科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。
经常有人问到在论文或标书中应该如何写作统计分析部分。标准的答案是:你怎么做的就怎么写,每篇文章都是唯一的存在。好装,汗……。如果我们尝试去归纳和小结,这部分内容的写作其实是有一定规律的。我曾经听过Thomas Allen Long教授关于论文写作的课,人很和蔼,他主编的书也不错,操作性很强。在他的书稿《How to Write, Publish & Present in the Health Sciences》第154页中他小结到,统计分析部分应该包括如下内容:统计描述部分、所有的基本统计方法以及分析方案(如ITT或PP等)、样本量的说明、分组方法、检验水准的设定和所使用的统计分析软件。同样在本书的第155页中也写得:统计分析人员可以帮助作者对数据进行合理的分析、对分析结果进行正确解读,同时可以负责统计分析部分的撰写。他建议将统计分析人员作为作者之一,也许这样统计分析人员就不会粗枝大叶、不负责任了。关于医学统计分析的写作,其实他还有一本书《How to Report Statistics in Medicine》,在统计分析的报告上写得更专业。言归正传,本文既然是要小结“统计分析”部分,那就小结吧。个人觉得“统计分析”部分写作时应该包括以下几个内容:(1)样本量估算及随访/数据收集情况;(2)数据录入和管理的软件和方法;(3)本研究所使用的统计分析软件和分析方案;(4)统计描述的方法,分计量和计数资料两种;(5)统计推断的方法,分单因素和多因素两种;(6)检验水准的选取。由于某些“你懂的”原因,很多普通的论文没有进行样本量估算和区分不同的分析方案(ITT/PP)。所以简单举例如下:本研究采用……数据库进行数据录入和管理,数据录入采用双录入核查方式进行。采用……软件对研究数据进行统计分析。计量资料采用……对其进行正态性检验,符合正态分布的计量资料采用均值±标准差的形式进行描述,不符合正态分布的计量资料采用中位数(25%位数,75%位数)进行描述,计数资料采用例数(百分比)进行描述。符合正态分布的计量资料组间比较采用独立样本t检验或单因素ANOVA进行,不符合正态分布的计量资料组间比较采用非参数检验进行,计数资料组间比较采用卡方检验进行。在多因素分析上,采用多重线性/逻辑回归分析……的影响因素。所有检验以双侧p<为差异有统计学意义。有人说我要写英文的“统计分析”部分,该怎么办?同样,你需要多阅读别人的优秀文章,然后用它们的句式来构建属于你自己统计分析内容。可供参考的句式有:(1)数据采集:Study data were collected on standard forms, checked for completeness, and double keyed into an …… database.(2)统计软件:All statistical analyses were performed using SAS version (SAS Institute Inc, Cary, North Carolina).(3)统计描述:…… were described using mean, median, standard deviation, and 25thand 75th percentiles for continuous variables; frequencies and proportions were used for categorical variables.(4)单因素分析:A two sample independent t test/ one-way analysis of variance (ANOVA)/ Nonparametric tests(Kruskal-Wallis test)/ Pearson’s x2 tests or Fisher exact tests was used to compare the differences between …….(5)多因素分析:Multivariable linear regression/ Multivariable binary logistic regression/ Cox proportional hazards were used to estimate …….(6)检验水准:A p value of less than (2-sided significance testing) was considered statistically significant in all analyses.
《统计学与应用》这本期刊上的文献,你可以去看看学习学习的
统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。下文是我为大家整理的关于统计相关论文的范文,欢迎大家阅读参考!
浅谈概率在统计学中的应用
摘 要:概率是研究随机现象的数学学科,其理论严谨、 应用广泛、 发展迅速。目前,概率的理论与方法已广泛应用于 统计学中,主要是从正态分布、小概率事件两方面介绍了概率在统计学中的一些应用。
关键词:随机现象;事件;样本;母体;正态分布;小概率原理
统计学主要分为描述性统计学和推断性统计学。给定一组数据统计学可以摘要并且描述这些数据,这个用法称为描述性统计学。另外,观察者以数据的形式建立起一个用以解释其随机性和不确定性的数学模型,以之来推论研究中的步骤及母体,这种用法被称为应用统计学。另外,还有一个叫做数理统计学的学科专门用来讨论这门科目背后的理论基础。
同一仪器多次测量同一物体的重量,所得的结果彼此总是略有差异,这是由于诸如测量仪器受大气影响,观察者身体或 心理上的变化等等偶然因素引起的。同样的,同一门炮向同一目标发射多发同种炮弹,弹落点也不一样,因为炮弹制造时的种种偶然因素对炮弹质量也会有影响。此外,炮筒位置的误差,天气条件的微小变化等等都影响弹落点。再如从某生产线上用同一种工艺生产出来的灯泡寿命也是有差异的等等。
总之所举这些现象的一个共同点是:在基本条件不变的情况下,经过一系列试验或观察会得到不同的结果。换句话说,就个别的试验结果或观察结果而言,它会时而出现这种结果,时而出现那种结果,呈现出一种偶然性。这种现象称为随机现象。对于随机现象通常关心的是在试验或观察中某个结果是否出现,这种结果称为随机事件,简称事件。为了实际的理由选择研究团体的子集代替研究母体的每一笔资料,这个子集称作样本。推论统计学被用来将资料中的数据模型化,计算它的几率并且做出对于母体的推论,这个推论可能以对或错的答案呈现(假设检验)出对未来观察的预测,关联性的预测,或是将关系模式化(回归)。
随机现象有其偶然性的一面,也有其必然性的一面。这种必然性表现为大量试验中随机事件出现的频率的稳定性,即一个随机事件的频率常在某个固定的常数附近摆动,这种规律我们称之为统计规律性。频率的稳定性说明随机事件发生的可能性的大小是随机事件本身所固有的,不随人们的意志而改变的一种客观属性,因此可以对它进行度量。对于一个随机事件A用一个数p(A)来表示该事件发生的可能性的大小,这个数p(A)就称为随机事件A的概率,因此概率度量了随机事件发生的可能性的大小。
如果样本足以代表母体,那么由样本所做的推论和结论可以引申到整个母体之上,统计学提供了许多方法来估计和修正样本资料过程中的随机性(误差)。要了解随机性的一定几率必须具备基本的数学观念。数理统计是应用数学的分支,它使用几率论来分析并且验证统计的理论基础。
概率在统计学中有着重要的作用,包括总体、抽样研究、统计描述、统计推断、正态分布规律等,正态分布是概率中最重要的一种分布。一方面正态分布是自然界最常见的一种分布,例如测量的误差;炮弹弹落点的分布;人的生理特征的尺寸:身长、体重等;农作物的收获量;工厂产品的尺寸:直径、长度、宽度、高度,都近似服从正态分布。
一般来说若影响某一个数量指标的随机因素很多,而每个因素所起的作用又不太大,则服从正态分布这点可以用概率论的极限定理来加以证明。另一方面正态分布具有许多良好的性质,许多分布可用正态分布来近似,另外一些分布又可由正态分布来导出,因此在理论研究中,正态分布十分重要。如利用正态分布规律统计学校的成绩分布,得出一个阶段的学生总体是否进步,然后寻找原因,得出改进办法。分析一年 经济的发展,预测来年的收入。找出影响发展的主要因素,寻求改进的方法等等。
小概率事件即发生概率很小的事件(p≤),在统计学中有着重要的应用,这样的事件理论上发生的可能性则几乎为零。如买彩票中大奖,就是典型的小概率事件,也许每一期均会有大奖开出(可能性很小),但对于每一个彩民来说,他买一注中大奖的可能性(小概率事件在一次试验中就发生的概率几乎没有。其实,这就是小概率事件在统计学上应用的重要理论依据——小概率原理。)即小概率事件在一次试验中发生的可能性很小,如果真的发生了,根据统计学可怀疑其真实性。
如某接待站在一天内共接待5人单独来访,结果这5人全在周一到访,由此能否推断接待站有规定的接待日?假定没有规定的接待日,一个来访者在五天中任何一天来访都是等可能的用Am(m=1,2,3,4,5,)表示“一周接待了m个人,全都是周一来访”事件,Am的概率如下表示:
事件 A1概率 事件 A2概率
事件 A3概率 事件 A4概率
事件 A5概率
5个人都在周一来访的概率为,大约万分之三。现在概率很小的事件在一次试验中发生了,于是怀疑假定的正确性,从而推断接待站有规定的接待日。
公元1814年,拉普拉斯在他的新作中,记载了一个有趣的统计,世界上男婴与女婴的出生比值是22∶21,即在出生的婴儿中,男婴占,女婴占,可奇怪的是1745-1784年四十年间统计巴黎男婴的出生率时,却得到另一个比是25∶24,男婴占,与前者相差,对于这千分之一点八的微小差异,进行调查研究,发现巴黎人有“重女轻男”的现象,有抛弃男婴的陋习,以至于歪曲了出生率,经过修正出生比依然是22∶21。统计学依据小概率原理作出结论的正确性很高,但也存在犯错误的风险(较低)。
小概率原理在统计上有着非常重要的应用。如假设检验结论的判断,假设检验是用样本信息推测总体的一种统计推断方法,由于抽样误差的存在,样本信息和总体特征间可能不尽相同,所以假设检验实际上就是判断待比较各方的差别是不是由抽样误差造成的。假设检验中p值的大小反映的就是差别由抽样误差造成的概率。在假设检验中就是通过比较p值与检验水准a(通常设为)的大小关系,从而做出差别有无统计学意义。
如果p值小于a统计学则认为差别由抽样误差造成的概率很低,那么根据小概率原理认为,小概率事件在一次抽样中就发生的可能性几乎为零,所以判定差别可能是由于比较各方在本质上的不同导致的。否则认为差别是由抽样误差造成的。在这里检验水准是在假设检验前认为设定的,是研究者能够承受的本次假设检验放弃真错误的概率,也可以理解为是研究者设立的小概率事件的概率。而p值则是通过计算,即在检验假设成立的情况下,差别是由抽样误差造成的概率。
统计在现代化 管理和 社会生活中的地位日益重要,随着社会经济和科学技术的发展统计在现代化国家管理和企业管理中的地位越来越重要,人们的日常生活都离不开统计,统计的影响是这样巨大,故与之密切相关的概率的作用也越来越重要。
浅谈统计学基础教学方法与学生应用能力的培养
摘要:统计学基础知识是一门研究数据的技术性学科,具有综合性,抽象性及应用面广等特点,通过该课程的教学能培养学生运用统计工具,系统的分析问题和解决问题的能力。在中职教学中需结合本学科的特点,不断改进教学方法,提高学生综合应用统计知识的能力。
关键词:统计学教学方法设计能力培养
统计学基础知识是一门研究数据的技术性学科,学科内容中的调查研究和分析处理问题的方法,不仅应用于各项工作中,也用于其他学科研究过程中的数据搜集、整理、分析并得出结论。故统计学具有综合性,抽象性,应用面广等特点,通过该课程的教学能培养学生运用统计工具,系统的分析问题和解决问题的能力。现结合本学科的特点探讨其教学方法和学生应用能力的培养。
