首页 > 期刊论文知识库 > 湖南工程学院学报投稿经验

湖南工程学院学报投稿经验

发布时间:

湖南工程学院学报投稿经验

Sensorless torque control scheme ofinduction motor for hybrid electric vehicleYan LIU 1,2, Cheng SHAO1( Institute of Advanced Control Technology, Dalian University of Technology, Dalian Liaoning 116024, China; of Information Engineering of Dalian University, Dalian Liaoning 116622, China)Abstract: In this paper, the sensorless torque robust tracking problem of the induction motor for hybrid electric vehicle(HEV) applications is addressed. Because motor parameter variations in HEV applications are larger than in industrialdrive system, the conventional field-oriented control (FOC) provides poor performance. Therefore, a new robust PI-basedextension of the FOC controller and a speed-flux observer based on sliding mode and Lyapunov theory are developed inorder to improve the overall performance. Simulation results show that the proposed sensorless torque control scheme isrobust with respect to motor parameter variations and loading disturbances. In addition, the operating flux of the motor ischosen optimally to minimize the consumption of electric energy, which results in a significant reduction in energy lossesshown by : Hybrid electric vehicle; Induction motor; Torque tracking; Sliding mode1 IntroductionBeing confronted by the lack of energy and the increasinglyserious pollution, the automobile industry is seekingcleaner and more energy-efficient Hybrid ElectricVehicle (HEV) is one of the solutions. A HEV comprisesboth a Combustion Engine (CE) and an Electric Motor(EM). The coupling of these two components can be inparallel or in series. The most common type of HEV is theparallel type, in which both CE and EM contribute to thetraction force that moves the vehicle. Fig1 presents a diagramof the propulsion system of a parallel HEV [1].Fig. 1 Parallel HEV automobile propulsion order to have lower energy consumption and lower pollutantemissions, in a parallel HEV the CE is commonlyemployed at the state (n > 40 km/h or an emergency speedup), while the electric motor is operated at various operatingconditions and transient to supply the difference in torquebetween the torque command and the torque supplied bythe CE. Therefore fast and precise torque tracking of an EMover a wide range of speed is crucial for the overall performanceof a induction motor is well suited for the HEV applicationbecause of its robustness, low maintenance and lowprice. However, the development of a drive system basedon the induction motor is not straightforward because of thecomplexity of the control problem involved in the IM. Furthermore,motor parameter variations in HEV applicationsare larger than in industrial drive system during operation[2]. The conventional control technique ranging from theinexpensive constant voltage/frequency ratio strategy to thesophisticated sensorless control schemes are mostly ineffectivewhere accurate torque tracking is required due to theirdrawbacks, which are sensitive to change of the parametersof the general, a HEV operation can be continuing smoothlyfor the case of sensor failure, it is of significant to developsensorless control algorithms. In this paper, the developmentof a sensorless robust torque control system for HEVapplications is proposed. The field oriented control of the inductionmotor is commonly employed in HEV applicationsdue to its relative good dynamic response. However the classical(PI-based) field oriented control (CFOC) is sensitive toparameter variations and needs tuning of at least six controlparameters (a minimum of 3 PI controller gains). An improvedrobust PI-based controller is designed in this paper,Received 5 January 2005; revised 20 September work was supported in part by State Science and Technology Pursuing Project of China (No. 2001BA204B01).Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46 43which has less controller parameters to be tuned, and is robustto parameter variable parameters modelof the motor is considered and its parameters are continuouslyupdated while the motor is operating. Speed andflux observers are needed for the schemes. In this paper,the speed-flux observer is based on the sliding mode techniquedue to its superior robustness properties. The slidingmode observer structure allows for the simultaneous observationof rotor fluxes and rotor speed. Minimization of theconsumed energy is also considered by optimizing operatingflux of the The control problem in a HEV caseThe performance of electric drive system is one of thekey problems in a HEV application. Although the requirementsof various HEV drive system are different, all thesedrive systems are kinds of torque control systems. For anideal HEV, the torque requested by the supervisor controllermust be accurate and efficient. Another requirement is tomake the rotor flux track a certain reference λref . The referenceis commonly set to a value that generates maximumtorque and avoids magnetic saturation, and is weakened tolimit stator currents and voltages as rotor speed HEV applications, however, the flux reference is selectedto minimize the consumption of electrical energy as it is oneof the primary objectives in HEV applications. The controlproblem can therefore be stated as the following torque andflux tracking problems:minids,iqs,we Te(t) − Teref (t), (1)minids,iqs,we λdr(t) − λref (t), (2)minids,iqs,we λqr(t), (3)where λref is selected to minimize the consumption of electricalenergy. Teref is the torque command issued by thesupervisory controller while Te is the actual motor (3) reflects the constraint of field orientation commonlyencountered in the literature. In addition, for a HEVapplication the operating conditions will vary changes of parameters of the IM model need to be accountedfor in control due to they will considerably changeas the motor changes operating A variable parameters model of inductionmotor for HEV applicationsTo reduce the elements of storage (inductances), the inductionmotor model used in this research in stationary referenceframe is the Γ-model. Fig. 2 shows its q-axis (d-axisare similar). As noted in [3], the model is identical (withoutany loss of information) to the more common T-model inwhich the leakage inductance is separated in stator and rotorleakage [3]. With respect to the classical model, the newparameters are:Lm = L2mLr= γLm, Ll = Lls + γLlr,Rr = γ. 2 Induction motor model in stationary reference frame (q-axis).The following basic w−λr−is equations in synchronouslyrotating reference frame (d - q) can be derived from theabove model.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩dλdrdt= −ηλdr + (we − wr)λqr + ηLmids,dλqrdt= −(we − wr)λdr − ηλqr + ηLmiqs,didsdt= ηβλdr+βwrλqr−γids+weiqs+1σLsVds,diqsdt=−βwrλdr+ηβλqr−weids−γiqs+1σLsVqs,dwrdt= μ(λdriqs − λqrids) −TLJ,dθdt= wr + ηLmiqsλdr= we,Te = μ(λdriqs − λqrids)(4)with constants defined as follows:μ = npJ, η = RrLm, σ = 1−LmLs, β =1Ll,γ = Rs + RrLl, Ls = Ll + Lm,where np is the number of poles pairs, J is the inertia of therotor. The motor parameters Lm, Ll, Rs, Rr were estimatedoffline [4]. Equation (5) shows the mappings between theparameters of the motor and the operating conditions (ids,iqs).Lm = a1i2ds + a2ids + a3, Ll = b1Is + b2,Rr = c1iqs + c2.