首页 > 期刊论文知识库 > 简单传感器论文的参考文献

简单传感器论文的参考文献

发布时间:

简单传感器论文的参考文献

传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。这是我为大家整理的传感器技术论文 范文 ,仅供参考!传感器技术论文范文篇一 传感器及其概述 摘 要 传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。目前,传感器转换后的信号大多是电信号,因而从狭义上讲,传感器是把外界输入的非电信号转换为电信号的装置。 【关键词】传感器 种类 新型 1 前言 传感器是测试系统的一部分,其作用类似于人类的感觉器官,也可以认为是人类感官的延伸。人们借助传感器可以去探测那些人们无法用或不便用感官直接感知的事物,如用热电偶可以测量炽热物体的温度;用超声波换能器可以测海水深度;用红外遥感器可从高空探测地面形貌、河流状态及植被的分布等。因此,可以说传感器是人们认识自然界事物的有力工具,是测量仪器与被测量物体之间的接口。通常情况下,传感器处于测试装置的输入端,是测试系统的第一个环节,其性能直接影响着整个测试系统,对测试精度有很大影响。 2 传感器的分类 按被测物理量的不同,可以分为位移、力、温度、流量传感器等;按工作的基础不同,可以分为机械式传感器、电气式传感器、光学式传感器、流体式传感器等;按信号变换特征可以分为物性型传感器和结构型传感器;根据敏感元件与被测对象直接的能量关系,可以分为能量转换型传感器与能量控制型传感器。 3 常见传感器介绍 电阻应变式传感器 电阻应变式传感器又叫电阻应变计,其敏感元件是电阻应变。应变片是在用苯酚,环氧树脂等绝缘材料浸泡过的玻璃基板上,粘贴直径为左右的金属丝或金属箔制成。敏感元件也叫敏感栅。其具有体积小、动态响应快、测量精度高、使用简单等优点。在航空、机械、建筑等各行业获得了广泛应用。电阻应变片的工作原理是基于金属的应变效应,即金属导体在外力作用下产生机械形变,其电阻值随机械变形的变化而变化。其可以分为:金属电阻应变片和半导体应变片式两类。金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。它们的主要区别在于:金属电阻应变片式是利用导体形变引起电阻变化,而半导体应变片式则是利用电阻率变化引起电阻的变化。 电容式传感器 电容式传感器是将被测物理量转换成电容量变化的装置,它实质是一个具有可变参数的电容器。由于电容与极距成反比,与正对面积和介质成正比,因此其可以分为极距变化型、面积变化型和介质变化型三类。极距变化型电容传感器的优点是可进行动态非接触式测量,对被测系统的影响小,灵敏度高,适用于较小位移的测量,但这种传感器有非线性特性,因此使用范围受到一定限制。面积变化型传感器的优点是输出与输入成线性关系,但与极距型传感器相比,灵敏度较低,适用于较大的直线或角位移的测量。介质变化型则多用于测量液体的高度等场合。 电感式传感器 电感式传感器是将被测物理量,如力、位移等,转换为电感量变换的一种装置,其变换是基于电磁感应原理。电感式传感器种类很多,常见的有自感式,互感式和涡流式三种。 电感式传感器具有以下特点:结构简单,传感器无活动电触点,因此工作可靠寿命长。灵敏度和分辨力高,能测出微米的位移变化。传感器的输出信号强,电压灵敏度一般每毫米的位移可达数百毫伏的输出。线性度和重复性都比较好,在一定位移范围(几十微米至数毫米)内,传感器非线性误差可达~。同时,这种传感器能实现信息的远距离传输、记录、显示和控制,它在工业自动控制系统中广泛被采用。但不足的是,它有频率响应较低,不宜快速动态测控等缺点。 磁电式传感器 磁电式传感器是把被测物理量转换为感应电动势的一种传感器,又称电磁感应式或电动力式传感器。其工作原理是一个匝数为N的线圈,当穿过它的磁通量变化时,线圈产生了感应电动势。磁通量的变化可通过多种方式来实现,如磁铁与线圈做切割磁力线运动、磁路的磁阻变化、恒定磁场中线圈面积的变化,因此可制造出不同类型的传感器用于测量速度、扭矩等。 压电式传感器 压电式传感器是一种可逆传感器,是利用某些物质的压电效应进行工作的器件。最简单的压电式传感器是在压电晶片的两个工作面上进行金属蒸镀,形成金属膜,构成两个电极。当晶片受压力时,两个极板上聚集数量相等而极性相反的电荷,形成电场。因此压电传感器可以看成是电荷发生器,又可以看作电容器。 4 新型传感器 生物传感器 生物传感器是用生物活性材料(酶、蛋白质、DNA、抗体、抗原、生物膜等)与物理化学换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测 方法 与监控方法,也是物质分子水平的快速、微量分析方法。各种生物传感器有以下共同的结构:包括一种或数种相关生物活性材料(生物膜)及能把生物活性表达的信号转换为电信号的物理或化学换能器(传感器),二者组合在一起,用现代微电子和自动化仪表技术进行生物信号的再加工,构成各种可以使用的生物传感器分析装置、仪器和系统。生物传感器的原理:待测物质经扩散作用进入生物活性材料,经分子识别,发生生物学反应,产生的信息继而被相应的物理或化学换能器转变成可定量和可处理的电信号,再经二次仪表放大并输出,便可知道待测物浓度。 激光传感器 激光传感器:利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。激光传感器原理:激光传感器工作时,先由激光发射二极管对准目标发射激光脉冲。经目标反射后激光向各方向散射。部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号,并将其转化为相应的电信号。 5 结束语 随着科技的飞速发展,人们不断提高着自身认知世界的能力。传感器在获取自然和生产领域中发挥着巨大上的作用。目前,传感器技术在发展经济、推动社会进步方面起到重要的推动作用。相信未来,传感器技术将会出现一个飞跃。 作者简介 杨天娟(1991-),女,河北省邯郸市人。现为郑州大学本科生,主要研究方向为机械工程及自动化。 作者单位 郑州大学机械工程学院 河南省郑州市 450001 传感器技术论文范文篇二 温度传感器 摘 要:温度传感器是最早开发、也是应用最广泛的一种传感器。据调查,早在1990年,温度传感器的市场份额就大大超出了 其它 传感器。从17世纪初,伽利略发明温度计开始,人们便开始了温度测量。而真正把温度转换成电信号的传感器,是1821年德国物理学家赛贝发明的,也就是我们现在使用的热电偶传感器。随后,铂电阻温度传感器、半导体热电偶温度传感器、PN结温度传感器、集成温度传感器相继而生。也使得温度传感器更加广泛的应用到我们的生产和生活中。本文主要介绍了温度传感器的分类、工作原理及应用。 关键词:温度传感器;温度;摄氏度 中图分类号:TP212 文献标识码:A 文章 编号:1674-7712 (2014) 02-0000-01 温度传感器(temperature transducer),利用物质各种物理性质随温度变化的规律把温度转换为可用输出信号。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类。现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。 一、温度的相关知识 温度是用来表征物体冷热程度的物理量。温度的高低要用数字来量化,温标就是温度的数值表示方法。常用温标有摄氏温标和热力学温标。 摄氏温标是把标准大气压下,沸水的温度定为100摄氏度,冰水混合物的温度定为0摄氏度,在100摄氏度和0摄氏度之间进行100等份,每一等份为1摄氏度。热力学温标是威廉汤姆提出的,以热力学第二定律为基础,建立温度仅与热量有关而与物质无关的热力学温标。由于是开尔文 总结 出来的,所以又称为开尔文温标。 二、温度传感器的分类 根据测量方式不同,温度传感器分为接触式和非接触式两大类。接触式温度传感器是指传感器直接与被测物体接触,从而进行温度测量。这也是温度测量的基本形式。其中接触式温度传感器又分为热电偶温度传感器、热电阻温度传感器、半导体热敏电阻温度传感器等。 非接触式温度传感器是测量物体热辐射发出的红外线,从而测量物体的温度,可以进行遥测。 三、温度传感器的工作原理 (一)热电偶温度传感器。热电偶温度传感器结构简单,仅由两根不同材料的导体或半导体焊接而成,是应用最广泛的温度传感器。 热电偶温度传感器是根据热电效应原理制成的:把两种不同的金属A、B组成闭合回路,两接点温度分别为t1和t2,则在回路中产生一个电动势。 热电偶也是由两种不同材料的导体或半导体A、B焊接而成,焊接的一端称为工作端或热端。与导线连接的一端称为自由端或冷端,导体A、B称为热电极,总称热电偶。测量时,工作端与被测物相接触,测量仪表为电位差计,用来测出热电偶的热电动势,连接导线为补偿导线及铜导线。 从测量仪表上,我们观测到的便是热电动势,而要想知道物体的温度,还需要查看热电偶的分度表。 为了保证温度测量结果足够精确,在热电极材料的选择方面也有严格的要求:物理、化学稳定性要高;电阻温度系数小;导电率高;热电动势要大;热电动势与温度要有线性或简单的函数关系;复现性好;便于加工等。根据我们常用的热电极材料,热电偶温度传感器可分为标准化热电偶和非标准化热电偶。铂铑-铂热电偶是常用的标准化热电偶,熔点高,可用于测量高温,误差小,但价格昂贵,一般适用于较为精密的温度测量。铁-康铜为常用的非标准化热电偶,测温上限为600摄氏度,易生锈,但温度与热电动势线性关系好,灵敏度高。 (二)电阻式温度传感器。热电偶温度传感器虽然结构简单,测量准确,但仅适用于测量500摄氏度以上的高温。而要测量-200摄氏度到500摄氏度的中低温物体,就要用到电阻式温度传感器。 电阻式温度传感器是利用导体或者半导体的电阻值随温度变化而变化的特性来测量温度的。大多数金属在温度升高1摄氏度时,电阻值要增加到。电阻式温度传感器就是要将温度的变化转化为电阻值的变化,再通过测量电桥转换成电压信号送至显示仪表。 (三)半导体热敏电阻。半导体热敏电阻的特点是灵敏度高,体积小,反应快,它是利用半导体的电阻值随温度显著变化的特性制成的。可分为三种类型:(1)NTC热敏电阻,主要是Mn,Co,Ni,Fe等金属的氧化物烧结而成,具有负温度系数。(2)CTR热敏电阻,用V,Ge,W,P等元素的氧化物在弱还原气氛中形成烧结体,它也是具有负温度系数的。(3)PTC热敏电阻,以钛酸钡掺和稀土元素烧结而成的半导体陶瓷元件,具有正温度系数。也正是因为PTC热敏电阻具有正温度系数,也制作成温度控制开关。 (四)非接触式温度传感器。非接触式温度传感器的测温元件与被测物体互不接触。目前最常用的是辐射热交换原理。这种测温方法的主要特点是:可测量运动状态的小目标及热容量小或变化迅速的对象,也可用来测量温度场的温度分布,但受环境温度影响比较大。 四、温度传感器的应用举例 (一)温度传感器在汽车上的应用。温度传感器的作用是测量发动机的进气,冷却水,燃油等的温度,并把测量结果转换为电信号输送给ECU.对于所有的汽油机电控系统,进气温度和冷却水温度是ECU进行控制所必须的两个温度参数,而其他的温度参数则随电控系统的类型及控制需要而不尽相同。进气温度传感器通常安装在空气流量计或从空气滤清器到节气门体之间的进气道或空气流量计中,水温传感器则布置在发动机冷却水路,汽缸盖或机体上上的适当位置.可以用来测量温度的传感器有绕线电阻式,扩散电阻式,半导体晶体管式,金属芯式,热电偶式和半导体热敏电阻式等多种类型,目前用在进气温度和冷却水温度测量中应用最广泛的是热敏电阻式温度传感器。 (二)利用温度传感器调节卫生间的温度。温度传感器还能调节卫生间内的温度,尤其是在洗澡的时候,能自动调节卫生间内的温度是很有必要的。通过温湿度传感器和气体传感器就能很好的控制卫生间内的环境从而使我们能够拥有一个舒适的生活。现在大部分旅馆和一些公共场所都实现了自动调节,而普通家庭的卫生间都还是人工操作,尚未实现自动调节这主要是一般客户不知道能够利用传感器实现自动化,随着未来人们的进一步了解,普通家庭的卫生间也能实现自动调节。 参考文献: [1]周琦.集成温度传感器的设计[D].西安电子科技大学,2007.

传感器在环境检测中可分为气体传感器和液体传感器,这是我为大家整理的传感器检测技术论文,仅供参考!

试述传感器技术在环境检测中的应用

摘要:传感器在环境检测中可分为气体传感器和液体传感器,其中气体传感器主要检测氮氧化合物和含硫氧化物;液体传感器主要检测重金属离子、多环芳香烃类、农药、生物来源类。本文阐述了传感器技术在环境检测方面的应用。

关键词:气体传感器 液体传感器 环境检测

中图分类号:O659 文献标识码:A 文章编号:

随着人们对环境质量越加重视,在实际的环境检测中,人们通常需要既能方便携带,又可以够实现多种待测物持续动态监测的仪器和分析设备。而新型的传感器技术就能够很好的满足上述需求。

传感器技术主要包括两个部分:能与待测物反应的部分和信号转换器部分。信号转换器的作用是将与待测物反应后的变化通过电学或光学信号表示出来。根据检测方法的不同,我们将传感器分为光学传感器和电化学传感器;根据反应原理的不同,分为免疫传感器、酶生物传感器、化学传感器;根据检测对象不同,分为液体传感器和气体传感器。

1气体传感器

气体传感器可以对室内的空气质量进行检测,尤其是有污染的房屋或楼道;也可以对大气环境中的污染物进行检测,如含硫氧化物、氮氧化合物等,检测过程快速方便地。

以含氮氧化物(NOx)为例。汽车排放的尾气是含氮氧化物的主要来源,但随着时代的发展,国内消费水平的提高,汽车尾气的排放量呈逐年上升趋势。通过金属氧化物半导体对汽车尾气及工厂废气中的含氮氧化物进行直接检测。如Dutta设计的传感器,采用铂为电极,氧化钇和氧化锆为氧离子转换器,安装到气体排放口,可以检测到含量为10-4~10-3的NO。含硫氧化物是造成酸雨的主要物质,也是目前环境检测的重点项目,因为在大气环境中的含量低于10-6,需要更高灵敏度的传感器。如高检测的灵敏度的表面声波设备。

Starke等人采用直径为8~16nm的氧化锡、氧化铟、氧化钨纳米颗粒制作的纳米颗粒传感器,对NO和NO2的检测下限可达到10-8,提高反应的比表面积,增加反应灵敏度,且工作温度比常规的传感器大大降低,减少了能源消耗。

2液体传感器

在实际环境检测中,液体传感器大多应用于水的检测。由于水环境中的污染物种类广泛,因此液体传感器比气体传感器的应用更为广泛和重要。水中的污染物除了少量的天然污染物以外,大部分都是人为倾倒的无机物和有机物。无机物中,重金属离子为重点检测对象;有机污染物包括杀虫剂、激素类代谢物、多环芳香烃类物质等。这些污染物的过度超标,会严重影响到所有生物体的健康和安全。

重金属离子检测

采水体中重金属离子的主要来源包括开矿、冶金、印染等企业排放的废水。这些生产废水往往混合了多种废水,所含的重金属离子种类繁多,常见的有汞、锰、铅、镉、铬等。重金属离子会不断发生形态的改变和在不同相之间进行转移,若处置不当,容易形成二次污染。生物体从环境中摄取到的重金属离子,经过食物链,逐渐在高级生物体内富集,最终导致生物体的中毒。因此如果供人类食用的鱼类金属离子超标,将对人类产生严重的影响,因此对于重金属离子的检测显得尤为重要。

Burge等人发明的传感器,可以利用1,2,2联苯卡巴肼和分光光度计,可以检测地下水中的重金属铬浓度是否超标。

除了通过化学反应检测外,采用特殊的生物物质,也可以方便和灵敏地检测重金属离子。如大肠杆菌体内有一种蛋白质可以结合镍离子,有人在这种蛋白质的镍离子结合位点附近插入荧光基团,当蛋白质结合镍离子后,荧光基团会被淬灭,由于荧光的强度与镍离子浓度成反比,从而实现对镍离子的定量检测,检测范围未10-8~10-2mol/L。日方法也可应用于检测Cu2+、Co2+、Fe2+和Cd2+等几种离子中。他们还结合了微流体技术,该技术只需消耗几十纳升体积的待测液体,就可以对100nmol/L以下浓度的Pb2+进行检测。Matsunaga小组将TPPS固定在多孔硅基质中,当环境中存在Hg2+时,随着Hg2+浓度的变化,TPPS的颜色会从橘黄色逐渐转变成绿色,该传感器的检测限为,通过加入硅铝酸去除干扰离子Ni2+和Zn2+。

利用传感器技术不仅可以准确测定待测物的浓度,而且由于传感器的微型化技术特点,还可以通过传感器的偶联,进行多项指标的检测。Lau等人设计了基于发光二极管原理的传感器,可以同时检测Cd2+和Pb2+,该传感器对Cd2+和Pb2+的检测限分别为10-6和10-8。

农药残留物质的检测

农药是一类特殊的化学品,它在防治农林病虫害的同时,也会对人畜造成严重的危害。中国是农业大国,每年的农药使用量相当庞大,因此有必要对其进行监测。采用钴-苯二甲蓝染料和电流计就能方便地检测三嗪类除草剂,无需脱氧,直接检测的下限为50Lg/L,如果通过预处理进行样品浓缩后,检测限可以达到200ng/L。

采用带有光纤的红外光谱传感器可以进行杀虫剂的快速检测。将光纤内壁涂覆经非极性有机物修饰的气溶胶材料后,能显著改善光纤中水分子对信号的耗散作用,并且能够提取出溶液中的有机磷类杀虫剂进行光谱分析。此类传感器对于有机溶剂,如苯、甲苯、二甲苯的检测限则可达10-8~8*10-8。

多环芳香烃类化合物的检测

多环芳香烃类物质是另外一大类有害的污染物质,这类物质具有致癌性,但在许多工业生产过程中均会使用或产生此类物质。水体中的多环芳香烃类物质含量非常低,一般在10-9范围内,因此需要借助高灵敏度的检测传感器,Schechter小组发明了光纤光学荧光传感器。在直接检测过程中,待测样本中还可能存在一些如泥土这样的干扰物质,会降低检测信号值,如果用聚合物膜先将非极性的PAH富集,然后对膜上的物质进行荧光检测,从而解决信号干扰问题,报道称这种经膜富集后的传感器技术,对pyrene的检测可达到6*10-11,蒽类物质则可达4*10-10。Stanley等人利用石英晶振微天平作为传感器,在芯片表面固定上蒽-碳酸的单分子膜,检测限可达到2*10-9。

基于免疫分析原理,采用分子印迹的方法,在传感器表面印上能够结合不同待测物质的抗体分子,可以实现多种不同物质的检测。近年来发展起来的微接触印刷技术,也可应用到该领域,这样制备得到的传感器体积可以更加微型化。

生物类污染物质

除了以上的无机和有机合成类污染物质,还有生物来源的一些潜在污染分子。如激素类分子及其代谢物的污染常常会引起生物体生长、发育和繁殖的异常。Gauglitz带领的研究小组采用全内反射荧光生物传感器和睾丸激素抗体,对河流中的睾丸激素直接进行了即时检测,其检测限为。该技术无需样品的预处理,对于不同地区的自然界水体均可以进行睾丸激素的现场直接检测,检测范围为9~90ng/L。

另外,致病菌和病毒也是被检测的对象,水体中出现某些特定菌种,可以表明水体受到了某种污染,利用传感器技术非常容易检测到这些生物样本的存在,而且选择性非常高,如可以从烟草叶中快速地发现植物病毒烟草花叶病毒,采用QCM可以直接检测到酵母细胞的数量。

3结论和展望

目前,传感器技术已开始应用于各环境监测机构的应急检测,但是实际应用中有诸多的局限性,比如在对大气中的某些有害物质进行检测时,由于其含量往往低于传感器的最低检测限,因此在实际应用过程中,还需要进行气体的浓缩处理,这样就使传感器不容易实现微型化,或者需要借助更高灵敏度的传感器;同样,在野外水体检测时,常常会出现待测水体含有多种复杂干扰成分的情况,无法与实验室的标准化条件相比;在有些以膜分离分析技术为原理的传感器中,其膜的使用寿命往往较短,而频繁更换新膜的价格较为昂贵,因此仍然无法得到广泛的应用。

尽管如此,随着传感器技术的不断发展和完善,仍然有望应用于将来工厂企业排气、排污的现场直接检测和野外环境的动态无人监测,而且其结果能与实验室常规仪器的检测结果相符,这样将大大加快对环境监测和治理的步伐。

参考文献

[1]NaglS,,2007,132:507-511.