一、统计学基础课程教学的特点
统计学基础也是社会经济统计学原理,其学科内容的特点:一是基本概念多,理论讲授上较抽象;二是指标类别多,初学时严格划清各种指标内涵难;三是调查分析方法多,正确理解和选择恰当的调查方法难;四是正确的调查方式、方法指标体系的设置,统计范围的界定与是否得出反映事物的正确结论直接相关;五是科学设置调查事物的指标体系又与弄清反映该事物的客观内在本质的相关指标直接相关。因此,对年龄小,分析能力差的中职学生教学对象来讲,即便从概念上掌握了统计学的原理,如果不结合实际的统计案例资料和采用恰当的教学方法,就很难达到正确应用统计知识解决现实社会经济中问题的目的,甚至会因为错误使用方法,得出对事物评判的错误结论。
二、结合本学科知识的特点采用适当的教学方法,增强应用能力的培养
在教学中,首先通过对教材内容体系的全面分析和教学对象知识结构的分析,以及学生对统计学知识学习的兴趣、理解的深度和掌握应用情况的总结,在教学中的不同环节恰当地实施不同的教学方法。
1、通过学科内容体系导入与工作任务联系,提升学生学习兴趣
在讲授本学科内容时,首先给学生介绍统计学基础教材内容的基本框架:统计学的涵义、研究对象、性质、职能和研究的基本方法。其次是介绍学科知识体系:统计学中的基本概念,统计资料调查整理的方式方法,统计数据的显示与提供,以及提供的统计数字资料运用多种指标法进行分析(总量指标法--反映事物的规模状况,平均指标法--反映事物的集中趋势及一般规律,相对指标法--反映事物的纵向横向比较和事物之间的联系,标准差法--反映事物中总体单位标志值之间的离散趋势和程度,分析事物之间的差异。统计指数法--反映事物中各种直接因素的影响。
时间数列法--反映事物在时间段上的发展变化趋势。抽样调查法--统计专门调查方法中最科学的方法。相关回归分析法--分析事物中的因果关系。)通过内容体系的简单讲解导入,让学生在学习具体理论知识前就对该学科有一个总体感性认识,产生兴趣。带着要通过掌握统计知识去解决实际问题的意识和目的去学习。
2、让学生的学习从理性认识过渡到感性认识,增强应用能力
我在教学中介绍统计学的基本概念和统计调查方法内容时,除对每个知识点进行举例说明外,一部分知识讲完后,给出几个典型的统计调查方案让学生弄清在这些调查方案中所涉及的统计总体、总体范围的界定、总体单位、标志、指标以及采用的哪种调查方式等。这不仅让学生把抽象的统计学概念知识从理性认识过渡到了感性认识,而且通过这些案例还进一步让学生明白了调查方式的选用必须要根据调查对象和要解决的问题适当选取,而不是什么调查目的,什么事物都可以用任何一种调查方式。只有正确选用统计方式、方法去调查分析客观事物才能得出正确的结论,才能具备正确利用统计知识去分析解决问题的能力。
3、综合指标应用与典型资料结合法,提高学生的应用能力在讲授综合指标法时,对每一种指标的理解都是
分别举例说明让学生理解该指标的含义和作用。为了让学生能正确理解和区分每一种指标的作用,在所有指标介绍完后,我选用了国民经济年度统计公报资料作为案例,让学生从统计公报资料中找出学习过的每一种综合指标,如:2007年全国GDP总值,人口数等是总量指标。本年度GDP完成百分比是计划完成相对指标,本年度GDP比上年度增长百分比是动态相对指标。人均GDP是强度相对指标。
GDP构成比例是结构相对指标。五年中平均每年增长的百分比是后面要学习的平均发展速度和平均增长速度的应用。通过这样的案例,学生不仅对各种综合指标法的应用有了正确的理解,而且把各种指标的理解认识变成了应用能力,同时还对后面学习动态数列知识奠定了基础。在教学中很好地起到了巩固理解知识和预习下一教学环节内容的潜在作用。还起到了掌握知识综合性的效果。通过这样一个案例,学生进一步明确,研究一个总体的问题时,可以对问题的不同方面运用多种指标进行分析,弄清事物之间客观存在的关联,这些都必须用一定的统计数据来说话。因此进一步强调了学生学习统计知识的必要性,也让他们认识到统计学知识的科学性和实用性。
4、新旧知识在现实案例中的综合运用,提升学生应用能力
在讲授统计指数的内容时,传授给学生统计指数编制的基本方法的原理,教材中举例的商品价格、商品量、以及职工工资水平指数的编制都仅仅是一种计算基本方法的介绍。要培养学生应用能力还必须结合实际统计指数编制的案例进行讲解,让学生能够将理论知识及其计算方法应用到实际工作中去,所以我特意在理论知识和计算方法讲完后,介绍实际工作中零售物价指数的编制。这个经济指数也是民众普遍关注的问题,与人们生活水平息息相关。
告诉学生,物价指数的编制运用了抽样调查的知识,实际工作中不可能对每一种商品都采价调查,而是分大类商品,在商场和集贸市场分别采价。例如集贸市场的蔬菜价格每周至少要采集三次,每次要采集成交价的三人次,进入零售商品物价指数编制的价格实际上是一个多次简单平均的价格,而每天某种商品的三个价格要简单平均,每周三次的平均价格再简单平均。商场的商品价格如较稳定可用期初和期末的平均。通过这样一个案例,既给学生传授了新知识,又复习巩固了平均指标计算方法的具体应用,不仅日常生活中用,而且在经济研究中应用非常广泛。进一步告诉学生加权平均法和调和平均法在编制物价指数和其他社会经济现象指数中的应用。
5、典型调查案例教学法,培养学生综合应用统计知识,分析解决问题的能力
教学中我把学生应用统计知识,分析问题能力的培养放在抽样技术的教学内容中,抽样技术的基本理论也是抽象的。如,抽样误差,抽样平均误差,抽样的组织方式。针对研究对象的特点,都必须具体问题具体分析,而抽样误差的计算既涉及到平均指标的计算又涉及到标准差的计算,新旧知识的交替如何培养学生应用新旧知识计算、分析问题,解决问题是教学的难点。
为了突破这个难点,我在教学中利用了一个草席质量抽样调查的案例,这个案例体现了从制定调查方案中的调查方式的确定,采用主要标志划类,简单随机抽样原则,到调查实施的步骤:草席宽度分类,登记原验级等级,编顺序号,确定抽样总体,计算全级总体标准差,决定抽样数目,设计计算表格,决定样本号,现场调查中的统一验级标准。
验级过程:由5人分别验级,级数的最后确定采用众数办法,5人验级中的3人验级标准为准。以上这些都具有前面介绍的抽样调查方式的代表性,而又用到了平均指标和众数的方法。同时,在计算草席平均等级时,还用到了品质标志值平均指标的计算,即将等级品质标志值过渡成数量标志来计算该批不同尺寸草席的平均等级,再计算抽样指标与原验级指标之间的误差。
这样一个复杂的抽样调查过程和指标的计算结果,更清晰的告诉学生要说明和解决的问题:由于收购草席时,验级人员在判断标准上的误差带来了草席等级误差与价格的差异。而由于误差的存在,根据此抽样调查结果计算出的整个库存草席的总价值与实际价值的差异巨大。对导致这样的结果,进一步结合政策市场以及人为等多种因素进行分析,查找了原因并提出了切实可行的解决方案,促使了草席的收购价实相符。
通过以上几方面的教学方法设计,能让学生对统计学有更全面的认识,对学科基础内容有一个总体框架性把握,让那些学生在学习时感觉模糊的概念和繁杂的理论通过这几个教学环节的反复巩固和练习也逐步变得清晰,并大大提高了其综合应用统计知识的能力。
论文常用数据分析方法
论文常用数据分析方法,对好的论文分析研究方法应该从哪些方面展开,如何表达才能显得自己对该论文真的有所理解,应该看哪些书呢?下面我整理了论文常用数据分析方法,一起了解看看吧!
论文常用数据分析方法分类总结
1、 基本描述统计
频数分析是用于分析定类数据的选择频数和百分比分布。
描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。
分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的`数据进行汇总统计。
2、 信度分析
信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。
Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。
折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。
重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。
3、 效度分析
效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:
4、 差异关系研究
T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。
当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。
如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。
如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。
5、 影响关系研究
相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。
回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。
回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。
缺失值的处理:缺失值是人群研究中不可避免的问题,其处理方式的差异可能在不同程度上引入偏倚,因此,详细报告数据清理过程中缺失值的处理方法有助于读者对潜在偏倚风险进行评价。例如,瑞舒伐他汀试验在统计分析部分详细说明了缺失值的填补策略,包括:将二分类结局中的缺失值视为未发生事件;将生物标志物和心电图测量中的缺失值进行多重填补(multiple imputation);为了证明缺失值处理的合理性和填补结果的稳定性,研究还比较了多重填补与完整数据(complete-case)分析的结果。2、数据的预处理:实施统计分析之前往往需要将原始数据进行预处理,如:对连续变量进行函数转换使其更接近正态分布,基于原始数据构建衍生变量,将连续变量拆分为分类变量或将分类变量的不同类别进行合并等。医学论文应报告处理原始数据的方法及依据,瑞舒伐他汀试验即在统计分析部分描述了对血液生物标志物的对数转换。3、变量分布特征描述:确定统计分析使用的变量,并针对每一个变量的分布特征进行描述,是决定研究选用何种统计分析方法的基础。医学期刊虽然普遍对此提出要求,但作者往往套用常用方法,如:连续变量符合正态分布时,采用均数(标准差)描述,否则采用中位数(四分位间距)描述;分类变量采用频数(百分比)描述等。事实上,应根据研究设计类型、统计分析目的和数据特征选择恰当的描述方法。例如,CKB选择采用年龄、性别和地区校正的均值和率来描述人群分布特征,而非简单的报告连续变量的均数和分类变量的构成比。4、主要分析(primary analysis):指针对研究结局的统计分析,是研究论文的核心证据。因此,医学论文应详细描述主要分析的实施过程和适用性。在试验性研究中,应明确统计分析数据集、试验效应指标、相对或绝对风险及其置信区间的计算方法、以及假设检验的方法。
《统计学与应用》这本期刊上的文献,你可以去看看学习学习的
统计分析是运用统计 方法 与分析对象有关的知识,从定量与定性的结合上进行的研究活动。下文是我为大家整理的关于统计分析论文的 范文 ,欢迎大家阅读参考!
浅谈统计分析与决策
[摘要] 统计分析与决策二者有联系又有区别。统计要参与决策,必须搞好统计分析。搞好统计分析,需要解决选题、分析、撰写 报告 三个问题。
[关键词] 统计分析 分析方法 决策
统计工作的全过程分为四个阶段,即统计设计,统计调查,统计整理,统计分析。其中,统计分析是统计工作的最后一个阶段,是出统计成果的阶段。现在倡导统计要参与决策,这是不是说统计工作还要增加一个决策阶段呢?如果不是,那么,统计分析与决策是什么关系呢?
