首页 > 期刊论文知识库 > 阿维菌素霉菌发酵毕业论文

阿维菌素霉菌发酵毕业论文

发布时间:

阿维菌素霉菌发酵毕业论文

阿维菌素,英文名称Avermectins,是由日本北里大学大村智等和美国Merck公司首先开发的一类具有杀虫、杀螨、杀线虫活性的十六元大环内酯化合物,由链霉菌中灰色链霉菌Streptomyces avermitilis发酵产生。天然Avermectins中含有8个组分,主要有4种即A1a、A2a、B1a和B2a,其总含量≥80%;对应的4个比例较小的同系物是A1b、A2b、B1b和B2b,其总含量≤20%。我国20世纪80年代末由上海市农药研究所开发的从广东揭阳土壤中分离筛选得到7051菌株,后经鉴定证明该菌株与 Ma-8460相似,与avermectin的化学结构相同。1993年北京农业大学新技术开发总公司立项研究并生产开发此药。Avermectin是一种新型抗生素类,具有结构新颖、农畜两用的特点。随着人们生活水平的提高以及对绿色食品的呼唤,生物农药在当前农药市场中倍受青睐,权威人士预测21世纪将是生物农药的世纪。据报道欧洲生物农药将从1997年1亿美元的销售额上升到2004年亿美元。Avermectins是当前生物农药市场中最受欢迎和具激烈竞争性的新产品。目前市售Avermectin农药是以abamectin为主要杀虫成分(Avermectin B1a+B1b,其中B1a不低于90%、B1b不超过 5%),以B1a的含量来标定。自从1991年害极灭(abamectin)进入我国农药市场以后,Avermectis农药在我国的害虫防治体系中占有较重要地位。Avermectins在我国目前有10余家企业生产,目前市售的Avermectins系列农药有阿维菌素、伊维菌素和甲胺基阿维菌素苯甲酸盐。

乙酰丙酮钴。乙酰丙酮钴(ii)分子式为co(c5h7o2)2·2h2o,是一种有机反应催化剂,可替代氯化钴用于侧链氧化反应。对发酵原料进行实验,结果表明,阿维菌素发酵的较佳培养基组成为:淀粉12%,豆饼粉,酵母粉1%,氯化钴,碳酸钙。链霉菌中阿维链霉菌Streptomycesavermitilis发酵产生。化学性质:外观为淡黄色至白色结晶粉末,无味。

用名称 阿维菌素(abamectin)。商用名称 除虫菌素、爱福丁、7051杀虫素、虫螨光、绿菜宝、虫螨克、阿巴丁、害极灭、齐墩螨素、螨虫盖特、虫螨克、螨虱净、毒虫丁、菜蛾灵、菜虫星、菜宝、菜农乐、杀虫丁。毒性 据中国农药毒性分级标准,阿维菌素属高毒杀虫剂。原药大鼠急性经口LD50为l0毫克/千克,小鼠急性经口LD50为13毫克/千克。对皮肤无刺激作用,对眼晴有轻微刺激作用。在试验剂量内对动物无致畸、致癌、致突变作用。大鼠三代繁殖试验,无作用剂量为毫克/千克/天。大鼠两年无作用剂量为2毫克/ 千克/天。对水生生物、蜜蜂高毒,对鸟类低毒。 制剂大鼠急性经口LD50为650毫克/千克,兔急性经皮LD50大于2000毫克/千克。大鼠急性吸入LC50为毫克/升。对眼睛和皮肤有刺激作用。 制剂 乳油、1%乳油、乳油。作用特点 阿维菌素对螨类和昆虫具有胃毒和触杀作用,不能杀卵。喷施叶表面的阿维菌素可迅速分解消散,但渗入植物薄壁组织的活性成分可较长时间地存在于植物组织中,并有传导作用,这种作用决定了它对害螨和植物组织内取食危害的昆虫的长残效性。作用机制与一般杀虫剂不同的是干扰神经生理活动,对节肢动物的神经传导有抑制作用。螨类成虫、若虫和昆虫幼虫与阿维菌素接触后即出现麻痹症状,不活动、不取食,2-4天后死亡。因不引起昆虫迅速脱水,所以阿维菌素致死作用较缓慢。阿维菌素对捕食性昆虫和寄生天敌虽有直接触杀作用,但因植物表面残留少,因此对益虫的损伤很小。阿维菌素在土内被土壤吸附不会移动,并且被微生物分解,因而在环境中无累积作用,可以作为综合防治的一个组成部分。调制容易,将制剂倒人水中稍加搅拌即可使用,对作物亦较安全,按介绍的方法使用不会发生药害。 使用方法 1. 防治叶螨、锈螨:用阿维菌素乳油3000-5000倍液喷雾。2. 防治各种松毛虫、美国白蛾、杨树舟蛾等食叶类害虫地面喷雾用阿维菌素乳油6000-8000倍液,飞机喷雾每公顷用阿维菌素乳油2-5ml,烟雾机喷烟阿维菌素乳油和零号柴油按1∶40比例混合。注意事项1.阿维菌素杀虫、杀螨的速度较慢,在施药后3天才出现死虫高峰,但在施药当天害虫、害蛾即停止取食、为害。 2.阿维菌素对鱼类高毒,因此施药时不要使药液污染河流、水塘,不要在蜜蜂采蜜期施药。

