启动冷却风扇,直到温度下降到规定值,从而使电池组的温度始终保持在正常的范围内。检修塞:检修塞位于电池组第19模块和第20模块中间,在检查或维修前拆下检修塞便可以切断电池组中部的高压电路,可以保证维修期间的人员安全。系统主继电器(SMR):系统主继电器的作用是按照HV ECU的指令连接和断开到高压电路的动力。系统主继电器共由3个继电器组成,两个位于正极分别为SMR1、SMR2,一个位于负极SMR3。电路接通时,SMR1和SMR3工作,而后SMR2工作而SMR1关闭。辅助蓄电池:普锐斯采用的是12V的免维护电池,它与传统的汽车用蓄电池类似,负极也是通过车身接地的。该电池对高压很敏感,对其充电时应将它从车上拆下,用丰田专用的充电机充电,普通充电器没有专用的电压控制功能,有可能毁坏电池。参考文献[1] 陈清泉,孙逢春 编译. 混合电动车辆基础[M]. 北京:北京理工大学出版社,2001.[2] 张金柱. 混合动力汽车结构、原理与维修[M]. 北京:化学工业出版社,2008.[3] 耿新. 混合动力技术的原理和应用[J]. 汽车维修与保养,2008.[4] Jon Munson. 用于混合动力/电动汽车的可靠锂离子电池监视系统[J]. CompoTechChina,2008(10)[5] 陈宗璋,吴振军. 电动汽车动力源类型[J]. 大众英雄,2008,(3)

车检测与维修的毕业论文范文第一部分 摘要:随着电子技术在汽车上的普遍应用,汽车电路图已成为汽车维修人员必备的技术资料。目前,大部分汽车都装备有较多的电子控制装置,其技术含量高,电路复杂,让人难以掌握。正确识读汽车电路图,也需要一定的技巧。电路图是了解汽车上种类电气系统工作时使用的重要资料,了解汽车电路的类型及特点,各车系的电路特点及表达方式,各系统电路图的识读方法、规律与技巧,指导读者如何正确识读、使用电路图有很重要的作用。 汽车电路实行单线制的并联电路,这是从总体上看的,在局部电路仍然有串联、并联与混联电路。全车电路其实都是由各种电路叠加而成的,每种电路都可以独立分列出来,化复杂为简单。全车电路按照基本用途可以划分为灯光、信号、仪表、启动、点火、充电、辅助等电路。每条电路有自己的负载导线与控制开关或保险丝盒相连接。

厢式汽车底盘改装设计【摘要】根据用户需求,使厢式汽车具有各种功能,必须对其底盘进行改造。文章在分析底盘改装设计内容和要求的基础上,对车架后悬的改装,千斤顶的安装,油箱的移位等提出改造设计方案,并提出了操作注意事项。【关键词】底盘;改装设计;注意事项0引言厢式汽车是具有独立的封闭结构车厢或与驾驶室联成一体的整体式封闭结构车厢,装备有专用设施,用于载运人员、货物或承担专门作业的专用汽车厢式汽车主要由二类汽车底盘、车厢,连接装置等组成。多数情况下,生产厢式汽车的专用汽车改装厂自己不生产底盘,而是从生产汽车的主机厂购买二类汽车底盘,回厂后根据需要对底盘进行改装设计。为了满足用户提出的要求,保证厢式车具有各种各样的功能,需要对底盘进行这样那样的改装设计总结笔者多年来的工作经验,底盘改装项目主要有车架后悬的改变、加装千斤顶、油箱移位、移动横梁、移动汽液管等。改装时,总的原则是不影响、不降低原二类底盘的性能,不允许随意改变底盘轴距、轮距,保证改装后底盘的强度性能。改装设计应使原来底盘的保养部位、润滑点、注油口、蓄电池和驾驶室翻转操纵机构易于接近,便于操作,不能损坏原底盘上为用户正确使用而设置的各种标识,不应使底盘的维修及保养变得困难[1]。1车架后悬的改造后悬改装设计车架后悬的改造有两种情况,1)后悬缩短。2)后悬加长。按照GB7258《机动车运行安全技术条件》[2]要求,客车及封闭式车厢的车辆后悬不得超过轴距的65%,最大不得超过。对于特殊改装汽车,除了满足上述条件外,为了保证车辆越野性,还要满足离去角要求,GJB219B《军用通信车通用规范》[3]中规定,底盘改装后离去角不得小于26°。一般情况下,车架后端至上装车厢后端的距离不得超过400 mm。当缩短车架后悬时,要保留后横梁或直接利用后横梁附近之前的横梁,同时注意不能损坏板簧后吊耳的连接。当加长车架后悬时,后横梁至前一横梁的距离不应大于1 200mm~1 400 mm,必要时在延长的空间内纵向增加辅助横梁。不论缩短还是加长车架后悬,改制后的后横梁在车架大梁前大约50mm左右(见图1)。后悬加长设计时,为了保证车架的强度,要采用与原车架纵横梁同型号、规格的材料,材料的性能、质量应符合相应标准的规定,一般车架都选用16MnL专用材料。后悬改装操作注意事项后悬改装时要移动后横梁或增加辅助横梁,横梁与纵梁上下翼联接最好采用铆接方式。铆接具有工艺简单、抗震、耐冲击和牢固可靠等优点。如果采用螺栓联接,要注意螺栓应采用强度等级不低于级的螺栓,螺母应采用自锁螺母,整体上要保证强度和防松要求。纵梁加长一般采用焊接方式,为了确保车架加长不出现质量问题,一般企业都制定了《车辆改装车架接长专用工艺规程》,其中规定了焊接人员、设备、材料、操作方法等,每批产品改装前都要做焊缝强度试验,试验合格后,才允许按照工艺要求进行施工。试样材料与被接长的纵梁一致,一般都是16MnL,按照下图制作两件(见图2)。两件对接立焊,采用J507或J502焊条,分两次焊完,底层采用!( mm焊条,顶层采用(!4 mm焊条,电流I=110~170A。焊缝要求如下(图3)。

江苏省交通技师学院JIANGSU COMMUNICATION TECHNICIAN COLLEGE毕 业 设 计 (论 文)汽车转向系统检测与维修 Testing and Maintenance of Auto Steering System系 名: 车辆工程系 专业班级: 学生姓名: 学 号: 指导教师姓名: 指导教师职称: 年 月 目 录第一章 汽车转向系统的历史与组成 汽车转向系统的历史 汽车转向系统的组成 转向操纵机构 转向器 转向传动机构 4第二章 汽车转向系统的分类 液压助力转向系统 电控液压助力转向系统 电动助力转向系统 线控转向系统 7第三章 汽车转向系统检测与维修 转向沉重 故障现象 故障原因及处理办法 方向盘自由行程过大 故障现象 故障原因及处理办法 转向轮抖动 故障现象 故障原因及处理办法 助力转向机构检测与维修 9结论 11致谢 12参考文献 13 汽车转向系统检测与维修 专业班级: 学生姓名: 指导教师: 职称:摘要 汽车转向系统是汽车相当重要的组成部分,对汽车的操纵稳定性起着非常重要的作用,从最早的纯机械的转向系统到现在的电控转向系统,他们各自的优点也有各自的缺点。 文论述了汽车转向系统的分类,包括机械式转向系统,液压式转向系统,电控液压式助力转向系统和电控助力转向系统及线控转向系统。并简单的介绍了他们各自的工作原理,以及优缺点。最后对汽车转向系统经常出现的故障进行了分析,尤其是助力转向机构的检测与维修。