[2],2005,59:209-217.

[3]HanrahanG,,2004,6:657-664.

[4]HoneychurchKC,,2003,22:456-469.

[5]AmineA,,2006,21:1405-1423

传感器与自动检测技术教学改革探讨

摘要:传感器与自动检测技术是电气信息类专业重要的主干专业课,传统授课方法侧重于理论知识的传授,而忽略了应用层面的培养。针对此问题试图从教学目的、教学内容、教学形式、教学效果等多个方面进行分析,对该课程的教学方案改革进行探讨,提出一套技能与理论知识相结合、行之有效的教学方案。

关键词:传感器与自动检测技术;教学内容;教学模式;工程思维

“传感器与自动检测技术”是电气信息类专业重要的主干专业课,是一门必修课,也是一门涉及电工电子技术、传感器技术、光电检测技术、控制技术、计算机技术、数据处理技术、精密机械设计技术等众多基础理论和技术的综合性技术,现代检测系统通常集光、机、电于一体,软硬件相结合。

“传感器与自动检测技术”课程于20世纪80年代开始在我国普通高校的本科阶段和研究生阶段开设。本课程侧重于传感器与自动检测技术理论的传授,重知识,轻技能;教师之间也缺乏沟通,教学资源不能得到充分利用,教学效果不理想,学生学习兴趣不高。

一、教学过程中发现的问题及改革必要性分析

笔者在独立学院讲授“传感器与自动检测技术”课程已有四年,最开始沿用了研究型大学的教学计划和教学大纲,由于研究型大学是以培养研究型人才为主,而独立学院是以培养应用型人才为主,在人才培养目标上有较大差异,在逐渐深入的过程中发现传统方案不太符合学院培养应用型人才的定位,存在以下几方面的问题。

1.重理论,轻实践

该课程是应用型课程,其中也有大量的理论知识、数学推导,而传统的研究型教学方法普遍都以理论教学为主,在课堂上大篇幅讲解传感器的原理,进行数学公式推导,相比而言传感器的应用通常只是通过一个实例简单介绍,导致最后大多数学生只是粗略地知道该传感器的结构,而不知道如何用,在哪里用。

2.教学模式单一

该课程传统上以讲授的教学方式为主,将现成的结论、公式和定理告诉学生,学生不能主动地思考和探索,过程枯燥乏味,导致学生产生了厌学情绪。同时理论教学与实训、实践教学脱节问题也很严重。

3.教学实验安排不合理

传统的实验课程安排,验证性实验比例高达80%,综合设计性实验极少,缺少实训、实践环节。然而应用型人才的培养应该以实践教学为核心,重点培养学生的工程思维和实践能力、动手能力,以在学生毕业时达到企业对技术水平与能力的要求,使学生毕业后能尽快适应工作岗位。

二、适合独立学院培养应用型人才的教学方案改革

传统的传感器与自动检测技术课程重理论、轻实践,教学模式单一,教学实验以验证性实验为主,这种方案能够培养研究型人才,但却无法培养合格的应用型人才。在教学过程中,笔者潜心研习,并反复实践,总结出以下几个可以改革的方面。

1.优化教学内容,注重工程思维

本课程一个很重要的内容是各种类型传感器的原理,传统的教学要讲清楚其中的来龙去脉,而本人则认为针对应用型人才培养,充分讲授清楚基本概念、基本原理和基本方法即可,涉及大额数学公式可以选择重要的进行讲解,其他则可作为学生的自学内容,让学生课余自学。同时应该重点讲解该传感器的工程应用实例;另一方面要结合最新实际工程讲解。这样才能激发学生的学习兴趣,培养学生应用型工程学习思维。

2.改革教学方法,改变教学模式

传统的教学是“灌输式”的方法,无论学生是否接受,直接把要讲的内容全部讲述给学生,而这也违背了培养学生分析问题和解决问题的能力以及创新能力的出发点和归宿。笔者认为应该应用工程案例教学,实行启发式、讨论式、研究式等与实践相结合的教学方法,发挥学生在教学活动中的主体地位。

3.与工程实际相结合,与其他课程相结合

教学过程中要从不同行业提取典型的工程应用实例,精简以后作为实例进行讲解。在进行教学时,要培养学生的系统观,让学生明白这不是一门独立的课程,而是与自动控制原理、智能控制理论等课程相融合的,以达到融会贯通的学习效果。

4.实验环节改革

实验教学主要是为了提高学生的动手能力、分析问题和解决问题的能力,加深学生对课堂教学中理论、概念的感性认识。以往该课程的实验内容大部分为原理性、验证性的实验,学生容易感到枯燥无味,毫无学习积极性,很少有学生进行独立思考并发现问题,实验效果极不理想。为了改变这种模式化的教育,笔者将实验内容由传统的验证性实验调整为设计开发型实验。在实验教学中根据客观条件在适当减少验证性实验的基础上,增加了开拓性实验项目以及设计综合性实验。

5.改革教学评价方法,提高课堂教学效率

高效的学习成果反馈机制是促进教学相长的必要手段,目前该课程都是通过课程作业进行学习效果反馈,可以采用每一个章节布置一道设计型题目,让学生更加广泛地查阅资料,并在一定知识广度的基础上深入分析题目中用到的内容,进而从更深的层面分析解决问题,以达到深度、广度相结合的效果。

本文针对传感器与自动检测技术传统研究型大学的方案,提出了三个方面的问题,并根据四年的教学积累,在教学内容、教学模式、实验环节、教学评价及反馈等几个方面进行了探讨分析并提出了一套改革的方法和措施。本方案以实际工程应用实例为核心,在教学内容上侧重于传感器应用方面的讲解,以提出问题、分析问题、解决问题为主线调动学生的学习积极性和主动性,培养学生的工程思维和能力,重视实验环节,以设计性、综合性实验代替验证性实验培养学生将抽象的知识具体化、培养学生的实际应用能力、动手能力和创新能力。

参考文献:

[1]吴建平,甘媛.“传感器”课程实验教学研究[J].成都理工大学学报.

[2]曹良玉,赵堂春.传感器技术及其应用.课程改革初探[J].中国现代教育装备.

[3]李玉华,胡雪梅.传感器及应用.课程教学改革的探讨Ⅱ技术与市场.

生物传感器的研究现状及应用摘要:简述了生物传感器尤其是微生物传感器近年来在发酵工业及环境监测领域中的研究与应用,对其发展前景及市场化作了预测及展望。生物电极是以固定化生物体组成作为分子识别元件的敏感材料,与氧电极、膜电极和燃料电极等构成生物传感器,在发酵工业、环境监测、食品监测、临床医学等方面得到广泛的应用。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。 关键词:生物传感器;发酵工业;环境监测。中图分类号: 文献标识码:a 文章编号:1006-883x(2002)10-0001-06一、 引言 从1962年,clark和lyons最先提出生物传感器的设想距今已有40 年。生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。在最初15年里,生物传感器主要是以研制酶电极制作的生物传感器为主,但是由于酶的价格昂贵并不够稳定,因此以酶作为敏感材料的传感器,其应用受到一定的限制。近些年来,微生物固定化技术的不断发展,产生了微生物电极。微生物电极以微生物活体作为分子识别元件,与酶电极相比有其独到之处。它可以克服价格昂贵、提取困难及不稳定等弱点。此外,还可以同时利用微生物体内的辅酶处理复杂反应。而目前,光纤生物传感器的应用也越来越广泛。而且随着聚合酶链式反应技术(pcr)的发展,应用pcr的dna生物传感器也越来越多。二、 研究现状及主要应用领域 1、 发酵工业各种生物传感器中,微生物传感器最适合发酵工业的测定。因为发酵过程中常存在对酶的干扰物质,并且发酵液往往不是清澈透明的,不适用于光谱等方法测定。而应用微生物传感器则极有可能消除干扰,并且不受发酵液混浊程度的限制。同时,由于发酵工业是大规模的生产,微生物传感器其成本低设备简单的特点使其具有极大的优势。(1). 原材料及代谢产物的测定微生物传感器可用于原材料如糖蜜、乙酸等的测定,代谢产物如头孢霉素、谷氨酸、甲酸、甲烷、醇类、青霉素、乳酸等的测定。测量的原理基本上都是用适合的微生物电极与氧电极组成,利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。在各种原材料中葡萄糖的测定对过程控制尤其重要,用荧光假单胞菌(psoudomonas fluorescens)代谢消耗葡萄糖的作用,通过氧电极进行检测,可以估计葡萄糖的浓度。这种微生物电极和葡萄糖酶电极型相比,测定结果是类似的,而微生物电极灵敏度高,重复实用性好,而且不必使用昂贵的葡萄糖酶。当乙酸用作碳源进行微生物培养时,乙酸含量高于某一浓度会抑制微生物的生长,因此需要在线测定。用固定化酵母(trichosporon brassicae),透气膜和氧电极组成的微生物传感器可以测定乙酸的浓度。此外,还有用大肠杆菌()组合二氧化碳气敏电极,可以构成测定谷氨酸的微生物传感器,将柠檬酸杆菌完整细胞固定化在胶原蛋白膜内,由细菌―胶原蛋白膜反应器和组合式玻璃电极构成的微生物传感器可应用于发酵液中头孢酶素的测定等等。(2). 微生物细胞总数的测定在发酵控制方面,一直需要直接测定细胞数目的简单而连续的方法。人们发现在阳极表面,细菌可以直接被氧化并产生电流。这种电化学系统已应用于细胞数目的测定,其结果与传统的菌斑计数法测细胞数是相同的[1]。(3). 代谢试验的鉴定传统的微生物代谢类型的鉴定都是根据微生物在某种培养基上的生长情况进行的。这些实验方法需要较长的培养时间和专门的技术。微生物对底物的同化作用可以通过其呼吸活性进行测定。用氧电极可以直接测量微生物的呼吸活性。因此,可以用微生物传感器来测定微生物的代谢特征。这个系统已用于微生物的简单鉴定、微生物培养基的选择、微生物酶活性的测定、废水中可被生物降解的物质估计、用于废水处理的微生物选择、活性污泥的同化作用试验、生物降解物的确定、微生物的保存方法选择等[2]。2、 环境监测(1). 生化需氧量的测定生化需氧量(biochemical oxygen demand ?bod)的测定是监测水体被有机物污染状况的最常用指标。常规的bod测定需要5天的培养期,操作复杂、重复性差、耗时耗力、干扰性大,不宜现场监测,所以迫切需要一种操作简单、快速准确、自动化程度高、适用广的新方法来测定。目前,有研究人员分离了两种新的酵母菌种spt1和spt2,并将其固定在玻璃碳极上以构成微生物传感器用于测量bod,其重复性在±10%以内。将该传感器用于测量纸浆厂污水中bod的测定,其测量最小值可达2 mg/l,所用时间为5min[3]。还有一种新的微生物传感器,用耐高渗透压的酵母菌种作为敏感材料,在高渗透压下可以正常工作。并且其菌株可长期干燥保存,浸泡后即恢复活性,为海水中bod的测定提供了快捷简便的方法[4]。 除了微生物传感器,还有一种光纤生物传感器已经研制出来用于测定河水中较低的bod值。该传感器的反应时间是15min,最适工作条件为30°c,ph=7。这个传感器系统几乎不受氯离子的影响(在1000mg/l范围内),并且不被重金属(fe3+、cu2+、mn2+、cr3+、zn2+)所影响。该传感器已经应用于河水bod的测定,并且获得了较好的结果[4]。现在有一种将bod生物传感器经过光处理(即以tio2作为半导体,用6 w灯照射约4min)后,灵敏度大大提高,很适用于河水中较低bod的测量[5]。同时,一种紧凑的光学生物传感器已经发展出来用于同时测量多重样品的bod值。它使用三对发光二极管和硅光电二极管,假单胞细菌(pseudomonas fluorescens)用光致交联的树脂固定在反应器的底层,该测量方法既迅速又简便,在4℃下可使用六周,已经用于工厂废水处理的过程中[5]。(2). 各种污染物的测定常用的重要污染指标有氨、亚硝酸盐、硫化物、磷酸盐、致癌物质与致变物质、重金属离子、酚类化合物、表面活性剂等物质的浓度。目前已经研制出了多种测量各类污染物的生物传感器并已投入实际应用中了。测量氨和硝酸盐的微生物传感器,多是用从废水处理装置中分离出来的硝化细菌和氧电极组合构成。目前有一种微生物传感器可以在黑暗和有光的条件下测量硝酸盐和亚硝酸盐(nox-),它在盐环境下的测量使得它可以不受其他种类的氮的氧化物的影响。用它对河口的nox-进行了测量,其效果较好[6]。硫化物的测定是用从硫铁矿附近酸性土壤中分离筛选得到的专性、自养、好氧性氧化硫硫杆菌制成的微生物传感器。在ph=、31℃时一周测量200余次,活性保持不变,两周后活性降低20%。传感器寿命为7天,其设备简单,成本低,操作方便。目前还有用一种光微生物电极测硫化物含量,所用细菌是,与氢电极连接构成[7]。最近科学家们在污染区分离出一种能够发荧光的细菌,此种细菌含有荧光基因,在污染源的刺激下能够产生荧光蛋白,从而发出荧光。可以通过遗传工程的方法将这种基因导入合适的细菌内,制成微生物传感器,用于环境监测。现在已经将荧光素酶导入大肠杆菌()中,用来检测砷的有毒化合物[8]。水体中酚类和表面活性剂的浓度测定已经有了很大的发展。目前,有9种革兰氏阴性细菌从西西伯利亚石油盆地的土壤中分离出来,以酚作为唯一的碳源和能源。这些菌种可以提高生物传感器的感受器部分的灵敏度。它对酚的监测极限为5 ´10-9mol。该传感器工作的最适条件为:ph=、35℃,连续工作时间为30h[9]。还有一种假单胞菌属(pseudomonas rathonis)制成的测量表面活性剂浓度的电流型生物传感器,将微生物细胞固定在凝胶(琼脂、琼脂糖和海藻酸钙盐)和聚乙醇膜上,可以用层析试纸gf/a,或者是谷氨酸醛引起的微生物细胞在凝胶中的交联,长距离的保持它们在高浓度表面活性剂检测中的活性和生长力。该传感器能在测量结束后很快的恢复敏感元件的活性[10]。还有一种电流式生物传感器,用于测定有机磷杀虫剂,使用的是人造酶。利用有机磷杀虫剂水解酶,对硝基酚和二乙基酚的测量极限为100´10-9mol,在40℃只要4min[11]。还有一种新发展起来的磷酸盐生物传感器,使用丙酮酸氧化酶g,与自动系统cl-fia台式电脑结合,可以检测(32~96)´10-9mol的磷酸盐,在25°c下可以使用两周以上,重复性高[12]。最近,有一种新型的微生物传感器,用细菌细胞作为生物组成部分,测定地表水中壬基酚(nonyl-phenol etoxylate --np-80e)的含量。用一个电流型氧电极作传感器,微生物细胞固定在氧电极上的透析膜上,其测量原理是测量毛孢子菌属(trichosporum grablata)细胞的呼吸活性。该生物传感器的反应时间为15~20min,寿命为7~10天(用于连续测定时)。在浓度范围内,电信号与np-80e浓度呈线性关系,很适合于污染的地表水中分子表面活性剂的检测[13]。除此之外,污水中重金属离子浓度的测定也是不容忽视的。目前已经成功设计了一个完整的,基于固定化微生物和生物体发光测量技术上的重金属离子生物有效性测定的监测和分析系统。将弧菌属细菌(vibrio fischeri)体内的一个操纵子在一个铜诱导启动子的控制下导入产碱杆菌属细菌(alcaligenes eutrophus (ae1239))中,细菌在铜离子的诱导下发光,发光程度与离子浓度成正比。将微生物和光纤一起包埋在聚合物基质中,可以获得灵敏度高、选择性好、测量范围广、储藏稳定性强的生物传感器。目前,这种微生物传感器可以达到最低测量浓度1´10-9mol[14]。还有一种专门测量铜离子的电流型微生物传感器。它用酒酿酵母(saccharomyces cerevisiae)重组菌株作为生物元件,这些菌株带有酒酿酵母cup1基因上的铜离子诱导启动子与大肠杆菌lacz基因的融合体。其工作原理,首先是cup1启动子被cu2+诱导,随后乳糖被用作底物进行测量。如果cu2+存在于溶液中,这些重组体细菌就可以利用乳糖作为碳源,这将导致这些好氧细胞需氧量的改变。该生物传感器可以在浓度范围()´10-3mol范围内测定cuso4溶液。目前已经将各类金属离子诱导启动子转入大肠杆菌中,使得大肠杆菌会在含有各种金属离子的的溶液中出现发光反应。根据它发光的强度可以测定重金属离子的浓度,其测量范围可以从纳摩尔到微摩尔,所需时间为60~100min[15][16]。用于测量污水中锌浓度的生物传感器也已经研制成功,使用嗜碱性细菌alcaligenes cutrophus,并用于对污水中锌的浓度和生物有效性进行测量,其结果令人满意[17]。估测河口出水流污染情况的海藻传感器是由一种螺旋藻属蓝细菌( cyanobacterium spirlina subsalsa)和一个气敏电极构成的。通过监测光合作用被抑制的程度来估测由于环境污染物的存在而引起水的毒性变化。以标准天然水为介质,对三种主要污染物(重金属、除草剂、氨基甲酸盐杀虫剂)的不同浓度进行了测定,均可监测到它们的有毒反应,重复性和再生性都很高[18]。近来由于聚合酶链式反应技术(pcr)的迅猛发展及其在环境监测方面的广泛应用,不少科学家开始着手于将它与生物传感器技术结合应用。有一种应用pcr技术的dna压电生物传感器,可以测定一种特殊的细菌毒素。将生物素酰化的探针固定在装有链酶抗生素铂金表面的石英晶体上,用1´10-6mol的盐酸可以使循环式测量在同一晶体表面进行。用细菌中提取的dna样品进行同样的杂交反应并由pcr放大,产物为气单胞菌属(aeromonas hydrophila)的一种特殊基因片断。这种压电生物传感器可以鉴别样品中是否含有这种基因,这为从水样中检测是否含带有这种病原的各种气单胞菌提供了可能[19]。还有一种通道生物传感器可以检测浮游植物和水母等生物体产生的腰鞭毛虫神经毒素等毒性物质,目前已经能够测量在一个浮游生物细胞内含有的极微量的psp毒素[20]。dna传感器也在迅速的得到应用,目前有一种小型化dna生物传感器,能将dna识别信号转换为电信号,用于测量水样中隐孢子和其他水源传染体。该传感器着重于改进核酸的识别作用和加强该传感器的特异性和灵敏性,并寻求将杂交信号转化为有用信号的新方法,目前研究工作为识别装置和转换装置的一体化[21]。微藻素是一种从蓝藻细菌引起的水华中产生的细菌肝毒素,一种固定有表面细胞质粒基因组的生物传感器已经制得,用于测量水中微藻素的含量,它直接的测量范围是50~1000 ´10-6g/l[22]。 一种基于酶的抑制性分析的多重生物传感器用于测量毒性物质的设想也已经提出。在这种多重生物传感器中,应用了两种传导器―对ph敏感的电子晶体管和热敏性的薄膜电极,以及三种酶―尿素酶、乙酰胆碱酯酶和丁酰胆碱酯酶。该生物传感器的性能已经得到测试,效果较好[23]。除了发酵工业和环境监测,生物传感器还深入的应用于食品工程、临床医学、军事及军事医学等领域,主要用于测量葡萄糖、乙酸、乳酸、乳糖、尿酸、尿素、抗生素、谷氨酸等各种氨基酸,以及各种致癌和致变物质。三、 讨论与展望 美国的harold 指出,生物传感器商品化要具备以下几个条件:足够的敏感性和准确性、易操作、价格便宜、易于批量生产、生产过程中进行质量监测。其中,价格便宜决定了传感器在市场上有无竞争力。而在各种生物传感器中,微生物传感器最大的优点就是成本低、操作简便、设备简单,因此其在市场上的前景是十分巨大和诱人的。相比起来,酶生物传感器等的价格就比较昂贵。但微生物传感器也有其自身的缺点,主要的缺点就是选择性不够好,这是由于在微生物细胞中含有多种酶引起的。现已有报道加专门抑制剂以解决微生物电极的选择性问题。除此之外,微生物固定化方法也需要进一步完善,首先要尽可能保证细胞的活性,其次细胞与基础膜结合要牢固,以避免细胞的流失。另外,微生物膜的长期保存问题也待进一步的改进,否则难于实现大规模的商品化。 总之,常用的微生物电极和酶电极在各种应用中各有其优越之处。若容易获得稳定、高活性、低成本的游离酶,则酶电极对使用者来说是最理想的。相反的,若生物催化需经过复杂途径,需要辅酶,或所需酶不宜分离或不稳定时,微生物电极则是更理想的选择。而其他各种形式的生物传感器也在蓬勃发展中,其应用也越来越广泛。随着固定化技术的进一步完善,随着人们对生物体认识的不断深入,生物传感器必将在市场上开辟出一片新的天地。--------------------------------------------------------------------------------参考文献[1]韩树波,郭光美,李新等.伏安型细菌总数生物传感器的研究与应用[j].华夏医学,2000,63(2):49-52 [2]蔡豪斌.微生物活细胞检测生物传感器的研究[j]. 华夏医学,2000,13(3):252-256[3] trosok sp, driscoll bt, luong jht mediated microbial biosensor using a novel yeast strain for wastewater bod measurement[j]. applied micreobiology and biotechnology,2001, 56 (3-4): 550-554 [4] 张悦,王建龙,李花子等.生物传感器快速测定bod在海洋监测中的应用[j].海洋环境科学,2001,20(1):50-54[5] yoshida n, mcniven sj, yoshida a, compact optical system for multi-determination of biochemical oxygen demand using disposable strips[j]. field analytical chemistry and technology,2001,5 (5): 222-227[6] meyer rl, kjaer t, revsbech np. use of nox- microsensors to estimate the activity of sediment nitrification and nox- consumption along an estuarine salinity, nitrate, and light gradient[j]. aquatic microbial ecology, 2001,26 (2): 181-193[7]王晓辉,白志辉,孙裕生等.硫化物微生物传感器的研制与应用[j]. 分析试验室,2000,19(3):83-86[8] alexander d c,costanzo m a, guzzo j, cai j, towards the next millennium: luciferase fusions to identify genes responsive to environmental stress[j].water, air and soil pollution, 2000,123(1-4):81-94[9] makarenko aa, bezverbnaya ip, kosheleva ia,etc. development of biosensors for phenol determination from bacteria found in petroleum fields of west siberia[j].applied biochemistry and microbiology, 2002,38 (1): 23-27[10]semenchuk in, taranova la, kalenyuk aa,etc. effect of various methods of immobilization on the stability of a microbial biosensor for surfactants based on pseudomonas rathonis t[j]. applied biochemistry and microbiology, 2000, 36 (1): 69-72[11]yamazaki t, meng z, mosbach k,etc. a novel amperometric sensor for organophosphotriester insecticides detection employing catalytic polymer mimicking phosphotriesterase catalytic center[j]. electrochemistry,2001,69 (12): 969-97[12] nakamura h. phosphate ion determination in water for drinking using biosensors[j]. bunseki kagaku,2001,50 (8): 581-582[13] a, lucaciu i, fleschin s, magearu v. microbial biosensor for nonyl-phenol etoxylate (np-80e) [j].south african jounal of chemistry-suid-afrikaanse tydskrif vir chemie , 2000,53 (1): 14-17[14] leth s, maltoni s, simkus r,etc. engineered bacteria based biosensors for monitoring bioavailable heavy metal[j].electroanalysis, 2002,14 (1): 35-42 [15] lehmann m, riedel k, adler k,etc. amperometric measurement of copper ions with a deputy substrate using a novel saccharomyces cerevisiae sensor[j]. biosensors and bioelectronics, 2000, 15 (3-4): 211-219[16] riether kb, dollard ma, billard p. assessment of heavy metal bioavailability using escherichia coli zntap lux and copap lux-based biosensors[j]. applied microbiology and biotechnology,2001,57 (5-6): 712-716[17] karlen c, wallinder io, heijerick d, etc. runoff rates and ecotoxicity of zinc induced by atmospheric corrosion[j]. science of the total environment,2001,277 (1-3): 169-180[18] campanella l,cubadda f,sammartino m p, algal biosensor for the monitoring of water toxicity in estuarine enviraonments[j].wate research, 2001,35(1):69-76[19] tombelli sara,mascini marco,soca cristiana, dna piezoelectric biosensor assay coupled with a polyerase chain reaction for bacterial toxicity determination in environmental samples[j]. analytica chimica acta,2000,418(1):1-9[20] lee hae-ok,cheun byeung soo,yoo jong su, of a channel biosensor for toxicity measurements in cultured alexandrium tamarense[j]. journal of natural toxins,2000, 9(4):341-348[21] wang, dna biosensor for detecting cryptosporidium in water samples. technical . comletion-311, 2000(3), 26p [22]nakamura c, kobayashi t, miyake m,etc. usage of a dna aptamer as a ligand targeting microcystin[j]. molecular crystals and liquid crystals, 2001, 371: 369-374 [23]arkhypova vn, dzyadevych sv, soldatkin ap, etc. multibiosensor based on enzyme inhibition analysis for determination of different toxic substances[j]. talanta,2001, 55 (5): 919-927the recent research and application of biosensorabstract: in this article, the recent research progress and application of biosensors ,especially the micro- biosensors, are reviewed, and the prospect of biosensors development is also prognosticated. biosensors are made up of bioelectrode , using immobile organism as sensitive material for molecule recognition, together with oxygen-electrode, membrane -eletrode and fuel-electrode. biosensors are broadly used in zymosis industry, environment monitor, food monitor and clinic medicine. fast, accurate, facilitate as biosensors is,there will be an excellent prospect for biosensors in the marketkeywords:biosensor, zymosis -industry, environment-monitor作者简介:何星月:中国科学技术大学生命科学院,合肥230027刘之景,中国科学技术大学天文与应用物理系教授,合肥230026电话:0551―3601895