(5)4 Sensorless torque control system designA simplified block diagram of the control diagram isshown in Fig. Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46Fig. 3 Control PI controller based FOC designThe PI controller is based on the Field Oriented Controller(FOC) scheme. When Te = Teref, λdr = λref , andλqr = 0 in synchronously rotating reference frame (d − q),the following FOC equations can be derived from the equations(4).⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ids = λrefLm+ λrefRr,iqs = Terefnpλref,we = wr + ηLmiqsλref.(6)From the Equation (6), the FOC controller has lower performancein the presence of parameter uncertainties, especiallyin a HEV application due to its inherent open loopdesign. Since the rotor flux dynamics in synchronous referenceframe (λq = 0) are linear and only dependent on thed-current input, the controller can be improved by addingtwo PI regulators on error signals λref − λdr and λqr − 0 asfollowids = λrefLm+ λrefRr+ KPd(λref − λdr)+KId (λref − λdr)dt, (7)iqs = Terefnpλref, (8)we = wr + ηLmiqsλref+ KPqλqr + KIq λqrdt. (9)The Equation (7) and (9) show that current (ids) can controlthe rotor flux magnitude and the speed of the d − q rotatingreference frame (we) can control its orientation correctlywith less sensitivity to motor parameter variations becauseof the two PI Stator voltage decoupling designBased on scalar decoupling theory [5], the stator voltagescommands are given in the form:⎧⎪⎪⎪⎨⎪⎪⎪⎩Uds = Rsids − weσLsiqs = Rsids − weLliqs,Uqs = Rsiqs + weσLsids + LmLrweλref= Rsiqs + weσLsids + weλref .(10)Because of fast and good flux tracking, poor dynamics decouplingperformance exerts less effect on the control Speed-flux observer designBased on the theory of negative feedback, the design ofspeed-flux observer must be robust to motor parameter speed-flux observer here is based on the slidingmode technique described in [6∼8]. The observer equationsare based on the induction motor current and flux equationsin stationary reference frame.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩d˜idsdt= ηβ˜λdr + β ˜ wr˜λqr − γ˜ids +1LlVds,d˜iqsdt= −β ˜ wr˜λdr + ηβ˜λqr − γ˜iqs +1LlVqs,d˜λdrdt= −η˜λdr − ˜ wr˜λqr + ηLm˜ids,d˜λqrdt= ˜wr˜λ dr − η˜λqr + ηLm˜iqs.(11)Define a sliding surface as:s = (˜iqs − iqs)˜λdr − (˜ids − ids)˜λqr. (12)Let a Lyapunov function beV = . (13)After some algebraic derivation, it can be found that when˜ wr = w0sgn(s) with w0 chosen large enough at all time,then ˙V = ˙s · s 0. This shows that s will converge tozero in a finite time, implying the stator current estimatesand rotor flux estimates will converge to their real valuesin a finite time [8]. To find the equivalent value of estimatewr (the smoothed estimate of speed, since estimate wr is aswitching function), the equation must be solved [8]. Thisyields:˜ weq = wr˜λqrλqr + λdr˜λdr˜λ2qr +˜λ2dr −ηnp˜λqrλdr − λqr˜λdr˜λ2qr +˜λ2dr. (14)The equation implies that if the flux estimates converge totheir real values, the equivalent speed will be equal to thereal speed. But the Equation (14) for equivalent speed cannotbe used as given in the observer since it contains unknownterms. A low pass filter is used instead,˜ weq =11 + s · τ˜ wr. (15)Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46 45The same low pass filter is also introduced to the systeminput,which guarantees that the input matches the feedbackin selection of the speed gain w0 has two major constraints:1) The gain has to be large enough to insure that slidingmode can be ) A very large gain can yield to instability of the simulations, an adaptive gain of the slidingmode observer to the equivalent speed is = k1 ˜ weq + k2. (16)From Equation (11), the sliding mode observer structureallows for the simultaneous observation of rotor Flux reference optimal designThe flux reference can either be left constant or modifiedto accomplish certain requirements (minimum current,maximum efficiency, field weakening) [9,10]. In this paper,the flux reference is chosen to maximum efficiency at steadystate and is weaken for speeds above rated. The optimal efficiencyflux can be calculated as a function of the torquereference [9].λdr−opt = |Teref| · 4Rs · L2r/L2m + Rr. (17)Equation (17) states that if the torque request Teref iszero, Equation (8) presents a singularity. Moreover, theanalysis of Equation (17) does not consider the flux fact, for speeds above rated, it is necessary toweaken the flux so that the supply voltage limits are not improved optimum flux reference is then calculatedas:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩λref = λdr-opt,if λmin λdr-opt λdr-rated ·wratedwr-actual,λref = λmin, if λdr-opt λmin,λref = λdr-rated ·wratedwr-actual,if λdr-opt λdr-rated ·wratedwr-actual.(18)where λmin is a minimum value to avoid the division SimulationsThe rated parameters of the motor used in the simulationsare given byRs = Ω, Rr = Ω, Lls = 75 H,Llr = 105 H, Lm = mH, Ls = Lls + Lm,Lr = Llr + Lm, P = 4, Jmot = kgm2,J = Jmot +MR2tire/Rf, ρair = , Cd = = m2, Rf = , Cr = = m, M = 3000 kg, wbase = 5400 rpm,λdr−rated = shows the torque reference curve that representstypical operating behaviors in a hybrid electric . 4 The torque reference torque is modeled by considering the aerodynamic,rolling resistance and road grade forces. Its expression isgiven byTL = RtireRf(12ρairCdAfv2 +MCr cos αg +M sin αg).Figures in [5∼8] show the simulation results of thesystem of (considering variable motor parameters).Though a small estimation error can be noticed on the observedfluxes and speed, the torque tracking is still achievedat an acceptable level as shown in Figs. [5, 6, 8]. The torquecontrol over a wide range of speed presents less sensitivityto motor parameters presents the d and q components of the rotor flux λr is precisely orientated to d-axis because of theimproved PI shows clearly the real and observed speed in thedifferent phases of acceleration, constant and decelerationspeed with the motor control torque of . The variablemodel parameters exert less influence on speed shows the power loss when the rotor flux keeps constantor optimal state. A significant improvement in powerlosses is noticed due to reducing the flux reference duringthe periods of low torque . 5 Motor rotor flux λ Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46Fig. 6 Motor . 7 Power . 8 Motor ConclusionsThis paper has described a sensorless torque control systemfor a high-performance induction motor drive for aHEV case. The system allows for fast and good torquetracking over a wide range of speed even in the presence ofmotor parameters uncertainty. In this paper, the improvedPI-based FOC controllers show a good performance in therotor flux λdr magnitude and its orientation tracking. Thespeed-flux observer described here is based on the slidingmode technique, making it independent of the motor adaptation of the speed -flux observer is used tostabilize the observer when integration errors are present.