关键词: 汽车 转向系统 检测 维修Testing and Maintenance of Auto Steering SystemAbstract The steering system is a very important part of the car. It plays a very important role in the handling and stability of the car. From the earliest mechanical steering system to the electronically controlled steering system, they have their own advantages and disadvantages. This article main discusses the classification of automotive steering systems, including mechanical steering system, hydraulic steering system, electronically controlled hydraulic power steering system and electronically controlled power steering system and by-wire steering introduce their working principles as well as the advantages and disadvantages. Finally, the steering system failures are analysed, especially in the detection and repair of the assistance steering words Automobile Steering System Testing Maintenance 汽车转向系统检测与维修引言汽车转向系统是用来改变汽车行驶方向的专设机构的总称。汽车转向系统的功用是保证汽车能按驾驶员的意愿进行直线或转向行驶。一个完整的转向系统包括转向操纵机构,转向器和转向传动机构,根据转向器的不同又分为机械转向系统和动力转向系统。本文系统的分析了转向系统的各自的组成以及他们的故障检测与维修,为以后人们对汽车转向系统的研究提供了一定的参考。第一章 汽车转向系统的历史与组成 汽车转向系统的历史汽车在行驶过程中,需要驾驶员的意志经常改变其行驶方向,即所谓汽车转向。就轮式汽车而言,实现汽车转向的方法是,驾驶员通过一定专设的机构,使汽车转向桥上的车轮相对于汽车纵轴线偏转一定的角度。在汽车直线行驶时,往往转向轮也会受到路面侧向干扰力的作用,自动偏转而改变行驶方向。这一套用来改变或恢复汽车行驶方向的专设机构,称为汽车转向系统。因此,汽车转向系统的功用是保证汽车能按照驾驶员的意志而进行转向行驶。最好的转向系统为纯机械系统,由于机械系统在转向阻力非常大时,驾驶员需要很大的放线盘转向力,频繁的转向会使驾驶员感觉劳累。后来出现了液压助力转向系统,它能较好的帮助驾驶员解决转向劳累的问题,但是它不能较好的协调转向轻便和转向路感之间的矛盾,而且在能耗方面表现的不是很好。随着电子技术的发展,出现了电控液压助力转向系统,它用电机代替了液压助力转向系统中的发动机,能较好的解决了能耗的问题,而且也解决了转向轻便和转向路感之间的矛盾。但是电控液压助力转向系统中液压油的泄漏和液压系统的能耗的问题也一直没有解决掉。目前应用前景最好的是电控助力转向,它真正实现了按需转向。 汽车转向系统的组成汽车转向系统主要由转向操纵机构,转向器和转向传动机构组成。 转向操纵机构转向盘到转向器之间的所有零部件总称为转向操纵机构。主要由转向盘,转向管柱和转向传动轴等组成。下图1为某款汽车的转向操纵机构与转向器的布置图。 图1东风EQ1090E型汽车转向操纵机构与转向器布置图Fig1 The Dongfeng EQ1090E vehicle steering control mechanism and steering layout 1.转向盘转向盘由轮缘、轮辐和轮毂组成。转向盘轮毂的细牙内花键与转向轴连接,转向盘上都装有喇叭按钮,有些轿车的转向盘上还装有车速控制开关和安全气囊。 2.转向轴、转向柱管及其吸能装置 转向轴是连接转向盘和转向器的传动件,转向柱管固定在车身上,转向轴从转向柱管中穿过,支承在柱管内的轴承和衬套上。轿车除要求装有吸能式转向盘外,还要求转向柱管必须装备能够缓和冲击的吸能装置。转向轴和转向柱管吸能装置的基本工作原理是:当转向轴受到巨大冲击而产生轴向位移时,通过转向柱管或支架产生塑性变形、转向轴产生错位等方式,吸收冲击能量。Mazda 6轿车转向柱管吸能装置的工作原理是:发生碰撞时,转向器向后移动,下转向传动轴插入上转向传动轴的孔中,上转向传动轴被压扁,吸收了冲击能量。此外,转向柱管通过支架和U形金属板固定在仪表板上。当驾驶员身体撞击转向盘后,转向管柱和支架将从仪表板上脱离下来向前移动。这时,一端固定在仪表板上而另一端固定在支架上的U形金属板就会产生扭曲变形并吸收冲击能量。如果汽车上装用了网格状或波纹管式转向柱管吸能装置,当发生猛烈撞车导致人体冲撞转向盘时,网格部分或波纹管部分将被压缩产生塑性变形,吸收冲击能量。 转向器1.转向器的传动效率转向器的输出功率与输入功率之比称为转向器传动效率。 (1)正效率功率由转向轴输入,由转向传动机构(如转向横拉杆或摇臂)输出的情况下求得的传动效率称为正效率,显然,正效率越高越好。(2)逆效率功率由转向传动机构输入,由转向轴输出的情况下求得的传动效率称为逆效率。(3)可逆式转向器逆效率很高的转向器称为可逆式转向器。其特点是路面传到转向传动机构的反力很容易传到转向轴和转向盘上,利于汽车转向结束后转向轮和转向盘的自动回正,但也能将坏路面对车轮的冲击力传到转向盘,发生“打手”情况。常用于轿车、客车和货车。 (4)不可逆式转向器逆效率很低的转向器称为不可逆式转向器。不可逆式转向器使转向轮不能自动回正、没有路感。由于上述特性,在汽车上很少采用。(5)极限可逆式转向器逆效率略高于不可逆式转向器称为极限可逆式转向器。其反向传力性能介于可逆式和不可逆式之间,接近于不可逆式。采用这种转向器时,驾驶员有一定路感,可以实现转向轮自动回正,只有路面冲击力很大时,才能部分地传到转向盘。常用于越野车和矿用自卸汽车。2.齿轮齿条转向器齿轮齿条式转向器是以齿轮和齿条传动作为传动机构,适合与麦弗逊式独立悬架配用,常用于轿车、微型货车和轻型货车。目前,轿车普遍采用的都是齿轮齿条式转向器。 3.循环球式转向器循环球式转向器中一般有两级传动副,第一级是螺杆螺母传动副,第二级是齿条齿扇传动副。常用于各种轻型和中型货车,也用于部分轻型越野汽车。转向螺杆转动时,通过钢球将力传给转向螺母,使螺母沿轴向移动。同时,在螺杆、螺母和钢球间的摩擦力矩作用下,所有钢球便在螺旋管状通道内滚动,形成“球流”。4.涡杆曲柄指销式转向器具有梯形截面螺纹的转向蜗杆支承在转向器壳体两端的球轴承上,蜗杆与锥形指销相啮合,指销用双列圆锥滚子轴承支于摇臂轴内端的曲柄孔中。当转向蜗杆随转向盘转动时,指销沿蜗杆螺旋槽上下移动,并带动曲柄及摇臂轴转动。 转向传动机构从转向器到转向轮之间的所有传动杆件总称为转向传动机构。转向传动机构的功用是将转向器输出的力和运动传到转向桥两侧的转向节,使转向轮偏转,并使两转向轮偏转角按一定关系变化,以保证汽车转向时车轮与地面的相对滑动尽可能小。1.转向传动机构的组成 转向传动机构由转向摇臂、转向直拉杆、转向节臂和转向梯形等零部件共同组成,其中转向梯形由梯形臂、转向横拉杆和前梁共同构成。 2.转向摇臂循环球式转向器和蜗杆曲柄指销式转向器通过转向摇臂与转向直拉杆相连。转向摇臂的大端用锥形三角细花键与转向器中摇臂轴的外端连接,小端通过球头销与转向直拉杆作空间铰链连接。3.转向直拉杆转向直拉杆是转向摇臂与转向节臂之间的传动杆件,具有传力和缓冲作用。在转向轮偏转且因悬架弹性变形而相对于车架跳动时,转向直拉杆与转向摇臂及转向节臂的相对运动都是空间运动,为了不发生运动干涉,三者之间的连接件都是球形铰链。4.转向横拉杆转向横拉杆是转向梯形机构的底边,由横拉杆体和旋装在两端的横拉杆接头组成。其特点是长度可调,通过调整横拉杆的长度,可以调整前轮前束。第二章 汽车转向系统的分类汽车转向系统根据转向能源的不同分为机械转向系统和动力转向系统两大类。