[作用用途]

阿维菌素的驱虫机理、驱虫谱以及药动力学情况与伊维菌素相同,其驱虫活性与伊维菌素大致相似,但本品性质较不稳定,特别对光线敏感,贮存不当时易灭活减效。

阿维菌素对动物的驱虫谱与伊维菌素相似。以牛为例,以推荐剂量(每千克体重200微克)给牛皮下注射,几乎能驱净的虫体有:奥氏奥斯特线虫(成虫、第4期幼虫、蛰伏期幼虫)、柏氏血矛线虫(成虫、第4期幼虫)、绵羊夏伯特线虫(成虫)、辐射食道口线虫(成虫、第4期幼虫)、胎生网尾线虫(成虫、第4期幼虫)。

阿维菌素至少在用药7日内能预防奥斯特线虫、柏氏血矛线虫、古柏线虫、辐射食道口线虫的重复感染,对胎生网尾线虫甚至能保持药效14日。对牛腭虱的驱除至少能保持药效56日以上。阿维菌素对微小牛蜱吸血雌蜱的驱除效应至少维持21日,而且能使残存雌蜱产卵减少。

阿维菌素对某些在厩粪中繁殖的双翅类幼虫也极有效,如给牛一次皮下注射每千克体重200微克,据粪便检查,至少在21日内能阻止水牛蝇(东方血蝇)的发育。

由于阿维菌素大部分由粪便排泄,能阻止某些在厩粪中繁殖的双翅类昆虫幼虫的发育,因此,本类药物是牧场中最有效的厩粪灭蝇剂。一次皮下注射每千克体重200微克,粪便中残留阿维菌素对牛粪中金龟子成虫虽很少影响,但直至用药后21日(有些虫体为28日)粪便中幼虫仍不能正常发育。

[用法与用量]

(1)阿维菌素

内服,一次量,每千克体重,羊、猪毫克。

(2)阿维菌素注射液

皮下注射,一次量,每千克体重,牛、羊毫克,猪毫克。

(3)阿维菌素浇泼剂

背部浇泼,一次量,每千克体重,牛、猪毫克(按有效成分计)。

(4)耳根部涂敷

一次量,每千克体重,犬、兔毫克(按有效成分计)。

[注意事项]

阿维菌素的毒性比伊维菌素稍强。其性质不太稳定,特别是对光线敏感,迅速氧化灭活,因此,阿维菌素的各种剂型,更应注意贮存、使用条件。阿维菌素的其他注意事项可参照伊维菌素内容。