简单传感器论文参考文献

生物传感器的研究现状及应用摘要:简述了生物传感器尤其是微生物传感器近年来在发酵工业及环境监测领域中的研究与应用,对其发展前景及市场化作了预测及展望。生物电极是以固定化生物体组成作为分子识别元件的敏感材料,与氧电极、膜电极和燃料电极等构成生物传感器,在发酵工业、环境监测、食品监测、临床医学等方面得到广泛的应用。生物传感器专一性好、易操作、设备简单、测量快速准确、适用范围广。随着固定化技术的发展,生物传感器在市场上具有极强的竞争力。 关键词:生物传感器;发酵工业;环境监测。中图分类号: 文献标识码:a 文章编号:1006-883x(2002)10-0001-06一、 引言 从1962年,clark和lyons最先提出生物传感器的设想距今已有40 年。生物传感器在发酵工艺、环境监测、食品工程、临床医学、军事及军事医学等方面得到了深度重视和广泛应用。在最初15年里,生物传感器主要是以研制酶电极制作的生物传感器为主,但是由于酶的价格昂贵并不够稳定,因此以酶作为敏感材料的传感器,其应用受到一定的限制。近些年来,微生物固定化技术的不断发展,产生了微生物电极。微生物电极以微生物活体作为分子识别元件,与酶电极相比有其独到之处。它可以克服价格昂贵、提取困难及不稳定等弱点。此外,还可以同时利用微生物体内的辅酶处理复杂反应。而目前,光纤生物传感器的应用也越来越广泛。而且随着聚合酶链式反应技术(pcr)的发展,应用pcr的dna生物传感器也越来越多。二、 研究现状及主要应用领域 1、 发酵工业各种生物传感器中,微生物传感器最适合发酵工业的测定。因为发酵过程中常存在对酶的干扰物质,并且发酵液往往不是清澈透明的,不适用于光谱等方法测定。而应用微生物传感器则极有可能消除干扰,并且不受发酵液混浊程度的限制。同时,由于发酵工业是大规模的生产,微生物传感器其成本低设备简单的特点使其具有极大的优势。(1). 原材料及代谢产物的测定微生物传感器可用于原材料如糖蜜、乙酸等的测定,代谢产物如头孢霉素、谷氨酸、甲酸、甲烷、醇类、青霉素、乳酸等的测定。测量的原理基本上都是用适合的微生物电极与氧电极组成,利用微生物的同化作用耗氧,通过测量氧电极电流的变化量来测量氧气的减少量,从而达到测量底物浓度的目的。在各种原材料中葡萄糖的测定对过程控制尤其重要,用荧光假单胞菌(psoudomonas fluorescens)代谢消耗葡萄糖的作用,通过氧电极进行检测,可以估计葡萄糖的浓度。这种微生物电极和葡萄糖酶电极型相比,测定结果是类似的,而微生物电极灵敏度高,重复实用性好,而且不必使用昂贵的葡萄糖酶。当乙酸用作碳源进行微生物培养时,乙酸含量高于某一浓度会抑制微生物的生长,因此需要在线测定。用固定化酵母(trichosporon brassicae),透气膜和氧电极组成的微生物传感器可以测定乙酸的浓度。此外,还有用大肠杆菌()组合二氧化碳气敏电极,可以构成测定谷氨酸的微生物传感器,将柠檬酸杆菌完整细胞固定化在胶原蛋白膜内,由细菌―胶原蛋白膜反应器和组合式玻璃电极构成的微生物传感器可应用于发酵液中头孢酶素的测定等等。(2). 微生物细胞总数的测定在发酵控制方面,一直需要直接测定细胞数目的简单而连续的方法。人们发现在阳极表面,细菌可以直接被氧化并产生电流。这种电化学系统已应用于细胞数目的测定,其结果与传统的菌斑计数法测细胞数是相同的[1]。(3). 代谢试验的鉴定传统的微生物代谢类型的鉴定都是根据微生物在某种培养基上的生长情况进行的。这些实验方法需要较长的培养时间和专门的技术。微生物对底物的同化作用可以通过其呼吸活性进行测定。用氧电极可以直接测量微生物的呼吸活性。因此,可以用微生物传感器来测定微生物的代谢特征。这个系统已用于微生物的简单鉴定、微生物培养基的选择、微生物酶活性的测定、废水中可被生物降解的物质估计、用于废水处理的微生物选择、活性污泥的同化作用试验、生物降解物的确定、微生物的保存方法选择等[2]。2、 环境监测(1). 生化需氧量的测定生化需氧量(biochemical oxygen demand ?bod)的测定是监测水体被有机物污染状况的最常用指标。常规的bod测定需要5天的培养期,操作复杂、重复性差、耗时耗力、干扰性大,不宜现场监测,所以迫切需要一种操作简单、快速准确、自动化程度高、适用广的新方法来测定。目前,有研究人员分离了两种新的酵母菌种spt1和spt2,并将其固定在玻璃碳极上以构成微生物传感器用于测量bod,其重复性在±10%以内。将该传感器用于测量纸浆厂污水中bod的测定,其测量最小值可达2 mg/l,所用时间为5min[3]。还有一种新的微生物传感器,用耐高渗透压的酵母菌种作为敏感材料,在高渗透压下可以正常工作。并且其菌株可长期干燥保存,浸泡后即恢复活性,为海水中bod的测定提供了快捷简便的方法[4]。 除了微生物传感器,还有一种光纤生物传感器已经研制出来用于测定河水中较低的bod值。该传感器的反应时间是15min,最适工作条件为30°c,ph=7。这个传感器系统几乎不受氯离子的影响(在1000mg/l范围内),并且不被重金属(fe3+、cu2+、mn2+、cr3+、zn2+)所影响。该传感器已经应用于河水bod的测定,并且获得了较好的结果[4]。现在有一种将bod生物传感器经过光处理(即以tio2作为半导体,用6 w灯照射约4min)后,灵敏度大大提高,很适用于河水中较低bod的测量[5]。同时,一种紧凑的光学生物传感器已经发展出来用于同时测量多重样品的bod值。它使用三对发光二极管和硅光电二极管,假单胞细菌(pseudomonas fluorescens)用光致交联的树脂固定在反应器的底层,该测量方法既迅速又简便,在4℃下可使用六周,已经用于工厂废水处理的过程中[5]。(2). 各种污染物的测定常用的重要污染指标有氨、亚硝酸盐、硫化物、磷酸盐、致癌物质与致变物质、重金属离子、酚类化合物、表面活性剂等物质的浓度。目前已经研制出了多种测量各类污染物的生物传感器并已投入实际应用中了。测量氨和硝酸盐的微生物传感器,多是用从废水处理装置中分离出来的硝化细菌和氧电极组合构成。目前有一种微生物传感器可以在黑暗和有光的条件下测量硝酸盐和亚硝酸盐(nox-),它在盐环境下的测量使得它可以不受其他种类的氮的氧化物的影响。用它对河口的nox-进行了测量,其效果较好[6]。硫化物的测定是用从硫铁矿附近酸性土壤中分离筛选得到的专性、自养、好氧性氧化硫硫杆菌制成的微生物传感器。在ph=、31℃时一周测量200余次,活性保持不变,两周后活性降低20%。传感器寿命为7天,其设备简单,成本低,操作方便。目前还有用一种光微生物电极测硫化物含量,所用细菌是,与氢电极连接构成[7]。最近科学家们在污染区分离出一种能够发荧光的细菌,此种细菌含有荧光基因,在污染源的刺激下能够产生荧光蛋白,从而发出荧光。可以通过遗传工程的方法将这种基因导入合适的细菌内,制成微生物传感器,用于环境监测。现在已经将荧光素酶导入大肠杆菌()中,用来检测砷的有毒化合物[8]。水体中酚类和表面活性剂的浓度测定已经有了很大的发展。目前,有9种革兰氏阴性细菌从西西伯利亚石油盆地的土壤中分离出来,以酚作为唯一的碳源和能源。这些菌种可以提高生物传感器的感受器部分的灵敏度。它对酚的监测极限为5 ´10-9mol。该传感器工作的最适条件为:ph=、35℃,连续工作时间为30h[9]。还有一种假单胞菌属(pseudomonas rathonis)制成的测量表面活性剂浓度的电流型生物传感器,将微生物细胞固定在凝胶(琼脂、琼脂糖和海藻酸钙盐)和聚乙醇膜上,可以用层析试纸gf/a,或者是谷氨酸醛引起的微生物细胞在凝胶中的交联,长距离的保持它们在高浓度表面活性剂检测中的活性和生长力。该传感器能在测量结束后很快的恢复敏感元件的活性[10]。还有一种电流式生物传感器,用于测定有机磷杀虫剂,使用的是人造酶。利用有机磷杀虫剂水解酶,对硝基酚和二乙基酚的测量极限为100´10-9mol,在40℃只要4min[11]。还有一种新发展起来的磷酸盐生物传感器,使用丙酮酸氧化酶g,与自动系统cl-fia台式电脑结合,可以检测(32~96)´10-9mol的磷酸盐,在25°c下可以使用两周以上,重复性高[12]。最近,有一种新型的微生物传感器,用细菌细胞作为生物组成部分,测定地表水中壬基酚(nonyl-phenol etoxylate --np-80e)的含量。用一个电流型氧电极作传感器,微生物细胞固定在氧电极上的透析膜上,其测量原理是测量毛孢子菌属(trichosporum grablata)细胞的呼吸活性。该生物传感器的反应时间为15~20min,寿命为7~10天(用于连续测定时)。在浓度范围内,电信号与np-80e浓度呈线性关系,很适合于污染的地表水中分子表面活性剂的检测[13]。除此之外,污水中重金属离子浓度的测定也是不容忽视的。目前已经成功设计了一个完整的,基于固定化微生物和生物体发光测量技术上的重金属离子生物有效性测定的监测和分析系统。将弧菌属细菌(vibrio fischeri)体内的一个操纵子在一个铜诱导启动子的控制下导入产碱杆菌属细菌(alcaligenes eutrophus (ae1239))中,细菌在铜离子的诱导下发光,发光程度与离子浓度成正比。将微生物和光纤一起包埋在聚合物基质中,可以获得灵敏度高、选择性好、测量范围广、储藏稳定性强的生物传感器。目前,这种微生物传感器可以达到最低测量浓度1´10-9mol[14]。还有一种专门测量铜离子的电流型微生物传感器。它用酒酿酵母(saccharomyces cerevisiae)重组菌株作为生物元件,这些菌株带有酒酿酵母cup1基因上的铜离子诱导启动子与大肠杆菌lacz基因的融合体。其工作原理,首先是cup1启动子被cu2+诱导,随后乳糖被用作底物进行测量。如果cu2+存在于溶液中,这些重组体细菌就可以利用乳糖作为碳源,这将导致这些好氧细胞需氧量的改变。该生物传感器可以在浓度范围()´10-3mol范围内测定cuso4溶液。目前已经将各类金属离子诱导启动子转入大肠杆菌中,使得大肠杆菌会在含有各种金属离子的的溶液中出现发光反应。根据它发光的强度可以测定重金属离子的浓度,其测量范围可以从纳摩尔到微摩尔,所需时间为60~100min[15][16]。用于测量污水中锌浓度的生物传感器也已经研制成功,使用嗜碱性细菌alcaligenes cutrophus,并用于对污水中锌的浓度和生物有效性进行测量,其结果令人满意[17]。估测河口出水流污染情况的海藻传感器是由一种螺旋藻属蓝细菌( cyanobacterium spirlina subsalsa)和一个气敏电极构成的。通过监测光合作用被抑制的程度来估测由于环境污染物的存在而引起水的毒性变化。以标准天然水为介质,对三种主要污染物(重金属、除草剂、氨基甲酸盐杀虫剂)的不同浓度进行了测定,均可监测到它们的有毒反应,重复性和再生性都很高[18]。近来由于聚合酶链式反应技术(pcr)的迅猛发展及其在环境监测方面的广泛应用,不少科学家开始着手于将它与生物传感器技术结合应用。有一种应用pcr技术的dna压电生物传感器,可以测定一种特殊的细菌毒素。将生物素酰化的探针固定在装有链酶抗生素铂金表面的石英晶体上,用1´10-6mol的盐酸可以使循环式测量在同一晶体表面进行。用细菌中提取的dna样品进行同样的杂交反应并由pcr放大,产物为气单胞菌属(aeromonas hydrophila)的一种特殊基因片断。这种压电生物传感器可以鉴别样品中是否含有这种基因,这为从水样中检测是否含带有这种病原的各种气单胞菌提供了可能[19]。还有一种通道生物传感器可以检测浮游植物和水母等生物体产生的腰鞭毛虫神经毒素等毒性物质,目前已经能够测量在一个浮游生物细胞内含有的极微量的psp毒素[20]。dna传感器也在迅速的得到应用,目前有一种小型化dna生物传感器,能将dna识别信号转换为电信号,用于测量水样中隐孢子和其他水源传染体。该传感器着重于改进核酸的识别作用和加强该传感器的特异性和灵敏性,并寻求将杂交信号转化为有用信号的新方法,目前研究工作为识别装置和转换装置的一体化[21]。微藻素是一种从蓝藻细菌引起的水华中产生的细菌肝毒素,一种固定有表面细胞质粒基因组的生物传感器已经制得,用于测量水中微藻素的含量,它直接的测量范围是50~1000 ´10-6g/l[22]。 一种基于酶的抑制性分析的多重生物传感器用于测量毒性物质的设想也已经提出。在这种多重生物传感器中,应用了两种传导器―对ph敏感的电子晶体管和热敏性的薄膜电极,以及三种酶―尿素酶、乙酰胆碱酯酶和丁酰胆碱酯酶。该生物传感器的性能已经得到测试,效果较好[23]。除了发酵工业和环境监测,生物传感器还深入的应用于食品工程、临床医学、军事及军事医学等领域,主要用于测量葡萄糖、乙酸、乳酸、乳糖、尿酸、尿素、抗生素、谷氨酸等各种氨基酸,以及各种致癌和致变物质。三、 讨论与展望 美国的harold 指出,生物传感器商品化要具备以下几个条件:足够的敏感性和准确性、易操作、价格便宜、易于批量生产、生产过程中进行质量监测。其中,价格便宜决定了传感器在市场上有无竞争力。而在各种生物传感器中,微生物传感器最大的优点就是成本低、操作简便、设备简单,因此其在市场上的前景是十分巨大和诱人的。相比起来,酶生物传感器等的价格就比较昂贵。但微生物传感器也有其自身的缺点,主要的缺点就是选择性不够好,这是由于在微生物细胞中含有多种酶引起的。现已有报道加专门抑制剂以解决微生物电极的选择性问题。除此之外,微生物固定化方法也需要进一步完善,首先要尽可能保证细胞的活性,其次细胞与基础膜结合要牢固,以避免细胞的流失。另外,微生物膜的长期保存问题也待进一步的改进,否则难于实现大规模的商品化。 总之,常用的微生物电极和酶电极在各种应用中各有其优越之处。若容易获得稳定、高活性、低成本的游离酶,则酶电极对使用者来说是最理想的。相反的,若生物催化需经过复杂途径,需要辅酶,或所需酶不宜分离或不稳定时,微生物电极则是更理想的选择。而其他各种形式的生物传感器也在蓬勃发展中,其应用也越来越广泛。随着固定化技术的进一步完善,随着人们对生物体认识的不断深入,生物传感器必将在市场上开辟出一片新的天地。--------------------------------------------------------------------------------参考文献[1]韩树波,郭光美,李新等.伏安型细菌总数生物传感器的研究与应用[j].华夏医学,2000,63(2):49-52 [2]蔡豪斌.微生物活细胞检测生物传感器的研究[j]. 华夏医学,2000,13(3):252-256[3] trosok sp, driscoll bt, luong jht mediated microbial biosensor using a novel yeast strain for wastewater bod measurement[j]. applied micreobiology and biotechnology,2001, 56 (3-4): 550-554 [4] 张悦,王建龙,李花子等.生物传感器快速测定bod在海洋监测中的应用[j].海洋环境科学,2001,20(1):50-54[5] yoshida n, mcniven sj, yoshida a, compact optical system for multi-determination of biochemical oxygen demand using disposable strips[j]. field analytical chemistry and technology,2001,5 (5): 222-227[6] meyer rl, kjaer t, revsbech np. use of nox- microsensors to estimate the activity of sediment nitrification and nox- consumption along an estuarine salinity, nitrate, and light gradient[j]. aquatic microbial ecology, 2001,26 (2): 181-193[7]王晓辉,白志辉,孙裕生等.硫化物微生物传感器的研制与应用[j]. 分析试验室,2000,19(3):83-86[8] alexander d c,costanzo m a, guzzo j, cai j, towards the next millennium: luciferase fusions to identify genes responsive to environmental stress[j].water, air and soil pollution, 2000,123(1-4):81-94[9] makarenko aa, bezverbnaya ip, kosheleva ia,etc. development of biosensors for phenol determination from bacteria found in petroleum fields of west siberia[j].applied biochemistry and microbiology, 2002,38 (1): 23-27[10]semenchuk in, taranova la, kalenyuk aa,etc. effect of various methods of immobilization on the stability of a microbial biosensor for surfactants based on pseudomonas rathonis t[j]. applied biochemistry and microbiology, 2000, 36 (1): 69-72[11]yamazaki t, meng z, mosbach k,etc. a novel amperometric sensor for organophosphotriester insecticides detection employing catalytic polymer mimicking phosphotriesterase catalytic center[j]. electrochemistry,2001,69 (12): 969-97[12] nakamura h. phosphate ion determination in water for drinking using biosensors[j]. bunseki kagaku,2001,50 (8): 581-582[13] a, lucaciu i, fleschin s, magearu v. microbial biosensor for nonyl-phenol etoxylate (np-80e) [j].south african jounal of chemistry-suid-afrikaanse tydskrif vir chemie , 2000,53 (1): 14-17[14] leth s, maltoni s, simkus r,etc. engineered bacteria based biosensors for monitoring bioavailable heavy metal[j].electroanalysis, 2002,14 (1): 35-42 [15] lehmann m, riedel k, adler k,etc. amperometric measurement of copper ions with a deputy substrate using a novel saccharomyces cerevisiae sensor[j]. biosensors and bioelectronics, 2000, 15 (3-4): 211-219[16] riether kb, dollard ma, billard p. assessment of heavy metal bioavailability using escherichia coli zntap lux and copap lux-based biosensors[j]. applied microbiology and biotechnology,2001,57 (5-6): 712-716[17] karlen c, wallinder io, heijerick d, etc. runoff rates and ecotoxicity of zinc induced by atmospheric corrosion[j]. science of the total environment,2001,277 (1-3): 169-180[18] campanella l,cubadda f,sammartino m p, algal biosensor for the monitoring of water toxicity in estuarine enviraonments[j].wate research, 2001,35(1):69-76[19] tombelli sara,mascini marco,soca cristiana, dna piezoelectric biosensor assay coupled with a polyerase chain reaction for bacterial toxicity determination in environmental samples[j]. analytica chimica acta,2000,418(1):1-9[20] lee hae-ok,cheun byeung soo,yoo jong su, of a channel biosensor for toxicity measurements in cultured alexandrium tamarense[j]. journal of natural toxins,2000, 9(4):341-348[21] wang, dna biosensor for detecting cryptosporidium in water samples. technical . comletion-311, 2000(3), 26p [22]nakamura c, kobayashi t, miyake m,etc. usage of a dna aptamer as a ligand targeting microcystin[j]. molecular crystals and liquid crystals, 2001, 371: 369-374 [23]arkhypova vn, dzyadevych sv, soldatkin ap, etc. multibiosensor based on enzyme inhibition analysis for determination of different toxic substances[j]. talanta,2001, 55 (5): 919-927the recent research and application of biosensorabstract: in this article, the recent research progress and application of biosensors ,especially the micro- biosensors, are reviewed, and the prospect of biosensors development is also prognosticated. biosensors are made up of bioelectrode , using immobile organism as sensitive material for molecule recognition, together with oxygen-electrode, membrane -eletrode and fuel-electrode. biosensors are broadly used in zymosis industry, environment monitor, food monitor and clinic medicine. fast, accurate, facilitate as biosensors is,there will be an excellent prospect for biosensors in the marketkeywords:biosensor, zymosis -industry, environment-monitor作者简介:何星月:中国科学技术大学生命科学院,合肥230027刘之景,中国科学技术大学天文与应用物理系教授,合肥230026电话:0551―3601895