机械转向系统的所有传力件都是机械的,主要由转向操纵机构,转向器和转向传动机构三大部分组成。上一章已经对其进行了分析。下面主要讨论动力转向系统。动力转向系统又分为,液压助力系统,电动助力转向系统和线控转向系统。液压助力转向系统1.常压式液压助力转向系统其特点是无论转向盘处于中立位置还是转向位置,也无论转向盘保持静止还是运动状态,系统工作管路中总是保持高压。2.常流式液压助力转向系统其特点是转向油泵始终处于工作状态,但液压助力系统不工作时,基本处于空转状态。多数汽车都采用常流式液压助力转向系统。电控液压助力转向系统在传统液压助力转向系统的基础上加装电控系统,使辅助转向力的大小不仅与转向盘的转角增量(或角速度)有关,还与车速有关,就形成了电控液压助力转向系统。与传统液压助力转向系统相比,增加了液压反应装置和液流分配阀,而加设的电控系统则包括动力转向ECU、电磁阀和车速传感器等。电控液压助力转向系统利用电控单元根据车速调节作用在转向盘上的阻力,通过控制转向控制阀的开启程度以改变液压助力系统辅助力的大小,从而实现辅助转向力随车速而变化的助力特性。下图2为电控液压助力转向系统的示意图。 图2电控液压助力转向系统示意图Fig2 Electronically controlled hydraulic power steering system 电动助力转向系统直接助力式电动转向系统是一种直接依靠电动机提供辅助转矩的动力转向系统,可以根据不同的使用工况控制电动机提供不同的辅助动力。当转向轴转动时,转矩传感器开始工作,把两段转向轴在扭杆作用下产生的相对转角转变成电信号传给电子控制单元(ECU),ECU根据车速传感器和转矩传感器的信号决定电动机的旋转方向和助力电流的大小,并将指令传递给电动机,通过离合器和减速机构将辅助动力施加到转向系统(转向轴)中,从而完成实时控制的助力转向。下图3为电动助力转向系统示意图。 图3电动助力转向系统示意图Fig3 Electric power steering system schematic 目前应用前景最好的也是电动助力转向系统,相比其他几种转向助力系统有下列的优缺点。1.优点(1)效率高、能量消耗少;(2)系统内部采用刚性连接,反应灵敏,滞后小,驾驶员的“路感”好;(3)结构简单,质量小;(4)系统便于集成,整体尺寸减小;省去了油泵和辅助管路,总布置更加方便;(5)无液压元件,对环境污染少。2.缺点(1)直接助力式电动转向系统提供的辅助动力较小,难以用于大型车辆;(2)减速机构、电动机等部件会影响汽车的操纵稳定性,正确匹配整车性能至关重要;(3)使用电动机、减速机构和转矩传感器等部件,增加了系统的成本。线控转向系统线控转向系统用传感器记录驾驶员的转向意图和车辆的行驶状况,通过数据线将信号传递给车载电脑,电脑据此做出判断并控制液压激励器提供相应的转向力,使转向轮偏转相应角度实现转向。下图4为线控转向的组成示意框图。 图4线控转向组成示意框图Fig4 By-wire steering system diagram第三章 汽车转向系统检测与维修汽车转向系的性能直接关系到汽车行驶的稳定性和安全性。汽车在长期的运行中,前桥和转向系各零件会发生各种耗损,如磨损,变形,裂纹和车轮定位角改变。这些都会破坏正常运行,使汽车在行驶中,发生不同程度的转向沉重,方向不稳,行驶跑偏,前轮摇摆等故障。这将增加驾驶员的劳动强度,甚至影响到安全行驶,所以一定要重视转向系的维修与调整。常见的故障包括:转向沉重,转向盘自由行程过大和转向轮抖动。转向沉重 故障现象汽车行驶中,驾驶员向左、右转动转向盘时,感到沉重费力,无回正感;汽车低速转弯行驶和调头时,转动转向盘感到非常沉重,甚至打不动。 故障原因及处理办法转向沉重的根本原因是转向轮气压不足或定位不准,转向系传动链中出现配合过紧或卡滞而引起摩擦阻力增大。具体原因主要有:(1)转向轮轮胎气压不足,应按规定充气。(2)转向轮本身定位不准或车轴、车架变形造成转向轮定位失准,应校正车轴和车架,并重新调整转向轮定位。(3)转向器主动部分轴承调整过紧或从动部分与衬套配合太紧,应予调整。(4)转向器主、从动部分的啮合间隙调整过小,应予调整。(5)转向器缺油或无油,应按规定添加润滑油。(6)转向器壳体变形,应予校正。(7)转向管柱转向轴弯曲或套管凹瘪造成互相碰擦,应予修理。(8)转向纵、横拉杆球头连接处调整过紧或缺油,应予调整或添加润滑脂。(9)转向节主销与转向节衬套配合过紧或缺油,或转向节止推轴承缺油,应予调整或添加润滑脂等。方向盘自由行程过大 故障现象汽车保持直线行驶位置静止不动时,转向盘左右转动的游动角度太大。具体表现为汽车转向时感觉转向盘松旷量很大,需用较大的幅度转动转向盘,方能控制汽车的行驶方向;而在汽车直线行驶时又感到行驶方向不稳定。 故障原因及处理办法转向盘自由行程过大的根本原因是转向系传动轴中—处或多处的配合因装配不当、磨损等原因造成松旷。具体原因主要有:(1)转向器主、从动啮合部位间隙过大或主、从动部位轴承松旷,应予调整或更换。(2)转向盘与转向轴连接部位松旷,应予调整。(3)转向垂臂与转向垂臂轴连接松旷,应予调整。(4)纵、横拉杆球头连接部位松旷,应予调整或更换。(5)纵、横拉杆臂与转向节连接松旷,应予调整或更换。(6)转向节主销与衬套磨损后松旷,应予更换。(7)车轮轮毂轴承间隙过大,应予更换等。转向轮抖动 故障现象汽车在某低速范围内或某高速范围内行驶时,出现转向轮各自围绕自身主销进行角振动的现象。尤其是高速时,转向轮摆振严重,握转向盘的手有麻木感,甚至在驾驶室可看到汽车车头晃动。 故障原因及处理办法转向轮抖动的根本原因是转向轮定位不准,转向系连接部件之间出现松旷,旋转部件动不平衡。具体原因主要有:(1)转向轮旋转质量不平衡或转向轮轮毂轴承松旷,应予校正动平衡或更换轴承。(2)转向轮使用翻新轮胎,应予更换。(3)两转向轮的定位不正确,应予调整或更换部件。(4)转向系与悬挂的运动发生干涉,应予更换部件。(5)转向器主、从动部分啮合间隙或轴承间隙太大,应予调整或更换轴承。(6)转向器垂臂与其轴配合松旷或纵、横拉杆球头连接松旷,应予调整或更换。(7)转向器在车架上的连接松动,应予紧固。(8)转向轮所在车轴的悬挂减振器失效或左右两边减振器效能不一,应予更换。(9)转向轮所在车轴的钢板弹簧U形螺栓松动或钢板销与衬套配合松旷,应予紧固或调整。(10)转向轮所在车轴的左右两悬挂的高度或刚度不一,应予更换等。助力转向机构检测与维修大多数中级以上的现代轿车,为同时满足转向省力和转向灵敏度的要求,普遍采用液压式动力转向系统。按时和正确的维护是转向系统能正常工作,减小故障和延长使用寿命的主要手段,是保证行车安全的重要措施之一。1.油液的及时补充和更换(1)经常检查储液罐的液面高度是否在油位标志的范围。检查时要注意热和冷标志。如果发现油液面高度低于规定标志时,要及时补充。还应该经常注意观察油液中是否有泡沫,有则说明系统内有空气或者液面太低,要排气或者补充油液。油液在使用和存放过程中,其品质会不断下降,严重时会直接影响转向系统的工作,甚至引起故障。故必须保障使用保质期内的油液,并按照油液使用说明书规定的行驶里程定期更换。必须使用指定的油液,不能随意更换。同时注意不能将两种不同的油液混合使用。(2)油液的排放和加注。把车水平停放,顶起前桥,支撑好汽车,是方向盘处于中间位置,打开储液罐的盖,排出罐内油液。(3)系统排气的方法。如发现系统内有空气,或者更换油液和维修液压回路时,应对系统进行排气。方法如下:把车水平停放,顶起前桥,支撑好汽车。将油液补充到标定范围,如发现下降,应及时补充足。