阿维菌素论文开题报告

河北省苹果病虫害发生动态及防治策略 来源:中国植保导刊 作者:温素卿 发布时间:2008-09-16 河北省是我国苹果生产的主要省份之一。2005年苹果栽培面积达 万hm2, 产量 万t, 面积和产量分别居全国第3 位和第4 位。近10 余年来, 随着苹果品种结构、栽培管理技术及病虫害防治方法的不断改进, 苹果园主要病虫害的结构和发生特点也有不同程度的变化。为进一步提高苹果园病虫害防治的科学性, 促进苹果无公害生产, 我们从2002 年起对河北省苹果产区苹果树主要病虫害的发生动态及综合防治技术进行了持续、深入的研究。1 苹果主要病虫害的发生动态 主要病虫害基本得到控制 老果园更新改造, 苹果树腐烂病为害减轻, 病情相对平稳。苹果树腐烂病是威胁苹果生产的一种毁灭性枝干病害。20 世纪80 年代至90 年代中期,全省腐烂病发病率普遍较高, 平均可达30%, 管理粗放、树势衰弱的果园高达50%, 严重果园100%患病, 给苹果生产造成严重为害。近年来随着对老果园的更新改造和加强栽培管理等综合防治技术的运用, 苹果树腐烂病病株率逐渐下降, 病情相对平稳。 2006 年调查, 中南部果区腐烂病平均病株率在10%左右, 管理水平高、树势强壮的果园在5%左右。但是, 随着树龄的增长, 进入盛果期后, 树体的抗病能力下降, 若遇低温冻害或栽培管理不善, 苹果树腐烂病大发生的潜在危险依然存在, 不容忽视。 研究和推广新的防治策略, 桃小食心虫为害得到控制。长期以来, 桃小食心虫一直是本省苹果产区的主要标靶害虫。虫果率曾达30%以上, 20 世纪80 年代中期, 虫果率仍在10%以上, 为害损失大。经过“六五”、“七五”攻关和长期生产实践, 推广了以地面防治为主, 地面防治与树上防治相结合的防治措施, 取得了明显效果。90 年代中期开始, 为害逐渐减轻。目前, 在管理水平较高的果园, 一般不造成为害。但疏于防治, 就很容易造成经济损失, 一些多品种混栽园, 未套袋的品种虫果率仍可达3%~5%。 重视科学选药、用药, 蚜虫、叶螨类一般可控制到不造成为害。蚜虫和叶螨是为害苹果的常发性害虫。一般春季雨水少, 5 月以后气温升温快, 出现高温、干旱天气的年份叶螨、蚜虫常发生为害重。20世纪90 年代以前, 由于大量使用广谱性杀虫剂, 打破了害虫与天敌间的平衡制约关系, 致使叶螨类( 苹果全爪螨、山楂叶螨) 、蚜虫类为害猖獗, 叶片受害率一般在50%以上, 高温、干旱年份, 6 月份即开始落叶, 8、9 月份落叶率可在70%以上, 严重削弱树势。 90 年代后, 通过对其种群变动关键因素的研究, 注重保护和利用天敌的自然控制作用, 以及按照无公害生产标准和原则选用农药, 目前, 苹果叶螨类( 除新发现的二斑叶螨为害有所加重外) 及蚜虫( 主要是苹果瘤蚜和绣线菊蚜) 的种群数量一般被控制在不致明显为害的水平。 推广果实套袋技术, 苹果轮纹病烂果率下降。 20 世纪90 年代中、后期, 随着新红星、红富士等优良品种进入大量结果期, 加之高温、高湿的环境有利病菌的传播和侵染, 致使轮纹病大流行, 一般果园果率30%~40%, 重者达50%~70%, 造成大量烂果,损失严重, 成为导致河北省苹果腐烂的最主要病害。近年来, 通过加强对苹果轮纹病防治技术的研究, 特别是大力推广果实套袋技术, 有效地阻断了病菌孢子对果实的侵染, 果实烂果率大大降低[1]。