狭义的说,统计分析与决策是有区别的。统计分析是以统计数字为基础,以统计方法为手段,对社会经济情况进行科学的分析和综合研究,以认识其本质和规律的过程。而决策则是为了达到某一预定目标,运用逻辑方法和统计方法,对两种或两种以上可能采取的方案进行比较、分析、研究,以做出合理的、科学的抉择的行为过程。假若把统计分析与决策比作医生看病,统计分析就是对病情的诊断,决策就是开处方,“诊断”和“处方”是有区别的。
广义的讲,统计分析与决策是密不可分的。一方面,统计分析贯穿于决策过程之中。一个决策过程大体上可分为下列三个大步骤:第一,诊断问题所在,确定决策目标;第二,探索和拟定各种可能的备选方案;第三,从各种备选方案中选出最合适的方案。从这三大步骤看,尽管要用到多种方法和手段,但哪一步也离不开统计分析,第一步就是通过统计分析,诊断问题所在,并在分析的基础上确定决策目标;第二步拟定备选方案,要经过“轮廊设想”和“细部设计”这个阶段对轮廊设想的方案要做初步筛选,对每一方案要充实具体内容,“筛选”和“充实”都要经过统计分析;第三步选择最佳方案,首先要对各个备选方案进行评价、论证,这又需要统计分析。因此可以说,没有统计分析,也就没有科学决策。另一方面,从某种意义上讲,决策是统计分析的结果。一般来说,统计分析报告是提出问题、分析问题、指出解决问题的办法,其实,决策方案也就是解决问题实现决策目标的办法,只不过比“今后意见”“几条 措施 ”之类的办法更全面、更详细、更科学罢了。医生诊断是为了正确处方,治病救人,不能只诊断不处方。统计分析是为了发现问题,解决问题,推动社会经济的顺利发展;也不能只提出问题,而不寻找解决问题的办法。从这个意义上讲,统计分析也就包括预测和决策。我们不能为统计而统计,也不能为分析而分析。统计应该参与决策,为了决策科学化,必须搞好统计分析。
搞好统计分析,需要解决选题、分析、撰写报告三个问题。
一、统计分析选题
所谓选题,就是在复杂的社会经济现象中,确定统计分析的内容和范围。进行统计分析,选题很重要。成功的选题是成功的分析的前提。
怎样选好题呢?选好题标准有两条:―是分析对象有意义,二是适合决策层和群众需要。关键是抓住党和国家的方针政策和企业的经济效益。
统计分析课题是很广泛的。工业统计分析课题如:计划执行情况分析、工业净产值统计分析、工业产品销售统计分析、工业原材料供应和消耗统计分析、工业能源消耗统计分析、工业生产设备统计分析、工业劳动与工资统计分析、成本利润统计分析、综合经济效益统计分析等。商品流通企业统计分析课题如:市场供求状况分析、市场占有率分析、主要商品经济寿命周期分析、市场商品价格分析、计划执行情况分析、购销合同执行情况分析、商品购进质量分析、商品销售动态分析、商品销售构成分析、商品库存分析、企业经济效益分析等。对于以上内容,可根据不同的时间、地点、条件,按两条选题标准适当选择。
统计分析有专题分析与综合分析之分。在一定的总体范围内,研究总体的各个方面及其相互关系,或研究总体的主要方面的统计分析,属于综合分析;只研究其中某一方面,或某一部分的统计分析,属于专题分析。两者各有不同的特点,都是必要的,但专题分析宜多,综合分析宜少。
二、统计分析方法
统计分析的关键是分析,怎样进行统计分析呢?统计分析有两个特点:一是以统计数字为基础,二是以统计方法为手段。因此,统计分析在选题之后,就要根据分析的需要,搜集整理有关数字资料及具体情况,在充分占有材料的基础上,灵活运用统计方法进行分析。
统计分析方法很多。统计学原理中除了有关统计调查、统计整理的内容外,综合指标、统计指数、时间数列、抽样推断等内容全部是统计分析方法。从方法角度上讲,统计分析就是统计学原理的运用。
统计方法与人们的认识过程是相适应的。人们的认识分感性认识和理性认识两个阶段。感性认识阶段所认识的是事物的现象,可采用统计调查和统计整理。理性认识阶段所认识的是事物的本质和规律,这个阶段要经过形成概念、进行判断和推理等思维活动。与此相适应,要分别采用不同的统计分析方法。
形成概念一般用描述性的综合指标法,即总量指标、相对指标和平均指标,以说明现象的规模大小、水平高低、速度快慢、内部结构以及比例关系等。判断推理就是要判断事物的性质,分析事物变化的原因,找出事物发展的规律。这一般要用分组分析法、动态分析法、因素分析法、相关回归分析法、平衡分析法等。
对统计学原理中的各种统计分析方法要熟练地掌握,灵活地运用。怎样灵活运用呢?这里有个技巧问题。技巧就是定性分析与定量分析巧妙结合。
所谓定性分析是指对事物的性质和影响事物发展变化的因素进行分析。定量分析就是分析事物的规模、水平、速度、结构、比例,以及各个因素对事物总体变化的影响方向和影响程度。定性分析与定量分析巧妙结合有两层含义,一是二者不可偏废,二是二者密不可分,
没有定性分析,定量分析就没有方向。没有定量分析,定性分析就不准确。结合的目的是在质与量的辩证统一中探寻事物的内在联系。
从根本上讲,统计分析就是完成从感性认识到理性认识,从现象到本质的飞跃。完成了这―飞跃,才是高质量的统计分析。有些统计分析质量不高,往往就是没有完成这一飞跃,仍然停留在表面现象上。
三、统计分析报告的撰写
统计分析报告是统计的最终产品。如果说统计数字的准确性是统计的生命,那么,统计分析报告的质量则关系到统计作用的发挥。对高质量的统计分析报告的要求,可以概括为五个字,就是“准、快、新、深、活”。
准:就是实事求是地反映客观实际。做到数字准确,情况准确,论点准确。
快:就是在决策层决策之前,不失时机地及时提供分析报告。
新:就是不断创新。要求不断开拓新领域,钻研新课题,反映新情况和新问题。
深:就是要在充分占有材料的基础上,提高分析的深度,使认识不只停留在反映现象上,而要揭示事物的本质和规律,并且用观点统帅材料,用材料说明观点,做到材料和观点的统一。
活:就是文字生动活泼,形式灵活多样。资料要多样化和生动具体,要有群众语言,要通俗易懂,文字要精精炼。
统计分析报告是在统计分析的基础上撰写出来的。没有好的分析,不可能写出好的报告。经过分析阶段,弄清了事实,判明了性质,探索出规律,得出了结论,在此基础上就可以撰写统计分析报告。但分析得好,并不等于报告写得好,这里还有个撰写的技巧问题,那就是准确地表述事实,透彻地阐明本质,深刻地揭示规律,恰当地提出建议。
1.准确地表述事实
每一篇统计分析报告,都需要表述所分析的现象,即说明“是什么”。准确地表述事实,才能给读者一个明确的概念。为此,须注意如下几点:(1)数字要真实;(2)运用数字要适当,不要堆砌数字,搞数字文字化;(3)语言要素准确。
2.透彻地阐明本质
现象只说明事物的各个片面,本质才说明事物的整体。撰写统计分析报告,必须深刻地揭示事物的本质,它是统计认识事物的正确程度和深度的反映。如果不能深刻地阐明事物的本质,那只能是现象罗列,没有多大价值。
阐明事物的本质,也就是阐明事物的基本性质。事物的性质是由事物内部矛盾的主要方面决定的。例如,某企业利润增加,是靠涨价,还是靠降低成本?经过分析,认识到利润增加主要是靠降低成本,这是矛盾的主要方面,这就反映出事物的性质。因此,在报告中就应阐明降低成本在提高经济效益中的重要作用。再如某企业,本质问题是钢材浪费严重,在报告中就应揭示浪费的若干方面和严重程度。
3.深刻地揭示规律
规律是事物内部固有的、本质的、必然联系。成本高低与产量多少有联系,经过推理,这种联系是事物内部固有的、本质的必然联系,反映了事物发展变化的规律性,而且存在一定的回归关系。而回归方程反映这种关系,所以在统计分析报告中,要利用回归方程揭示这种必然联系及其回归关系。
4.恰当地提出建议
认识世界的目的是为了改造世界。经过统计分析,透过现象认识到事物的本质和规律,还必须提出解决问题的建议,如“今后意见”、“几点建议”、“决策方案”等等。怎样才算恰当地建议呢?恰当的建议要符合三个条件:(1)符合分析目的;(2)合乎客观规律;(3)切实可行。
以上四点,一般可以作为分析报告的结构和顺序,但不能千篇一律。
统计分析报告是统计分析结果的反映。既要注意提高写作水平,更要努力锻炼分析问题和解决问题的能力。
试谈统计分析方法应用
【摘要】统计分析方法应用于各个领域,解决了很多工业、农业、经济、医学等领域的实际问题,本文分析多元统计分析方法的主要应用和构建多元统计方法检验体系的必要性,针对性的提出了需要引起注意的共性问题,具有很强的现实意义。
【关键词】统计分析方法;应用;检验体系;共性问题;现实意义前言
随着信息技术的普及和广泛应用,它推动了社会、经济和科学技术的发展,多元统计分析方法的难题得到了攻破,各个领域广泛采用,推动了各行各业经济的快速发展。
二、多元统计分析方法的主要应用
统计方法是科学研究的一种重要工具,其应用颇为广泛。在工业,农业,经济,生物和医学等领域的实际问题中,常常需要处理多个变量的观测数据,因此对多个变量进行综合处理的多元统计分析方法显得尤为重要。随着电子计算机技术的普及,以及社会,经济和科学技术的发展,过去被认为具有数学难度的多元统计分析方法,已越来越广泛地应用于实际。
聚类分析
它是研究分类问题的一种多元统计方法,聚类分析的基本思想是首先将每个样本当作一类,然后根据样本之间的相似程度并类计算新类与 其它 类之间距离,再选择近似者并类每合并一次减少一类,继续这一过程直到所有样本都合并成为一类为止。所以聚类分析依赖于对观测间的接近程度或相似程度的理解,定义不同的距离量度和相似性量度就可以产生不同的聚类结果。企业制定 市场营销 战略时要弄清在同一市场中哪些企业是直接竞争者,哪些是间接竞争者是非常关键的一个环节。要解决这个问题,企业首先可以通过 市场调查 ,获取自己和所有主要竟争者,从而寻找企业在市场中的机会。
判别分析
判别分析是已知研究对象分成若干类型,并取得各种类型的一批已知样品的观测数据、在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分析,企业在市场预测中往往根据以往所调查的种种指标,用判别分析方法判断下季度产品是畅销平销或滞销。一般情况下判别分析经常与聚类分析联合起来使用。
主成分分析
主成分分析就是设法将原来指标重新组合成一组新的互相无关的几个综合指标,来代替原来指标,同时根据实际需要从中可取几个较少的综台指标,尽可能多反映原来指标的信息,在市场研究中常常利用主成分析方法分析顾客的偏好和当前市场的产品与顾客之间的差别,从而提供给生产企业新产品开发方向的信息。
因子分析
因子分析是主成分分析的推广和应用。它是将错综复杂的随机变量综合为数量较少的随机变量去描述,多个变量之间的相关关系以再现原始指标与因子之间的相互关系。也可以认为因子分析是将指标按原始数据的内在结构分类。例如:对Y个调查区的商业网点数、人口数、金融机构服务数、收入情况等N个指标进行因子分析,如果按照一般的分析方法,我们就需要处理N个指标,并给它们以不同的权重。这样不仅工作量变大而且由干指标之间存在比较高的相关性,会给分析结果带来偏差另外给具有较高相关性的众多指标,从而计算出各个调查区平均综合实力得分以便决定在某个调查区拟建何种类型的销售点。
三、构建多元统计分析方法检验体系的必要性
(一)构建多元统计分析方法检验体系,提高多元统计分析应用质量