温度传感器原理及应用论文参考文献

温度传感器原理及应用论文参考文献,温度传感器是温度测量仪表的核心部分,是指能感受温度并转换成可用输出信号的传感器,品种繁多,也是用处比较广的工具。以下分享温度传感器原理及应用论文参考文献。

一、温度传感器工作原理–恒温器

恒温器是一种接触式温度传感器,由两种不同金属(如铝、铜、镍或钨)组成的双金属条组成。

两种金属的线性膨胀系数的差异导致它们在受热时产生机械弯曲运动。

一、温度传感器工作原理–双金属恒温器

恒温器由两种热度不同的金属背靠背粘在一起组成。当天气寒冷时,触点闭合,电流通过恒温器。当它变热时,一种金属比另一种金属膨胀得更多,粘合的双金属条向上(或向下)弯曲,打开触点,防止电流流动。

有两种主要类型的双金属条,主要基于它们在受到温度变化时的运动。有在设定温度点对电触点产生瞬时“开/关”或“关/开”类型动作的“速动”类型,以及逐渐改变其位置的较慢“蠕变”类型随着温度的变化。

速动型恒温器通常用于我们家中,用于控制烤箱、熨斗、浸入式热水箱的温度设定点,也可以在墙上找到它们来控制家庭供暖系统。

爬行器类型通常由双金属线圈或螺旋组成,随着温度的变化缓慢展开或盘绕。一般来说,爬行型双金属条对温度变化比标准的按扣开/关类型更敏感,因为条更长更薄,非常适合用于温度计和表盘等。

二、温度传感器工作原理–热敏电阻

热敏电阻通常由陶瓷材料制成,例如镀在玻璃中的镍、锰或钴的氧化物,这使得它们很容易损坏。与速动类型相比,它们的主要优势在于它们对温度、准确性和可重复性的任何变化的响应速度。

大多数热敏电阻具有负温度系数(NTC),这意味着它们的电阻随着温度的升高而降低。但是,有一些热敏电阻具有正温度系数 (PTC),并且它们的电阻随着温度的升高而增加。

热敏电阻的额定值取决于它们在室温下的电阻值(通常为 25 o C)、它们的时间常数(对温度变化作出反应的时间)以及它们相对于流过它们的电流的额定功率。与电阻一样,热敏电阻在室温下的电阻值从 10 兆欧到几欧姆不等,但出于传感目的,通常使用以千欧为单位的那些类型。

温度传感器类毕业论文文献有哪些?

1、[期刊论文]一种高稳定性双端出纤型光纤光栅温度传感器

期刊:《声学与电子工程》 | 2021 年第 002 期

摘要:针对双端出纤型光纤光栅温度传感器线性度较差、温度测量精度低的问题,文章首先对传感器内部结构进行了优化,使光纤光栅在整个温度测量区间内不受结构件热胀冷缩的应力影响,从而提升传感器的稳定性、实验验证,采用新工艺封装的.光纤光栅温度传感器在5~65°C的范围内温度精度达到0、1°C,且重复性良好,适用于自然环境下的温度传感、

关键词:光纤光栅;温度传感器;应力;测温精度

链接:、zhangqiaokeyan、com/academic-journal-cn_acoustics-electronics-engineering_thesis/0201290086379、html

2、[期刊论文]某型温度传感器防护套弯折疲劳试验的寿命研究

期刊:《环境技术》 | 2021 年第 001 期

摘要:由于动车组轴端温度传感器的大多数已达到三级修、四级修的修程,检修的数量和成本逐年增加,检修发现出现防护套破损的情况较多,需要大量更换,本文通过对温度传感器的防护套进行弯折疲劳试验,对数据结果进行统计分析,确认导致防护套弯折老化的主要原因、

关键词:防护套;破损;弯折疲劳

链接:、zhangqiaokeyan、com/academic-journal-cn_environmental-technology_thesis/0201288850019、html

3、[期刊论文]进气压力温度传感器锡晶须的分析

期刊:《机械制造》 | 2021 年第 004 期

摘要:对进气压力温度传感器的结构进行了介绍,对进气压力温度传感器产生锡晶须问题进行了分析,并在分析锡晶须生长机理的基础上提出了抑制方法、

关键词:传感器;锡晶须;分析

链接:、zhangqiaokeyan、com/academic-journal-cn_machinery_thesis/0201288850874、html

4、[期刊论文]一种具有±0、5℃精度的CMOS数字温度传感器

期刊:《电子设计工程》 | 2021 年第 001 期

摘要:该文设计了一种基于0、35μm CMOS工艺的采用双极型晶体管作为感温元件的数字温度传感器、该温度传感器主要由正温度系数电流产生电路、负温度系数电流产生电路、一阶连续时间Σ-Δ调制器、计数器和I2C总线接口等模块组成、为提高温度传感器的测量精度

该文深入分析了在不采用校准技术的情况下工艺漂移对温度传感器精度的影响,并在此基础上提出了简单的校准电路设计、根据电路仿真结果,在加入校准电路之后,温度传感器在-40~120℃温度范围内的精度可以达到±0、5℃、

关键词:数字温度传感器;CMOS工艺;双极型晶体管;校准

链接:、zhangqiaokeyan、com/academic-journal-cn_electronic-design-engineering_thesis/0201286451032、html

5、[期刊论文]柴油机冷却水温度传感器断裂故障分析

期刊:《内燃机与配件》 | 2021 年第 004 期

摘要:针对柴油机冷却水温度传感器断裂的问题,通过对该测点管路流腔进行CFD仿真计算,分析了流腔内部速度和压力场的变化情况,确定了传感器的断裂原因。计算结果表明:传感器位置处流速较大,导致传感器下部受振荡力,且发生了空蚀,使传感器失效。

本文针对此次传感器断裂故障提出了解决措施:对传感器的位置进行了优化布置;对传感器的结构形式进行了改进。通过改进,传感器随整机验证时间超过1500h,未再发生同类断裂故障,保证了柴油机的安全运行,为以后类似故障的分析和解决提供参考。

关键词:柴油机;温度传感器;流速;受力

链接:、zhangqiaokeyan、com/academic-journal-cn_internal-combustion-engine-parts_thesis/0201288594662、html

常见温度传感器

温度是与人类生活息息相关的物理量,在工业生产自动化流程中,温度测量点要占全部测量点的一半左右。它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用相当广泛。

温度传感器对温度敏感具有可重复性和规律性,是利用一些金属、半导体等材料与温度相关的特性制成的。现在来介绍一些温度传感器的工作原理。

铂容易提纯,其物理、化学性能在高温和氧化介质中非常稳定。铂电阻的输入-输出特性接近线性,且测量精度高,所以它能用作工业测温元件,还能作为温度计作基准器。

铂电阻在常用的热电阻中准确度最高,国际温标ITS-90中还规定,将具有特殊构造的铂电阻作为℃~℃标准温度计来使用。铂电阻广泛用于-200℃~850℃范围内的温度测量,工业中通常在600℃以下。

PN结温度传感器是利用PN结的结电压随温度成近似线性变化这一特性实现对温度的检测、控制和补偿等功能。实验表明,在一定的电流模式下,PN结的正向电压与温度之间具有很好的线性关系。

根据PN结理论,对于理想二极管,只要正向电压UF大于几个kbT/e(kb为波尔兹曼常数,e为电子电荷)。其正向电流IF与正向电压UF和温度T之间的关系可表示为

由半导体理论可知,对于实际二极管,只要它们工作的PN结空间电荷区中的复合电流和表面漏电流可以忽略,而又未发生大注入效应的电压和温度范围内,其特性与上述理想二极管是相符合的[6]。实验表明,对于砷化镓、

锗和硅二极管,在一个相当宽的温度范围内,其正向电压与温度之间的关系与式(1-3)是一致的,如图1-1所示。

实验发现晶体管发射结上的正向电压随温度的上升而近似线性下降,这种特性与二极管十分相似,但晶体管表现出比二极管更好的线性和互换性。

二极管的温度特性只对扩散电流成立,但实际二极管的正向电流除扩散电流成分外,还包括空间电荷区中的复合电流和表面漏电流成分。这两种电流与温度的关系不同于扩散电流与温度的关系,因此,实际二极管的电压—温度特性是偏离理想情况的。

由于三极管在发射结正向偏置条件下,虽然发射结也包括上述三种电流成分,但是只有其中的扩散电流成分能够到达集电极形成集电极电流,而另外两种电流成分则作为基极电流漏掉,并不到达集电极。因此,晶体管的

所以表现出更好的电压-温ICUBE关系比管的IFUF关系更符合理想情况,

度线性关系。根据晶体管的有关理论可以证明,NPN晶体管的基极—发射极电压UBE与温度T和集电极电流Ic的函数关系式与二极管的UF与T和IF函数关系式(1-3)相同。因此,在集电极电流Ic恒定条件下,晶体管的基极—发射极电压UBE与温度T呈线性关系。但严格地说,这种线性关系是不完全的,因为关系式中存在非线性项。

集成温度传感器是将温敏晶体管及其辅助电路集成在同一芯片的集成化温度传感器。这种传感器的优点是直接给出正比于绝对温度的理想的线性输出[7]。目前,集成温度传感器已广泛用于-50℃~+150℃温度范围内的温度检测、控制和补偿等。集成温度传感器按输出形式可分为电压型和电流型两种。

进气温度传感器工作原理是什么?