英语写作网上可能会有

啊,我才小学

我也,用彭坤,胡健,张姣,彭利等名字,冒充湖南工程学院学报,湖南科技学院学报,湖南城市学院学报等到处钱

湖南工程学院学报投稿

1、 题名: 新型双连杆双曲轴内燃机滑块偏转仿真研究作者: 谭理刚;杨靖;龚志辉来源: 《内燃机工程》 ISSN :1000-0925,2005,26(3):57-602、 题名: 直喷式发动机燃油喷射过程的多维模型仿真作者: 刘金武;杨靖;高为国;倪小丹来源: 《系统仿真学报 》ISSN :1004-731X,2004,16(3):525-5293、 题名: 虚拟样机技术在SL1126内燃机设计中的应用研究作者: 易际明;杨靖;张亮峰来源: 《计算机辅助设计与图形学学报》 ISSN :1003-9775,2004,16(7):1016-10194、 题名: 基于案例的SL1126内燃机方案设计作者: 易际明;杨靖;张亮峰来源: 《机械设计》 ISSN :1001-2354,2004,21(12):35-375、题名: 支持Top-Down Design的内燃机参数化建模作者: 易际明;杨靖;张亮峰来源: 《中国制造业信息化》 ISSN :1672-1616,2004,33(3):100-1026、 题名: 直喷式发动机喷雾模型研究进展作者: 刘金武;杨靖;高为国;倪小丹来源: 《内燃机工程》 ISSN :1000-0925,2005,26(1):81-847、 题名: 柴油机的性能改进及缸内工作过程的三维数值模拟作者: 杨靖;肖明伟;崔东晓;邓帮林;周剑来源: 《湖南大学学报. 自然科学版 》ISSN :1000-2472,2006,33(4):50-548、 题名: 内燃机燃烧过程仿真后处理输入文件Ipost的研究作者: 刘金武;杨靖;高为国;倪小丹来源: 《湖南工程学院学报》 自然科学版 ISSN :1671-119X,2003,13(3):34-369、 题名: 关联设计技术及其在内燃机CAD系统中的应用作者: 易际明;朱理;杨靖来源: 《机械设计与研究》 ISSN :1006-2343,2004,20(3):89-90,9510、题名: 基于μC/OS-Ⅱ嵌入式内核的排气分析仪开发研究作者: 谭理刚;杨靖;潘朝辉;龚金科来源:《湖南大学学报》自然科学版 ISSN :1000-2472,2005,32(4):43-4611、题名: CAD系统软件数据交换技术的实现作者: 张亮峰;杨靖;彭浩舸来源:《湖南工程学院学报》自然科学版ISSN :1671-119X,2004,14(4):38-4012、题名: 双连杆内燃机动态仿真作者: 易际明;杨靖来源: 《系统仿真学报》 ISSN :1004-731X,2004,16(12):2780-278213、题名: 提高智能排气分析仪精度的研究作者: 杨靖;潘朝晖;周剑来源: 《内燃机工程》 ISSN :1000-0925,2004,25(2):75-7814、题名: 105系列直喷式柴油机新燃烧系统开发作者: 杨靖;李克;潘朝浑来源: 《内燃机工程》 ISSN :1000-0925,2003,24(6):13-1615、题名: 面向装配的智能变型设计技术及应用研究作者: 易际明;杨靖来源: 《湖南工程学院学报》 自然科学版 ISSN :1671-119X,2005,15(1):25-2916、题名: SL1115单缸双连杆柴油机配气凸轮型线的设计作者: 李蓉;杨靖来源: 《小型内燃机与摩托车》 ISSN :1002-8277,2000,29(2):1917、题名:轻型汽油车改装柴油机后发动机悬置系统和冷却系统的优化作者: 杨靖;肖明伟;崔东晓;邓帮林来源: 《客车技术与研究》 ISSN :1000-2472,2006,28(2):4918、题名: 内燃机燃烧过程仿真计算的双精度系统设计作者: 刘金武;杨靖;倪小丹;黄麓升来源: 《湖南工程学院学报》 自然科学版 ISSN :1671-119X,2004,14(2):40-43

呵呵,从具体的情况来看,好象这类的问题应该有专业方面的人才来帮助你回答啊!很可惜我不会啊!

Robotics education in the university* Rafael M. Inigo and Jose M. Angulo School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia 22901, USADept. de Informatica, Universidad de Deusto, Bilbao, Spain Available online 28 October 2004. The importance of automation and robotics in modern factories has required the introduction of courses on these subjects at the graduate and undergraduate levels in engineering schools. A comprehensive course on robotics must include the following subjects of fundamental importance: kinematics, dynamics, computer hardware and software, automatic control and machine vision. This paper describes the authors' experience in teaching a graduate robotics course at the University of Virginia and a short summer course at the Universidad de Deusto in Spain. Hands-on experience is a must in courses on robotics, and some simple yet effective systems designed and constructed by students are described. These include a program for transformation matrix manipulation, an operating system for manipulator control, and a simple three degrees of freedom programmable manipulator. The majority of the students who took both courses were electrical engineers, but mechanical engineers and computer scientists were also enrolled. Author Keywords: Robotics Education; Robotics Laboratory; Hardware; Software Development For Robotics Education *Parts of this paper were presented at the Second annual workshop on interactive computing, CAD/CAM: Electrical Engineering Education Washington,