多元统计分析方法已经越来越为人们广泛应用,但应用中盲目套用分析方法的情况很多,只关心模型方法的应用。许多教科书也只侧重介绍多元统计分析方法的思想、原理和分析步骤,对多元统计分析方法应用结果的统计检验叙述不多。这就直接影响了多元统计分析方法的应用效果和可信性。因此,本文拟对多元统计分析方法的统计检验问题进行探讨。构建多元统计分析方法检验体系的目的在于进一步丰富和完善多元统计分析方法的内容体系;实践上,使多元统计分析方法的应用更加合理、规范。推动多元统计分析方法应用质量的提高,推动多元统计分析方法获得更广泛的应用。
(二)多元统计分析统计检验体系的基础理论
多元正态分布总体的样本分布,即维希特分布,霍特林分布,威尔克斯分布,多元正态总体均值向量假设检验,包括一个正态总体均值向量假设检验,两个正态总体均值向量假设检验,多个正态总体均值向量假设检验;多元正态总体协方差阵假设检验,包括一个正态总体协方差阵假设检验,多个协差阵相等假设检验。
(三)关于统计检验体系
将上述统计检验体系有机结合在一起,就构成了多元统计分析方法检验体系的基本框架。多元统计分析方法检验体系的构建,用多元统计分析方法,充分发挥多元统计分析方法的应用价值,提高应用质量,我们建议,在应用时,应该按照上述框架进行相应的统计检验。当然。上述统计检验体系还是一个初步的框架,随着多元统计分析方法理论的逐步完善,上述检验体系也需要不断完善,也需要更多的同行关注此类问题并不断加以研究。另一方面,在实际应用中,即便是某种方法根据上述内容都进行了统计检验,由于各种方法自身存在的缺陷或局限性,也还会存在许多应用中考虑不周之处。应该引起注意。但是,因子分析结果还是具有较大主观性。特别是对公共主因子在专业方面实际意义的解释上,仍然保留着一种艺术气息,并没有统一做法,因此很多情况下也是不能令人满意的。总之,我们在应用时,对因子分析的适用性、公因子的估计方法、公因子选取的数目。公因子的实际意义的解释等一系列问题都要引起足够注意。检验体系有如下几个分类:
a.主成分分析统计检验体系
b.因子分析统计检验体裂引
c.系统聚类分析统计检验体系
d.判别分析统计检验体裂
e.对应分析统计检验体系
f.典型相关分析统计检验体系
四、多元统计分析方法应用中需要注意的几个共性问题
1.关于原始数据变量的总体分布问题。
对原始变量的总体分布各种方法各有不同的要求。有的方法对原始数据变量总体分布没有特殊的要求,如主成分分析、聚类分析、对应分析。有的方法在不同情况下,对原始变量分布有不同的要求,如因子分析中,公共因子的估计方法不同,对原始变量分布要求不同,采用极大似然估计方法估计主因子时,是假定原始变量是服从多元正态分布的,因此,应用时要引起重视,如典型相关分析要求原始变量服从正态分布,但在严格意义上,如果变量的分布形式比如高度偏态不会降低其他变量的相关关系,典型相关分析是可以包含这种非正态变量的。
样本容量问题。
进行多元统计分析时,样本容量n达到多少为宜,目前尚没有统一的结论。有的认为样本容量应是变量个数的10~20倍,有的认为样本容量要在100以上比较合适,有的认为进行巴特莱特检验时的样本容量应该大于150方可,也有的认为不必苛求太多的样本容量,如在进行主成分分析和因子分析时当原始变量之间的相关性很小时,即使再扩大样本容量,也难以得到满意效果。
原始变量之间的相关性以及非线性关系问题。
多元统计分析方法中,有的是的要求原始变量中要具有相关性。有的则不要求原始变量具有相关性。如聚类分析中,进行Q型系统聚类分析时对原始数据变量之间的相关性也是有要求的,如选择欧式距离、明氏距离、兰氏距离时,则要求原始变量之间是不相关的。只有对原始数据的相关性进行了处理后,才可以选择使用上述距离。若原始变量存在相关性,则选择马氏距离比较合适。另外原始变量之间的非线性关系也是需要注意的问题。如主成分分析、因子分析以及典型相关分析当基于相关矩阵来进行计算时,这里的相关矩阵实际上是Pearson的积差相关。但是,如果变量之间的关系不是线性的,而是非性相关关系,于是,所进行的分析以及结论也就失去应有的意义了。
数据处理问题。
多元统计分析中涉及多个变量,不同变量往往具有不同的量纲及不同的数量级别。在分析时,具有不同量纲的变量进行线性组合是没有意义的,不同的数量级别的变量之间进行分析时。会导致“以大吃小”,即数量级的变量的影响会被忽略,从而影响了分析结果的合理性。因此。为了消除量纲和数量级别的影响,进行多元统计分析时,必须对原始数据进行处里,最常用的是先作标准化变换处理,然后再作相应的分析。
五、结束语
在统计分析方法的应用中,会涉及到多个变量,因此,必须根据原来有的数量进行处理,然后才能得出相应的分析结论。本文结合多元统计分析方法的理论基础,对相关检验体系和分析体系进行了分析,具有现实的理论指导意义。
【参考文献】
[1]于秀林.多元统计分析[M].北京,中国统计出版社,1999:223—224.
[2]高惠璇.应用多元统计分析[M].北京,北京大学出版社 ,2005:343—366.
[3]郭志刚.社会科学分析方法一SPSS软件应用[M].,中国人民大学出版社,1999.
[4]傅德印.主成分分析中的统计检验问题 [J].统计 教育 ,2007(9):4—7.
建筑业是专门从事土木工程、房屋建设和装置安装以及工程勘察设计工作的生产部门。下文是我为大家整理的关于的范文,欢迎大家阅读参考! 篇1 浅谈统计技术在建筑业企业中的应用 摘要:本文探讨了企业统计分析当中的主要统计方法,建筑业企业统计核算的特点,统计技术在建筑业施工企业中的应用,为企业施工行业各有关部门和企业加强管理、提高规划建设、搞好经营管理和进行科学研究提供依据。 关键词:建筑企业;统计技术;方法;特点 建筑业企业要生存、发展,做强做大,关键在于市场。当前国内建筑市场竞争激烈,运用好统计指标,做好企业经营核算。随着市场经济体制的建立、健全和逐步完善,建筑业企业经历了一个由小到大、由弱到强的发展历程,规模逐步壮大、结构日趋完善、领域不断拓宽,发展质量和发展水平都有较大程度的提高。对经济发展推动作用明显增强,主要表现在两方面:一是自身规模逐年扩大,对推动经济增长和结构调整有重要的推动作用;二是自身功能逐步完善,成为经济、社会持续、健康发展的重要保障。 一、企业统计分析当中的主要统计方法 由于建筑业企业统计核算的物件是建筑产品的生产和经营的全部经济活动,建筑业企业统计不仅要反映建筑产品的生产数量情况,而且要研究数量之间的关系,研究建筑施工的经营管理情况以提高建设速度,确保工程质量,挖掘节约资金的潜力。为此,建筑业企业统计必须掌握建筑施工的人力、物力、财力的配备,以及建筑产品的生产、供应、销售的经营成果。 随着网际网路的不断发展,企业获得资讯资源已起越来越轻易,在资讯占有差不多情况下,提高统计分析的质量也越来越重要,我们要充分利用现有的各种先进的统计方法,包括投入产出法、时间数列、主成分分析法等方法,同时也要改革和创新现有的统计方法,使之更加适应时代的要求。 对于企业来说,常用的统计分析方法主要是投入产出法、因素分析法、时间数列等。 利用投入产出法可以分析产品的制造成本构成,制造成本中的主要消耗,可以分析企业的期间费用构成,根据这些分析可以发现企业经济执行中的主要问题进而提出改进意见及建议。 因素分析法可以对影响企业经济效益的主要因素进行分析,通过建立各种经济模型进行各种可能的经济因素分析。 利用时间数列可以分析企业产品受季节变动的影响情况,可以分析企业产品的回圈变动规律和长期变动趋势。 二、建筑业企业统计核算的特点 1.建筑产品的单一性,决定了建筑业统计核算必须以施工图纸概算为依据。建筑业生产区别于其它行业生产的一个重要特征就在于建筑业生产极少有重复生产,其每件产品都有不同的设计和预算,即使采用标准设计,也因建设地点和自然条件的不同而呈现差异,因而需要编制不同的施工图预概算。这就决定了建筑业产品的核算必须以施工图预概算为依据。 2.建筑产品生产周期的长期性,决定了建筑产品核算必须以半成品、在制品为主要物件。建筑产品一般体积庞大,施工周期长,因而施工生产通常是分阶段进行的;因此,在核算建筑产品时,绝大多数产品是按半成品完成程度计算的,也就是完成到什么程度,就将完成部分按照施工图预概算价值计入完成产值。施工单位核算成本、计算工资和利税等,也以半成品、在制品为核算物件。 三、统计技术在建筑业施工企业中的应用 《统计法》指出:统计的基本任务是对国民经济和社会发展情况进行统计调查、统计分析、提供统计资料和统计咨询意见,实行统计监督。随着市场经济体制的逐步建立和完善,统计职能将越来越重要。企业统计已由单纯的统计资讯蒐集整理职能转变为核算、监督两大职能,成为企业核算的重要组成部分之一。结合建筑业企业的发展情况和多年的实践,建筑业企业统计核算的主要任务,可以归纳为以下几点:1采用多种调查方法、准确、及时、全面地收集反映建筑业企业生产经营活动的统计资料;2科学地整理和分析统计资料,提出切合企业实际的建议和预测,为行业主管部门制定政策和行业规划,检查政策、法规执行情况提供事实依据;为编制计划和检查计划执行情况及企业领导决策提供可靠依据;3长期积累的统计资料,是建筑科学、建筑业企业经营和经济研究的重要依据。各建筑业企业和基层统计部门,必须严格贯彻执行国家统一的统计制度、统计方法,结合本单位管理的实际,建立健全原始记录和统计台账,保证统计数字质量,提高统计工作水平,圆满完成企业统计核算任务,为行业统计提供客观的可靠的依据。 四、降低工程成本是增强建筑业企业施工效益的途径 随着我国社会主义市场经济的不断完善,施工企业面临激烈的市场竞争。公开竞标、最低价中标是一种必然趋势,企业生存、盈利空间愈来愈小。因此,利用各种途径,力求在施工过程的每一个环节降低工程成本,增加工程效益的路子值得一探。发挥人的决定因素。施工企业专业技术人员的综合专业素质,包括专业知识、施工经验、责任意识等是工程降本增效的决定性因素。现场施工员,在施工专案管理中,施工员跟班作业、掌握第一手资料,是工程质量、进度、成本控制的执行者。施工员的具体工作主要有包括:记好施工日志和工机料消耗记录;抓好施工班、组人员的合理分工;用好施工技术规范和安全操作程式;做好工程量计量和签证;管好设计变更、隐蔽工程记录等资料等。这些基础性工作非常重要,对工程的降本增效有着举足轻重的影响。 五、运用统计调查方法,提供科学研究依据 基于目前市场环境的特点,施工企业必须充分认识内部成本预算的意义,充分认识和掌握自己的企业施工管理水平,加强企业内部成本管理,为工程投标报价提供依据。我们必须建立这样一个思想,就是以市场价格为标准,确立专案成本、专案效益观念。在些过程中,科学运用统计调查方法就显得尤为重要。施工行业统计必须满足国家统计法对统计基本任务的总体要求。因此,施工企业统计的基本任务可以确定为:采用科学的统计方法和先进的统计手段,对施工过程中的各个阶段的相关活动进行统计调查、资料的收集整理、提供完善的统计资料、开展统计分析、行使统计监督,为国家了解施工企业对国民经济发展的贡献和影响,制定长远发展规划、进行巨集观调整和决策提供依据;为企业施工行业各有关部门和企业加强管理、提高规划建设、搞好经营管理和进行科学研究提供依据。 