进气温度传感器的工作原理是:进气温度传感器在工作状态下,内部安装了一个具有负温度电阻系数的热敏电阻,通过这个负温度热敏电阻感知温度变化,进而调节电阻的大小改变电路电压。

以下是关于进气温度传感器的详细介绍:

1、原理:进气温度传感器就是一个负温度系数的热敏电阻,当温度升高的时候电阻阻值会变小,当温度降低的时候电阻值会增大,汽车的电压会随着汽车电路中电阻的变化而变化,从而产生不一样的电压信号,可以完成汽车控制系统的自动操作。

2、作用:汽车的进气温度传感器就是检测汽车发动机的进气温度,将进气温度转变为电压信号输入为ecu作为喷油修正的信号使用。

参考下: 进入21世纪后,特别在我国加入WTO后,国内产品面临巨大挑战。各行业特别是传统产业都急切需要应用电子技术、自动控制技术进行改造和提升。例如纺织行业,温湿度是影响纺织品质量的重要因素,但纺织企业对温湿度的测控手段仍很粗糙,十分落后,绝大多数仍在使用干湿球湿度计,采用人工观测,人工调节阀门、风机的方法,其控制效果可想而知。制药行业里也基本如此。而在食品行业里,则基本上凭经验,很少有人使用湿度传感器。值得一提的是,随着农业向产业化发展,许多农民意识到必需摆脱落后的传统耕作、养殖方式,采用现代科学技术来应付进口农产品的挑战,并打进国外市场。各地建立了越来越多的新型温室大棚,种植反季节蔬菜,花卉;养殖业对环境的测控也日感迫切;调温冷库的大量兴建都给温湿度测控技术提供了广阔的市场。我国已引进荷兰、以色列等国家较先进的大型温室四十多座,自动化程度较高,成本也高。国内正在逐步消化吸收有关技术,一般先搞调温、调光照,控通风;第二步搞温湿度自动控制及CO2测控。此外,国家粮食储备工程的大量兴建,对温湿度测控技术提也提出了要求。 但目前,在湿度测试领域大部分湿敏元件性能还只能使用在通常温度环境下。在需要特殊环境下测湿的应用场合大部分国内包括许多国外湿度传感器都会“皱起眉头”!例如在上面提到纺织印染行业,食品行业,耐高温材料行业等,都需要在高温情况下测量湿度。一般情况下,印染行业在纱锭烘干中,温度能达到120摄氏度或更高温度;在食品行业中,食物的烘烤温度能达到80-200摄氏度左右;耐高温材料,如陶瓷过滤器的烘干等能达到200摄氏度以上。在这些情况下,普通的湿度传感器是很难测量的。 高分子电容式湿度传感器通常都是在绝缘的基片诸如玻璃、陶瓷、硅等材料上,用丝网漏印或真空镀膜工艺做出电极,再用浸渍或其它办法将感湿胶涂覆在电极上做成电容元件。湿敏元件在不同相对湿度的大气环境中,因感湿膜吸附水分子而使电容值呈现规律性变化,此即为湿度传感器的基本机理。影响高分子电容型元件的温度特性,除作为介质的高分子聚合物的介质常数ε及所吸附水分子的介电常数ε受温度影响产生变化外,还有元件的几何尺寸受热膨胀系数影响而产生变化等因素。根据德拜理论的观点,液体的介电常数ε是一个与温度和频率有关的无量纲常数。水分子的ε在T=5℃时为,在T=20℃时为。有机物ε与温度的关系因材料而异,且不完全遵从正比关系。在某些温区ε随T呈上升趋势,某些温区ε随T增加而下降。多数文献在对高分子湿敏电容元件感湿机理的分析中认为:高分子聚合物具有较小的介电常数,如聚酰亚胺在低湿时介电常数为一。而水分子介电常数是高分子ε的几十倍。因此高分子介质在吸湿后,由于水分子偶极距的存在,大大提高了吸水异质层的介电常数,这是多相介质的复合介电常数具有加和性决定的。由于ε的变 化,使湿敏电容元件的电容量C与相对湿度成正比。在设计和制作工艺中很难组到感湿特性全湿程线性。作为电容器,高分子介质膜的厚度d和平板电容的效面积S也和温度有关。温度变化所引起的介质几何尺寸的变化将影响C值。高分子聚合物的平均热线胀系数可达到 的量级。例如硝酸纤维素的平均热线胀系数为108x10-5/℃。随着温度上升,介质膜厚d增加,对C呈负贡献值;但感湿膜的膨胀又使介质对水的吸附量增加,即对C呈正值贡献。可见湿敏电容的温度特性受多种因素支配,在不同的湿度范围温漂不同;在不同的温区呈不同的温度系数;不同的感湿材料温度特性不同。总之,高分子湿度传感器的温度系数并非常数,而是个变量。所以通常传感器生产厂家能在-10-60摄氏度范围内是传感器线性化减小温度对湿敏元件的影响。 国外厂家比较优质的产品主要使用聚酰胺树脂,产品结构概要为在硼硅玻璃或蓝宝石衬底上真空蒸发制作金电极,再喷镀感湿介质材料(如前所述)形式平整的感湿膜,再在薄膜上蒸发上金电极.湿敏元件的电容值与相对湿度成正比关系,线性度约±2%。虽然,测湿性能还算可以但其耐温性、耐腐蚀性都不太理想,在工业领域使用,寿命、耐温性和稳定性、抗腐蚀能力都有待于进一步提高。 陶瓷湿敏传感器是近年来大力发展的一种新型传感器。优点在于能耐高温,湿度滞后,响应速度快,体积小,便于批量生产,但由于多孔型材质,对尘埃影响很大,日常维护频繁,时常需要电加热加以清洗易影响产品质量,易受湿度影响,在低湿高温环境下线性度差,特别是使用寿命短,长期可靠性差,是此类湿敏传感器迫切解决的问题。 当前在湿敏元件的开发和研究中,电阻式湿度传感器应当最适用于湿度控制领域,其代表产品氯化锂湿度传感器具有稳定性、耐温性和使用寿命长多项重要的优点,氯化锂湿敏传感器已有了五十年以上的生产和研究的历史,有着多种多样的产品型式和制作方法,都应用了氯化锂感湿液具备的各种优点尤其是稳定性最强。 氯化锂湿敏器件属于电解质感湿性材料,在众多的感湿材料之中,首先被人们所注意并应用于制造湿敏器件,氯化锂电解质感湿液依据当量电导随着溶液浓度的增加而下降。电解质溶解于水中降低水面上的水蒸气压的原理而实现感湿。 氯化锂湿敏器件的衬底结构分柱状和梳妆,以氯化锂聚乙烯醇涂覆为主要成份的感湿液和制作金质电极是氯化锂湿敏器件的三个组成部分。多年来产品制作不断改进提高,产品性能不断得到改善,氯化锂感湿传感器其特有的长期稳定性是其它感湿材料不可替代的,也是湿度传感器最重要的性能。在产品制作过程中,经过感湿混合液的配制和工艺上的严格控制是保持和发挥这一特性的关键。 在国内九纯健科技依托于国家计量科学研究院、中科院自动化研究所、化工研究院等大型科研单位从事温湿度传感器产品的研制、生产。选用氯化锂感湿材料作为主攻方向,生产氯化锂湿敏传感器及相关变送器,自动化仪表等产品,在吸取了国内外此项技术的成功经验的同时,努力克服传统产品存在的各项弱点,取得实质性进展。产品选用了Al2O3及SiO2陶瓷基片为衬底,基片面积大大缩小,采用特殊的工艺处理,耐湿性和粘覆性均大大提高。使用烧结工艺,在衬底集片上烧结5个9的工业纯金制成的梳妆电极,氯化锂感湿混合液使用新产品添加剂和固有成份混合经过特殊的老化和涂覆工艺后,湿敏基片的使用寿命和长期稳定性大大提高,特别是耐温性达到了-40℃-120℃,以多片湿敏元件组合的独特工艺,是传感器感湿范围为1%RH-98%RH,具备了15%RH范围以下的测量性能,漂移曲线和感湿曲线均实现了较好的线性化水平,使湿度补偿得以方便实施并较容易地保证了宽温区的测湿精度。采用循环降温装置封闭系统,先对对被测气体采样,然后降温检测并确保绝对湿度的恒定,使探头耐温范围提高到600℃左右,大大增强了高温下测湿的功能。成功解决了“高温湿度测量”这一湿度测量领域难题。现在,不采用任何装置直接测量150度以内环境中的湿度的分体式高温型温湿度传感器JCJ200W已成功应用在木材烘干,高低温试验箱等系统中。同时,JCJ200Y产品能耐温高达600度,也已成功应用在印染行业纱锭自动烘干系统、食品自动烘烤系统、特殊陶瓷材料的自动烘干系统、出口大型烘干机械等方面,并表现出良好的效果,为国内自动化控制域填补了高温湿度测量的空白,为我国工业化进程奠定了一定基础。传感器论文: 低温下压阻式压力传感器性能的实验研究 Experimental Study On Performance Of Pressure Transducer At Low Temperature .... 灌区水位测量记录设备及安装技术 摘要:水位测量施测简单直观,易于为广大用水户所接受而且便于自动观测,因而在灌区水量计量乃至在整个灌区信息化建设中都占有十分重要的地位。目前我国灌区中水位监测采用的传感器依据输出量的不同主要分为模拟传感.... 主成分分析在空调系统传感器故障检测与诊断中的应用研究 摘要 本文阐述了用主成分分析法进行系统测量数据建模和传感器故障检测、故障诊断、故障重构及确定最优主成分数的原理。用主成分分析法对空调监测系统中的四类传感器故障进行检测方法。结果表明:主成.... 透光脉动传感器的影响因素研究 摘要:通过试验研究和总结生产应用经验,对透光脉动传感器的影响因素进行了分析,并提出了其最优工作参数。光源宜选择波长为860nm的激光二极管;传感器的管径根据使用目的确定,试验研究一般选用1~3mm,生.... 生物传感器的研究现状及应用 摘要:简述了生物传感器尤其是微生物传感器近年来在发酵工业及环境监测领域中的研究与应用,对其发展前景及市场化作了预测及展望。生物电极是以固定化生物体组成作为分子识别元件的敏感材料,与氧电极、膜电极和燃料.... 方向盘转角传感器接口 汽车环境对电子产品而言是非常苛刻的:任何连接到12V电源上的电路都必须工作在9V至16V的标称电压范围内,其它需要迫切应对的问题包括负载突降、冷车发动、电池反向、双电池助推、尖峰信号、噪声和极宽的温度.... 用于电容传感器接口的模拟前端元件 因为采用了传统机械开关,用户使用电容传感器接口的方式直接与各种工作条件下(可靠性)接触传感器的响应度(员敏度)梧关。本文将介绍一些通用电容传感器模拟前端测量方法 灵敏度 电容传感器的灵敏度是由其物理结.... 智能传感器与现代汽车电子 现代汽车电子从所应用的电子元器件到车内电子系统的架构均已进入了一个有本质性提高的新阶段。其中最有代表性的核心器件之一就是智能传感器。 一、汽车电子操控和安全系统谈起 近几年来我国汽车工业增长迅速,发展.... 霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。本文简要介绍其工作原理, 产品特性及其典型应用。 霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。 霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~150℃。 按照霍尔器件的功能可将它们分为: 霍尔线性器件 和 霍尔开关器件 。前者输出模拟量,后者输出数字量。 按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。 一 霍尔器件的工作原理 在磁场作用下,通有电流的金属片上产生一横向电位差如图1所示: 这个电压和磁场及控制电流成正比: VH=K╳|H╳IC| 式中VH为霍尔电压,H为磁场,IC为控制电流,K为霍尔系数。 在半导体中霍尔效应比金属中显著,故一般霍尔器件是采用半导体材料制作的。 用霍尔器件,可以进行非接触式电流测量,众所周知,当电流通过一根长的直导线时,在导线周围产生磁场,磁场的大小与流过导线的电流成正比,这一磁场可以通过软磁材料来聚集,然后用霍尔器件进行检测,由于磁场与霍尔器件的输出有良好的线性关系,因此可利用霍尔器件测得的讯号大小,直接反应出电流的大小,即: I∞B∞VH 其中I为通过导线的电流,B为导线通电流后产生的磁场,VH为霍尔器件在磁场B中产生的霍尔电压、当选用适当比例系数时,可以表示为等式。霍尔传感器就是根据这种工作原理制成的。 二 霍尔传感器的应用 1 霍尔接近传感器和接近开关 在霍尔器件背后偏置一块永久磁体,并将它们和相应的处理电路装在一个壳体内,做成一个探头,将霍尔器件的输入引线和处理电路的输出引线用电缆连接起来,构成如图1所示的接近传感器。它们的功能框见图19。(a)为霍尔线性接近传感器,(b)为霍尔接近开关。 图1 霍尔接近传感器的外形图 a)霍尔线性接近传感器 (b)霍尔接近开关 图2 霍尔接近传感器的功能框图 霍尔线性接近传感器主要用于黑色金属的自控计数,黑色金属的厚度检测、距离检测、齿轮数齿、转速检测、测速调速、缺口传感、张力检测、棉条均匀检测、电磁量检测、角度检测等。 霍尔接近开关主要用于各种自动控制装置,完成所需的位置控制,加工尺寸控制、自动计数、各种计数、各种流程的自动衔接、液位控制、转速检测等等。霍尔翼片开关 霍尔翼片开关就是利用遮断工作方式的一种产品,它的外形如图20所示,其内部结构及工作原理示于图21。 图3 霍尔翼片开关的外形图 2 霍尔齿轮传感器 如图4所示,新一代的霍尔齿轮转速传感器,广泛用于新一代的汽车智能发动机,作为点火定时用的速度传感器,用于ABS(汽车防抱死制动系统)作为车速传感器等。 在ABS中,速度传感器是十分重要的部件。ABS的工作原理示意图如图23所示。图中,1是车速齿轮传感器;2是压力调节器;3是控制器。在制动过程中,控制器3不断接收来自车速齿轮传感器1和车轮转速相对应的脉冲信号并进行处理,得到车辆的滑移率和减速信号,按其控制逻辑及时准确地向制动压力调节器2发出指令,调节器及时准确地作出响应,使制动气室执行充气、保持或放气指令,调节制动器的制动压力,以防止车轮抱死,达到抗侧滑、甩尾,提高制动安全及制动过程中的可驾驭性。在这个系统中,霍尔传感器作为车轮转速传感器,是制动过程中的实时速度采集器,是ABS中的关键部件之一。 在汽车的新一代智能发动机中,用霍尔齿轮传感器来检测曲轴位置和活塞在汽缸中的运动速度,以提供更准确的点火时间,其作用是别的速度传感器难以代替的,它具有如下许多新的优点。 (1)相位精度高,可满足°曲轴角的要求,不需采用相位补偿。 (2)可满足度曲轴角的熄火检测要求。 (3)输出为矩形波,幅度与车辆转速无关。在电子控制单元中作进一步的传感器信号调整时,会降低成本。 用齿轮传感器,除可检测转速外,还可测出角度、角速度、流量、流速、旋转方向等等。 图4 霍尔速度传感器的内部结构 1. 车轮速度传感器2.压力调节器3.电子控制器 2. 图4 ABS气制动系统的工作原理示意图 3 旋转传感器 按图5所示的各种方法设置磁体,将它们和霍尔开关电路组合起来可以构成各种旋转传感器。霍尔电路通电后,磁体每经过霍尔电路一次,便输出一个电压脉冲。 (a)径向磁极(b)轴向磁极(c)遮断式 图5 旋转传感器磁体设置 由此,可对转动物体实施转数、转速、角度、角速度等物理量的检测。在转轴上固定一个叶轮和磁体,用流体(气体、液体)去推动叶轮转动,便可构成流速、流量传感器。在车轮转轴上装上磁体,在靠近磁体的位置上装上霍尔开关电路,可制成车速表,里程表等等,这些应用的实例如图25所示。 图6的壳体内装有一个带磁体的叶轮,磁体旁装有霍尔开关电路,被测流体从管道一端通入,推动叶轮带动与之相连的磁体转动,经过霍尔器件时,电路输出脉冲电压,由脉冲的数目,可以得到流体的流速。若知管道的内径,可由流速和管径求得流量。霍尔电路由电缆35来供电和输出。 图6 霍尔流量计 由图7可见,经过简单的信号转换,便可得到数字显示的车速。 利用锁定型霍尔电路,不仅可检测转速,还可辨别旋转方向,如图27所示。 曲线1对应结构图(a),曲线2对应结构图(b),曲线3对应结构图(c)。 图7 霍尔车速表的框图 图8 利用霍尔开关锁定器进行方向和转速测定 4 在大电流检测中的应用 在冶金、化工、超导体的应用以及高能物理(例如可控核聚变)试验装置中都有许多超大型电流用电设备。用多霍尔探头制成的电流传感器来进行大电流的测量和控制,既可满足测量准确的要求,又不引入插入损耗,还免除了像使用罗果勘斯基线圈法中需用的昂贵的测试装置。图9示出一种用于DⅢ-D托卡马克中的霍尔电流传感器装置。采用这种霍尔电流传感器,可检测高达到300kA的电流。 图9(a)为G-10安装结构,中心为电流汇流排,(b)为电缆型多霍尔探头,(c)为霍尔电压放大电路。 (a)G�10安装结构(b)电缆型多霍尔探头(c)霍尔电压放大电路 图9 多霍尔探头大电流传感器 图10霍尔钳形数字电流表线路示意图 图11霍尔功率计原理图 (a)霍尔控制电路 (b)霍尔磁场电路 图12霍尔三相功率变送器中的霍尔乘法器 图13霍尔电度表功能框图 图14霍尔隔离放大器的功能框图 5 霍尔位移传感器 若令霍尔元件的工作电流保持不变,而使其在一个均匀梯度磁场中移动,它输出的霍尔电压VH值只由它在该磁场中的位移量Z来决定。图15示出3种产生梯度磁场的磁系统及其与霍尔器件组成的位移传感器的输出特性曲线,将它们固定在被测系统上,可构成霍尔微位移传感器。从曲线可见,结构(b)在Z<2mm时,VH与Z有良好的线性关系,且分辨力可达1μm,结构(C)的灵敏度高,但工作距离较小。 图15 几种产生梯度磁场的磁系统和几种霍尔位移传感器的静态特性 用霍尔元件测量位移的优点很多:惯性小、频响快、工作可靠、寿命长。 以微位移检测为基础,可以构成压力、应力、应变、机械振动、加速度、重量、称重等霍尔传感器。 6 霍尔压力传感器 霍尔压力传感器由弹性元件,磁系统和霍尔元件等部分组成,如图16所示。在图16中,(a)的弹性元件为膜盒,(b)为弹簧片,(c)为波纹管。磁系统最好用能构成均匀梯度磁场的复合系统,如图29中的(a)、(b),也可采用单一磁体,如(c)。加上压力后,使磁系统和霍尔元件间产生相对位移,改变作用到霍尔元件上的磁场,从而改变它的输出电压VH。由事先校准的p~f(VH)曲线即可得到被测压力p的值。 图16 几种霍尔压力传感器的构成原理 7 霍尔加速度传感器 图17示出霍尔加速度传感器的结构原理和静态特性曲线。在盒体的O点上固定均质弹簧片S,片S的中部U处装一惯性块M,片S的末端b处固定测量位移的霍尔元件H,H的上下方装上一对永磁体,它们同极性相对安装。盒体固定在被测对象上,当它们与被测对象一起作垂直向上的加速运动时,惯性块在惯性力的作用下使霍尔元件H产生一个相对盒体的位移,产生霍尔电压VH的变化。可从VH与加速度的关系曲线上求得加速度。 图17 霍尔加速度传感器的结构及其静态特性 三 小结 目前霍尔传感器已从分立元件发展到了集成电路的阶段,正越来越受到人们的重视,应用日益广泛。

单片机论文文献传感器

楼上的,人家说要外文、

单片机的参考文献内容

参考文献是文章或著作等写作过程中参考过的文献,以下是我为大家整理的单片机的参考文献内容,希望对你有所帮助!