与<<"电机学"网络教学辅助系统>>相似的文献。 对比式教学法在电机教学中的应用 Application of Contrast Method in Electric Machine Teaching [湖南工程学院学报(自然科学版) Journal of Hunan Institute of Engineering(Natural Science Edition)] 刘少克 校园网教学信息系统 The Campus Net Information System of Teaching [辽宁省交通高等专科学校学报 Journal of Liaoning Provincial College of Communications] 孔繁瑞 , 李瑶 辅助教学网站自动生成系统的设计与实现 Design and Realization of Auto Formed System on Aid Teaching Net [南平师专学报 Journal of Nanping Teachers College] 黄清虎 , HUANG Qinghu 网络辅助教学系统的设计和安全性实施 The Design and Security Implementation of a Network Assistant Teaching System [三明学院学报 Journal of Sanming College] 陈欣敏 , CHEN Xin-min 机电能量转换多媒体计算机辅助教学系统概述 Survey of MCAI System of Conversion of Mechanical and Electrical Energy [微电机 Micromotors] 窦晓霞 探究式多媒体网络教学系统的研制 Development and cognition on net teaching system with the features of discovery and multimedia [高等工程教育研究 Research in Higher Education of Engineering] 陈晓 , 杨振坤 , 汪琼燕 , 张祝林 , 伍辉华 电机学教学方法初探 Discussion on Teaching Method Improvement in Electric Machine Course [电机技术 Electrical Machinery Technology] 薛迎成 , Xue Yingchen 电力系统故障分析的计算机辅助教学系统 Computer-assistant Teaching System for Electric System Fault Analysis [东北电力技术 Northeast Electric Power Technology] 魏臻珠 开放教育教学中心网络教学系统设计之管见 My Idea On Net- work Teaching System in Open Teaching & Learning Center [陕西广播电视大学学报 Shaanxi Radio and TV University Journal] 王力强 电力电子技术发展对电机类教学内容的影响 Influence on Teaching Content of Electric Machine Fields with the Development of Power Electronic Technology [电气电子教学学报 Journal of Electrical & Electronic Education] 李辉 谈谈电机教学中的类比法 The Comparing Method in Teaching Electric Machine [广东水利电力职业技术学院学报 Journal of Guangdong Technical College of Water Resources and Electric Engineering] 陈吉芳 大学数学课程网络教学系统建设的探讨 On the Construction of Mathematics Net Teaching System in University [石家庄铁路职业技术学院学报 Journal of Shijiazhuang Institute of Railway Technology] 赵晓青 , 戎晓剑 , Zhao Xiaoqing , Rong Xiaojian 电机学教学方法的创新探索与实践 Exploration and Practice in the Teaching Methods of "Electric Engineering" [中国电力教育 China Electric Power Education] 王艾萌 《电机拖动与控制》教学模式的改革 The Reform of Teaching Pattern in Electric Machine Motor and Control [常州信息职业技术学院学报 Journal of Changzhou Vocational College of Information Technology] 王丽琴 基于PC的教学型数控铣床实验系统设计 Design of Numerical Control of Milling Machine Experiment System for Teaching Based on PC [机械与电子 Machinery & Electronics] 丛红 , 董爱梅

湖南工学院学报投稿

啊,我才小学

你好,经查证该期刊该刊被CA 化学文摘(美)(2014)数据库收录,属于CA期刊,并不是核心期刊

根据教育局规定,已经没有明确一本、二本的概念。湖南工学院(Hunan Institute of Technology)位于湖南衡阳,是 2007年经教育部批准由湖南建材高等专科学校和湖南大学衡阳分校合并升格的省属公办普通本科院校。2010年3月湖南工业科技职工大学整体并入,2011年湖南工学院成为全国百所“卓越工程师培养计划”高校,CDIO工程教育联盟成员单位。2018年,成为湖南省省级硕士立项建设单位。

截至2021年12月,学校有三个校区占地1400余亩,校舍建筑面积56万余平方米,图书馆纸质藏书164万余册;设有18个二级教学院(部),开设45个本科专业;拥有省级重点学科4个;教育部特色专业1个,教育部“卓越计划”试点专业3个,省特色专业和重点资助建设专业4个;教职工1320人,其中享受国务院政府特殊津贴专家6人;全日制在校学生19466人。师资力量截至2021年12月,学校有教职工1320人,其中正高职称112人(教授100人),副高职称312人(副教授206人),博、硕士908人。有享受国务院政府特殊津贴专家6人、湖南省新世纪“121人才工程”第一、二、三层次人选6人,有一批获得教育部思想政治教育中青年杰出人才支持计划培养对象、全国优秀教师、湖南省院士专家咨询委员会专家、省级学科带头人、省级骨干教师、省级青年教学能手、湖南省优秀教师、湖南省教学奉献奖、省级海外名师、湖湘英才、湖湘侨界精英等荣誉的高水平教师。省级教学团队(3个):安全工程本科专业教学团队(张力)、机械设计制造及其自动化专业教学团队(金潇明)、电工电子技术系列课程教学团队(姚胜兴)院系专业截至2021年12月,学校设有18个二级教学院(部)、18个党政管理机构、3个党群组织、9个直属单位,开设45个本科专业。

教学建设截至2018年4月,学校有教育部特色专业1个,教育部“卓越计划”试点专业3个,省特色专业和重点资助建设专业4个,省级综合改革试点专业5个;有省级实践教学示范中心3个,国家级精品课程1门、省级精品课程8门;国家级大学生校外实践教育基地1个,省级优秀实习教学基地11个。 教育部特色专业建设点:安全工程湖南省特色专业建设点:工商管理教育部卓越工程师培养计划专业:自动化、无机非金属材料工程、机械设计制造及其自动化

湖南省“十二五”专业综合改革试点项目:安全工程、无机非金属材料省级实践教学示范中心:模具设计与制造实践教学中心、电气与控制工程实践教学中心、安全工程实践教学中心国家级精品课程:安全人机工程学省级精品课程:Pro/ENGINEER三维设计、电路分析、安全人机工程学、工程制图、工商企业经营与管理、高等数学、材料物理化学、会计学、机械制造工程训练—金工实习等国家级大学生校外实践教育基地:湖南工学院-湖南韶峰南方水泥有限公司工程实践教育中心学科建设截至2018年4月,学校有1个省级重点学科材料学。合作交流学校以校友会、基金会为平台,以“校企合作、产教融合”为重点,分别与大亚湾核电站、三一重工、中联重科、南方水泥、皇朝家私、泛华集团、千山药机、华兴工程、共创实业等企业进行合作共建实践实训基地,搭建实践实训课程平台。截至2018年4月,学校与美国、英国、澳大利亚、日本、韩国、马来西亚等10多个国家的30多所高校建立了合作关系。

科研机构截至2018年4月,学校拥有国家地方联合工程实验室1个,省级科研平台5个,省级教育科学研究基地1个。学术资源馆藏资源截至2018年4月,图书馆纸质藏书135万余册。截至2015年11月,学校馆藏纸质书刊文献124万余册,电子图书310万余册,中外文期刊990种,中外文报纸120余种。藏书种类以工为主。学术期刊《湖南工学院学报》是由湖南工学院主办的综合性学术期刊,创刊于2002年,季刊,大16开本,季末出刊。主要内容是刊登安全、化工、建筑、材料、机械、自动化、电子、信息、经济、管理、基础理论、社会科学及高等教育教学类的反映本院学科特色和地域特色的新理论、新技术、新成果、新方法。主要栏目设有 “ 安全与化工 ” “ 建筑与材料 ” “ 机械与自动化 ” “ 电子与信息 ” “ 经济与管理 ” “ 基础理论 ” “社会科学”“ 教育教学 ” 8个栏目。