篇2 工程施工统计分析问题研究 【摘要】在施工过程中,影响工程计划完成的因素各种各样,利用此方法及其分析步骤,可以比较全面、深刻地分析施工全过程所出现的各种因素对工程完成影响的程度,从而找到解决的办法。这种分析方法及分析结果,由于其紧贴工程实际,为进一步分析、研究成本升降的原因提供了依据。 【关键词】因素分析法;施工统计分析 1.因素分析法及内容 施工统计分析是运用统计方法对施工全过程出现的各种现象进行分析、研究,从而找出规律并提出解决办法,是统计工作的重要内容。因素分析则是通过对工程成本费用的变化情况进行分析、研究,为降低成本费用,提高经济效益,并为下一步加强管理提供依据。因此,因素分析对提高统计分析水平,正确反映施工过程中出现的各种因素对工程造价的影响程度,有着重要的意义。因素分析是利用施工耗费和费用支付现状进行分析、比较、评价,为管理者提供成本管理依据,通过对施工全过程的实际消耗材料,进行全面分析,了解费用成本变动情况。为系统分析、研究引起成本升降的各种因素及其形成的原因,从而找到降低工程费用的潜力,达到对工程费用的有效控制,避免浪费,改进经营管理,提高经济效益的目的。它是用来确定影响工程成本计划完成情况的因素及其影响程度的一种分析方法。 分析程式是。 确定分析物件,即将分析的各项计划指标如材料消耗,人工计划等,计算出实际成本与计划数的差额,作为分析物件。 确定该项指标是由哪几个因素组成,并按照各个因素之间的相互关系,排列顺序。 以计划数或预算数为基础,将全部因素如材料消耗定额,材料计划单价相乘,作为替代的基础。 将各因素的实际数逐个替换其计划预算数,替换后的实际数保留下来,每次替换后,都要计算出新的结果。 将每次替换的所得结果与前一次计算结果比较,二者差额,就是某一因素对计划完成情况的影响程度。 例如分析材料成本变化及各因素影响的程度 由于材料成本受工程量变动、单位材料消耗定额的变动,材料单价的变动等因素的影响,工程量的增加或减少必然引起材料消耗量的增加或减少,单位材料用量的减少或增加也同样会引起材料成本的上升或降低。计算时采用下式计算: l计划工程量K单位材料消耗定额x计划单价。 2第一次替代:实际工程量x单位材料消耗定额x计划单价。 3第二次替代:实际工程量x单位实际用料量x计划单价。 4第三次替代:实际工程量x单位实际用料量x实际单价。 2与l式的差额是由于工程量变动引起的结果,3与2式的差额是由于材料消耗定额变动的结果,4与3式的差额是由于材料单价变动的结果。 通过以上顺序计算可以比较全面、直观地了解由于各个因素的变动而引起材料成本的变动程度。需要注意的是在确定各项因素时,必须根据其相互作用和相互内在联络的主次关系,确定其排列顺序,而且这个顺序一经确定,不能任意改变,否则会得出不同的计算结果,影响分析、评价的质量。 当分析的问题比较简单,尤其是分析的问题仅有二个因素影响时,可以采用差额计算方法,即利用指标的各个因素的实际数与计划数的差额按照一定的顺序直接计算出各个因素变动对计划指标完成的影响程度。此方法是因素分析方法的一种简化形式,但在计算时也要注意各因素的排列顺序,否则会影响分析、评价的质量。 2.因素分析法在统计学中的应用 从因素分析的计算、分析过程可以看出,此方法紧贴工程实际,主要分析各因素对分析物件的影响程度及所产生的差异,进而找到产生这些差异的原因,为提高专案管理水平,节约成本提供依据,与统计分析应达到目的一致。 因此利用因素分析方法可以为统计分析提供研究、分析资料,使统计分析更加切合实际,为统计预测,总结已完工程的经验教训服务。 因素分析法是以工程费用成本为依据,分析工程总费用的变化情况 因此,此方法不仅可以用以专题统计分析,也可用于综合分析。在进行专题分析时,可以分析如材料费用,人工费用以及其它间接费用。但由于工程总费用正是这些个别费用的总和,因此,在进行综合统计分析时只要注意工程间接费用及时摊入即可。 利用因素分析的计算、分析程式及结果,进行统计的事中分析和事后分析 所谓事中分析主要是在工程的施工过程中,对费用支付情况逐一分析,从而找到费用增加或减少的原因,发现造成工期拖延或提前的影响因素,达到查明成本的目的。事后分析是对工程完成竣工后,各项费用已支付完毕,统计人员或管理人员对本工程实际支付的工程费用进行分析。一方面确认有效合同价格与各附加费用支付额,另一方面分析各分项工程实际费用占总投资的比重,掌握实际情况及产生偏差的原因,将实际支付的工程费用与合同价进行逐项对比,从中总结经验教训,发现问题,积累经验,为今后的管理打下基础。通过实际成本与计划成本的对比,行业类似工程成本水平的对比分析,检查成本计划完成情况,找出施工技术或经营管理各方面的薄弱环节,以利以后改善组织管理,提高经济效益。 在利用因素分析进行统计分析时,应注意不能简单地用因素分析的结果代替统计分析 因为因素分析只能分析到各因素对分析物件的影响程度及差异额。在进行统计分析时,还应对已分析、计算的结果进一步分析,找到产生差异的原因,利用统计方法及要求进行复核。另一方面工程专案价值包括直接成本和间接费用,而因素分析则侧重于直接成本方面的分析。间接成本包括管理费用及政策规定方面的因素,因此在进行统计分析时,应注意间接成本对总造价的影响,以保证统计分析的全面、正确性。 利用因素分析要注意与统计分析要求的计算的方法相结合 统计分析常用百分率分析法,分析各因素所占分析物件的比重及平衡情况。而因素分析法则侧重于各因素对分析物件的影响程度及差异额,因此必须与百分率分析方法相结合,才能达到统计分析的要求。再者统计分析是在总结过去经验、教训的基础上预测未来的发展,并提出建议。因此在利用因素分析法的计算、分析结果进行统计分析时,应结合统计分析的不同要求和管理需要,对工程进行全面、正确的分析。 【参考文献】 [1]王群.因素分析法在统计分析中的应用[J].大众科技,2005,02 . [2]王一红.因素分析法在销售业绩评估中的应用[J].锦州师范学院学报哲学社会科学版,2002, 01. [3]刘玉国,周普友. 因素分析法在公路工程施工统计分析中的应用[J].市场研究,2004,05. [4]陈斌.安徽省高速公路概算统计及分析[J].中国西部科技,2004,07. [5]李山寨.连环替代因素分析法的科学应用[J].统计与资讯论坛,2000,02.
SPSS软件是“统计产品与服务解决方案”软件,是数据统计分析的一个重要的工具。下文是我为大家整理的关于spss统计分析论文的 范文 ,欢迎大家阅读参考!
统计分析软件SPSS的特点和应用分析
【摘要】通过文献资料法,介绍了统计分析软件SPSS的特点,并通过实例:用非参数检验中的两个独立样本的检验(Test for Two Independent Sample)进行分析,对该软件的应用做了详细的介绍,旨在为学习SPSS软件的人们提供参考。
【关键词】统计分析软件;SPSS;独立样本;非参数检验
一、前言
统计分析软件SPSS是一款统计产品与服务解决方案的软件,其全称为“统计产品与服务解决方案(Statistical Product and Service Solutions)”。该软件是一款在统计中应用很广的统计分析软件,目前在各专业 毕业 论文经常可以看到它的身影,其应用范围广、方便快捷等特点吸引着众多的 爱好 者。本文通过对统计分析软件SPSS的功特点进行介绍,通过举例用非参数检验中的两个独立样本的检验(Test for Two Independent Sample)进行分析,对该软件的操作用做了详细的介绍,为学习SPSS软件的人们提供参考。
二、SPSS软件的特点
(一)操作简便
SPSS软件的界面非常友好,除了数据录入及部分命令程序等少数输入工作需要键盘键入外,大多数操作可通过鼠标拖曳、点击“菜单”、“按钮”和“对话框”来完成。
(二)编程方便
具有第四代语言的特点,告诉系统要做什么,无需告诉怎样做。只要了解统计分析的原理,无需通晓统计 方法 的各种算法,即可得到需要的统计分析结果。对于常见的统计方法,SPSS的命令语句、子命令及选择项的选择绝大部分由“对话框”的操作完成。因此,用户无需花大量时间记忆大量的命令、过程、选择项。
(三)功能强大
具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。
(四)全面的数据接口
能够读取及输出多种格式的文件。比如由dBASE、FoxBASE、FoxPRO产生的*.dbf文件,文本编辑器软件生成的ASCⅡ数据文件, Excel 的*.xls文件等均可转换成可供分析的SPSS数据文件。能够把SPSS的图形转换为7种图形文件。结果可保存为*.txt,word,PPT及html格式的文件。
(五)灵活的功能模块组合
SPSS for Windows软件分为若干功能模块。用户可以根据自己的分析需要和计算机的实际配置情况灵活选择。
(六)针对性强
SPSS针对初学者、熟练者及精通者都比较适用。并且现在很多群体只需要掌握简单的操作分析,大多青睐于SPSS,像薛薇的《基于SPSS的数据分析》一书也较适用于初学者。而那些熟练或精通者也较喜欢SPSS,因为他们可以通过编程来实现更强大的功能。
三、实例分析――两个独立样本的检验(Test for Two Independent Sample)
例题:为了调查甲、乙两地土壤对 种植 同一种西瓜有没有影响,从这两个产地分别随机抽取同种的8只和7只西瓜,称重后得重量(市斤)如下:
甲(斤):、、、、、、、
乙(斤):、、、、、、
问:根据样本数据检验两地的土壤对种植西瓜在重量上是否有显著差异?
解:建立假设 H0:甲乙两地的西瓜重量没有显著差异;
H1:甲乙两地的西瓜重量有没有显著差异。
然后根据上面给出的数据建立数据文件,注意数据文件中有一个表示重量数据的变量和一个表示地区分组的变量。最后在数据编辑窗口进行检验。检验的具 体操 作过程如下:
第一步:单击Analyze Nonparametric Test 2 Independent Sample,打开Two-Independent-Sample对话框(见图1)。
第二步:选择检验的变量进入检验框中,选择分组变量进入Grouping Variable框中,单击Define Group键,打开Define Group对话框,将分组变量值分别键入两个框中,单击Continue返回主对话框(见图2):
第三步:在Test Type栏中,确定检验方法。
SPSS中提供了四种检验方式,几种检验方法侧重点不同,但都是先把两样本数据混合排序,再从不同的角度分析并检验两个独立总体的分布是否有显著的差异。有时这几种检验结果可能不一样,所以要结合数据的探索分析考察数据的分布状况作出结论。本文选择了常用的Mann-Whitney U曼―惠特尼检验和Kolmogorov-Smirnov Z K-S检验。
第四步:选择输出的结果形式及缺失值处理方式;
第五步:单击OK,得输出结果。
所以,以上两种检验结论是一致的。也就是说在两地种植的同一种西瓜地重量没有显著差异。
参考文献
[1]杜志渊.常用统计分析方法―SPSS应用[M].山东人民出版社,2011.
[2]刘宁元.运用SPSS对高职专业课程成绩进行相关分析[J].电脑与电信,2007(3).
[3]井海立.SPSS在数学试卷统计分析中的应用[J].科技信息(学术版),2006(10).