目前, 套袋苹果轮纹烂果病的发病率一般在1%以下, 已由主要病害演变成次要病害。 次生性病虫害和偶发性病虫害的暴发和为害日趋严重 以斑点落叶病、褐斑病为主的苹果早期落叶病上升为苹果产区的主要病害。苹果早期落叶病目前在本省普遍发生。叶片受害率一般30%~40%,大流行年份感病品种病叶率达90%以上, 少数果园的几个品种还出现二次发芽、开花的现象。此病在套袋果上发病率较高, 已是影响套袋果商品率的一个主要病害。目前及今后的若干年内将是苹果园重点防治的病害之一。 康氏粉蚧在套袋苹果园为害严重。由于套袋苹果经济效益高, 果农从思想上比较重视苹果套袋。但苹果套袋后, 由于袋内环境趋暗、潮湿, 为喜阴的康氏粉蚧的发生创造了适宜的环境。因此, 近年来, 康氏粉蚧对苹果的为害愈来愈重, 受害果实商品率降低, 并伴发煤污病, 严重影响苹果外观质量。此外, 球坚蚧和草履蚧的虫株率亦呈上升趋势,偶尔成灾。 金纹细蛾的发生为害明显加重。过去不作为防治对象的金纹细蛾, 自20 世纪90 年代中期以来,发生范围几乎遍及每个果园, 已成为苹果生产的主要害虫。主要是因为拟除虫菊酯类农药在果园广泛使用, 大量杀伤天敌, 致使金纹细蛾暴发成灾。一般果园叶片受害率已达60%左右, 而且为害程度还在逐年加重。 苹果红点病、黑点病和苦痘病、痘斑病等生理性病害在部分苹果园发生严重。近年来苹果园普遍存在树冠郁闭、枝量过大的问题, 不但影响果实着色度, 而且通风差, 园内的微域环境湿度大, 给果实黑点病的发生提供了适宜条件。特别是果实套袋后, 袋内湿度大, 温度升高, 果实表面细嫩, 极易致病。而大多数果农对此缺乏认识, 用药缺乏针对性, 致使苹果红点病、黑点病发病率大大提高。据调查, 部分果园70%左右的果实有黑点病]。以富士为主栽品种的产区, 因缺钙而引发的苦痘病、痘斑病等生理性病害为害严重, 应引起高度重视。 苹果锈病在大部分果区发生普遍, 为害较重。锈病孢子以桧柏为中间寄主。由于近年来全省各地绿化步伐的加快和设计规划上的失误, 中间寄主桧柏在公路2 侧等地被大量使用以及空气湿度较大、多风等原因造成该病的严重发生。 霉心病难以控制。苹果霉心病是主要为害元帅系品种的一种重要果实病害。由于缺乏有效的防治方法, 该病目前仍难以控制, 个别果园霉心病果率高达60%]。 潜在的危险性害虫在苹果园蔓延 二斑叶螨为害日趋严重, 个别地、县成灾。自20 世纪80 年代末、90 年代初在我国发现该螨以来,传播蔓延很快。目前, 在本省东部和南部果园已逐步形成较大的种群, 且有向本省苹果主产区的唐山、秦皇岛、承德扩散的趋势, 形势十分严峻。由于二斑叶螨寄主复杂, 发育期短、世代多、繁育力强, 耐药性、抗药性强, 发展蔓延快, 在个别果园已上升为优势种群, 应引起高度重视。 苹果绵蚜为害面积逐步扩大。苹果绵蚜为国内检疫对象, 也是为害苹果树的主要害虫之一。1993年在秦皇岛市发现, 现已波及近10 个县、市, 虽然各地多年来采取了多种措施, 但为害发生范围仍在扩大, 新疫点不断增加。要严格采取检疫措施, 防止疫区扩大。 美国白蛾不容忽视。美国白蛾为世界性检疫害虫, 1989 年首次在我省秦皇岛市发现后, 1990 年又在唐山市发现, 现已波及本省4 市16 县5 区。2004 年林果发生面积达13 300 hm2, 同比上升。尽管目前该虫在上述地区的果树上表现为零星为害, 但其繁殖量大, 扩散蔓延快, 不可忽视。 