英语写作网上可能会有

湖南工学院投稿

人民文学·诗刊·青年文艺家:100026北京农展馆南里十号楼 星星·四川文学:610012四川成都市红星路二段85号 诗选刊·文论报·长城:050021石家庄市槐北路192号 诗歌月刊:230001安徽省合肥市大钟楼邮政局518信箱 诗潮·芒种:110003辽宁省沈阳市和平区北三经街66号 诗林:150010黑龙江省哈尔滨市道里区田地街91号 绿风:832000新疆石河子市北二路艾青诗歌馆 中国诗人:110042辽宁省沈阳市大东区大什字街62号富仕家园341号 青春诗歌(《中国诗人》刊中刊):130051长春市青岛路副7号7门201张常信工作室 扬子江·钟山·雨花:210024江苏省南京市颐和路2号 新诗界:100083北京市德外北沙滩1号91信箱 国际汉语诗坛:400020重庆市江北区观音桥邮局自取031信箱 国际华文诗人:361012厦门市七星西路150号惠祥花园三幢602室 大开发诗刊:550003贵州省贵阳市浣纱路66号省招办大楼10楼 行走诗歌双月刊:230041安徽省合肥市合瓦路282号 大众诗歌:030001太原市南华门15号 隐匿者诗刊:417000湖南娄底市华达101信箱 诗家园:214101江苏无锡市沪路柏庄碧苑10-402 新诗大观:054000邢台市桥西区爱民路 新诗刊:448000湖北荆门市新闻出版局二楼 黄河诗报:250001济南市经六路117号 诗前沿:101101北京通州区翠屏北里16号中国长城学会孙文涛 香稻诗报:124000辽宁省盘锦市双台子区渤海路129号市群艺馆尹玉宁 鲁西诗人:252000山东省聊城市育新北街21号 乡土诗人:066000河北省秦皇岛市海港区交运里小区30栋楼2单元15号 上海诗人:200438上海市工农四村157号401室 刘希涛 中西诗歌:510410广州市黄石东路434号14栋303信箱 作家杂志:130021吉林省长春市人民大街167号 花城:510075广州市水荫路11号 上海文学·收获:200040上海市巨鹿路675号 飞天:730000甘肃兰州市东岗西路586号 十月:100011北京市北三环中路6号 解放军文艺:100081北京中关村南大街18号 朔方:750004宁夏银川市文化东街23号自治区文联 山花:550002贵州省贵阳市科学路66号 芳草:430010湖北省武汉市解放公园路44号“芳草诗会”专栏 莽原:450008郑州经三路北段98号 鸭绿江:110041辽宁省沈阳市大东区小北关街31号 海峡:350001福建省福州市东水路76号 (八零后作品) 作品:510635广州市天河北路龙口西路522号广东文学艺术中心七楼 芙蓉:410006湖南省长沙市银盆南路67号湖南文艺出版社《芙蓉》杂志编辑部 红豆:530012南宁市南环路98号(民间报刊选诗) 黄土路 草原:010010内蒙古呼和浩特市(新城区)乌兰察布西路318号 清明:230001安徽省合肥市芜湖路同济大厦6层 岁月:163000黑龙江省大庆市东风新村经六街55号大庆日报社六楼 红岩:400015重庆市中山三路重庆村30号 欧阳斌 文学港:315010宁波市柳汀街98-1号 荣荣 87324921 青春潮:350011福建省福州市金鸡山路23号 延河:710001陕西省西安市建国路83号 延安文学:716000陕西省延安市七里铺文艺之家大楼 北京文学:100031北京市前门西大街97号 青年文学:100708北京东四12条21号 青年文学家:161000齐齐哈尔市新明街党政办公中心大楼1819室 福建文学:350002福建省福州市西洪路凤凰池省文联大楼 广西文学:530023广西南宁市建政路28号 厦门文学:361005厦门市曾厝垵仓里社2号(市文联大厦) 华文文学:515063广东汕头大学 特区文学:518008深圳市红岭中路1038号五楼 北方文学:150008哈尔滨市南岗区理治街2号 边疆文学:650031云南省昆明市翠湖北路1号 哈冰 山西文学·黄河:030001太原市南华门东四条 湖南作家:410008长沙市上大垅东风二村省作协 湘北文学:414200湖南华容二桥西路58号信箱 雪莲:810001青海省西宁市黄河路90号 青海湖:810008青海省西宁市五四西路1号 西北军事文学:730000甘肃省兰州市南昌路890号 三峡文艺:404000重庆市万州区白岩路140号 作家文苑:712000陕西咸阳市邮政投递66号信箱 视野:730000兰州大学《视野杂志》编辑部 中国作家:100009北京市东城区北河沿大街甲83号 文学报:200041上海市威海路755号文汇报业大厦39号楼 朱金晨 拉萨河:850000西藏自治区拉萨市江苏东路 昆仑:100081北京白石桥路42号 绿洲:830002乌鲁木齐市光明路15号 书城:200001上海市汉口路300号2101--2103室 阳光:100013北京安外和平里9区1号 64204251 萌芽:200040上海市延安中路839号 芒种:110003沈阳市和平区十纬路29号 百花:710003西安市西七路169号 春风:130061长春市同志街5号 大家:650034云南省昆明市环城西路609号 韩旭 天涯:570203海南省海口市国兴大道69号海南广场1号6层 青春:210018南京市沙塘园7号3楼 吴野 母语:410003长沙市上大垅东风二村 西湖:310006杭州市延安路市府综合楼 星火·创作评谭:330046南昌市八一大道371号 天津文学:300020天津和平区新华路237号 长江文艺:430077湖北省武汉市东湖路417号 胡翔 女子文学:石家庄市平安南大街道办事24号 黄河文学:750004银川市民生街23号 广州文艺:510030广州市文德路170号 青年作家:610016成都市北新街44号 西藏文学:850001拉萨市北京西路170号文联院内 中国西部文学:830000乌鲁木齐市友好南路22号 中国校园文学:100026北京金台里17号 柳村 中国铁路文学:100054北京宣武区右安门西街8号