试谈SPSS软件在考试数据统计分析中的应用
摘要: SPSS软件是数据统计分析的一个重要的工具。本文作者利用SPSS软件对考试数据的相关性、检验假设进行了统计分析,介绍了使用SPSS进行统计分析的一般方法和步骤,文中的方法对考试研究人员具有一定的指导意义。
关键词: SPSS软件 考试数据 统计分析 操作步骤
1. 引言
一份好的试卷须有好的测量指标来表明它的优良程度,试题有难度和区分度指标,试卷有效度和信度指标,这些是评价考试最主要的测量指标,但是仅有这些指标不足以反映一份试卷的实际测量效果,考试研究人员希望从考生的试卷统计分析中获取更多的信息来评价一份试卷。在计算机未普及的年代,考试成绩统计主要依靠人工阅卷,考试数据无法电子化存储,对考试数据分析统计难以实现。随着计算机的普及和信息化的推广,各种分析数据的软件应运而生,这些软件中汇集了统计学和测量学的分析工具,使得应用电子信息技术分析统计考试成绩数据成为可能,这些统计信息可以为教研部门、考试行政部门进行行政决策等提供非常重要的帮助。在众多的统计分析软件当中,SPSS是应用最多、影响最广泛的分析工具之一。在本文中,我们以SPSS软件为工具,对 教育 招生考试成绩的数据进行统计分析,分析主要着重于考试数据的相关性、假设检验等几个方面。
2. SPSS分析软件简介
“SPSS统计分析软件”的英文名称为“Statistical Package for the Social Science”,中文名称为“社会科学统计软件包”,它是世界著名的统计分析软件之一,在自然科学、社会科学的各个领域均有非常广泛的应用。SPSS是一个组合式软件包,它集数据整理、分析于一身,主要功能包括数据管理、统计分析、图表分析、输出管理等,该软件的统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类。
下面我们利用SPSS软件对考试数据的相关性、检验假设进行统计分析,介绍使用SPSS进行统计分析的一般方法和步骤。
3. 相关性分析
教育考试中,考试结果的信度,试题的区分度,每个题目得分与试卷总分的关系,以及题目之间的关系,等等,都是考试研究的重要内容,最主要的研究方法就是数据的相关性分析。在众多的教育考试数据的相关性分析方法中,Pearson相关系数法、Spearman相关系数法和Cronbach α信度系数法是比较常用的几种方法。
Pearson相关系数法计算公式:
式中x为第i个考生第j题的得分,y为第i个考生第k题的得分,为第j题的平均分,为第k题的平均分,n为测试样本量。该公式既可以计算两个连续变量之间的相关性,又可以计算一个双歧变量与一个连续变量之间的相关性。
Spearman相关系数法计算公式:
r=1-(2)
式中D为两个变量的秩序之差,n为样本容量。
Cronbach a信度系数法计算公式:
α= 1-(3)
式中n为试题数,s为第i题的标准差,s为总分的标准差。该公式实际上就是将考试中所有试题间相关系数的平均值(又称内部一致性)作为α信度系数。
对于给定的一组考生成绩数据,利用SPSS统计分析软件可以非常容易地定量分析考生某学科试卷总分和该学科某道题的相关性,以及各个题目之间的相关性。我们以Pearson相关系数分析为例,利用SPSS软件进行统计分析。
数据统计分析的对象是某省高考数学6道解答题的得分情况(不是整张试卷),数据源于该省的高考数据成绩。研究的目的是测量6道解答题每两个题目之间的相关性。
我们以SPSS 版本的软件为例,介绍利用SPSS进行数据统计分析的步骤(以Pearson相关系数法为例):
(1)将考试数据导入SPSS软件,在SPSS数据窗口中,顺序点击【Analyze】→【Correlate】→【Bivariate...】,系统弹出变量相关系数设置对话框。
(2)在该对话框中,将待计算的变量从左侧的变量列表中导入到右侧的“Variables”变量列表中,在本例中导入t1、t2、t3、t4、t5、t6共6个变量(t1―t6是6道解答题的变量名称)。在“Correlation Coefficients”相关系数选项中,选取“Pearson”复选框。
(3)在该对话框的“Test of Significance”设置区域,可以点选“Two-tailed”选项或者“One-tailed”,我们采用系统默认值。
(4)对话框中的 其它 选项取软件系统的默认值,点击【OK】,开始相关系数计算,系统弹出新的窗体输出运算的结果。本次输出的情况如下:
上表的统计结果可用于题目之间相关性的分析。表中的大部分题目的相关系数都比较适中,但题目T4和题目T5之间的相关程度远高于其它几个题目,我们可以确信这两者之间一定存在着比其他题目之间更紧密的关系,这是我们通过分析获取的重要信息,该信息表明这两个题目之间的相关性高于其他几个题目之间的相关性,这在大规模考试中是不应该出现的,需要在以后的命题考试中加以改进。
Spearman相关系数分析方法和上述分析方法类似,只需要在上述SPSS操作的第二个骤中选取“Pearson”复选框,程序就会按Pearson相关系数法进行统计分析,如果同时选中“Spearman”和“Pearson”复选框,程序将会同时计算按两种分析方法统计分析的数据,并会以不同的图表进行显示,而Cronbach a信度系数法计算方法与上述方法略有不同,其操作步骤如下:
(1)在SPSS数据窗口中,顺序点击【Analyze】→【Scale】→【Reliability Analysis...】,系统弹出“Reliability Analysis”信度分析设置对话框。
(2)将待计算的变量从左列的变量列表中导入到右侧的“items”变量中,在左下列的“model”选择项的下拉列表中确保选中“Alpha”(信度系数),点击“Statistics”选择项可以进行更为详细的参数设置,我们采用系统的默认值即可。
(3)参数设置完毕之后,点击【OK】,软件开始相关系数计算并输出运算结果。
4. 选择题的选项分析
在目前的教育招生考试中选择题是一种较常见的题型,考试研究人员关注较多的是对选择题基本特征、测量功能及其优缺点的理论探讨[1][2],对选择题干扰项的设计及其施测后的实际效果关注甚少,事实上施测后对题目各选项的有效性作出判断可为评价试题质量提供重要参考依据。我们利用统计中χ检验假设,对试卷中常见的选择题选择项进行统计分析。
教育考试的单项选择项一般设置为4个,其中仅有1个选择项是正确的。命题人员在设计选择项时,应当也必然对每道题目所有的选择项(正确选择项和干扰选择项)的考生作答情况作出预测,对考生作答的分布情况作出预估。考试结束后,研究人员应该对实测的情况与命题教师预测的情况进行对比分析,以检验考试效果是否达到了预测的目标。这和χ拟合度检验的思想具有一致性,因此可以尝试使用χ检验假设进行分析。
我们依据文献[3][4]的方法来介绍χ检验假设在考试数据分析中应用的基本原理,设变量E是命题者对某道试题的期望值,E=nP,n为样本容量,P为期望的相对频率,引入以下统计量:∑(O-E)/E,其中O为观察频数。
本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文
我们需要进行的假设检验是:零假设H:选项的实测分布与期望分布相同;非零假设H:选项的实测分布与期望分布不同。
检验假设的思想:拟合度检验的统计量在确定的某种显著性水平下如果零假设是真,则检验统计量∑(O-E)/E呈近似χ分布,其自由度为研究变量的可能值减1;如果实测分布与期望的分布相当吻合,就不排除零假设,否则就排除零假设;最后对检验假设的结果进行解释。
数据分析的目的是判断考生实际的应答结果(实测数据)与命题期望的选择概率(期望数据)是否一致。我们随机抽取某省5542个高考考生的数学有效数据构成分析样本,利用SPSS进行统计分析。
SPSS数据统计分析的步骤如下:
(1)将考试数据导入SPSS软件,依次点击【Analyze】→【Nonparametric Tests】→【Chi-Square...】,弹出“Chi-Square Tests”对话框。
(2)将变量列表中待分析的题目序号导入到“Test Variables List”(检验变量列表)中,本例中题目的序号为t7。
(3)将对选择试题的每个选项的期望值依次输入到“Expected Values”所属的方框,具体操作方法是选中单选框“Values”,输入具体的期望数值,点击“Add”按钮,依次重复上述的步骤直至所有的选项的期望值输入完毕。
(4)点击【OK】,输出软件运算结果。
我们需要进行的假设检验,H:选项的实测分布与期望分布相同;H:选项的实测分布与期望分布不同。
假设检验的显著性水平为α=,χ=∑(O-E)/E,自由度为df=4-1=3,查χ分布表或利用相关软件可得P=,由于P>α,因此不能拒绝零假设,即选项的实测分布与期望分布相同。因此,检验结果在显著性水平时,没有足够的证据拒绝零假设,即可认为本题选项的实测分布与期望分布相同,也就是说本题的实际测试效果与命题教师预测的效果是一致的,命题教师准确地估计了考生的实际水平,这是分析获得的很重要的结论。
5. 结语
SPSS软件在考试数据统计分析中应用广泛,但大部分是集中在试题难度、均值、方差统计、考试数据的图表显示等几个方面,本文从一个新的角度利用SPSS软件对考试数据的相关性、检验假设等几个方面进行了尝试性统计分析,介绍了使用SPSS进行统计分析的一般方法和步骤。从上述分析来看,软件操作步骤和统计分析过程十分简单、快捷,对于测量学和统计学基础不太好的数据分析统计人员来说,只要遵循一定的操作步骤,就可以进行分析。
参考文献:
[1]王孝玲.教育测量(修订版)[M].上海:华东师范大学出版社,2006.
[2]雷新勇.大规模教育考试:命题与评价[M].上海:华东师范大学出版社,2006.
[3]李伟明,冯伯麟,余仁胜.考试的统计分析方法[M].北京:高等教育出版社,1990.
[4]雷新勇.考试数据的统计分析和解释[M].上海:华东师范大学出版社,2007.
猜你喜欢:
1. 统计学数据分析论文
2. spss统计分析实习心得
3. 统计学学年论文
4. 统计学分析论文
统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。下文是我为大家整理的关于统计相关论文的范文,欢迎大家阅读参考!