单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。

单片机的参考文献

[1]陈堂敏.刘焕平主编.单片机原理与应用.北京:北京理工大学出版社,2007.

[2]沈美明.温动蝉编著.IBM-PC汇编语言程序设计.北京:清华大学出版社,1994.

[3]张仰森等编.微型计算机常用软硬件技术速查手册.北京:北京希望电脑公司,1994.

[4]江修汗等编.计算机控制原理与应用.西安:西安电子科技大学出版社,1999.

发展历史

单片机(Microcontrollers)诞生于1971年,经历了SCM、MCU、SoC三大阶段,早期的SCM单片机都是8位或4位的。其中最成功的是INTEL的8051,此后在8051上发展出了MCS51系列MCU系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。

而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。高端的32位Soc单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端的型号也只有10美元。

当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。

主要阶段

早期阶段

SCM即单片微型计算机(Microcontrollers)阶段,主要是寻求最佳的单片形态嵌入式系统的最佳体系结构。“创新模式”获得成功,奠定了SCM与通用计算机完全不同的发展道路。在开创嵌入式系统独立发展道路上,Intel公司功不可没。

中期发展

MCU即微控制器(Micro Controller Unit)阶段,主要的技术发展方向是:不断扩展满足嵌入式应用时,对象系统要求的各种外围电路与接口电路,突显其对象的智能化控制能力。它所涉及的领域都与对象系统相关,因此,发展MCU的重任不可避免地落在电气、电子技术厂家。从这一角度来看,Intel逐渐淡出MCU的发展也有其客观因素。在发展MCU方面,最著名的厂家当数Philips公司。

Philips公司以其在嵌入式应用方面的巨大优势,将MCS-51从单片微型计算机迅速发展到微控制器。因此,当我们回顾嵌入式系统发展道路时,不要忘记Intel和Philips的历史功绩。

当前趋势

SoC嵌入式系统(System on Chip)式的独立发展之路,向MCU阶段发展的重要因素,就是寻求应用系统在芯片上的最大化解决,因此,专用单片机的发展自然形成了SoC化趋势。随着微电子技术、IC设计、EDA工具的发展,基于SoC的单片机应用系统设计会有较大的发展。因此,对单片机的理解可以从单片微型计算机、单片微控制器延伸到单片应用系统。

早期发展

1971年intel公司研制出世界上第一个4位的微处理器;Intel公司的霍夫研制成功世界上第一块4位微处理器芯片Intel 4004,标志着第一代微处理器问世,微处理器和微机时代从此开始。因发明微处理器,霍夫被英国《经济学家》杂志列为“二战以来最有影响力的`7位科学家”之一。

1971年11月,Intel推出MCS-4微型计算机系统(包括4001 ROM芯片、4002 RAM芯片、4003移位寄存器芯片和4004微处理器)其中4004(下图)包含2300个晶体管,尺寸规格为3mm×4mm,计算性能远远超过当年的ENIAC,最初售价为200美元。

1972年4月,霍夫等人开发出第一个8位微处理器Intel 8008。由于8008采用的是P沟道MOS微处理器,因此仍属第一代微处理器。

1973年intel公司研制出8位的微处理器8080;1973年8月,霍夫等人研制出8位微处理器Intel 8080,以N沟道MOS电路取代了P沟道,第二代微处理器就此诞生。

主频2MHz的8080芯片运算速度比8008快10倍,可存取64KB存储器,使用了基于6微米技术的6000个晶体管,处理速度为(Million Instructions Per Second )。

1975年4月,MITS发布第一个通用型Altair 8800,售价375美元,带有1KB存储器。这是世界上第一台微型计算机。

1976年intel公司研制出MCS-48系列8位的单片机,这也是单片机的问世。

Zilog公司于1976年开发的Z80微处理器,广泛用于微型计算机和工业自动控制设备。当时,Zilog、Motorola和Intel在微处理器领域三足鼎立。

20世纪80年代初,Intel公司在MCS-48系列单片机的基础上,推出了MCS-51系列8位高档单片机。MCS-51系列单片机无论是片内RAM容量,I/O口功能,系统扩展方面都有了很大的提高。

【拓展内容】

电气自动化单片机论文

【摘要】

过去的以教师为中心的单片机课程教学,由于课程的综合性太强使得学生在学习过程中对很多知识点难以接受,我们通过对本门课程项目式和模块化改革的结合,合理安排教学内容和教学资源,降低初学者入门门槛,引导学生以兴趣为导向,极大的提高了学习者主动获取知识的意愿,明显提高了本课程的教学效果。

【关键词】 模块化教学;项目驱动;教学改革

“单片机技术”课程在本科院校里是电子信息类专业的必修课程,这门课程是以电子技术基础,编程语言,计算机理论等知识为基础的一门专业性和应用性很强的综合性课程。基于以上特点,对于初学者来说对单片机的理论知识的正确把握往往感觉比较吃力,给初学者造成学习困难。但是经过我们多年的教学经验,这类有很强的应用性和实用性的课程,以项目式教学更能推动学生的学习兴趣,同时模块化的教学设计更能降低初学者入门的门槛。两者相结合教学方法的采用对本门课程的教学效果提升明显.

1、单片机项目驱动教学法

以往的单片机教学模式是以教师为中心,老师在课堂上按照教材,或者教学大纲按部就班的讲授理论原理和知识点;以课堂教学为中心,学生学习为被动接受,由于知识点综合性比较强,理论太深奥使得学生往往学习兴趣不高,同时缺乏动手实践机会,教学效果一般不够理想。以项目驱动的教学法是学生为主体,教师为主导,以实践应用为根本目标,围绕具体的项目构建教学内容体系,通过师生共同参与完成一个具体的项目而展开的教学活动。注重的不是最终的结果,而是项目完成的过程,在项目的教学实施过程中,学生按需学习,亲身实践,学生在项目的实践过程中,理解知识和掌握技能,学习成为一个参与的创造实践活动,培养分析和解决问题的能力。引进单片机项目教学方式打破了原有的教学组织安排,以项目的开发步骤作为教学内容,将课程的内容分解为一个个小项目,从项目引入到项目解析再到任务分解然后到知识点讲解最后知识点应用,将原教学方案里单片机的知识点穿插到具体项目开发的过程中。这里面包含了软、硬平台搭建到项目展开再到项目完成的一系列教学活动,使学生从被动学习变为主动学习,按照这种方法我们将以往教学体系中的知识内容变化为若干个工程项目,然后围绕着这些工程项目任务的展开同时开展教学,让学生以具体工作目标的展开来进行教学环节的工作。有利于激发学生的学习积极性和创新能力,调动了学生的学习积极性。在这整个过程中,学生能很好的把握课程的知识要求,在体验创新与探索的过程中,又培养了学生们的分析解决问题的能力及团队协作能力等。

2、模块化的单片机教学方法

任何复杂的系统都是由具有完整基本功能的功能模块电路组成,单片机应用系统也是如此,一般由cpu系统、中断系统、I/O口等。同时任何复杂的电路系统都可以分解为多个具备单一功能的模块电路,按照这个思路,学习单片机系统我们也可以从单片机的功能模块电路入手,我们根据学生的认知规律,和学习单片的一般原理的方法,机将单片机教学模块分成几个部分,这里面每个部分有自己的专用模块[3]。比如程序功能部分、硬件部分;在对硬件电路设计部分进行模块化设计,将单片机的各个功能模块以独立的原理图形式出现,我们把单片机个硬件按功能分为了键盘模块、数码管显示模块、传感器控制模块、模数转换模块、显示模块、通信模块等几大模块,如图1。各个模块通过面包板上预留的连接器与系统主板进行连接,然后用排线组合成所需要的系统。在教学过程中,要不断收集遇到的各种硬件功能模块电路,弄清它们的工作原理、性能及特性、特定的功能及使用方法,把系统化整为零,建立起自己的硬件模块库。指导学生学会搜集、分析别人的设计案例、论文和相关书籍中的功能模块电路,不断地充实自己的功能模块电路库,日积月累,学生就会觉得自己的单片机系统设计能力越来越强。最后在进行模块分解时,各模块功能尽可能专一,联系尽可能简单,使模块独立性强,方便教学实用的模块。

3、总结

新兴本院校定位应用型教学型高校,以培应用型、创新型人才为目标。在此基础上的以项目驱动法教学和模块化教学为主线,以实际应用为培养为目标的“单片机技术”课程教学改革思路,按照这个方式能使学生在项目模块化的环节中一步一个台阶。此教学法脱离了枯燥无味的说教模式,使学生在具体的设计项目的工作环境里轻松自在的状态来投入到学习中,思维能力、动手能力、学习能力以及团队协作能力都有了明显提高,模块化学习过程中所积累的各种电路系统模块也促进构建成学生进行科技创新实践、参加大学生创新创业训练的重要模块库,激发了学生学习的主动性和成就感。法国文化教育学家斯普朗格曾言:教育的最终目的不是传授已有的东西,而是要把人的创造力量诱导出来。本课程的教学改革正是朝着这个方向前进。

【1】V. Yu. Teplov,A. V. Anisimov. Thermostatting System Using a Single-Chip Microcomputer and Thermoelectric Modules Based on the Peltier Effect[J] ,2002 【2】 Yeager to troubleshoot your electronic scale[J].. Powder and Bulk Engineering. 1995 【3】Meehan Joanne,Muir in Merseyside SMEs:Benefits and barriers[J].. TQM Journal. 2008 [1] Behzad of Analog CMOS Integrated Circuits[M]. . 2001 [2] Rhee of high-performance CMOS charge pumps inphase-locked loops. IEEE International Symposium on Cir-cuits and Systems. 1999 [3] Todd Charles design techniques for delay cell based VCOs and frequency synthesizers[C]//PHDthesis. . 1998 [4] George Lee,Karina Ng,Edmond of ring oscillator based voltage controlled oscillator. Project Final Report[R]. 2005 [5] T. C. Weigandt,B. Kim,and P. R. of Timing Jitter in CMOS Ring Oscillators. IEEE International Symposium on Circuits and Systems. 1994

单片机的参考文献1[1]田闯,.直流电源屏电池单片机监测系统[J].西铁科技,2001,(1).[2]陈国先,.语音芯片与PIC单片机的应用接口[J].福建信息技术教育,2005,(2).[3]孙玉艳,.实现PC机与单片机的数据通信与控制[J].广东白云职业技术学院广州白云工商高级技工学校学报,2002,(4).[4]陈兴祥,.MC7705芯片对单片机的动态掉电保护[J].宁夏机械,2002,(3).[5]田志华,.电池供电单片机的低功耗设计[J].宁夏机械,2002,(4).[6]李学军,.如何用MCS-51单片机扩展串口进行通讯[J].宁夏机械,2003,(2).[7]李海涛,.关于如何提高单片机系统可靠性的探讨[J].宁夏机械,2005,(3).[8]高彦波,李岩,毕晓燕,.PC与单片机之间的远距离并行通讯卡[J].电站设备自动化,2001,(3).[9]李艳红,.单片机I/O口不宜用作直接驱动出口[J].电站设备自动化,2003,(2).[10]彭同明,杨少华,.“单片机原理及应用”课程改革的分析[J].武汉电力职业技术学院学报,2004,(1).[11]宋青松,张旭东,王立贤,眭众国,.MCS—96系列单片机与IBM-PC系列微机之间通讯的实现[J].电站设备自动化,2001,(1).[12]顾勇,*,.基于MC68HC908单片机的伸缩自动门控制系统[J].通信与广播电视,2003,(4).[13]桂绍勇,彭同明,何新洲,.基于MEGA103单片机的数控系统研制[J].武汉电力职业技术学院学报,2005,(4).[14]李占芳,黄嘉兴,.面向煤炭应用型人才的单片机课程教学改革探索[J].价值工程,2011,(7).[15]石明江,顾亚雄,张禾,.单片机原理与应用课程教学改革与实践[J].计算机教育,2011,(6).[16]翟永前,蒋芳芳,.基于MSP430单片机的智能数字电压表设计[J].化工自动化及仪表,2011,(3).[17]许超,吴新杰,张丹,.基于Proteus和Keil的单片机课程教学改革[J].辽宁大学学报(自然科学版),2011,(1).[18]李林,.基于单片机的野外作业移动库房安防系统设计[J].工矿自动化,2011,(4).[19]李林,王心刚,.FPGA与单片机在RLC测量系统设计中的应用[J].化工自动化及仪表,2011,(3).[20]李玮华,杨秦建,.基于单片机的多轴运动数控系统跟随误差补偿器的设计[J].机床与液压,2011,(4).单片机的参考文献2[1]李广弟等,单片机基础北京航空航天出版社,[2]楼然苗等,51系列单片机设计实例北京航空航天出版社,[3]唐俊翟等单片机原理与应用冶金工业出版社,[4]刘瑞新等单片机原理及应用教程机械工业出版社,[5]吴国经等单片机应用技术*电力出版社,[6]李全利,迟荣强编著单片机原理及接口技术高等教育出版社,[7]侯媛彬等,凌阳单片机原理及其毕业设计精选2006年,科学出版社[8]罗亚非,凌阳十六位单片机应用基础2003年北京航空航天大学出版社[9]北京北阳电子有限公司,061A凌阳单片机及其附带光盘2003年[10]张毅刚等,MCS-51单片机应用设计,哈工大出版社,2004年第2版[11]霍孟友等,单片机原理与应用,机械工业出版社,[12]霍孟友等,单片机原理与应用学习概要及题解,机械工业出版社,[13]许泳龙等,单片机原理及应用,机械工业出版社,[14]马忠梅等,单片机的C语言应用程序设计,北京航空航天大学出版社,2003修订版[15]薛均义张彦斌虞鹤松樊波,凌阳十六位单片机原理及应用,2003年,北京航空航天大学出版社单片机的参考文献3[1]王青云.基于单片机的温度测量系统[J]2010,(05).[2]彭立,张建洲,王少华.自适应温度控制系统的研制[J]东北师大学报(自然科学版),1994,(01).[3]JackShandle.即将来临的32位浪潮——ARM构架在32位微控制器领域的应用[J]单片机与嵌入式系统应用,2004,(03).[4]刘侃,张永泰,刘洛琨.ARM程序设计优化策略与技术[J]单片机与嵌入式系统应用,2004,(04).[5]何立民.从Cygnal80C51F看8位单片机发展之路.单片机与嵌入式系统应用[M],2002年,第5期:P5~8[6]夏继强.单片机实验与实践教程.北京:北京航空航天大学出版社,2001[7]徐惠民、安德宁.单片微型计算机原理接口与应用.第1版[M].北京:北京邮电大学出版社,1996[8]张媛媛,何怡刚,徐雪松.基于C8051F020的温湿度控制箱设计[J]国外电子元器件,2004,(10).[9]江孝国,王婉丽,祁双喜.高精度PID温度控制器[J]电子与自动化,2000,(05).[10]于洋.高低温试验箱微机自动控制系统的设计[J]工业仪表与自动化装置,2003,(02).[11]沈聿农.传感器及应用技术[M].北京:化学工业出版社,2001.[12]范晶彦.传感器与检测技术应用[M].北京:机械工业出版社,2005.[13]王俊峰,孟令启.现代传感器应用技术[M].北京:机械工业出版社,2007.[14]金发庆.传感器技术与应用[M].北京:机械工业出版社,2006.[15] Goldman JM, Petterson MT, Kopotic RJ, Barker extraction pulse oximetry[J].J Clin Monit ;16(7):7 5-83.[16] D. Tulone. On the feasibility of global time estimation under isolation conditions in wireless sensor networks.[17]王春晖.环境试验箱中制冷系统的原理分析及优化概述[J]电子质量,2003,(12)[18]李建中.单片机原理及应用[M]西安电子科技大学出版社,2010.(02)[19]周航慈.单片机应用程序设计技术[M].北京:北京航空航大大学出版社,2005.[20]何立民.单片机高级教程[M].北京:北京航空航天大学出版社,2001.[21]夏继强.单片机实验与实践教程[M].北京:北京航空航天大学出版社,2001.[22]徐惠民,安德宁.单片微型计算机原理接口与应用[M].北京:北京邮电大学出版社,1996.[23]李广第.单片机基础[M].北京:北京航空航天大学出版社,1999.[24]赵晓安.MCS-51单片机原理及应用[M].天津:天津大学出版社,2001.[25]杨清梅,孙建民.传感器与测试技术[M].哈尔滨:哈尔滨工程大学出版社,2005.[26]范晶彦.传感器与检测技术应用[M].北京:机械工业出版社,2005.[27]王俊峰,孟令启.现代传感器应用技术[M].北京:机械工业出版社,2007.[28]宋文绪,杨帆.自动检测技术[M].北京:高等教育出版社,2000.单片机的参考文献3篇扩展阅读单片机的参考文献3篇(扩展1)——单片机课程报告3篇单片机课程报告1一、 实训目的和要求:(1) 熟练掌握keil c51集成开发环境的使用方法(2) 熟悉keil c51集成开发环境调试功能的使用和dp?单片机仿真器、编程器、实验仪三合一综合开发*台的使用。(3) 利用单片机的p1口作io口,学会利用p1口作为输入和输出口。(4) 了解掌握单片机芯片的烧写方法与步骤。(5) 学会用单片机汇编语言编写程序,熟悉掌握常用指令的功能运用。(6) 掌握利用protel 99 se绘制电路原理图及pcb图。(7) 了解pcb板的制作腐蚀过程。二、实训器材:pc机(一台)pcb板(一块)520ω电阻(八只)10k电阻(一只)led发光二极管(八只)25v 10μf电容(一只)单片机ic座(一块)at89c51单片机芯片(一块)热转印机(一台)dp?单片机仿真器、编程器、实验仪三合一综合开发*台(一台)三、实训步骤:(2)将流水灯程序编写完整并使用tkstudy ice调试运行。(4)打开电源,将编写好的程序运用tkstudy ice进行全速运行,看能否实现任务要求。(6)制板。首先利用protel 99 se画好原理图,根据原理图绘制pcb图,然后将绘制好的pcb布线图打印出来,经热转印机转印,将整个布线图印至pcb板上,最后将印有布线图的pcb板投入装有三氯化铁溶液的容器内进行腐蚀,待pcb板上布线图外的铜全部后,将其取出,清洗干净。(7)焊接。将所给元器件根据原理图一一焊至pcb板相应位置。(8)调试。先把at89c51芯片插入ic座,再将+5v电源加到制作好的功能板电源接口上,观察功能演示的整个过程(看能否实现任务功能)。(流水灯控制器原理图)四、流水灯控制器程序的主程序:org 0000hsjmp startorg 0030hstart: mov a,#0ffhmov r0,#1chmov r2,#12hclr cloop1: acall delaydjnz r0,loop,尽在。单片机课程报告2通过为期一周的单片机实训,是我们对这门课有了许多新的了解,弥补了在课堂上学习的不足。相信这对我们以后的学习和工作都会有很大的帮助。我们一定要在最短的时间里对这些不足加以改正!首先,在这次试训中我被单片机强大的功能所震撼,以前在课堂上完全没有能理解可编程单片机的优越性。这次通过实体仿真软件等辅助软件的共同效果,是这次试训有了鲜明的活力。换是我们认识到这次试训不仅仅是一个软件的应用,更多的是使我们认识到学习到很多在课堂上无法得到的东西。特别是protues软件的功能是我们了解了当今开发系统的新方向,简直太不可思议啦!单片机作为一种最简单的软件,与我们的日常生活息息相关,了解一些单片机程序的简单录入是非常必要的。如:LED显示器、键盘和显示器的应用和原理。在被刺实训中我们每个人通过一个八位流水灯的制作,使我们深深地体会到了单片机在现实生活中的'小小应用,既增强了我们的好奇心,又巩固了我们的理论知识。更让我们体会到了单片机手动的开始*台的完善与成熟。只要你有想法,单片机就有可能让他成为现实。这里我学习完protues软件后的第一感觉是,虽然这软件工作不稳定,但是会有相当不错的效果出来。这对我以后的工作一定会有帮助的。在这次试训中不仅只对单片机编程有了新的认识,还对整个单片机的开发*台都有了一厅的了解,这是一笔不错的收获。通过这几天的试训,使我的感触很深,真实“条条大路通罗马”,要达到目的,不同的人就有不同的方法。只要你的方法不错!五花八门都可以,而且是各有特色。走出来的结果都有各自的独到之处。在编程中“简”字贯穿于整个程序设计中,越简单越好,毕竟单片机留给用户的资源是有限的,所以我们要充分利用这些资源,达到更好的效果,这些是我们在以后的学习生活中应值得注意的地方。在试训中有苦有甜,当我们为一个很难攻破的程序找出路时,心情烦躁,感觉自己很不可理喻,当程序一点一点编好后,自己从心底感觉到一点小小的安慰,看着自己的成果。感觉很欣慰,有一丝丝的甜意,几天的实训使自己的思维逻辑也有了小小的进步。单片机实训报告一、实验目的和要求。二、实验仪器设备。三、实验设计及调试:(一)实验内容。(二)实验电路:画出与实验内容有关的简单实验电路。(三)实验设计及调试步骤:(1 )对实验内容和实验电路进行分析,理出完成实验的设计思路。(2)列出程序设计所需的特殊标志位、堆栈、内部ram、工作寄存器等资源的分配列表,分配列表时注意考虑资源在程序执行过程可能会出现冲突的问题。(3)画出程序设计流程图,包括主程序和各子程序流程图。(4)根据(2)、(3)的内容写出实验程序。(5)调试程序(可以使用模拟仿真器)。a、根据程序确定调试目的,即调试时所需观察的内容结果。b、根据各调试目的分别选择调试所需的方法,如单步、断点等命令,分别列出各调试方法中所需要关注记录的内容。c、调试程序,按各种调试方法记录相应的内容。d、分析调试记录的内容和结果,找出程序中可能出错的地方,然后修改程序,继续调试、记录、分析,直到调试成功。(四)实验调试过程中所遇到的问题、解决问题的思路和解决的方法。单片机课程报告3这周我们进行了单片机实训,一周中我们通过七个项目 :P 口输入输出2:继电器控制3音频控制4:子程序设计5:字符碰头程序设计6:外部中断7:急救车与交通信号灯,练习编写了子程序、熟悉了人工会汇编方法、设计和调试方法。学习了P 口、IO端口、外部中断技术的基本的使用方法及输入输出端口控制方法。而且初步掌握了大型程序的调试方法。实训中首先对MCS-5 单片机开发试验系统键盘监控操作、使用及配套的仿真软件的应用进行了熟悉和了解。该实验仪提供了许多基本实验电路和实验插孔,对于基本的实验只需要少量连线就可以进行,减少了繁琐的实验连线过程,以减轻工作量,突出实验的内涵,达到培养实际动手能力,加强对实验电路的理解。通过本实验仪器进一步了解了单片机存储器的组织结构、单片机片内片外数据存储器读写方法、工作寄存器的应用、单片机对简单编程及调试方法进一步的掌握了调试软件的操作方法和编程环境。编写并调试完成一个实验项目总概括起来有五大步骤: 、立项目2、查找数据3、画流程图、4根据流程图进行编程5、编完后进行修改、调试、编译等。最终要达到会写、会做、会说,编写开始几个项目的程序还比较顺利,到了编写LED灯碰头程序、字符碰头程序、急救车与交通灯呈程序时遇到了好多困难,本来还以为编程会很简单的,等到实际操作起来才知道它的复杂性,没有想像中的那么得心应手,理解流程是有思维的前提.不过经过我们最后在全组人竭尽全力,老师的精心指导下,花费的时间与精力终于没有白费,效果渐渐地出现了.这是我们共同努力的结果,在享受我们成果之时,不得不感慨单片机的重要性与高难度性,所以为期一周的单片机课程设计没有浪费,我们从中学到了很多知识.,也让我们对单片机有了更深一步的了解.虽然最后结果是出来了,可这与老师的精心指导是分不开的。这次实训虽然其中会有些错误和失败,但总的来说是受益匪浅,在运用中发现问题,解决问题,就是最大的收获。专心做自己的事,是一种乐趣;互相交流,是大家一起进步的必要过程;上网查阅资料,是获得所需信息的有效途径。我想,这些练习和经验都将是我以后最宝贵的财富!