重新接上高压线,启动发动机并使之怠速运转,将方向盘回转到左右极限位置数次,在这过程中,注意观察液面位置。2.动力转向系统的检查(1)方向盘的检查检查自由间隙。在发动机熄火,方向盘处于中间位置时,用拉力计沿方向盘的切线方向施加5N的拉力,检查方向盘的自由间隙,标准值为25-50mm。如不符合,检查转向器齿轮的啮合间隙和传动机构球头的间隙。检查回正性能。此项检查需在宽阔的场地路试,实验前应确保轮胎气压正常。首先慢性,分别向左,向右轻轻地小角度转向,检查左右转向力有无明显的不同及方向盘的回正情况,不正常则维修。如果正常,以35km/h的速度行驶,将方向盘顺(逆)时针转过90°,1-2s后放开方向盘,如果回正度超过70°,说明其回正性能良好。检查原地转向力。将汽车停于硬质的平面上,确保轮胎气压符合要求,使方向盘处于中间位置。起动发动机,使之怠速运转。用拉力计顺时针和逆时针分别拉动方向盘115度,切向力应小于37N。如果拉力过大,则检查油泵的皮带是否过松,损坏,油液是否不足,系统内有无空气,软管是否扭曲等。(2)系统油压的测试油压测试的目的是检查液压系统及其主要元件的性能。在测试之前,应确保油泵的驱动装置是正常的。检测时,在油泵出口与转向器进口之间连接专用的测试工具,连接顺序为油泵出油口-压力表-关闭阀-转向器进油口。起动发动机,对系统进行排气,并把油液补充到标志范围,原地左,右转动方向盘几次,使油温升高到50-60℃,然后让发动机怠速运转,依次做下面的检查。检查油泵的输出压力。关闭阀门,此时表上的压力即为泵的输出压力,标准值不小于8MPa。如果过低,说明油泵内部泄露严重,应大修或更换油泵。检查不同转速下系统的压力差。完全开通阀门,提高发动机转速,分别记录发动机转速为1000r/min和3000r/min时的压力值,两者之差应小于,如果不符合,则应维修或更换流量控制阀。检查无负荷时的压力。完全开通阀门,此时系统处于无负荷状态,压力值标准为。油压如果过大,说明液压系统内部有堵塞。检查方向盘极限位置的压力。完全开通阀门,原地分别向左和向右转动方向盘极限位置,此时表上的压力值不应小于8MPa,如果压力过小,说明转向器内漏严重,需要大修或者更换。转向压力开关的检测。油泵上安装有一路开关,其作用是,当汽车在发动机怠速或者低速转弯时接通,提高发动机的怠速转速。使发动机熄火,拨开压力开关的接头,在油泵的插座上连接欧姆表,再重新起动发动机。逐渐关闭阀门,使油压升高,然后观察开关接通时的压力值是否为115-210MPa,逐渐打开阀门,使油压降低,然后观察开关接通时的压力值是否为107-112MPa。如果有一项不符合,更换开关。压力检查完后,拆下专用测试工具,接好油管后,要注意重新给系统排气,补足油液。 结论论文分析了不同种类汽车的转向系统,以及他们各自的工作原理和优缺点。最后分析了转向系统的常见故障,对不同的故障现象提出了各自的解决办法。论文在最后对液压助力转向机构的故障进行了特别的分析。致谢在学院学习生活的三年里,我在各位老师孜孜不倦地教诲下,通过自己的努力,顺利完成了大学三年的学习任务。首先,应当感谢学院的各级领导给我们营造了良好的学习氛围和舒适的生活环境,以及对我们学业上的重视与关怀,特别是对本次毕业设计给予了大量人力、物力的支持。在本次毕业设计中,我的指导教师严谨细致、不辞辛劳和精益求精的教学态度,使我深受感动,这对我在本次毕业设计中取得的成绩起了决定性的作用,在此致以衷心的感谢。当然,也要感谢在设计中关心帮助过我的各位同学。我知道我的这次设计还存在着许多缺陷和不完善的地方,将会在今后的生活和工作中不断的去学习。参考文献[1] 丛树林,张彬.汽车底盘构造与维修[M].北京:人民交通出版社.2011.[2] 陈德阳.汽车底盘构造图册.北京:人民交通出版社.2010.[3] 蔡兴旺.付晓光.汽车构造与原理(上册)[M].北京:机械工业出版社.2010.[4] 蔡兴旺.付晓光.汽车构造与原理(下册)[M].北京:机械工业出版社.2010.[5] 屠卫星.汽车底盘构造与维修[M].北京:人民交通出版社.2010.[6] 李家本.汽车底盘构造与维修实训[M].北京:中央广播电视大学出版社.2010.[7] 宋年秀,王东杰,刘超.图解汽车底盘构造与拆装[M].北京:中国电力出版社.2008.[8] 图解新型汽车底盘构造与拆装[M].北京:机械出版社.2011.[9] 黎亚洲.汽车底盘构造与维修图解[M].北京:电子工业出版社.2009.[10] 刘文苹.汽车底盘构造与检修[M].北京:化学工业出版社.2010.[11] 张立飞,赵健.汽车底盘构造与维修[M]. 北京:北京理工大学出版社.2010.[12] 黄华友.汽车底盘构造与维修[M].北京:电子工业出版社.2010.[13] 孔令来.汽车底盘构造与维修[M].北京:机械工业出版社.2010.[14] 王家青.汽车底盘构造与维修[M].北京:人民交通出版社.2011.

马达论文

给你点素材,自己组织一下.液压传动控制系统液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制的学科。液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。我们所常见到的液压千斤顶就是利用了这个原理来达到力的传递。液压传动基本原理液压传动中所需要的元件主要有动力元件、执行元件、控制元件、辅助元件等。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。按照操作方式可以分成人力操纵阀、机械操纵法、电动操纵阀等。除了上述的元件以外,液压控制系统还需要液压辅助元件。这些元件包括管路和管接头、油箱、过滤器、蓄能器和密封装置。通过以上的各个器件,我们就能够建设出一个液压回路。所谓液压回路就是通过各种液压器件构成的相应的控制回路。根据不同的控制目标,我们能够设计不同的回路,比如压力控制回路、速度控制回路、多缸工作控制回路等。根据液压传动的结构及其特点,在液压系统的设计中,首先要进行系统分析,然后拟定系统的原理图,其中这个原理图是用液压机械符号来表示的。之后通过计算选择液压器件,进而再完成系统的设计和调试。这个过程中,原理图的绘制是最关键的。它决定了一个设计系统的优劣。液压传动的应用性是很强的,比如装卸堆码机液压系统,它作为一种仓储机械,在现代化的仓库里利用它实现纺织品包、油桶、木桶等货物的装卸机械化工作。也可以应用在万能外圆磨床液压系统等生产实践中。这些系统的特点是功率比较大,生产的效率比较高,平稳性比较好。液压作为一个广泛应用的技术,在未来更是有广阔的前景。随着计算机的深入发展,液压控制系统可以和智能控制的技术、计算机控制的技术等技术结合起来,这样就能够在更多的场合中发挥作用,也可以更加精巧的、更加灵活地完成预期的控制任务。1、概述行走驱动系统是工程机械的重要组成部分。与工作系统相比,行走驱动系统不仅需要传输更大的功率,要求器件具有更高的效率和更长的寿命,还希望在变速调速、差速、改变输出轴旋转方向及反向传输动力等方面具有良好的能力。于是,采用何种传动方式,如何更好地满足各种工程机械行走驱动的需要,一直是工程机械行业所要面对的课题。尤其是近年来,随着我国交通、能源等基础设施建设进程的快速发展,建筑施工和资源开发规模不断扩大,工程机械在市场需求大大增强的同时,更面临着作业环境更为苛刻、工况条件更为复杂等所带来的挑战,也进一步推动着对其行走驱动系统的深入研究。这里试图从技术构成及性能特征等角度对液压传动技术在工程机械行走驱动系统的发展及其规律进行探讨。2、基于单一技术的传动方式工程机械行走系统最初主要采用机械传动和液力机械传动(全液压挖掘机除外)方式。