棉铃虫陆续迁入苹果园, 有可能成为苹果园最难防治的害虫。棉铃虫过去是棉花上为害最重、也是最难防治的害虫。近10 年来, 由于本省棉花种植面积减少, 而果树面积大幅度增加, 从而促使棉铃虫逐渐转移到果树上为害。该虫有转果为害习性, 且抗性强, 一般药物难以防治, 尤其进入2 龄以后更是如此。由于其向果树上迁移, 即将成为蛀果最严重的害虫之一。2 果树病虫害综合防治对策 加强农业生态措施的基础地位主要措施: ①加强肥水管理, 提高寄主的抗病虫和耐害能力。特别是增施优质有机肥, 控氮增磷, 可以明显提高树体抗腐烂病、斑点落叶病、轮纹病、白粉病等病害侵染的能力, 恶化叶螨类、蚜虫类、蚧类等刺吸性害虫的营养条件。重视生理性病害的防治, 结合秋施基肥, 加入钙肥如硝酸钙、美林钙等, 果实套袋前喷施2~3次钙肥, 除袋5 d 后连续喷2 次钙肥, 可减轻苦痘病的发生。②精细修剪, 疏花、疏果, 合理负担, 增强树势。③实行果实套袋。不仅可以提高果品质量, 而且可以预防轮纹病、食心虫、卷叶虫等多种病虫的为害。④结合修剪, 去掉病虫枝, 压低病虫基数。出蛰前刮除树干上的老翘皮及各种病斑, 结合清园集中烧毁或深埋。⑤清除苹果园周围5 km 范围内的桧柏等转主寄主, 或于早春剪除桧柏树上的菌瘿, 集中烧毁, 控制或减轻苹果锈病的为害。 积极采用生物防治技术 保护与利用天敌。苹果园天敌资源十分丰富, 尤其是草蛉、瓢虫、食虫蝽和捕食螨类天敌种群量大, 控制害虫作用明显, 应积极保护、利用。一是避免采取对天敌有伤害的病虫防治措施, 特别是减少广谱性有机合成农药的使用, 大力推广应用苏云金杆菌等生物药剂防治金纹细峨、桃小食心虫及鳞翅目多种害虫; 用阿维菌素防治苹果叶螨; 二是提倡果园种植大豆或绿肥植物, 为天敌提供转换寄主和良好的繁衍场所, 改善果园生态环境, 保护昆虫种群的多样性, 提高天敌对害虫的控制能力。三是人工释放天敌, 增加果园天敌数量, 如释放赤眼蜂防治苹果小卷叶蛾和梨小食心虫, 释放捕食螨防治果树害螨等。 利用性诱剂诱杀害虫[5]。利用性诱剂是果树害虫生物防治的主要措施之一。如桃小、梨小、苹果小卷叶蛾、金纹细峨性诱剂等, 可于果园中设置相应的诱捕装置诱杀害虫。 合理使用化学药剂 按经济阈值施药。在搞好病虫情监测的基础上, 按经济阈值进行防治, 避免盲目用药, 减少农药用量和次数。目前, 桃小食心虫、叶螨类已有了防治指标, 并在生产上应用。 根据生理、生态原理, 科学使用化学农药。一是合理选择化学农药。最大限度的选用对人、畜安全, 不伤害天敌, 对环境无污染, 对目标害虫有高效的农药品种。苹果园常用的选择性农药品种, 有昆虫生长调节剂类灭幼脲、氟虫脲等; 生物制剂类如青虫菌、苏云金杆菌、多抗霉素、阿维菌素; 选择性杀螨剂类如四螨嗪、噻螨酮等; 选择性杀蚜、蚧剂类吡虫啉等; 人工合成性激素如桃小食心虫、苹小卷叶蛾、金纹细蛾等昆虫信息素等。二是合理使用化学农药。在春季果树发芽前, 果园天敌尚未大量出蛰前, 喷洒广谱性杀虫剂, 杀死在树上越冬的蚜虫卵和害螨卵及成虫; 喷洒高浓度铲除性杀菌剂, 铲除树上越冬的腐烂病、轮纹病及斑点落叶病菌。生长季节侧重使用选择性杀虫杀螨剂, 如防治潜叶峨的除虫脲类、防治蚜虫的吡虫琳、防治山楂叶螨的螨死净等。此外, 还要注意根据害虫生物学习性改进施药方法, 如采用地面施药、树干涂药等, 减少对非目标生物的影响; 轮换使用农药, 合理混用农药,延缓病虫抗药性的产生。