机器人传感器论文参考文献

据新华社消息,我国目前已基本掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,开发出喷漆、弧焊、点焊、装配、搬运等机器人。“九五”期间我国工业机器人的需求量以每年30%以上的速度增长。2000年,我国工业机器人的拥有量约为3500台,其中以点焊、弧焊、喷漆、注塑、装配、搬运、冲压等各类机器人为主,销售额为6.7亿元。据专家对国内542家用户以及汽车、电子电器、工程机械3个行业的部分用户进行的统计分析,就全国而言,弧焊、点焊、装配、喷涂机器人应用的最多;其次是搬运、上下料(冲压、压铸、铸锻、注塑等用的大多是上下料机器人);再次是包装、码垛、拆垛机器人和密封涂胶机器人;其他机器人用量很少。就行业而言,汽车行业以焊接、喷涂、涂胶作业较多,冲压、搬运、装配次之;电子电器行业集中在装配,如华录一家就用了近300台,其次是搬运和喷涂;工程机械行业集中用于弧焊,喷涂其次。此外包装、码垛、拆垛机器人目前主要用于石化、轻纺和烟草行业。据对724家用户的统计分析,大机械行业(机械制造和汽车工业)用户共有467家,占用户的65%;电子电器和邮电通讯业用户有92家,占用户的13%。可见,目前国内工业机器人主要应用在汽车、机械制造等行业。机器人及其自动化成套装备是指以机器人为核心,以信息技术和网络技术为媒介,将所有设备连接到一起而形成的大型自动化生产线。机器人及其自动化成套装备的拥有量和水平是衡量一个国家制造业综合实力的重要标志之一。机器人及其自动化成套装备已成为目前国内外极受重视的高新技术应用领域。目前,国外机器人自动化生产线成套装备已成为自动化成套装备的主流以及未来自动化生产线的发展方向。国外汽车行业、电子和电器行业、物流与仓储行业(企业级)等已大量使用机器人自动化生产线, 从而保证了其产品的质量和生产的高效。典型的如机器人有大型轿车壳体冲压自动化系统技术和成套装备、大型机器人车体焊装自动化系统技术和成套装备、电子和电器等的机器人柔性自动化装配及检测成套技术和装备、机器人整车及发动机装配自动化系统技术和成套装备、AGV物流与仓储自动化成套技术及装备等,这些机器人设备的使用大大推动了这些行业的快速发展,提升了制造技术的先进性。当前,国外将机器人自动化生产线成套装备的共性技术作为重点开发内容:1.大型自动化生产线的设计开发技术。利用CAX及仿真系统等多种高新技术和设计手段,快速设计和开发机器人大型自动化生产线,并进行数字化验证。2.自动化生产线“数字化制造”技术。虚拟制造技术发展很快,国外几家早期从事仿真软件的开发公司已经推出可进入实用的所谓“数字化工厂”(DMF)商品化软件。国外企业已利用这类软件建立起自己的产品制造工艺过程信息化平台,再与本企业的资源管理信息化平台和车身产品设计信息平台结合,构成支持本企业产品完整制造过程生命周期的信息化平台。自动化生产线的设计、制造、整定及维护也必须要基于上述信息化平台进行,开展并行工程,实现信息共享,这是最大限度地压缩自动化生产线投产周期所必须的,另外也有利于实现生产线的柔性和质量控制的功能。3.大型自动化生产线的控制协调和管理技术。利用计算机和信息技术,实现整条生产线的控制、协调和管理,快速响应市场需求,提高产品竞争力。4.自动化生产线的在线检测及监控技术。利用传感器和机器人技术,实现大型生产线的在线检测,确保产品质量,并且实现产品的主动质量控制。利用网络技术,实现生产线的在线监控,确保生产线安全运行。5.自动化生产线模块化及可重构技术。利用设计的模块化和标准化,能够实现生产线的快速调整及重构。6.生产线快速整定(commissioning time)技术。如建立完整的制造过程信息技术,发展机器人等自动化设备的离线编程技术、生产线上的机电设备实现网络控制管理技术、关键工位在线100%产品检测技术、先进的生产线现场安装精度测试技术。

现如今,随着社会经济发展,机器人开始被广泛应用于各行各业中,替工人进行一些复杂、繁重的体力劳动,能减轻人们的工作负担。下面是由我整理的工业机器人技术论文 范文 ,希望能对大家有所帮助!工业机器人技术论文范文篇一:《浅谈工业机器人在工业生产中的应用》 工业机器人是面向工业领域的多关节机械手或多自由度的机器人。工业机器人是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。就工业机器人在工业生产中的应用进行探讨。 关键词:工业机器人 应用 工业 1 引言 工业机器人最早应用于汽车制造工业,常用于焊接,喷漆,上、下料和搬运。工业机器人延伸和扩大了人的手、足和大脑功能,它可代替人从事危险、有害、有毒、低温和高热等恶劣环境中的工作;代替人完成繁重、单调的重复劳动,提高劳动生产率,保证产品质量。工业机器人与数控加工中心、自动搬运小车以及自动检测系统可组成柔性制造系统和计算机集成制造系统,实现生产自动化。 2 工业机器人的主要运用 (1)恶劣工作环境及危险工作军事领域及核工业领域有些作业是有害于人体健康并危及生命,或不安全因素很大而不宜由人去做的作业,用工业机器人去做最合适。例如核工厂设备的检验和维修机器人,核工业上沸腾水式反应堆燃料自动交换机。 (2)特殊作业场合和极限作业火山探险、深海探密和空间探索等领域对于人类来说是力所不能及的,只有机器人才能进行作业。如航天飞机上用来回收卫星的操作臂;用于海底采矿和打捞的遥控海洋作业机器人。 (3)自动化生产领域早期的工业机器人在生产上主要用于机床上、下料,点焊和喷漆。用得最多的制造工业包括电机制造、汽车制造、塑料成形、通用机械制造和金属加工等工业。随着柔性自动化的出现,机器人在自动化生产领域扮演了更重要的角色。下面主要针对工业机器人在自动化生产领域的应用进行简单介绍。 焊接机器人 点焊机器人工业机器人首先应用于汽车的点焊作业,点焊机器人广泛应用于焊接车体薄板件。装焊一台汽车车体一般大约需要完成3000~4000个焊点,其中60%是由点焊机器人来完成的。在有些大批量汽车生产线上,服役的点焊机器人数量甚至高达150多台。 点焊机器人主要性能要求:安装面积小,工件空间大;快速完成小节距的多点定位;定位精度高(土0 .25 mm ),以确保焊接质量;持重大(490~980N ) ,以便携带内装变压器的焊钳;示教简单,节省工时。 弧焊机器人 弧焊机器人应用于焊接金属连续结合的焊缝工艺,绝大多数可以完成自动送丝、熔化电极和气体保护下进行焊接工作。弧焊机器人应用范围很广,除汽车行业外,在通用机械、金属结构等许多行业中都有应用。弧焊机器人应是包括各种焊接附属装置在内的焊接系统,而不只是一台以规划的速度和姿态携带焊枪移动的单机。如图1所示为弧焊机器人的基本组成。适合机器人应用的弧焊 方法 主要有惰性握体保护焊、混合所体保护焊、埋弧焊和等离子弧焊接。 1-机器人控制柜2-焊接电源3-气瓶4-气体流量计5-气路6-焊丝轮7-柔性导管8-弧焊机器人9-送丝机器人10-焊枪11-工件电缆12-焊接电缆13-控制电缆 图1 弧焊机器人系统的基本组成 弧焊机器人的主要性能要求:在弧焊作业中,要求焊枪跟踪工件的焊道运动,并不断填充金属形成焊道。因此,运动过程中速度的稳定性和轨迹是两项重要指标,一般情况下,焊接速度约取5~50 mm/s ,轨迹精度约为.2 ~ ) mm;由于焊枪的姿态对焊缝质量也有一定影响,因此希望在跟踪焊道的同时,焊枪姿态的可调范围尽量大。此外,还有一些其他性能要求,这些要求包括:设定焊接条件(电流、电压、速度等)、抖动功能、坡口填充功能、焊接异常检测功能(断弧、工件熔化)及焊接传感器(起始焊点检测,焊道跟踪)的接口功能。 喷漆机器人 喷漆机器人广泛应用于汽车车体、家电产品和各种塑料制品的喷漆作业。喷漆机器人在使用环境和动作要求上有如下特点: (1)工作环境空气中含有易爆的喷漆剂蒸气; (2)沿轨迹高速运动,途经各点均为作业点; (3)多数被喷漆部件都搭载在传送带上,边移动边喷漆。如图2所示为关节式喷漆机器人。 搬运机器人 随着计算机集成制造技术、物流技术、自动仓储技术的发展,搬运机器人在现代制造业中的应用也越来越广泛。机器人可用于零件的加工过程中,物料、工辅量具的装卸和储运,可用来将零件从一个输送装置送到另一个输送装置,或从一台机床上将加工完的零件取下再安装到另一台机床上去。 装配机器人 装配在现代工业生产中占有十分重要的地位。有关资料统计表明,装配劳动量占产品生产劳动量的50%~60%,在有些场合,这一比例甚至更高。例如,在电子器件厂的芯片装配、电路板的生产中,装配劳动量占产品生产劳动量的70 %~80%。因此,用机器人来实现自动化装配作业是十分重要的。 机器人柔性装配系统 机器人正式进入装配作业领域是在“机器人普及元年”的1980年前后,引人装配作业的机器人在早期主要用来代替装配线上手工作业的工序,随后很快出现了以机器人为主体的装配线。装配机器人的应用极大地推动了装配生产自动化的进展。装配机器人建立的柔性自动装配系统能自动装配中小型、中等复杂程度的产品,如电机、水泵齿轮箱等,特别适应于中小批量生产的装配,可实现自动装卸、传送、检测、装配、监控、判断、决策等机能。 机器人柔性装配系统通常以机器人为中心,并有诸多周边设备,如零件供给装置、工件输送装置、夹具、涂抹器等与之配合,此外还常备有可换手等。但是如果零件的种类过多,整个系统将过于庞大,效率降低,这是不可取的。在机器人柔性装配系统中,机器人的数量可根据产量选定,而零件供给装置等周边设备则视零件和作业的种类而定。因此,和装配线比较,产量越少,机器人柔性装配系统的投资越大。 3 结束语 工业机器人是以机械、电子、电子计算机和自动控制等学科领域的技术为基础,融合而成的一种系统技术;也可说是一门知识、技术密集的,多学科交叉的综合化的高新技术。随着这些相关学科技术的进步和发展,工业机器人技术也一定会到迅速发展和提高。 工业机器人技术论文范文篇二:《探讨工业机器人的发展趋势》 摘 要 随着社会经济发展,机器人开始被广泛应用于各行各业中,替工人进行一些复杂、繁重的体力劳动。目前,机器人是一种制造业与自动化设备中的典型代表,这将会是人造机器的“终极”版。它的应用已经涉及信息化、自动化、智能化、传感器与知识化等多个学科和领域,这是目前,是我国乃至世界高新技术成果的最佳集成,因此,它的发展是与许多学科的发展有着密切的联系。以现在的发展趋势来看,工业机器人的应用范围越来越广泛,同时在技术操作中,他也变得越来越标准化、规范化,提高工业机器人的安全性。另一方面,工业机器人发展越来越微型化、智能化,在人类生活中应用越来越广泛。 关键词 工业机器人 智能化 应用领域 安全性 随着社会复杂的需求,工业机器人在应用领域中越来越广泛。一方面,工业机器人被广泛应用于工业生产中,代替工人危险、复杂、单调的长时间的作业,例如在机械加工、压力铸造、塑料制品成形及金属制品业等各种工序上,同时还应用于原子能工业等高危险的部门,这已经在发达国家中应用比较广泛。另一方面,工业机器人在其他的领域应用也比较多,随着科学技术的飞速发展,提高了工业机器人的使用性能和安全性能,其应用的范围越来越广泛,应用的范围已经突破了工业,尤其在医疗业中应用比较好。 一、工业机器人的发展历程 第一代机器人,一般指工业上大量使用的可编程机器人及遥控操作机。可编程机器人可根据操作人员所编程序完成一些简单重复性作业。遥控操作机制每一步动作都要靠操作人员发出。1982年,美国通用汽车公司在装配线上为机器人装备了视觉系统,从而宣告了第二代机器人―感知机器人的问世。这代机器人,带有外部传感器,可进行离线编程。能在传感系统支持下,具有不同程度感知环境并自行修正程序的功能。第三代机器人为自治机器人,正在各国研制和发展。它不但具有感知功能,还具有一定决策和规划能力。能根据人的命令或按照所处环境自行做出决策规划动作即按任务编程。 我国机器人研究工作起步较晚,从“七五”开始国家投入资金,对工业机器及其零部件进行攻关,完成了示教再现式工业机器人成套技术的开发和研制。1986 年国家高技术研究发展计划开始实施,智能机器人主题跟踪世界机器人技术的前沿,经过几年的研究,取得了一大批科研成果,成功地研制出了一批特种机器人。 我国工业机器人起步于70年代初期,经过30多年的发展,大致经历了3个阶段:70年代的萌芽期,80年代的开发期和90年代的适用化期。 上世纪70年代是世界科技发展的一个里程碑:人类登上了月球,实现了金星、火星的软着陆。我国也发射了人造卫星。世界上工业机器人应用掀起一个高潮,尤其在日本发展更为迅猛,它补充了日益短缺的劳动力。在这种背景下,我国于1972年开始研制自己的工业机器人。 进入80年代后,在高技术浪潮的冲击下,随着改革开放的不断深入,我国机器人技术的开发与研究得到了政府的重视与支持。“七五”期间,国家投入资金,对工业机器人及其零部件进行攻关,完成了示教再现式工业机器人成套技术的开发,研制出了喷涂、点焊、弧焊和搬运机器人。1986年国家高技术研究发展计划(863计划)开始实施,智能机器人主题跟踪世界机器人技术的前沿,经过几年的研究,取得了一大批科研成果,成功地研制出了一批特种机器人。 从90年代初期起,中国的国民经济进入实现两个根本转变时期,掀起了新一轮的经济体制改革和技术进步热潮,我国的工业机器人又在实践中迈进一大步,先后研制出了点焊、弧焊、装配、喷漆、切割、搬运、包装码垛等各种用途的工业机器人,并实施了一批机器人应用工程,形成了一批机器人产业化基地,为我国机器人产业的腾飞奠定了基础。 我国工业机器人经过“七五”攻关计划、“九五”攻关计划和863计划的支持已经取得了较大进展,工业机器人市场也已经成熟,应用上已经遍及各行各业。 我国未来工业机器人技术发展的重点有:第一,危险、恶劣环境作业机器人:主要有防暴、高压带电清扫、星球检测、油汽管道等机器人;第二,医用机器人:主要有脑外科手术辅助机器人,遥控操作辅助正骨等;第三,仿生机器人:主要有移动机器人,网络遥控操作机器人等。其发展趋势是智能化、低成本、高可靠性和易于集成。 二、工业机器人的发展趋势 机器人是先进制造技术和自动化装备的典型代表,是人造机器的“终极”形式。它涉及到机械、电子、自动控制、计算机、人工智能、传感器、通讯与网络等多个学科和领域,是多种高新技术发展成果的综合集成,因此它的发展与众多学科发展密切相关。当今工业机器人的发展趋势主要有:一是工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作和维修),而单机价格不断下降。二是机械结构向模块化可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化;有关节模块、连杆模块用重组方式构造机器人。三是工业机器人控制系统向基于 PC机的开放型控制器方向发展,便于标准化,网络化;器件集成度提高,控制柜日渐小巧,采用模块化结构,大大提高了系统的可靠性、易操作性和可维修性。四是机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,视觉、力觉、声觉、触觉等多传感器的融合技术在产品化系统中已有成熟应用。五是机器人化机械开始兴起。从94年美国开发出“虚拟轴机床”以来这种新型装置已成为国际研究的 热点 之一,纷纷探索开拓其实际应用的领域。 总体趋势是,从狭义的机器人概念向广义的机器人技术概念转移,从工业机器人产业向解决方案业务的机器人技术产业发展。机器人技术的内涵已变为 灵活应用机器人技术的、具有实际动作功能的智能化系统。机器人结构越来越灵巧,控制系统愈来愈小,其智能也越来越高,并正朝着一体化方向发展。 三、我国工业机器人发展面临的挑战与前景 我国工业底子薄,工业机器人发展一直处于一个初步发展阶段,虽然我国从上个世纪70年代开始研发工业机器人,但是技术力量不足与西方国家的技术封锁,对此,在发展过程中,存在着比较多的问题。细分起来,有如下几点: 首先,我国基础零部件制造能力差。虽然我国在相关零部件方面有了一定的基础,但是无论从质量、产品系列全面,还是批量化供给方面都与国外存在较大的差距。特别是在高性能交流伺服电机和精密减速器方面的差距尤其明显,因此造成关键零部件的进口,影响了我国机器人的价格竞争力。 第二,我国的机器人还没有形成自己的品牌。虽然已经拥有一批企业从事机器人的开发,但是都没有形成较大的规模,缺乏市场的品牌认知度,在机器人市场方面一直面临国外机器人品牌的打压。国外机器人作为成熟的产业采用整机降价,吸引国内企业购买,而在后续的维护备件费用很高的策略,逐步占领中国市场。 第三,认识不到位,在鼓励工业机器人产品方面的政策少。工业机器人的制造及应用水平,代表了一个国家的制造业水平,我们必须从国家高度认识发展中国工业机器人产业的重要性,这是我国从制造大国向制造强国转变的重要手段和途径。□ 参考文献: [1]任俊.面向熔射快速制模的机器人辅助曲面自动抛光系统的研究.华中科技大学,2006年. [2]钟新华,蔡自兴,邹小兵.移动机器人运动控制系统设计及控制算法研究.华中科技大学学报(自然科学版),2004年S1期. [3]张中英.基于遗传算法的机器人神经网络控制系统.太原理工大学,2005年. [4]李磊,叶涛,谭民,陈细军.移动机器人技术研究现状与未来.机器人,2002年05期. [5]杜玉红,李修仁.生产线组装单元气动搬运机械手的设计.液压与气动,2006年05期. [6]徐晓峰.基于串行通信技术的机器人实时控制研究.南京林业大学,2005年. 工业机器人技术论文范文篇三:《试论工业机器人机电一体化》 1机电一体化技术的应用现状 工业机器人。 工业机器人的出现在一定程度上可替代人的劳动,对于高辐射、高噪声污染、高浓度有害气体的工作场合来说,工业机器人是一个理想的选择。工业机器人的发展经历了三个阶段,第一代工业机器人智能化程度较低,只能通过预设的程序进行简单的重复动作,无法应对多变的工作环境和工作岗位。随着科技的发展,在第一代机器人的基础上通过各种传感器的应用使其可通过对环境信息的获取、分析、处理并反馈给动作单元,从而进行一些适应性的工作,这种机器人虽然智能化程度较低,但已经在一些特定的领域得以成功应用。在机电一体化技术相对成熟的今天,第三代机器人的智能化水平已经得到了较大的提升,其可以通过强大的传感原件收集信息数据,并根据实际情况作出类似于人脑的判断,因此可以在多种环境下进行独立作业,但成本较高,在一定程度上限制了实际应用。 分布式控制系统。 分布式控制系统是相对于集中式控制系统而言的,是通过一台中央计算机对负责现场测控的多台计算机进行控制和指挥,由于其强大的功能和安全性,使其成为当前大型机电一体化系统的主流技术。根据实际情况分布式控制系统的层级可分为两级、三级或更多级,通过中央计算机完成对现场生产过程的实时监控、管理和操作控制等,同时,随着测控技术的不断发展与创新,分布式控制系统还可以对生产过程实现实时调度、在线最优化、生产计划统计管理等功能,成为一种集测、控、管于一体的综合系统,具有功能丰富、可靠性高、操作方便、低故障率、便于维护和可扩展等优点,因此使系统的可靠性大幅提高。 2机电一体化技术的发展趋势 人工智能化。 人工智能就是使工业机器人或数控机床模拟人脑的智力,使其在生产过程中具备一定的推理判断、 逻辑思维 和自主决策的能力,可大幅提升工业生产过程的自动化程度,甚至实现真正的无人值守,对于降低人力成本,提高加工精度和工作效率具有十分重要的意义。目前,人工智能已经不只是停留在概念上,因此可预见机电一体化技术将向着人工智能化的方向发展。虽然以当前的科学技术水平不可能使机器人或数控机床完全具备人类的思维模式和智力特点,但在工业生产中,使这些机电一体化设备具备部分人类的职能是完全可以通过先进的技术达到的。 网络化。 网络技术 的发展给机电一体化设备远程监视和远程控制提供了便利条件,因此,将网络技术与机电一体化技术结合起来将是机电一体化技术发展的重点。在生产过程中,操作人员需要在车间内来回走动,对设备的状态进行掌握,并对机床的操作面板进行操作,通过在机电一体化设备与控制终端之间建立通信协议,并通过光纤等介质实现信息数据的传递,即可实现远程监视和操作,降低工人的劳动量,并且各种控制系统功能的实现,理论上来说都是建立在网络技术基础上的。 环保化。 在人类社会发展的最近几十年里,虽然经济得到了迅猛的发展,人们生活水平得到了显著的提高,然而以牺牲资源和环境为代价的发展模式使得人类赖以生存的环境遭到严重的污染,因此,在可持续发展战略提出的今天,发展任何技术都应当以对环境友好作为前提,否则就是没有前途的,故环保化是机电一体化技术发展的必然趋势。在机电一体化应用过程中,通过对资源的高效利用,并在制造过程中做到达标排放甚至零排放,产品在使用过程中对生态环境不造成影响,即便报废后也可对其进行有效回收利用,这就是机电一体化技术环保化的具体表现形式,符合可持续发展的要求。 模块化。 由于机电一体化装置的制造商较多,为降低系统升级改造的成本,并为维修提供便利,模块化将是一个非常有前途的研究方向。通过对功能单元进行模块化改造,可在需要增加或改变功能时直接将对应的功能模块进行组装或更换,即便出现故障,只需将损害的模块进行更换即可,工作效率极高,通用性的增强为企业节约了大量的成本。 自带能源化。 机电一体化对电力的要求较高,如果没有充足的电能供应就会影响生产效率,甚至由于停电造成数据的丢失等,因此通过设备自带动力能源系统可始终保持充足的电力供应,使系统运行更流畅。 3结语 综上所述,机电一体化技术的应用可使产品的生产效率和精度大幅提高,在当前工业生产中具有较大的技术优势,相信随着科技的发展,机电一体化技术水平也会不断提高,为工业生产做出更大贡献。 猜你喜欢: 1. 初三机器人科学论文2000字 2. 工业智能技术论文 3. 传感器技术论文范文 4. 机器人科技论文3000字 5. 初三智能机器人科技论文2000字 6. 人工智能机器人的相关论文