现在,液压和电力传动的传动方式也出现在工程机械行走驱动装置中,充分表明了科学技术发展对这一领域的巨大推动作用。 机械传动纯机械传动的发动机平均负荷系数低,因此一般只能进行有级变速,并且布局方式受到限制。但由于其具有在稳态传动效率高和制造成本低方面的优势,在调速范围比较小的通用客货汽车和对经济性要求苛刻、作业速度恒定的农用拖拉机领域迄今仍然占据着霸主地位。 液力传动液力传动用变矩器取代了机械传动中的离合器,具有分段无级调速能力。它的突出优点是具有接近于双曲线的输出扭矩-转速特性,配合后置的动力换挡式机械变速器能够自动匹配负荷并防止动力传动装置过载。变矩器的功率密度很大而负荷应力却较低,大批生产成本也不高等特点使它得以广泛应用于大中型铲土运土机械、起重运输机械领域和汽车、坦克等高速车辆中。但其特性匹配及布局方式受限制,变矩范围较小,动力制动能力差,不适合用于要求速度稳定的场合。 液压传动与机械传动相比。液压传动更容易实现其运动参数(流量)和动力参数(压力)的控制,而液压传动较之液力传动具有良好的低速负荷特性。由于具有传递效率高,可进行恒功率输出控制,功率利用充分,系统结构简单,输出转速无级调速,可正、反向运转,速度刚性大,动作实现容易等突出优点,液压传动在工程机械中得到了广泛的应用。几乎所有工程机械装备都能见到液压技术的踪迹,其中不少已成为主要的传动和控制方式。极限负荷调节闭式回路,发动机转速控制的恒压,恒功率组合调节的变量系统开发,给液压传动应用于工程机械行走系提供了广阔的发展前景。与纯机械和液力传动相比,液压传动的主要优点是其调节的便捷性和布局的灵活性,可根据工程机械的形态和工况的需要,把发动机、驱动轮、工作机构等各部件分别布置在合理的部位,发动机在任一调度转速下工作,传动系统都能发挥出较大的牵引力,而且传动系统在很宽的输出转速范围内仍能保持较高的效率,并能方便地获得各种优化的动力传动特性,以适应各种作业的负荷状态。在车速较高的行走机械中所采用的带闭式油路的行走液压驱动装置能无级调速,使车辆柔和起步、迅速变速和无冲击地变换行驶方向。对在作业中需要频繁起动和变速、经常穿梭行驶的车辆来说这一性能十分宝贵。但与开式回路相比,闭式回路的设计、安装调试以及维护都有较高的难度和技术要求。借助电子技术与液压技术的结合,可以很方便地实现对液压系统的各种调节和控制。而计算机控制的引入和各类传感元件的应用,更极大地扩展了液压元件的工作范围。通过传感器监测工程车辆各种状态参数,经过计算机运算输出控制目标指令,使车辆在整个工作范围内实现自动化控制,机器的燃料经济性、动力性、作业生产率均达到最佳值。因此,采用液压传动可使工程机械易于实现智能化、节能化和环保化,而这已成为当前和未来工程机械的发展趋势。 电力传动电力传动是由内燃机驱动发电机,产生电能使电动机驱动车辆行走部分运动,通过电子调节系统调节电动机轴的转速和转向,具有凋速范围广,输人元件(发电机)、输出元件(电动机)、及控制装置可分置安装等优点。电力传动最早用于柴油机电动船舶和内燃机车领域,后又推广到大吨位矿用载重汽车和某些大型工程机械上,近年来又出现了柴油机电力传动的叉车和牵引车等中小型起重运输车辆。但基于技术和经济性等方面的一些原因,适用于行走机械的功率电元件还远没有像固定设备用的那样普及,电力传动对于大多数行走机械还仅是“未来的技术”。3、发展中的复合传动技术从前面的分析可以看出,应用于工程机械行走驱动系统中的基于单一技术的传动方式构成简单、传动可靠,适用于某些特定的场合和领域。而在大多数的实际应用中,这些传动技术往往不是孤立存在的,彼此之间都存在着相互的渗透和结合,如液力、液压和电力的传动装置中都或多或少的包含有机械传动环节,而新型的机械和液力传动装置中也设置了电气和液压控制系统。换句话说,采用有针对性的复合集成的方式,可以充分发挥各种传动方式各自的优势,扬长避短,从而获得最佳的综合效益。值得注意的是,兼有调节与布局灵活性及高功率密度的液压传动装置在其中充当着重要角色。 液压与机械和液力传动的复合(1) 串联方式串联方式是最为简单和常见的复合方式,是在液压马达或液压变速器的输出端和驱动桥之间设置机械式变速器以扩大调速的高效区,实现分段的无级变速。目前已广泛用于装载机、联合收获机和某些特种车辆上。对其的发展是将可在行进间变换传动比的动力换挡行星变速器直接安装在驱动轮内,实现了大变速比的轮边液压驱动,因而取消了驱动桥,更便于布局。(2) 并联方式即为通常所称的“液压机械功率分流传动”,可理解为一种将液压与机械装置“并联”分别传输功率流的传动系统,也就是是利用多自由度的行星差速器把发动机输出的功率分成液压的和机械的两股“功率流”,借助液压功率流的可控性,使这两股功率流在重新汇合时可无级调节总的输出转速。这种方式将液压传动的无级调速性能好和机械传动的稳态效率高这两方面的优点结合起来,得到一个既有无级变速性能,又有较高效率和较宽高效区的变速装置。按其结构,这种复合式传动装置可分为两类:第一类为利用行星齿轮差速器分流的外分流式,其中常见的分流传动机构又可分为输入分流式和输出分流式两种基本形式;第二类为利用液压泵或马达转子与外壳间的差速运动分流的内分流式。日本小松公司开发的这种复合方式的液压传动变速器,已经应用在装载机、推土机等工程机械上。德国Fendt拖拉机生产的采用Vario型无级变速器装备的农用拖拉机,到2003年总销量超过了30000台。由此可以看出,这种新型的传动装置已日益成为大中功率液力传动和动力换档变速器的有力竞争者。(3) 分时方式对于作业速度和非作业状态下转移空驶速度相差悬殊的专用车辆,采用传统机械变速器用于高速行驶、附加液压传动装置用于低速作业的方式能很好地满足这两种工况的矛盾要求。机械——液压分时驱动的方式在此类车辆上的应用已很普遍,这一技术也已被应用于飞机除冰车和田间移栽机等需要“爬行速度”的车辆和机具上。(4) 分位方式把液压马达直接安装在车轮内的“轮边液压驱动装置”是一种辅助液压驱动装置,可以解决工程机械需要提高牵引性能,但又无法采用全轮驱动方式,难以布置传统的机械传动装置的问题。液压传动的无级调速性能使以不同方式传动的驱动轮之间能协调同步,这在某种意义上也可视为一种功率分流传动:动力机的功率被分配到几组驱动轮上,经地面耦合后产生推动车辆运动的牵引力。目前,许多工程机械制造厂商将这一技术用于具有部分自走驱动能力的,诸如自走式平地机和铲运机这样的工程机械上。 液压与电力传动的复合由于现代技术的发展,电子技术在信号处理的能力和速度方面占有很大的优势,而液压与电力传动在各自功率元件的特性方面各有所长。因此,除了现在已普遍存在的“电子神经+液压肌肉”这种模式外,两者在功率流的复合传输方面也有许多成功的实例,如:由变频或直流调速电机和高效、低脉动的定量液压泵构成的可变流量液压油源,用集成安装的电动泵-液压缸或低速大扭矩液压马达构成的电动液压执行单元,以及混合动力工业车辆的驱动系统等。 二次调节静液传动系统二次调节静液传动技术是通过对液压元件所进行的调节来实现液压能与机械能互相转换。一般来说,它的实现是以压力耦联系统为基础的,在一次元件(泵)及二次元件(马达)间采用定压力偶合方式,依靠实时调节马达排量来平衡负荷扭矩。目前,对二次调节静液传动技术进行研究的出发点是对传动过程进行能量的回收和能量的重新利用,从宏观的角度对静液传动总体结构进行合理的配置以及改善其静液传动系统的控制特性。为了使不具备双向无级变量能力的液压马达和往复运动的液压缸也能在二次调节系统的恒压网络中运行,出现了利用二次调节技术的“液压变压器”,它类似于电力变压器用来匹配用户对系统压力和流量的不同需求,从而实现液压系统的功率匹配。