湖南省畜禽养殖废弃物年排放量估算 阿维菌素在柑桔园中的残留降解行为研究 镉在不同水稻品种中的积累与分布研究 太湖湖滨带沉积物磷污染特征研究 太湖典型入湖河流底泥中磷的污染特征研究 赤泥对水稻植株各部位镉含量及水稻生物量的影响 降雨和施肥对土壤养分流失的影响 新 [环境工程] 赤泥对Cd污染土壤理化性状的影响 新 [环境工程] 日处理35000m3水质净化厂工艺设计(环境工程)(附CAD图纸) 等等 参考地址:

阿维菌素的生产工艺毕业论文

湖南省畜禽养殖废弃物年排放量估算 阿维菌素在柑桔园中的残留降解行为研究 镉在不同水稻品种中的积累与分布研究 太湖湖滨带沉积物磷污染特征研究 太湖典型入湖河流底泥中磷的污染特征研究 赤泥对水稻植株各部位镉含量及水稻生物量的影响 降雨和施肥对土壤养分流失的影响 新 [环境工程] 赤泥对Cd污染土壤理化性状的影响 新 [环境工程] 日处理35000m3水质净化厂工艺设计(环境工程)(附CAD图纸) 等等 参考地址:

阿维菌素杀虫剂含异丙威和阿维菌素的混配型杀虫剂阿维菌素·鱼藤酮混配农药制剂含阿维菌素的杀虫杀螨组合物含氯氟氰菊酯和阿维菌素的混配型杀虫剂马拉硫磷阿维菌素农药组合物含毒死蜱和阿维菌素的混配型杀虫剂阿维菌素和虫生真菌组合的微生物杀虫剂阿维菌素水悬纳米胶囊剂及其制备方法阿维菌素杀线虫颗粒剂三唑磷·阿维菌素微乳剂及其配制方法阿维菌素烟雾剂及其制备方法阿维菌素颗粒剂及其制备方法一种甲胺基阿维菌素苯甲酸盐微乳剂及其制备方法阿维菌素类药物纳米微球的制备方法及用途甲胺基阿维菌素苯甲酸盐杀虫、杀螨组合物含阿维菌素或依维菌素的兽用抗寄生虫口服液含阿维菌素或依维菌素的兽用抗寄生虫舔膏剂含阿维菌素或依维菌素的兽用抗寄生虫口服液含阿维菌素的抗寄生虫药详细技术,QQ在线44224927

以阿维菌素为原料,甲苯为溶剂,通过催化加氢反应得到伊维菌素粗粉,再通过重结晶纯化得到伊维菌素精粉,并优化了阿维菌素加氢反应条件及伊维菌素粗粉纯化工艺.确定阿维菌素加氢反应条件为:料液比1:(3~5)(g:mL),催化剂用量 ~;再通过控制晶种粒度和梯度降温过程,有效改善了晶体外观和产品质量,所得伊维菌素精粉纯度大于99%,质量符合U S P标准.该工艺简洁高效,质量可控,适用于伊维菌素的工业化生产. 目的制备伊维菌素缓释注射液,采用HPLC法测定绵羊血浆中伊维菌素的质量浓度并进行药代动力学研究.

关于酵母菌发酵的文献论文

这个要有数据支持

浅谈食品工业中产香酵母的应用论文

1引言

产香酵母又名酯酵母,是一类能合成具有芳香气味的酯类物质,如今产香酵母早已不局限于产酯而是在生产过程中能产生让人喜欢闻的香味的各种酵母,香气多为醇类、酯类、酚类、酮类、芳香类等具有挥发性风味的物质,主要的香气类型有:花香型、清香型、果香型等,常被广泛应用于酿造、调味品、功能饮料、无醇饮料、食品等领域的增香。