机械传感器论文的参考文献

温度传感器原理及应用论文参考文献

温度传感器原理及应用论文参考文献,温度传感器是温度测量仪表的核心部分,是指能感受温度并转换成可用输出信号的传感器,品种繁多,也是用处比较广的工具。以下分享温度传感器原理及应用论文参考文献。

一、温度传感器工作原理–恒温器

恒温器是一种接触式温度传感器,由两种不同金属(如铝、铜、镍或钨)组成的双金属条组成。

两种金属的线性膨胀系数的差异导致它们在受热时产生机械弯曲运动。

一、温度传感器工作原理–双金属恒温器

恒温器由两种热度不同的金属背靠背粘在一起组成。当天气寒冷时,触点闭合,电流通过恒温器。当它变热时,一种金属比另一种金属膨胀得更多,粘合的双金属条向上(或向下)弯曲,打开触点,防止电流流动。

有两种主要类型的双金属条,主要基于它们在受到温度变化时的运动。有在设定温度点对电触点产生瞬时“开/关”或“关/开”类型动作的“速动”类型,以及逐渐改变其位置的较慢“蠕变”类型随着温度的变化。

速动型恒温器通常用于我们家中,用于控制烤箱、熨斗、浸入式热水箱的温度设定点,也可以在墙上找到它们来控制家庭供暖系统。

爬行器类型通常由双金属线圈或螺旋组成,随着温度的变化缓慢展开或盘绕。一般来说,爬行型双金属条对温度变化比标准的按扣开/关类型更敏感,因为条更长更薄,非常适合用于温度计和表盘等。

二、温度传感器工作原理–热敏电阻

热敏电阻通常由陶瓷材料制成,例如镀在玻璃中的镍、锰或钴的氧化物,这使得它们很容易损坏。与速动类型相比,它们的主要优势在于它们对温度、准确性和可重复性的任何变化的响应速度。

大多数热敏电阻具有负温度系数(NTC),这意味着它们的电阻随着温度的升高而降低。但是,有一些热敏电阻具有正温度系数 (PTC),并且它们的电阻随着温度的升高而增加。

热敏电阻的额定值取决于它们在室温下的电阻值(通常为 25 o C)、它们的时间常数(对温度变化作出反应的时间)以及它们相对于流过它们的电流的额定功率。与电阻一样,热敏电阻在室温下的电阻值从 10 兆欧到几欧姆不等,但出于传感目的,通常使用以千欧为单位的那些类型。

温度传感器类毕业论文文献有哪些?

1、[期刊论文]一种高稳定性双端出纤型光纤光栅温度传感器

期刊:《声学与电子工程》 | 2021 年第 002 期

摘要:针对双端出纤型光纤光栅温度传感器线性度较差、温度测量精度低的问题,文章首先对传感器内部结构进行了优化,使光纤光栅在整个温度测量区间内不受结构件热胀冷缩的应力影响,从而提升传感器的稳定性、实验验证,采用新工艺封装的.光纤光栅温度传感器在5~65°C的范围内温度精度达到0、1°C,且重复性良好,适用于自然环境下的温度传感、

关键词:光纤光栅;温度传感器;应力;测温精度

链接:、zhangqiaokeyan、com/academic-journal-cn_acoustics-electronics-engineering_thesis/0201290086379、html

2、[期刊论文]某型温度传感器防护套弯折疲劳试验的寿命研究

期刊:《环境技术》 | 2021 年第 001 期

摘要:由于动车组轴端温度传感器的大多数已达到三级修、四级修的修程,检修的数量和成本逐年增加,检修发现出现防护套破损的情况较多,需要大量更换,本文通过对温度传感器的防护套进行弯折疲劳试验,对数据结果进行统计分析,确认导致防护套弯折老化的主要原因、

关键词:防护套;破损;弯折疲劳

链接:、zhangqiaokeyan、com/academic-journal-cn_environmental-technology_thesis/0201288850019、html

3、[期刊论文]进气压力温度传感器锡晶须的分析

期刊:《机械制造》 | 2021 年第 004 期

摘要:对进气压力温度传感器的结构进行了介绍,对进气压力温度传感器产生锡晶须问题进行了分析,并在分析锡晶须生长机理的基础上提出了抑制方法、

关键词:传感器;锡晶须;分析

链接:、zhangqiaokeyan、com/academic-journal-cn_machinery_thesis/0201288850874、html

4、[期刊论文]一种具有±0、5℃精度的CMOS数字温度传感器

期刊:《电子设计工程》 | 2021 年第 001 期

摘要:该文设计了一种基于0、35μm CMOS工艺的采用双极型晶体管作为感温元件的数字温度传感器、该温度传感器主要由正温度系数电流产生电路、负温度系数电流产生电路、一阶连续时间Σ-Δ调制器、计数器和I2C总线接口等模块组成、为提高温度传感器的测量精度

该文深入分析了在不采用校准技术的情况下工艺漂移对温度传感器精度的影响,并在此基础上提出了简单的校准电路设计、根据电路仿真结果,在加入校准电路之后,温度传感器在-40~120℃温度范围内的精度可以达到±0、5℃、

关键词:数字温度传感器;CMOS工艺;双极型晶体管;校准

链接:、zhangqiaokeyan、com/academic-journal-cn_electronic-design-engineering_thesis/0201286451032、html

5、[期刊论文]柴油机冷却水温度传感器断裂故障分析

期刊:《内燃机与配件》 | 2021 年第 004 期

摘要:针对柴油机冷却水温度传感器断裂的问题,通过对该测点管路流腔进行CFD仿真计算,分析了流腔内部速度和压力场的变化情况,确定了传感器的断裂原因。计算结果表明:传感器位置处流速较大,导致传感器下部受振荡力,且发生了空蚀,使传感器失效。

本文针对此次传感器断裂故障提出了解决措施:对传感器的位置进行了优化布置;对传感器的结构形式进行了改进。通过改进,传感器随整机验证时间超过1500h,未再发生同类断裂故障,保证了柴油机的安全运行,为以后类似故障的分析和解决提供参考。

关键词:柴油机;温度传感器;流速;受力

链接:、zhangqiaokeyan、com/academic-journal-cn_internal-combustion-engine-parts_thesis/0201288594662、html

常见温度传感器

温度是与人类生活息息相关的物理量,在工业生产自动化流程中,温度测量点要占全部测量点的一半左右。它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用相当广泛。

温度传感器对温度敏感具有可重复性和规律性,是利用一些金属、半导体等材料与温度相关的特性制成的。现在来介绍一些温度传感器的工作原理。

铂容易提纯,其物理、化学性能在高温和氧化介质中非常稳定。铂电阻的输入-输出特性接近线性,且测量精度高,所以它能用作工业测温元件,还能作为温度计作基准器。

铂电阻在常用的热电阻中准确度最高,国际温标ITS-90中还规定,将具有特殊构造的铂电阻作为℃~℃标准温度计来使用。铂电阻广泛用于-200℃~850℃范围内的温度测量,工业中通常在600℃以下。

PN结温度传感器是利用PN结的结电压随温度成近似线性变化这一特性实现对温度的检测、控制和补偿等功能。实验表明,在一定的电流模式下,PN结的正向电压与温度之间具有很好的线性关系。

根据PN结理论,对于理想二极管,只要正向电压UF大于几个kbT/e(kb为波尔兹曼常数,e为电子电荷)。其正向电流IF与正向电压UF和温度T之间的关系可表示为

由半导体理论可知,对于实际二极管,只要它们工作的PN结空间电荷区中的复合电流和表面漏电流可以忽略,而又未发生大注入效应的电压和温度范围内,其特性与上述理想二极管是相符合的[6]。实验表明,对于砷化镓、

锗和硅二极管,在一个相当宽的温度范围内,其正向电压与温度之间的关系与式(1-3)是一致的,如图1-1所示。

实验发现晶体管发射结上的正向电压随温度的上升而近似线性下降,这种特性与二极管十分相似,但晶体管表现出比二极管更好的线性和互换性。

二极管的温度特性只对扩散电流成立,但实际二极管的正向电流除扩散电流成分外,还包括空间电荷区中的复合电流和表面漏电流成分。这两种电流与温度的关系不同于扩散电流与温度的关系,因此,实际二极管的电压—温度特性是偏离理想情况的。

由于三极管在发射结正向偏置条件下,虽然发射结也包括上述三种电流成分,但是只有其中的扩散电流成分能够到达集电极形成集电极电流,而另外两种电流成分则作为基极电流漏掉,并不到达集电极。因此,晶体管的

所以表现出更好的电压-温ICUBE关系比管的IFUF关系更符合理想情况,

度线性关系。根据晶体管的有关理论可以证明,NPN晶体管的基极—发射极电压UBE与温度T和集电极电流Ic的函数关系式与二极管的UF与T和IF函数关系式(1-3)相同。因此,在集电极电流Ic恒定条件下,晶体管的基极—发射极电压UBE与温度T呈线性关系。但严格地说,这种线性关系是不完全的,因为关系式中存在非线性项。

集成温度传感器是将温敏晶体管及其辅助电路集成在同一芯片的集成化温度传感器。这种传感器的优点是直接给出正比于绝对温度的理想的线性输出[7]。目前,集成温度传感器已广泛用于-50℃~+150℃温度范围内的温度检测、控制和补偿等。集成温度传感器按输出形式可分为电压型和电流型两种。

进气温度传感器工作原理是什么?

进气温度传感器的工作原理是:进气温度传感器在工作状态下,内部安装了一个具有负温度电阻系数的热敏电阻,通过这个负温度热敏电阻感知温度变化,进而调节电阻的大小改变电路电压。

以下是关于进气温度传感器的详细介绍:

1、原理:进气温度传感器就是一个负温度系数的热敏电阻,当温度升高的时候电阻阻值会变小,当温度降低的时候电阻值会增大,汽车的电压会随着汽车电路中电阻的变化而变化,从而产生不一样的电压信号,可以完成汽车控制系统的自动操作。

2、作用:汽车的进气温度传感器就是检测汽车发动机的进气温度,将进气温度转变为电压信号输入为ecu作为喷油修正的信号使用。

  • 索引序列
  • 简单传感器论文的参考文献
  • 简单传感器论文参考文献
  • 单片机论文文献传感器
  • 机器人传感器论文参考文献
  • 机械传感器论文的参考文献
  • 返回顶部