二次调节静液传动系统与传统静液传动系统相比,其优点是更便于控制,能在四个象限中工作,可在不转变能量形式情况下回收能量,进行能量的存储,利用液压蓄能器加速可大大提高加速功率,且系统中无压力峰值,由于一次元件和二次元件分开安装,可通过一个泵站给多个液压动力元件提供油源,减少了冷却费用,设备的制造成本降低,系统效率高。二次调节静液传动与电力传动相比,具有闭环控制动态响应快、功率密度高、重量轻、安装空间小等优点。由于二次调节静液传动系统具有许多优点,使它在很多领域得到广泛地应用。国外已将其成功应用于造船工业、钢铁工业、大型试验台、车辆传动等领域。奔驰汽车公司已将二次调节技术应用于无人驾驶运输系统中的行驶驱动。4、结束语自2O世纪9O年代以来,工程机械进入了一个新的发展时期,新技术的广泛应用使得新结构和新产品不断涌现。随着微电子技术向工程机械的渗透,工程机械日益向智能化和机电一体化方向发展,对工程机械行走驱动装置提出的要求也越来越苛刻。近年来,液压技术迅速发展,液压元件日臻完善,使得液压传动在工程机械传动系统中的应用突飞猛进,液压传动所具有的优势也日渐凸现。可以相信,随着液压技术与微电子技术、计算机控制技术以及传感技术的紧密结合,液压传动技术必将在工程机械行走驱动系统的发展中发挥出越来越重要的作用。

已发送,请查收。《X型旋挖钻机的结构分析》作者:杨鹏来源:中国知网

国内封'旋挖钻机结构特点的探讨张启君,张忠海,陈以田,郑华(徐州工程机械股份科技有限公司,江苏徐州221004)摘要:以国内外旋挖钻机现有的底盘机构,钻桅,自行起落架,主副卷扬,动力头,钻杆,发动机系统等结构为背景,分析了国内外旋挖钻机常见的结构特点,为国内企业开发起到一定的借鉴作用.关键词:旋挖钻机;结构;特点;底盘结构中图分类号:文献标识码:B文章编号:1000-033X(2004)10-0037-05Discussion of drilling rig structureZHANG Qi-jun, ZHANG Zhong-hai, CHEN Yi-tian, ZHENG Hua(Xugong Science&Technology Co. Ltd, Xuzhou 221004, China)Abstract: This paper analyzed the structure characteristics of present drilling rig,such as chasis, drill string,lifting frame, windlass, power head, drill rod, engine, words: drilling rig; characterstics; chasis; structure旋挖钻机是一种多功能,高效率的灌注桩成孔设备,被广泛应用于水利工程,高层建筑,城市交通建设,铁路公路桥梁等桩基础工程的施工.旋挖钻机还可配套长短螺旋钻具,普通钻斗,捞砂钻斗,筒式岩石钻头等钻具以适应粘土层,砂砾层,卵石层和中风化泥岩等不同的施工要求.1概述旋挖钻机的结构主要由底盘机构,钻桅,自行起落架,主副卷扬,动力头,钻杆,钻头,转台,发动机系统,驾驶室,覆盖件,配重,液压系统,电气系统等组成,其工作原理也完全相同,都是由全液压动力头产生扭矩,由安装在钻架上的油缸提供钻压力,并通过伸缩式钻杆传递至钻头,钻下的钻渣充入钻头,由主卷扬提拔出孔外.徐工研究院在调查研究的基础上已开发出RD15, RD 18 , RD22旋挖钻机,RD系列产品的旋挖钻机的整机主要由底盘,动力头,钻架,发动机系统,钻杆自动存取装置,钻杆自动润滑装置,虎钳,锚固装置,钻具,液压系统,电气系统及泥浆系统等部件组成.2主要结构特点底盘的结构旋挖钻机的底盘一般为液压驱动,轨距可调,'刚性焊接式车架,履带自行式的结构.底盘主要包括车架及行走装置,行走装置主要包括履带张紧装置,履带总成,驱动轮,导向轮,承重轮,托链轮及行走减速机等组成.目前国内外旋挖钻机的底盘结构大小不一样,履带板宽度为800一1 200 mm.如意大利SOILMEC R622 HD旋挖钻机的底盘采用的是摆动伸缩式底盘,尺寸相对较小,驱动轮节距为216,单边10个支重轮2个托链轮,底盘高度相对较低.底盘伸缩采用的是摆动式,在行走过程中实现底盘的伸缩;行走减速机采用意大利BON-FIGLIOLI公司产品.意大利的CMV公司的旋挖钻机采用节距的驱动轮,支重轮,托链轮及链轨,履带板拟全部采用柏壳优士吉公司的进口件.单边11个支重轮2个托链轮,底盘伸缩仍采用通过油缸伸缩来实现,底架采用框架结构.CMV TH22的车架为箱形主体结构,上部布置有回转支承支座,中心回转体支座,车架的前,后部设置有履带伸缩箱形框架机构,车架主体两边上部固定托链轮,下部固定支重轮,前部设置了导向轮及其张紧装置,后部设置了驱动轮及其传动装置.MAIT公司采用自行设计的多功能底盘,稳定性好,重量轻,可配预留装置实现多功能,并具有上下车水平调整系统可进行倾斜调节.意马公司采用卡特彼勒履带底盘.意大利,德国制造的各类旋挖钻机的履带底盘均可以伸缩.国内的三一SYR220型旋挖钻机选用卡特彼勒3300底盘,C-9电喷发动机,内藏式液压可伸缩履带结构,宽履带提供较低的接地比压,提高施工时整机的翼期践C黔 2oo4Ao 37万方数据黔黝稳定性和适应性,且便于施工和运输.总之,国内外生产的旋挖钻机大多数应用的是专用底盘,轨距可调,能根据施工情况对底盘进行宽度调整,以增加钻机的整体稳定性,驾驶室前窗配有防坠物保护;也有少数厂家应用的是起重机底盘或挖掘机底盘.发动机系统旋挖钻机的发动机系统一般包括发动机,散热器,空滤器,消音器,燃油箱等.一般旋挖钻机设计时发动机选用国外的增压中冷式水冷发动机,选用进口CUMMINS发动机,为了适应不同用户的需求,也可选装国内二汽东风的康明斯发动机.其水散热器,空滤器等附件选用国产配套件,燃油箱自制.变幅机构及钻桅的结构目前国内旋挖钻机的变幅机构一般采用两级变幅油缸,平行四边形连杆机构,上端一级变幅油缸两端具有万向节头便于调整,钻桅截面形式为梯形截面,钻桅下端有液压垂直支腿,上端有两套滑轮机构,上下两端均可折叠,钻桅左右可调整角度为士50,前倾可调整角度为50,后倾可调整角度为150.三一SYR220型旋挖钻机的桅杆采用大箱形截面,为动力头和钻杆提供导向作用,具有良好的刚性和稳定性,抗冲击,耐振动,无需拆卸的可折叠式结构能减少整机长度和高度,便于运输.采用流行的平行四边形结构,通过其上油缸的作用,可使桅杆远离机体或靠近机体.通过桅杆角度的调整,可实现桅杆工作幅度或运输状态桅杆高度,桅杆相对地面角度的调节,使其动作机动灵活,施工效率高.意大利,德国制造的各类旋挖钻机可自行移动,自立桅杆,整个工作机构可在履带底盘上做土3600回转.因而现场转移,对孔位灵活方便,辅助时间少;钻架采用"平行四边形连杆机构十三角形"的支撑结构,非常适合城市狭窄场地的施工;钻架上装有垂直度检测仪,可以检测和显示钻架的偏斜度,并可通过钻机的"微动"系统调整钻架的垂直度;国外的SOILMEC公司的旋挖钻机产品品种有R-210,11-312,11-416,11-5161-11),R-620,R-622,R-625,11-725,11-825,11-930,11-940,R-1240等,其中SOILMEC R622 HD钻孔机的钻桅部分与国内的钻机产品相比,主要有以下几点不同.(1)动力头滑轨的形式SOILMEC R622 HD钻孔机的滑轨采用板式滑轨,但目前许多新型的钻机采用的是方形钢管式滑轨,这种新型的滑轨在强度上容易保证.(2)变幅机构与钻桅之间的十字轴结构SOILMECR622 HD钻孔机的十字轴采用的是转盘式结构;钻机的十字轴结构采用的是柱式结构.