这位楼主,每个栏目投稿的要求都不同滴~~~~~~~~ 比如说花火工作室的: 1、作品须为传统媒体原创首发,网络媒体可连载过部份;拒绝抄袭和剽窃 2、需提供作品简介和大纲(300—1000字)、作者简介、全文计划字数、目前字数、预计完稿时间等信息; 3、标明所投栏目和字数。 4、请附联系方式,如:QQ、MSN、电话、地址、EMAIL; 5、全文前3—5万字,如适合出版会进一步联系作者要求看全文) 6、稿费标准:一经采用,与作者协商签订出版合同,稿酬从优。 7、来稿在半个月之内回复初审结果。 8.作品请发至以下官方邮箱: 或登陆官方网站 长篇投稿版块 悦读纪的: 1.作者资料 2.作品梗概 3.作品内容50%文字【据说现在大部分作者是投全稿= =!】 4.作品网络连载网址,以及读者评论。 5.投稿邮箱: 因为稿子太多了,所以审稿期一般是1个月至一个半月左右,当然像现在长假就要除外了。 还有摩羯文化的: 长篇小说征稿 要求: 字数:12万字以上~20万字以下,特别优秀稿件可放宽标准 题材:原则上不限。以校园、青春、励志、魔幻、侦探、灵异、搞笑等类型为主,需适宜12~18岁女性读者阅读, 投稿形式:作者详细联系方式+大纲+3万以上正文(请统一放在一个WORD文档中,不要分几个不同的文档,也不要用记事本或者直接用邮件黏贴过来。编编们的工作都很忙,希望大家能够支持。) 摩羯投稿方式: a.投稿至摩羯文化的投稿邮箱: b.投稿给摩羯文化的各位编编: 啊啦吧 121045301(邮箱:) 南瓜车 957234844(邮箱:) 姜一一 420022541(邮箱:) 玮·苇 526525372(邮箱:) 两位新来的编编,欢迎大家多和她们交流,希望大家可以支持和喜欢她们。 编编们有时会在QQ上,有时不在,在的话可以直接传送文件给编编们,也可以用邮箱的形式发送。请记住你投稿的是哪位编编。如果投稿到公司邮箱,请统一询问南瓜车编编。 编辑部的审稿工作会在每月一次。每月的15日是本月投稿的截止日期。也就是说:15日之前的投稿,会在这个月内审稿;超过15日的投稿,就会放到下个月审核了。(所以不要投稿之后马上就来询问结果哦,因为很可能会还没有来得及审核。) 投稿之后45天,如果没有给予回复,则稿件可以另投其他家。一边没有通过的稿件,不再另行通知。如果想要得到各位编编的一些建议和意见,可以通过QQ联系编编来具体交流。不过要在审稿过后哦! c. 邮寄方式: 湖南省长沙市天心区劳动西路209号智邦家园A座1605 邮编:410015 稿件授权声明: 凡向摩羯文化投稿获得出版的稿件,均视为稿件作者自愿同意下述“稿件授权声明”之全部内容: 1、稿件文责自负:作者保证拥有该作品的完全著作权(版权),该作品没有侵犯他人权益; 2、全权许可:摩羯文化拥有权利以任何形式(包括但不限于纸媒体、网络、光盘等介质转载、张贴、结集、出版)使用该作品,著作权法另有规定的除外。 3、不得一稿多投:所有给摩羯文化的文字类和图片类稿件作者均不得一稿多投,自投递出后一个月内没有收到明确答复可另行处理。 无论哪种投递方式,请务必注明“摩羯文化投稿”字样,并留下自己真实姓名、笔名、详细联系方式。

算了吧,校报没人看的。直接跑到3栋去问问。

教育核心期刊有很多,现在我来汇总一下教育方面可以发表的核心期刊有哪些。北大核心《教育与职业》 《科技通报》 《河北大学学报(哲学社会科学版)》 《商业经济研究》 《人民论坛》 《广西师范大学学报(哲学社会科版)》《财会通讯》 《学术探索》 《云南大学学报(社会科学版》Cssci双核心《外语学刊》 《出版广角》 《文艺争鸣》《人民论坛》 《法学论坛》 《理论探索》《学术月刊》 《经济纵横》 《心理发展与教育》《高等教育研究》 《教育发展研究》 《北京体育学院学报》《湖南大学学报》(社会科学版) 《浙江大学学报(人文社会科学版)》