浅谈概率在统计学中的应用
摘 要:概率是研究随机现象的数学学科,其理论严谨、 应用广泛、 发展迅速。目前,概率的理论与方法已广泛应用于 统计学中,主要是从正态分布、小概率事件两方面介绍了概率在统计学中的一些应用。
关键词:随机现象;事件;样本;母体;正态分布;小概率原理
统计学主要分为描述性统计学和推断性统计学。给定一组数据统计学可以摘要并且描述这些数据,这个用法称为描述性统计学。另外,观察者以数据的形式建立起一个用以解释其随机性和不确定性的数学模型,以之来推论研究中的步骤及母体,这种用法被称为应用统计学。另外,还有一个叫做数理统计学的学科专门用来讨论这门科目背后的理论基础。
同一仪器多次测量同一物体的重量,所得的结果彼此总是略有差异,这是由于诸如测量仪器受大气影响,观察者身体或 心理上的变化等等偶然因素引起的。同样的,同一门炮向同一目标发射多发同种炮弹,弹落点也不一样,因为炮弹制造时的种种偶然因素对炮弹质量也会有影响。此外,炮筒位置的误差,天气条件的微小变化等等都影响弹落点。再如从某生产线上用同一种工艺生产出来的灯泡寿命也是有差异的等等。
总之所举这些现象的一个共同点是:在基本条件不变的情况下,经过一系列试验或观察会得到不同的结果。换句话说,就个别的试验结果或观察结果而言,它会时而出现这种结果,时而出现那种结果,呈现出一种偶然性。这种现象称为随机现象。对于随机现象通常关心的是在试验或观察中某个结果是否出现,这种结果称为随机事件,简称事件。为了实际的理由选择研究团体的子集代替研究母体的每一笔资料,这个子集称作样本。推论统计学被用来将资料中的数据模型化,计算它的几率并且做出对于母体的推论,这个推论可能以对或错的答案呈现(假设检验)出对未来观察的预测,关联性的预测,或是将关系模式化(回归)。
随机现象有其偶然性的一面,也有其必然性的一面。这种必然性表现为大量试验中随机事件出现的频率的稳定性,即一个随机事件的频率常在某个固定的常数附近摆动,这种规律我们称之为统计规律性。频率的稳定性说明随机事件发生的可能性的大小是随机事件本身所固有的,不随人们的意志而改变的一种客观属性,因此可以对它进行度量。对于一个随机事件A用一个数p(A)来表示该事件发生的可能性的大小,这个数p(A)就称为随机事件A的概率,因此概率度量了随机事件发生的可能性的大小。
如果样本足以代表母体,那么由样本所做的推论和结论可以引申到整个母体之上,统计学提供了许多方法来估计和修正样本资料过程中的随机性(误差)。要了解随机性的一定几率必须具备基本的数学观念。数理统计是应用数学的分支,它使用几率论来分析并且验证统计的理论基础。
概率在统计学中有着重要的作用,包括总体、抽样研究、统计描述、统计推断、正态分布规律等,正态分布是概率中最重要的一种分布。一方面正态分布是自然界最常见的一种分布,例如测量的误差;炮弹弹落点的分布;人的生理特征的尺寸:身长、体重等;农作物的收获量;工厂产品的尺寸:直径、长度、宽度、高度,都近似服从正态分布。
一般来说若影响某一个数量指标的随机因素很多,而每个因素所起的作用又不太大,则服从正态分布这点可以用概率论的极限定理来加以证明。另一方面正态分布具有许多良好的性质,许多分布可用正态分布来近似,另外一些分布又可由正态分布来导出,因此在理论研究中,正态分布十分重要。如利用正态分布规律统计学校的成绩分布,得出一个阶段的学生总体是否进步,然后寻找原因,得出改进办法。分析一年 经济的发展,预测来年的收入。找出影响发展的主要因素,寻求改进的方法等等。
小概率事件即发生概率很小的事件(p≤),在统计学中有着重要的应用,这样的事件理论上发生的可能性则几乎为零。如买彩票中大奖,就是典型的小概率事件,也许每一期均会有大奖开出(可能性很小),但对于每一个彩民来说,他买一注中大奖的可能性(小概率事件在一次试验中就发生的概率几乎没有。其实,这就是小概率事件在统计学上应用的重要理论依据——小概率原理。)即小概率事件在一次试验中发生的可能性很小,如果真的发生了,根据统计学可怀疑其真实性。
如某接待站在一天内共接待5人单独来访,结果这5人全在周一到访,由此能否推断接待站有规定的接待日?假定没有规定的接待日,一个来访者在五天中任何一天来访都是等可能的用Am(m=1,2,3,4,5,)表示“一周接待了m个人,全都是周一来访”事件,Am的概率如下表示:
事件 A1概率 事件 A2概率
事件 A3概率 事件 A4概率
事件 A5概率
5个人都在周一来访的概率为,大约万分之三。现在概率很小的事件在一次试验中发生了,于是怀疑假定的正确性,从而推断接待站有规定的接待日。
公元1814年,拉普拉斯在他的新作中,记载了一个有趣的统计,世界上男婴与女婴的出生比值是22∶21,即在出生的婴儿中,男婴占,女婴占,可奇怪的是1745-1784年四十年间统计巴黎男婴的出生率时,却得到另一个比是25∶24,男婴占,与前者相差,对于这千分之一点八的微小差异,进行调查研究,发现巴黎人有“重女轻男”的现象,有抛弃男婴的陋习,以至于歪曲了出生率,经过修正出生比依然是22∶21。统计学依据小概率原理作出结论的正确性很高,但也存在犯错误的风险(较低)。
小概率原理在统计上有着非常重要的应用。如假设检验结论的判断,假设检验是用样本信息推测总体的一种统计推断方法,由于抽样误差的存在,样本信息和总体特征间可能不尽相同,所以假设检验实际上就是判断待比较各方的差别是不是由抽样误差造成的。假设检验中p值的大小反映的就是差别由抽样误差造成的概率。在假设检验中就是通过比较p值与检验水准a(通常设为)的大小关系,从而做出差别有无统计学意义。
如果p值小于a统计学则认为差别由抽样误差造成的概率很低,那么根据小概率原理认为,小概率事件在一次抽样中就发生的可能性几乎为零,所以判定差别可能是由于比较各方在本质上的不同导致的。否则认为差别是由抽样误差造成的。在这里检验水准是在假设检验前认为设定的,是研究者能够承受的本次假设检验放弃真错误的概率,也可以理解为是研究者设立的小概率事件的概率。而p值则是通过计算,即在检验假设成立的情况下,差别是由抽样误差造成的概率。
统计在现代化 管理和 社会生活中的地位日益重要,随着社会经济和科学技术的发展统计在现代化国家管理和企业管理中的地位越来越重要,人们的日常生活都离不开统计,统计的影响是这样巨大,故与之密切相关的概率的作用也越来越重要。
浅谈统计学基础教学方法与学生应用能力的培养
摘要:统计学基础知识是一门研究数据的技术性学科,具有综合性,抽象性及应用面广等特点,通过该课程的教学能培养学生运用统计工具,系统的分析问题和解决问题的能力。在中职教学中需结合本学科的特点,不断改进教学方法,提高学生综合应用统计知识的能力。
关键词:统计学教学方法设计能力培养
统计学基础知识是一门研究数据的技术性学科,学科内容中的调查研究和分析处理问题的方法,不仅应用于各项工作中,也用于其他学科研究过程中的数据搜集、整理、分析并得出结论。故统计学具有综合性,抽象性,应用面广等特点,通过该课程的教学能培养学生运用统计工具,系统的分析问题和解决问题的能力。现结合本学科的特点探讨其教学方法和学生应用能力的培养。
一、统计学基础课程教学的特点
统计学基础也是社会经济统计学原理,其学科内容的特点:一是基本概念多,理论讲授上较抽象;二是指标类别多,初学时严格划清各种指标内涵难;三是调查分析方法多,正确理解和选择恰当的调查方法难;四是正确的调查方式、方法指标体系的设置,统计范围的界定与是否得出反映事物的正确结论直接相关;五是科学设置调查事物的指标体系又与弄清反映该事物的客观内在本质的相关指标直接相关。因此,对年龄小,分析能力差的中职学生教学对象来讲,即便从概念上掌握了统计学的原理,如果不结合实际的统计案例资料和采用恰当的教学方法,就很难达到正确应用统计知识解决现实社会经济中问题的目的,甚至会因为错误使用方法,得出对事物评判的错误结论。
二、结合本学科知识的特点采用适当的教学方法,增强应用能力的培养
在教学中,首先通过对教材内容体系的全面分析和教学对象知识结构的分析,以及学生对统计学知识学习的兴趣、理解的深度和掌握应用情况的总结,在教学中的不同环节恰当地实施不同的教学方法。
1、通过学科内容体系导入与工作任务联系,提升学生学习兴趣
在讲授本学科内容时,首先给学生介绍统计学基础教材内容的基本框架:统计学的涵义、研究对象、性质、职能和研究的基本方法。其次是介绍学科知识体系:统计学中的基本概念,统计资料调查整理的方式方法,统计数据的显示与提供,以及提供的统计数字资料运用多种指标法进行分析(总量指标法--反映事物的规模状况,平均指标法--反映事物的集中趋势及一般规律,相对指标法--反映事物的纵向横向比较和事物之间的联系,标准差法--反映事物中总体单位标志值之间的离散趋势和程度,分析事物之间的差异。统计指数法--反映事物中各种直接因素的影响。
时间数列法--反映事物在时间段上的发展变化趋势。抽样调查法--统计专门调查方法中最科学的方法。相关回归分析法--分析事物中的因果关系。)通过内容体系的简单讲解导入,让学生在学习具体理论知识前就对该学科有一个总体感性认识,产生兴趣。带着要通过掌握统计知识去解决实际问题的意识和目的去学习。
2、让学生的学习从理性认识过渡到感性认识,增强应用能力
我在教学中介绍统计学的基本概念和统计调查方法内容时,除对每个知识点进行举例说明外,一部分知识讲完后,给出几个典型的统计调查方案让学生弄清在这些调查方案中所涉及的统计总体、总体范围的界定、总体单位、标志、指标以及采用的哪种调查方式等。这不仅让学生把抽象的统计学概念知识从理性认识过渡到了感性认识,而且通过这些案例还进一步让学生明白了调查方式的选用必须要根据调查对象和要解决的问题适当选取,而不是什么调查目的,什么事物都可以用任何一种调查方式。只有正确选用统计方式、方法去调查分析客观事物才能得出正确的结论,才能具备正确利用统计知识去分析解决问题的能力。
3、综合指标应用与典型资料结合法,提高学生的应用能力在讲授综合指标法时,对每一种指标的理解都是
分别举例说明让学生理解该指标的含义和作用。为了让学生能正确理解和区分每一种指标的作用,在所有指标介绍完后,我选用了国民经济年度统计公报资料作为案例,让学生从统计公报资料中找出学习过的每一种综合指标,如:2007年全国GDP总值,人口数等是总量指标。本年度GDP完成百分比是计划完成相对指标,本年度GDP比上年度增长百分比是动态相对指标。人均GDP是强度相对指标。
GDP构成比例是结构相对指标。五年中平均每年增长的百分比是后面要学习的平均发展速度和平均增长速度的应用。通过这样的案例,学生不仅对各种综合指标法的应用有了正确的理解,而且把各种指标的理解认识变成了应用能力,同时还对后面学习动态数列知识奠定了基础。在教学中很好地起到了巩固理解知识和预习下一教学环节内容的潜在作用。还起到了掌握知识综合性的效果。通过这样一个案例,学生进一步明确,研究一个总体的问题时,可以对问题的不同方面运用多种指标进行分析,弄清事物之间客观存在的关联,这些都必须用一定的统计数据来说话。因此进一步强调了学生学习统计知识的必要性,也让他们认识到统计学知识的科学性和实用性。
4、新旧知识在现实案例中的综合运用,提升学生应用能力
在讲授统计指数的内容时,传授给学生统计指数编制的基本方法的原理,教材中举例的商品价格、商品量、以及职工工资水平指数的编制都仅仅是一种计算基本方法的介绍。要培养学生应用能力还必须结合实际统计指数编制的案例进行讲解,让学生能够将理论知识及其计算方法应用到实际工作中去,所以我特意在理论知识和计算方法讲完后,介绍实际工作中零售物价指数的编制。这个经济指数也是民众普遍关注的问题,与人们生活水平息息相关。
告诉学生,物价指数的编制运用了抽样调查的知识,实际工作中不可能对每一种商品都采价调查,而是分大类商品,在商场和集贸市场分别采价。例如集贸市场的蔬菜价格每周至少要采集三次,每次要采集成交价的三人次,进入零售商品物价指数编制的价格实际上是一个多次简单平均的价格,而每天某种商品的三个价格要简单平均,每周三次的平均价格再简单平均。商场的商品价格如较稳定可用期初和期末的平均。通过这样一个案例,既给学生传授了新知识,又复习巩固了平均指标计算方法的具体应用,不仅日常生活中用,而且在经济研究中应用非常广泛。进一步告诉学生加权平均法和调和平均法在编制物价指数和其他社会经济现象指数中的应用。