(3)加压油缸的固定型式SOILMEC R622 HD钻孔机的加压油缸采用的是2个铰点固定的方式,铰点所需的立板通过2--3个铰点固定在钻桅上;国内的钻机是将铰点所需的立板通过螺栓间接地焊在钻桅上.(4)加压油缸的防掉SOILMEC R622 HD钻孔机的加压油缸在加压油缸的末端另有保护装置;国内的钻机则是利用上铰点来防掉的.(5)动力头的下限位块SOILMEC R622 HD钻孔机的下限位块是在限位块与动力头之间加一橡胶块,并在橡胶块的动力头端加一金属挡板;国内钻机的下限位块是金属的,没有缓冲.(6)背轮的结构SOILMEC R622 HD钻孔机背轮上的2个滑轮是共面布置,主,副卷扬机的钢丝绳,在前后方向上错开;国内的钻机背轮上的2个滑轮是同心布置,主,副卷扬机的钢丝绳在左右方向上错开.(7)背轮的位置及收放SOILMEC R622 HD钻孔机背轮在运输状态下,位于发动机与副卷扬机之间,并在用手动棘轮机构使之水平;国内的钻机背轮在运输状态下,位于配重后面,呈竖直状态.(8)由于SOILMEC R622 HD钻孔机采用的是摆动伸缩式底盘,其钻桅没有在钻桅底部的支腿机构.宝峨公司的产品系列为BG12H,BG15H,BG18H,BG24H, BG24H, BG40H, BG24, BG25 , BG36, BG40,BG48等,该公司最新组装生产的BG20旋挖钻孔机,其二级变幅的结构形式较为特别,在转台上升起一横向支柱,变幅油缸安装在上面.这一设计可以加大变幅油缸安装距,增大钻桅的稳定性;但他也使转台的设计变的复杂,且升高了运输时的整车高度.国外车型中也仅有Bauer公司一家使用此结构.另一个特点是主,副卷扬机都安装在钻桅上,节省了回转平台上的安装空间,便于转台的布置.动力头的结构动力头是螺旋钻孔机的关键工作部件,其性能好坏直接影响钻孔机整机性能的发挥.动力头的功能:动力头是钻孔机工作的动力源,他驱动钻杆,钻头回转,并能提供钻孔所需的加压力,提升力,能满足高速甩土和低速钻进2种工况.动力头驱动钻杆,钻头回转时应能根据不同的土壤地质条件自动调整转速与扭矩,以满足不断变化的工况.国内的动力头为液压驱动,齿轮减速,可实现双向钻进和抛土作业,主要包括回转机蒙舞攀拼蓦黔姗聪38籍着熬袭赚戮臻藻粼髯熟鬓蒸鑫龚撇万方数据筑豁瓢镰澎5.有葬声芭亩三亩亩面面亩亩或互亩面菌面面面面或亩构,动力驱动机构及支撑机构.回转机构主要有齿轮与钻杆互锁的套管,两端支撑采用回转支承,密封等组成.动力驱动机构采用双变量马达带动减速机及小马达小减速机同时驱动钻进.抛土作业时,大减速机脱离,小马达小减速机工作,实现高速抛土.另外,支撑机构由滑槽,支座上盖与油缸连接件等组成,均为焊接结构件,应充分考虑其内部润滑,应有润滑油高度显示,加油口,放油口等,易于保养,维修.国内三一集团的动力头采用双变量液压马达驱动小齿轮,由小齿轮啮合大齿轮带动键套与钻杆配套,可根据不同地质条件自动无级改变旋转速度和输出扭矩.高品质双速减速机还可实现高速甩土功能.动力头有独立的润滑,冷却和换速液压系统,确保动力头可靠高效地工作.OILMECR622 HD钻孔机的动力头部分与国内钻机的产品相比,主要有以下几点不大相同:SOILMEC R622 HD钻孔机的动力头由三液压马达驱动,其中有一对马达同轴驱动一齿轮,在反向抛土时,只依靠小马达提供动力.国内的钻机只是由两液压马达提供动力,在反向抛土作业时,两马达均提供动力输出.SOILMEC R622HD钻孔机的动力头反向旋转由一单独机构实现,依靠此机构实现驱动齿轮与回转支承外齿轮的离合.国内的钻机是通过对减速器的更改来实现这一功能的;国内的钻机与SOILMEC R622 HD钻孔机与CMV钻孔机的动力头部分就结构上来讲,大体上是相似的,但SOILMEC R622 HD钻孔机与CMV钻孔机的动力头更为相似.他们均为三液压马达驱动,减速器与液压马达之间有一抛土换向机构.由于采用的三马达正常驱动及一马达反向抛土驱动.CMV公司的钻机采用平行连杆机构加三角形支撑型式,动力头可按土层自动调整扭矩和转速.意马公司采用动力头装有油浴式润滑.迈特公司系列旋挖钻机的动力头配有套管钻进增扭装置,钻机的摩擦钻杆驱动键的宽度和厚度大,可锁式钻杆为短键嵌入式可保证快速加锁和解锁.从国际知名大公司的钻孔机产品我们可以看出带有离合机构的钻孔机是比较普遍的机型.采用恒功率泵与变量液压马达配合,使动力头可根据地质条件自动改变其排量和压力,从而改变了输出扭矩及转速,即使动力头具有土壤自适应特性;采用带三挡或离合器的减速机,用远程液压操纵换档来实现钻孔机的低速钻进和高速抛土;液压换档,操作简单方便,提高了机器的作业效率.采用2个小齿轮同时驱动I个大齿轮且3个齿轮处于同一水平面.有利于倍增大齿轮所能传递的扭矩;齿轮中心连线为锐角三角形,使动力头结构紧凑.大齿轮与空心轴被联接为一体;空心轴内壁上均布有3条牙嵌板,其牙嵌钻进时与钻杆上的外牙嵌嵌合,可有效地传递扭矩和加压力;空心轴反转时,牙嵌即可分离.此结构不仅实现了轴的功能,也加强了轴的强度和刚度.动力头上,下箱体均为焊接结构,外形轮廓为一条包括几条圆弧及几条切线的封闭曲线;此结构不仅具有足够的强度和刚度,而且具有良好的工艺性.转台的结构目前国内旋挖钻机的转台为整体焊接式结构,主纵梁为"工字梁"形截面,主要包括回转支承,转台主体,钻桅后支撑,配重组成,钻桅后支撑位于配重前与转台主体用螺栓固定,便于拆卸,配重采用分体铸造大圆弧结构,运输时可拆卸.国外旋挖钻机转台的结构不太一样,如R622-HD旋挖钻机回转平台整体上采用了高铰点,大截面结构,这也是由转台受力大,应力高的特点决定的.转台主梁为变截面工字梁结构,采用的是等强度设计,这种设计较矩形梁设计具有重量轻,省材等优点.边梁设计与徐工集团RD 18大致相同,采用大圆弧造型设计.转台上布置与国内的具有较大区别,在布置上显得更为紧凑些,主要区别是回转减速机前置,充分利用了前面的空间,主泵和液压油箱均放在转台左边,燃油箱放在发动机前端,吸油阻力较小,发动机水散和液压油散热放在转台右边,主阀等液压元件放在转台右边油散热之前,这样管路布置不会太乱.后面配重也采用大圆弧设计,与边梁和机棚造型相适应.钻杆的结构决定设备地层适应能力的主要因素在于旋挖钻机所使用的钻杆形式,钻头类型以及与之相适应的设备本身的结构,其中采用什么样的凯式伸缩钻杆是最重要的因素.这是因为钻杆要将动力头的全部扭矩一直传递到孔底的钻头上,并且还要将加压液压缸的压力,动力头自重和钻杆自重等钻压稳定地传递到几十米以下的钻头上,因此当钻进较坚硬的地层时,钻杆可能要同时承受大扭矩和大钻压,还要克服很大的弯矩,这样使得钻杆的受力条件变得非常复杂,如果钻杆本身的能力达不到要求,则很容易损坏.凯式钻杆可以分为摩擦钻杆和锁紧钻杆2大类.摩擦钻杆是指钻杆上的键只能传递扭矩而不能传递钻压的钻杆,而锁紧钻杆是指钻杆之间通过加压平台可以锁成一个刚性体对地层加压钻进的钻杆.摩擦钻杆在提钻时不需要解锁,操作简封撰农慕解 39万方数据单,但由于加压能力有限无法钻进较硬地层.锁紧钻杆的地层适应能力强,但需要解决提钻时可能对钻杆造成强烈冲击的问题.锁紧钻杆又可分为简单的加压式钻杆和六键式嵌岩钻杆.简单加压式钻杆可以实现加压,但加压平台较窄,压强较大,容易磨损造成加压失效,因此不能真正适应坚硬地层的施工.而六键式嵌岩钻杆的加压平台宽大,可以稳定地传递大钻压,又因为是六键结构,钻杆本身抗失稳的能力很强,可以有效地克服钻杆的细长杆效应.国内外的六键式嵌岩钻杆和简单锁紧式钻杆都可以实现加压,但是这类钻杆也有不足,就是在提钻时必须先反转解锁,然后再卸土.