湖南工程学院学报审稿

Sensorless torque control scheme ofinduction motor for hybrid electric vehicleYan LIU 1,2, Cheng SHAO1( Institute of Advanced Control Technology, Dalian University of Technology, Dalian Liaoning 116024, China; of Information Engineering of Dalian University, Dalian Liaoning 116622, China)Abstract: In this paper, the sensorless torque robust tracking problem of the induction motor for hybrid electric vehicle(HEV) applications is addressed. Because motor parameter variations in HEV applications are larger than in industrialdrive system, the conventional field-oriented control (FOC) provides poor performance. Therefore, a new robust PI-basedextension of the FOC controller and a speed-flux observer based on sliding mode and Lyapunov theory are developed inorder to improve the overall performance. Simulation results show that the proposed sensorless torque control scheme isrobust with respect to motor parameter variations and loading disturbances. In addition, the operating flux of the motor ischosen optimally to minimize the consumption of electric energy, which results in a significant reduction in energy lossesshown by : Hybrid electric vehicle; Induction motor; Torque tracking; Sliding mode1 IntroductionBeing confronted by the lack of energy and the increasinglyserious pollution, the automobile industry is seekingcleaner and more energy-efficient Hybrid ElectricVehicle (HEV) is one of the solutions. A HEV comprisesboth a Combustion Engine (CE) and an Electric Motor(EM). The coupling of these two components can be inparallel or in series. The most common type of HEV is theparallel type, in which both CE and EM contribute to thetraction force that moves the vehicle. Fig1 presents a diagramof the propulsion system of a parallel HEV [1].Fig. 1 Parallel HEV automobile propulsion order to have lower energy consumption and lower pollutantemissions, in a parallel HEV the CE is commonlyemployed at the state (n > 40 km/h or an emergency speedup), while the electric motor is operated at various operatingconditions and transient to supply the difference in torquebetween the torque command and the torque supplied bythe CE. Therefore fast and precise torque tracking of an EMover a wide range of speed is crucial for the overall performanceof a induction motor is well suited for the HEV applicationbecause of its robustness, low maintenance and lowprice. However, the development of a drive system basedon the induction motor is not straightforward because of thecomplexity of the control problem involved in the IM. Furthermore,motor parameter variations in HEV applicationsare larger than in industrial drive system during operation[2]. The conventional control technique ranging from theinexpensive constant voltage/frequency ratio strategy to thesophisticated sensorless control schemes are mostly ineffectivewhere accurate torque tracking is required due to theirdrawbacks, which are sensitive to change of the parametersof the general, a HEV operation can be continuing smoothlyfor the case of sensor failure, it is of significant to developsensorless control algorithms. In this paper, the developmentof a sensorless robust torque control system for HEVapplications is proposed. The field oriented control of the inductionmotor is commonly employed in HEV applicationsdue to its relative good dynamic response. However the classical(PI-based) field oriented control (CFOC) is sensitive toparameter variations and needs tuning of at least six controlparameters (a minimum of 3 PI controller gains). An improvedrobust PI-based controller is designed in this paper,Received 5 January 2005; revised 20 September work was supported in part by State Science and Technology Pursuing Project of China (No. 2001BA204B01).Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46 43which has less controller parameters to be tuned, and is robustto parameter variable parameters modelof the motor is considered and its parameters are continuouslyupdated while the motor is operating. Speed andflux observers are needed for the schemes. In this paper,the speed-flux observer is based on the sliding mode techniquedue to its superior robustness properties. The slidingmode observer structure allows for the simultaneous observationof rotor fluxes and rotor speed. Minimization of theconsumed energy is also considered by optimizing operatingflux of the The control problem in a HEV caseThe performance of electric drive system is one of thekey problems in a HEV application. Although the requirementsof various HEV drive system are different, all thesedrive systems are kinds of torque control systems. For anideal HEV, the torque requested by the supervisor controllermust be accurate and efficient. Another requirement is tomake the rotor flux track a certain reference λref . The referenceis commonly set to a value that generates maximumtorque and avoids magnetic saturation, and is weakened tolimit stator currents and voltages as rotor speed HEV applications, however, the flux reference is selectedto minimize the consumption of electrical energy as it is oneof the primary objectives in HEV applications. The controlproblem can therefore be stated as the following torque andflux tracking problems:minids,iqs,we Te(t) − Teref (t), (1)minids,iqs,we λdr(t) − λref (t), (2)minids,iqs,we λqr(t), (3)where λref is selected to minimize the consumption of electricalenergy. Teref is the torque command issued by thesupervisory controller while Te is the actual motor (3) reflects the constraint of field orientation commonlyencountered in the literature. In addition, for a HEVapplication the operating conditions will vary changes of parameters of the IM model need to be accountedfor in control due to they will considerably changeas the motor changes operating A variable parameters model of inductionmotor for HEV applicationsTo reduce the elements of storage (inductances), the inductionmotor model used in this research in stationary referenceframe is the Γ-model. Fig. 2 shows its q-axis (d-axisare similar). As noted in [3], the model is identical (withoutany loss of information) to the more common T-model inwhich the leakage inductance is separated in stator and rotorleakage [3]. With respect to the classical model, the newparameters are:Lm = L2mLr= γLm, Ll = Lls + γLlr,Rr = γ. 2 Induction motor model in stationary reference frame (q-axis).The following basic w−λr−is equations in synchronouslyrotating reference frame (d - q) can be derived from theabove model.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩dλdrdt= −ηλdr + (we − wr)λqr + ηLmids,dλqrdt= −(we − wr)λdr − ηλqr + ηLmiqs,didsdt= ηβλdr+βwrλqr−γids+weiqs+1σLsVds,diqsdt=−βwrλdr+ηβλqr−weids−γiqs+1σLsVqs,dwrdt= μ(λdriqs − λqrids) −TLJ,dθdt= wr + ηLmiqsλdr= we,Te = μ(λdriqs − λqrids)(4)with constants defined as follows:μ = npJ, η = RrLm, σ = 1−LmLs, β =1Ll,γ = Rs + RrLl, Ls = Ll + Lm,where np is the number of poles pairs, J is the inertia of therotor. The motor parameters Lm, Ll, Rs, Rr were estimatedoffline [4]. Equation (5) shows the mappings between theparameters of the motor and the operating conditions (ids,iqs).Lm = a1i2ds + a2ids + a3, Ll = b1Is + b2,Rr = c1iqs + c2.(5)4 Sensorless torque control system designA simplified block diagram of the control diagram isshown in Fig. Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46Fig. 3 Control PI controller based FOC designThe PI controller is based on the Field Oriented Controller(FOC) scheme. When Te = Teref, λdr = λref , andλqr = 0 in synchronously rotating reference frame (d − q),the following FOC equations can be derived from the equations(4).⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ids = λrefLm+ λrefRr,iqs = Terefnpλref,we = wr + ηLmiqsλref.(6)From the Equation (6), the FOC controller has lower performancein the presence of parameter uncertainties, especiallyin a HEV application due to its inherent open loopdesign. Since the rotor flux dynamics in synchronous referenceframe (λq = 0) are linear and only dependent on thed-current input, the controller can be improved by addingtwo PI regulators on error signals λref − λdr and λqr − 0 asfollowids = λrefLm+ λrefRr+ KPd(λref − λdr)+KId (λref − λdr)dt, (7)iqs = Terefnpλref, (8)we = wr + ηLmiqsλref+ KPqλqr + KIq λqrdt. (9)The Equation (7) and (9) show that current (ids) can controlthe rotor flux magnitude and the speed of the d − q rotatingreference frame (we) can control its orientation correctlywith less sensitivity to motor parameter variations becauseof the two PI Stator voltage decoupling designBased on scalar decoupling theory [5], the stator voltagescommands are given in the form:⎧⎪⎪⎪⎨⎪⎪⎪⎩Uds = Rsids − weσLsiqs = Rsids − weLliqs,Uqs = Rsiqs + weσLsids + LmLrweλref= Rsiqs + weσLsids + weλref .(10)Because of fast and good flux tracking, poor dynamics decouplingperformance exerts less effect on the control Speed-flux observer designBased on the theory of negative feedback, the design ofspeed-flux observer must be robust to motor parameter speed-flux observer here is based on the slidingmode technique described in [6∼8]. The observer equationsare based on the induction motor current and flux equationsin stationary reference frame.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩d˜idsdt= ηβ˜λdr + β ˜ wr˜λqr − γ˜ids +1LlVds,d˜iqsdt= −β ˜ wr˜λdr + ηβ˜λqr − γ˜iqs +1LlVqs,d˜λdrdt= −η˜λdr − ˜ wr˜λqr + ηLm˜ids,d˜λqrdt= ˜wr˜λ dr − η˜λqr + ηLm˜iqs.(11)Define a sliding surface as:s = (˜iqs − iqs)˜λdr − (˜ids − ids)˜λqr. (12)Let a Lyapunov function beV = . (13)After some algebraic derivation, it can be found that when˜ wr = w0sgn(s) with w0 chosen large enough at all time,then ˙V = ˙s · s 0. This shows that s will converge tozero in a finite time, implying the stator current estimatesand rotor flux estimates will converge to their real valuesin a finite time [8]. To find the equivalent value of estimatewr (the smoothed estimate of speed, since estimate wr is aswitching function), the equation must be solved [8]. Thisyields:˜ weq = wr˜λqrλqr + λdr˜λdr˜λ2qr +˜λ2dr −ηnp˜λqrλdr − λqr˜λdr˜λ2qr +˜λ2dr. (14)The equation implies that if the flux estimates converge totheir real values, the equivalent speed will be equal to thereal speed. But the Equation (14) for equivalent speed cannotbe used as given in the observer since it contains unknownterms. A low pass filter is used instead,˜ weq =11 + s · τ˜ wr. (15)Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46 45The same low pass filter is also introduced to the systeminput,which guarantees that the input matches the feedbackin selection of the speed gain w0 has two major constraints:1) The gain has to be large enough to insure that slidingmode can be ) A very large gain can yield to instability of the simulations, an adaptive gain of the slidingmode observer to the equivalent speed is = k1 ˜ weq + k2. (16)From Equation (11), the sliding mode observer structureallows for the simultaneous observation of rotor Flux reference optimal designThe flux reference can either be left constant or modifiedto accomplish certain requirements (minimum current,maximum efficiency, field weakening) [9,10]. In this paper,the flux reference is chosen to maximum efficiency at steadystate and is weaken for speeds above rated. The optimal efficiencyflux can be calculated as a function of the torquereference [9].λdr−opt = |Teref| · 4Rs · L2r/L2m + Rr. (17)Equation (17) states that if the torque request Teref iszero, Equation (8) presents a singularity. Moreover, theanalysis of Equation (17) does not consider the flux fact, for speeds above rated, it is necessary toweaken the flux so that the supply voltage limits are not improved optimum flux reference is then calculatedas:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩λref = λdr-opt,if λmin λdr-opt λdr-rated ·wratedwr-actual,λref = λmin, if λdr-opt λmin,λref = λdr-rated ·wratedwr-actual,if λdr-opt λdr-rated ·wratedwr-actual.(18)where λmin is a minimum value to avoid the division SimulationsThe rated parameters of the motor used in the simulationsare given byRs = Ω, Rr = Ω, Lls = 75 H,Llr = 105 H, Lm = mH, Ls = Lls + Lm,Lr = Llr + Lm, P = 4, Jmot = kgm2,J = Jmot +MR2tire/Rf, ρair = , Cd = = m2, Rf = , Cr = = m, M = 3000 kg, wbase = 5400 rpm,λdr−rated = shows the torque reference curve that representstypical operating behaviors in a hybrid electric . 4 The torque reference torque is modeled by considering the aerodynamic,rolling resistance and road grade forces. Its expression isgiven byTL = RtireRf(12ρairCdAfv2 +MCr cos αg +M sin αg).Figures in [5∼8] show the simulation results of thesystem of (considering variable motor parameters).Though a small estimation error can be noticed on the observedfluxes and speed, the torque tracking is still achievedat an acceptable level as shown in Figs. [5, 6, 8]. The torquecontrol over a wide range of speed presents less sensitivityto motor parameters presents the d and q components of the rotor flux λr is precisely orientated to d-axis because of theimproved PI shows clearly the real and observed speed in thedifferent phases of acceleration, constant and decelerationspeed with the motor control torque of . The variablemodel parameters exert less influence on speed shows the power loss when the rotor flux keeps constantor optimal state. A significant improvement in powerlosses is noticed due to reducing the flux reference duringthe periods of low torque . 5 Motor rotor flux λ Y. LIU et al. / Journal of Control Theory and Applications 2007 5 (1) 42–46Fig. 6 Motor . 7 Power . 8 Motor ConclusionsThis paper has described a sensorless torque control systemfor a high-performance induction motor drive for aHEV case. The system allows for fast and good torquetracking over a wide range of speed even in the presence ofmotor parameters uncertainty. In this paper, the improvedPI-based FOC controllers show a good performance in therotor flux λdr magnitude and its orientation tracking. Thespeed-flux observer described here is based on the slidingmode technique, making it independent of the motor adaptation of the speed -flux observer is used tostabilize the observer when integration errors are present.