5、典型调查案例教学法,培养学生综合应用统计知识,分析解决问题的能力
教学中我把学生应用统计知识,分析问题能力的培养放在抽样技术的教学内容中,抽样技术的基本理论也是抽象的。如,抽样误差,抽样平均误差,抽样的组织方式。针对研究对象的特点,都必须具体问题具体分析,而抽样误差的计算既涉及到平均指标的计算又涉及到标准差的计算,新旧知识的交替如何培养学生应用新旧知识计算、分析问题,解决问题是教学的难点。
为了突破这个难点,我在教学中利用了一个草席质量抽样调查的案例,这个案例体现了从制定调查方案中的调查方式的确定,采用主要标志划类,简单随机抽样原则,到调查实施的步骤:草席宽度分类,登记原验级等级,编顺序号,确定抽样总体,计算全级总体标准差,决定抽样数目,设计计算表格,决定样本号,现场调查中的统一验级标准。
验级过程:由5人分别验级,级数的最后确定采用众数办法,5人验级中的3人验级标准为准。以上这些都具有前面介绍的抽样调查方式的代表性,而又用到了平均指标和众数的方法。同时,在计算草席平均等级时,还用到了品质标志值平均指标的计算,即将等级品质标志值过渡成数量标志来计算该批不同尺寸草席的平均等级,再计算抽样指标与原验级指标之间的误差。
这样一个复杂的抽样调查过程和指标的计算结果,更清晰的告诉学生要说明和解决的问题:由于收购草席时,验级人员在判断标准上的误差带来了草席等级误差与价格的差异。而由于误差的存在,根据此抽样调查结果计算出的整个库存草席的总价值与实际价值的差异巨大。对导致这样的结果,进一步结合政策市场以及人为等多种因素进行分析,查找了原因并提出了切实可行的解决方案,促使了草席的收购价实相符。
通过以上几方面的教学方法设计,能让学生对统计学有更全面的认识,对学科基础内容有一个总体框架性把握,让那些学生在学习时感觉模糊的概念和繁杂的理论通过这几个教学环节的反复巩固和练习也逐步变得清晰,并大大提高了其综合应用统计知识的能力。
你不妨从数理统计的角度去,可以分析的比较多。比如:三大分布在某一方面的应用,在知网上挺多的。光写一个分布就可以写很多了。假设检验,估计,EM算法之类的都可以写如果一定要从概率论,那不妨研究一下比较典型的概率问题,比如为什么同班同学生日在同一天的概率很高很多地方的,从理论的角度对于一个学生确实太难了,不如多多从应用的角度入手。
统计学作为一门综合性很强的学科,其运用范围非常广泛,不少学生在写作统计学论文时,都困在了选题这一步,其实就统计学而言,可供作为论文题目的热词有很多,如:企业管理、实证研究、统计估计、统计分析、计算机应用、支持向量机、数学模型、GIS、多元分析、统计报表等等,学术堂精选了20个优质“统计学毕业论文题目”,供大家参考。1、药品检验中常用的统计学方法及其应用2、应用统计学在现实生活中的应用分析3、浅谈统计学在金融领域的应用4、统计学在实验室质量控制中的应用5、论应用统计学PDTR教学模式的必要性和可行性6、水产生物统计学课程中学生统计思维能力与应用意识的培养研究7、地质统计学在某铜矿床资源量估算中的应用熊8、基于地质统计学的采空区储量估算9、密井网条件下地质统计学岩性反演在河道砂体预测中的应用10、地质统计学在稀土矿储量计算研究应用11、地质统计学在矿床品位估算中的应用研究12、地质统计学在细脉型矿体模拟中的应用:以新疆梅岭-红石铜矿为例13、地质统计学地震反演技术在溱潼南华地区薄砂层的预测应用14、朝阳沟油田扶余油层组深度域地质统计学反演15、基于DMine软件下地质统计学在矿山储量计算中的应用
概率论与数理统计硕士毕业论文新课改背景下的师专“概率论与数理统计”教学研究 基于概率论及数理统计对间歇式能源功率平滑输出的研究 信息技术与本科概率统计课程整合的实验研究 本科概率论试验课程设计初探基于随机模拟试验的稳健优化设计方法研究 随机变量序列部分和乘积的几乎处处中心极限定理 AQSI序列的强极限定理几类相依混合随机变量列的大数律和L~r收敛性 现代经济计量学建立简史 任意随机变量序列的相关定理新建电气化铁路电能质量影响预测研究 鞅差与相依随机变量序列部分和精确渐近性 ND序列若干收敛性质的研究证券组合投资决策的均匀试验设计优化研究 相依随机变量序列部分和收敛速度行为两两NQD随机变量阵列加权和的收敛性 数值计算的统计确认研究与初步应用 基于证据理论的足球比赛结果预测方法 城市工业用地集约利用评价与潜力挖掘 节理化岩体边坡稳定性研究 随机变分不等式及其应用基于模糊综合评价的靶场实时光测数据质量评估基于路径的加权地域通信网可靠性研究 LNQD样本近邻估计的大样本性质 20CrMoH齿轮弯曲疲劳强度研究我国股票市场与宏观经济之间的协整分析 一类Copula函数及其相关问题研究 乐透型彩票N选M中奖号码的概率分析 协整理论在汽车发动机系统故障诊断中的应用 2010年上海世博会会展中断风险分析和保险建议 贝儿康有限公司激励设计研究 云模型在系统可靠性中的应用研究离散更新模型破产概率及赤字的上下界估计 输电线微风振动与疲劳寿命电器产品模糊可靠性分析中模糊可靠度的研究 变分不等式及变分包含解的存在性与算法 隧道测量误差控制方案的研究 塔式起重机臂架可靠性分析软件开发分布式认证跳表及其在P2P分布式存储系统中的应用 房地产行业企业所得税纳税评估实证研究 具有预测能力的呼叫中心系统的设计与实现 PVAR模型在研究经济增长与能源消费关系中的应用 基于有限元的深基坑组合型围护结构可靠度分析 一些带有偏序结构的完全码
统计的作用就是帮助人们认识世界,承担着信息、咨询和监督的职能。
统计的重要性:世界正在急速走进信息时代,已到了所有东西都可量化和分析的地步,然而数据只是知识的最原始形式,只有通过整理才有意义有了统计学,世上没有破译不了的密码。
在市场经济条件下,经济社会发展情况更加错综复杂、瞬息万变,更需要统计及时提供发展变化情况。大数据时代的决策将日益基于数据和分析做出,必须用数据说话
统计学是一门很古老的科学,一般认为其学理研究始于古希腊的亚里士多德时代,迄今已有两千三百多年的历史。它起源于研究社会经济问题,在两千多年的发展过程中,统计学至少经历了“城邦政情”、“政治算数”和“统计分析科学”三个发展阶段。
所谓“数理统计”并非独立于统计学的新学科,确切地说,它是统计学在第三个发展阶段所形成的所有收集和分析数据的新方法的一个综合性名词。概率论是数理统计方法的理论基础,但是它不属于统计学的范畴,而是属于数学的范畴。
一、重要性
统计分析为决策者提供信息咨询监督服务
统计数据能够更集中、更系统、更清楚地反映客观实际,便于阅读、理解和利用。统计数据是发挥统计的信息、咨询、监督功能的主要手段。统计分析是为决策者提供信息咨询和监督服务的主要指标。在经营运行中,统计工作在企业管理中的作用往往被企业管理者所忽视。
在瞬息万变的社会经济中,领导部门和决策者仅凭个人能力和经验已经难以把转瞬即逝的局面,更难于对的发展规划做出相对科学的决策。在这种情况下统计分析的优势随之显现,它可以把数据、情况、问题、建议等融为一体,既有定量分析,又有定性分析比,可以对决策者提供更全面的指标分析数据,帮助决策者做出正确的判断。
统计分析工作是实现良好监督,管理科学化和统计参与决策的有效手段。由于统计分析可以实现完整、全面、正确地反映客观现实的重要的作用,统计分析工作可以实现远程操控,而不必身临其境才能实现对企事业单位的分析,这使统计分析成为了实现良好监督的重要手段。统计部门掌握大量风准确的统计资料,可以比较全面准确地了解企业的大量信息,如企业的运转情况、经济运行情况和发展变化的情况等。
在统计部门获得大量的统计分析结果的时候,就可以实现对企事业单位良好的监督功能,能够承担起监督企事业单位对政府相关政策的执行情况,生产和发展的完成情况,统计分析人员根据统计分析将结果用报告的形式写出来,则是实现监管人员对企事业单位进行监督的方式。这样,监管人员即使没有深入企事业单位内部进行调查研究,也可以根据统计分析报告对企事业单位进行监督。
统计分析报告的质量,反映了统计工作的水平统计分析报告开展的整个过程可以合理有效的对每个工作环节的质量进行检验,能够比较实时发现问题,并采取高效的措施进行改进,顺利地解决工作中出现的问题,通过提出新法案、新解决措施来保证工作的顺利完成。
而且长时间的使用统计报告分析,对于提高工作人员的综合素质来说是比较有用的,归根到底就是说,写好统计分析报告具有不可替代的重要意义,不能够盲目的认为统计报表才是一定要完成的任务,统计分析则是可有可无的,要及时的纠正这样的错误思想,摆正二者的重要地位。
统计分析是促进统计工作良好发展的重要保证做好统计分析工作能够促进统计工作的发展,有利于促进统计人员工作能力的提升。我们可以通过对统计资料进行分析,能够很好的找出过去统计工作过程中存在的一些问题,在找到这些问题之后还能够及时的进行纠正,这样一来就有效的推动了统计工作的发展。
另外我们在开展统计分析工作时,统计人员在研究数字的内涵以及其内在关系的过程中还可以促进统计数字质量的提升,从而有利于提升统计人员的综合素质。同时对统计人员及时掌握市场变动方向和企业发展情况,变被动为主动,及时收集相关信息,并将这些信息和资料加以整理和分析,找出生产经营环节中存在的内在联系,探索经济发展规律起到积极的作用。
二、作用
2.从宏观上看,是国家宏观调控和管理的重要工具。
3.从微观上看,是企业管理与决策的依据。
4.日常生活中,统计可以宣传群众、教育群众。
5.是进行科学研究的重要方法。通过数字揭示事物在特定时间方面的数量特征,以便对事物进行定量乃至定性分析,从而做出正确的决策。正因如此,统计信息越来越多地和其他信息结合在一起,如情报信息,商品信息等。而诸如此类信息,以统计数字显示或以统计数字为依据,可利用程度大为提高。
统计工作的重要性:统计工作是利用科学的方法搜集、整理、分析和提供关于社会经济现象、某些特定事物发展规律的工作。它的过程就是搜集资料——整理加工——统计分析的过程,也就是从定性认识(统计设计)到定量认识(统计调查和统计整理),再到定量认识到定性认识(统计分析),(质——量——质)。因此提高统计分析的质量就是核心工作。而质量的提高要在前两项的基础上完成。提高统计数据质量作为统计工作的中心环节,是推动统计事业发展的生命线。统计工作的作用:统计作为提供国民经济运行情况信息的重要工具,受到了国内与国外、政府与公众、学者与官员越来越广泛关注,统计工作是对社会,经济以及自然现象总体数量方面进行搜集,整理,分析过程的总称。
论文当中当然有统计意义好。不同的统计指标所反映的内容不同,根据其内容的不同统计指标可分为基础指标和特征指标。基础指标是反映总体基本状况的指标,由总量指标和相对指标构成。特征指标是反映数据取值分布特征的指标,由三部分组成:一是反映数据取值分布集中趋势的平均指标;二是反映数据分布离散程度的变异指标;三是反映数据分布形状的偏态和峰度系数。统计指标是指反映总体现象数量特征的概念。它包括三个构成要素指标名称计量单位,计算方法这是统计理论与统计设计上所使用的统计指标涵义。统计指标是反映总体现象特征的概念和具体数值。按照这种理解统计指标除了包括上述三个构成要素外还包括时间限制,空间限制指标数值。构成完整的统计指标包括四项内容:1、指标名称,说明所反映现象数量特征的性质和内容。2、统计的时间界限和空间范围。3、计量单位。4、指标的数值。例如,中国1983年全国钢产量4002万吨,就是一个完整的统计指标。统计学中的统计指标,一般是泛指社会经济现象某种数量特征,即没有具体规定其时、空界限和没有数值的统计指标名称(如“钢产量)。基本要求设计统计指标应符合以下基本要求:一、目的性二、科学性三、度量性四、可比性以上供参考。