正常的提钻顺序应该是钻杆由内向外依次上升,但是如果反转解锁不完全,就会造成某相邻两节钻杆尚未解锁就一起缩进外层钻杆,一般称为挂钻.而这两节钻杆继续往上运动时,受到轻微的扰动就会自动解锁,这样外面的钻杆就会悬空,对钻杆和动力头会形成强大的冲击.通常单节钻杆的质量约为2t,假如钻杆从3m甚至8m高度自由落体冲击下来,冲击能量将非常大,如果没有保护装置,很容易造成动力头和钻杆的严重破坏.因此使用六键式或其他锁紧式加压钻杆必须配置动力头减振器.减振器包括弹簧装置和液压减振装置,能有效缓冲并吸收钻杆对动力头的冲击以及钻杆之间的冲击,保证锁紧式钻杆的安全使用.目前国内外旋挖钻机的钻杆采用4节或5节伸缩内锁式钻杆,每节长度大约为13 m,装配后总长不小于48 m,采用高强度合金钢管,钻杆与动力头采用长牙嵌内锁式连接方式.顶端与上滑动板用010系列无齿回转支承相连,下端带有弹簧缓冲,第4节上端用可滑转万向节与主卷钢丝绳相连,下端采用方形截面杆通过销轴与钻头相连,每只钻头应与方形截面杆相配,具有互换性.钻头的结构钻头是决定旋挖钻机能否较好适应复杂地层,提高工效的重要部件,目前国内外旋挖钻机的钻头共分3种常用的结构:短螺旋钻头(0600-02 500 mm),回转斗钻头(0800-02 500 mm)和岩心钻钻头(0800-02500 mm),如R622-HD旋挖钻机的钻头有:短螺旋钻头,单层底旋挖钻头,双层底旋挖钻头共4个沙900,O1 000,0800,01 500)0目前国内外旋扮钻机钻头的3种常用的进土结构如下.(1)短螺旋钻头旋挖钻头主要纵短螺旋钻头为主,他主要靠螺旋叶片之间的间隙来容纳从孔底切削下来的土,砂砾等,这种钻头结构简单,造价低.地层较好时,使用他也可达到好的效果,如果地下砂砾石较多或含水较多时,在提钻时很容易掉块,钻进效率低,甚至于不能成孔.(2)单层底旋挖钻头在地下水位较高,或含砂砾较多的地层,目前多数旋挖钻机均采用钻头钻进,用静压泥浆护壁,这种钻孔工艺已明显优于短螺旋钻头钻孔.最早的旋挖钻头是单层底,在底下方有对称的2扇仅可向头内方向打开的合页门.当钻头钻进时,孔底切削下来的土,砂经合页门压入头内;在提钻时,在头内土砂的重力作用下,两扇门向下关闭,以阻止砂土漏回孔内.由于这种重力作用不是十分可靠,时常发生合页门关闭不严,造成砂土漏回孔内,降低了钻进效率,还会影响孔底清洁度.(3)双层底旋挖钻头自20世纪90年代以来,国外的一些钻机制造公司,在原单层底钻头的基础上,开发出双层底的旋挖钻头.其特点是2层底可以相对回转一个角度,以实现头底进土口的打开与关闭.即在顺时针旋转切削时,底部的进土口为开放状态,当钻完一个回次后,将钻头逆时针旋转一个角度,致使进土口强行关闭,从而使切削物完整地保存在头内.实践表明,在复杂地层中,双层底钻头的钻进效率及孔底清洁度明显优于单层底钻头.卷扬的结构国内外旋挖钻机的卷扬有主副卷扬2种,卷扬的结构采用卷扬减速机,具有卷扬,下放,制动功能,卷筒自行设计,主卷扬应具有自由下放功能,且实现快,慢双速控制.主,副卷扬应配有压绳器.液压电器系统意大利,德国制造的各类旋挖钻机的机,电,液一体化高度集中,结构紧凑,操纵灵活方便,自动化程度高.他采用伸缩式钻杆,节省了人力和加接钻杆的时间,施工中只需一人即可操纵整台钻机,工人劳动强度低.钻架上装有垂直度检测仪,可以检测和显示钻架的偏斜度,并可通过钻机的"微动"系统调整钻架的垂直度.驾驶室控制面板上装有孔深和钻架垂直度显示仪以及反映发动机,液压系统工作状态的仪表,显示屏及报警装置,有的还装有全电脑操作系统,使操作手能实时掌握钻进深度,钻架垂直度,保证钻孔准确到达设计深度和良好的垂直度.旋挖钻机的电液比例伺服控制系统国内外旋挖钻机采用电液比例伺服控制系统,PLC,CAN总线控制等,提高了定位钻孔精度,具有钻40髯黔及 Cd 万方数据筑黯机镰与旅篡橇戮化兹或奋亩亩亩亩亩亩泣亩石盆兹亩亩孔深度的自动化检测,荧光屏显示功能等,当钻桅发生倾斜时,钻机会自动报警,并进行自动调整.采用能显示多种信息的多功能液晶显示器,能进行起钻桅控制,自动垂直调平,回转倒土控制,发动机的监控,钻孔深度测量及显示,车身工作状态动画显示及虚拟仪表显示,故障检测与报警等信息的显示.安全保护国内外钻机的设计充分考虑操作人员的安全,并采取了一些措施,例如:驾驶室前窗配有FOPS(防坠物保护);卷扬的高度限位;驾驶室内操作台安全控制;发动机,液压等参数显示,报警等.3国外旋挖钻机主要特点意大利,德国等制造的各类旋挖钻机虽然能力大小有别,结构上略有差异,但总体性能和质量都比较先进,可靠,具有以下特点.(1)机,电,液一体化高度集中,结构紧凑,操纵灵活方便,自动化程度高,采用伸缩式钻杆,节省了人力和加接钻杆的时间.(2)可自行移动,自立桅杆,整个工作机构可在履带底盘上做13600回转.因而现场转移,对孔位灵活方便,辅助时间少.(3)与施工能力相同的常规钻机相比,回转扭矩大,并可根据地层情况自动调整.(4)钻架采用"平行四边形连杆机构+三角形"的支撑结构,非常适合城市狭窄场地的施工.(5)履带底盘可以伸缩.(6)钻架上装有垂直度检测仪,可以检测和显示钻架的偏斜度,并可通过钻机的"微动"系统调整钻架的垂直度.(7)驾驶室控制面板上装有孔深和钻架垂直度显示仪,以及反映发动机,液压系统工作状态的仪表,显示屏及报警装置,有的还装有全电脑操作系统,使操作手能实时掌握钻进深度,钻架垂直度,保证钻孔准确到达设计深度和良好的垂直度;实时掌握各系统工作情况,便于及时采取维修措施,保证钻机正常运转.(8)可实现多工艺钻进,能适应不同地层,不同桩基础处理方法施工的需要.一般类型的旋挖钻机除能进行旋挖钻进外,通过更换工作装置,还可实现跟管钻进和长螺旋钻进.参考文献:[1]韩金亭.大口径旋挖钻机在桩基施工中的技术优势【J].西部探矿工程,2002,12(3).[2]王平,赵永生,赵政.旋挖钻机选型及其在成孔施工中存在问题的探讨〔J].探矿工程,2001, 45(4).[3」侯再民.旋挖钻机卡钻原因及其对策〔J].探矿工程,2001,45(l).[41 JTJ 034-2000.公路路面基层施工技术规范[S].[51 GY 筋混凝土预制桩打桩工艺标准〔S].[61 GY 208-1996.设备基础施工工艺标准【S工[71 GY 204-1996.泥浆护壁回转钻孔灌注桩施工工艺标准【S].收稿日期:2004-05-13(上接第36页)3)墩头必须墩圆,以免滑丝;4)千斤顶的张拉杆必须拧进锚杯10扣丝以上;5)钢丝束接长时,连接杆必须拧进锚杯至10扣丝以上;6)如未张拉的钢丝要进行接长时,应套上一个比锚杯还大的钢套管,以便张拉时自由伸长;7)张拉时要随着张拉力的增加紧固螺帽,以防锚杯丝扣变形,不易锚固;8)锚下混凝土要振捣密实,以免大吨位张拉时造成混凝土崩裂.4压浆与封锚压浆是为了加强钢筋束与混凝土的整体作用,增大钢束与混凝土之间的粘结力,把力传递给混凝土,防止钢丝锈蚀.因此,压浆必须及时进行,以免长时间绷紧的钢丝束产生疲劳荷载,造成预应力损失.压浆前应选配好适宜的水灰比,水灰比太小,浆太稠给压浆造成困难;太大,浆太稀易离析沉淀,一般情况水灰比以较适宜.封锚是为了保护锚头不受空气的腐蚀,保证其预应力的永久性,因此封锚一定要封得密实.参考文献:[1]许尚江.滨州黄河大桥引桥横隔梁维修加固方案[J].筑路机械与施工机械化,2003 , 20(6).收稿日期:2004-05-24获麟磊豁粼2004Ao 41万方数据的资料下的好乱,见谅

  • 索引序列
  • 马达驱动毕业论文
  • 驱动电源毕业论文
  • 驱动桥总装毕业论文
  • 驱动桥维修毕业论文
  • 马达论文
  • 返回顶部