Robotics education in the university* Rafael M. Inigo and Jose M. Angulo School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia 22901, USADept. de Informatica, Universidad de Deusto, Bilbao, Spain Available online 28 October 2004. The importance of automation and robotics in modern factories has required the introduction of courses on these subjects at the graduate and undergraduate levels in engineering schools. A comprehensive course on robotics must include the following subjects of fundamental importance: kinematics, dynamics, computer hardware and software, automatic control and machine vision. This paper describes the authors' experience in teaching a graduate robotics course at the University of Virginia and a short summer course at the Universidad de Deusto in Spain. Hands-on experience is a must in courses on robotics, and some simple yet effective systems designed and constructed by students are described. These include a program for transformation matrix manipulation, an operating system for manipulator control, and a simple three degrees of freedom programmable manipulator. The majority of the students who took both courses were electrical engineers, but mechanical engineers and computer scientists were also enrolled. Author Keywords: Robotics Education; Robotics Laboratory; Hardware; Software Development For Robotics Education *Parts of this paper were presented at the Second annual workshop on interactive computing, CAD/CAM: Electrical Engineering Education Washington,

我也,用彭坤,胡健,张姣,彭利等名字,冒充湖南工程学院学报,湖南科技学院学报,湖南城市学院学报等到处钱

性 别: 男出生年月: 1965年8月民 族: 汉职称职务: 教授最后学历学位: 博士研究方向学科专业领域: 机械设计制造主要研究方向: 磨削技术及其数控装备;汽车设计制造,摩擦学。主要工作经历1980年至1984年, 在湖南大学机械与汽车工程学院学习;1985年至1988年,在东南大学研究生院学习;1989年至1992年,在西安交通大学研究生院获博士学位;1993年至1994年,在清华大学研究生院做博士后;2007年1月至2008年3月, 在英国Nottingham 大学工作;2002年9月至2004年9月 在英国 London大学作高级访问学者。主要社会兼职有: 湖南大学学术骨干,湖南省后备学术带头人,中国机械工程学会高级会员,国家科技部863项目评委, 国家自然科学基金评审专家, 科技部中国科技信息所中国科技期刊评审专家,国家教育部科技项目、科技奖励评审专家,湖南省科技奖励评审专家,湖南省自然科学基金评审专家,国家高效磨削工程技术研究中心研究员,硕士研究生导师,国家985高技术研究(汽车先进设计与制造创新团队)学术骨干。中国科技论文在线评审专家,全国中文科技核心期刊《精密制造与自动化》杂志编委。国际著名科技期刊[特约审稿人,全国一级科技期刊《振动工程学报》、《湖南大学学报》审稿人。湖南省一级科技期刊《湖南文理学院学报》特约审稿人。英国国际制造科学研究会理事,英国Sheffield大学兼职教授等。

  • 索引序列
  • 湖南工程学院学报投稿经验
  • 湖南工程学院学报投稿
  • 湖南工学院学报投稿
  • 湖南工学院投稿
  • 湖南工程学院学报审稿
  • 返回顶部