2产香酵母在农产品中的应用

2.1产香酵母在果酒中的应用

果酒的口感、风味以及质感在果酒发酵酿造生产中起着很重要的作用,尤其是其中的风味是评价果酒优质的一个重要指标。因此果酒增香已成为现今果酒发酵酿造中的一个热门研究课题。果酒品质丰富、种类多样。张大为等从酥梨自然发酵汁中得到了一株不仅糖利用力低而且还可以增加梨酒香味的东方伊莎酵母,并将其作为梨酒生产中的产香菌使用。曹新志等从四川自贡本地梨果中筛选出了一株产香酵母FL-5,产酒精、产酸、产酯能力较好,且发酵周期短。何义从梨果园中分离出一株产香性能好的酿酒酵母Y-5,确立了梨酒酿造工艺,发酵产生的风味明显优于工业菌株ADY,能较好地保留鸭梨的原香味。赵海霞等则从苹果皮中分离出一株孢汉逊酵母属的产香酵母,适合苹果酒酿造,所得苹果酒品质优良,具有苹果酒的典型风味。古其会[5]等从多种成熟的水果皮上分离出一株对病原菌有抑制作用的产酯酵母,可用于番木瓜酒的酿造,经过分子生物学鉴定为梅奇酵母。王雪莹从甜橙果皮上筛选出两株性能优良的酵母S017和F076,其中S017产酯量高达86.75%,而F076发酵过程中产生的萜类物质相对含量比S017高,具有保留原料特殊香气组分的能力。艾方等从柑桔中分离出了两株能够耐受较高的盐、糖浓度的产香酵母,现已用于浓缩果汁和低醇果酒的增香。沈昌从水果、土壤中分离筛选出产香能力较强的酵母N-2,用于紫甘薯发酵酿造,经优化发酵工艺得到了花色苷含量保存多、还原糖浓度低、酒精度高、色泽鲜丽的紫甘薯发酵产品。此外李剑芳从自然发酵猕猴桃汁中分离出一株柠檬形克勒克氏产香酵母E-45,经鉴定为能产醇类、酯类等芳香物质的低发酵力产香酵母,可用于葡萄酒等果酒的增香。自然选育出的产香酵母菌株与工业菌株比较,具有专一性酿造的优势。曹新志等筛选出的产香酵母FL-5与安琪酵母DC-2相比,FL-5酿造的果酒风味更优。袁丽从不同水果中筛选出两株产香酿酒酵母菌GY1、GY2并与安琪酵母相比,GY1、GY2均优于安琪活性酵母。张翠英也从葡萄皮中筛选出一株产香酵母经诱导得到一株在低温条件下仍具有较强的发酵能力,与优良葡萄酒酵母比更具优势。王雪莹分离的S017以果酒干酵母为对照,S017所酿造的甜橙果酒色泽、澄清度、酒香均具备优质果酒的感官品质,在酿造工业中有较好的应用前景。

2.2产香酵母在白酒中的应用

在白酒生产中为了增加酒中的独特风味通常会加入某些化学物品以增加酒的香气,可最终酒中的香气都较为单一。自然酿造的白酒通常会以酒曲窖泥为分离源,筛选耐高温、性能优异、适合白酒增香的产酯酵母,经酿造的白酒经产酯酵母自身合成的风味物质比添加化学物质更多样化,风味更丰富独特,因此越来越多的白酒生产也用产香酵母增香。通常产香酵母的筛选都从大曲发酵的酒液或糟醅中筛选。郭志从泸州老窖窖泥中分离出一株耐受高温的酵母菌,属于异常汉逊酵母属。通过产香条件的响应面优化,得到耐受高温酵母,产生的2-正戊基呋喃、苯乙醇等香气物质,产量比原来浓香型大曲高出约两倍左右。蒲春等从大曲中筛选出一株酶活性高的产香酵母菌并对其功能特性进行测定,产香浓郁,可与其它产酒量高的菌种混合发酵。张春林对大曲发酵液进行了酵母分离,筛选出产香酵母ZY-1和GY-3,通过模拟探索出发酵中产生香气成分的机理,提出了产香酵母是大曲中风味物质形成的重要原因。顾宗珠等从酒曲中筛选出一株产酯量高的酵母,通过正交试验确定最适培养条件,提高白酒品质生产。王晓丹等从贵州某酒厂酒醅中筛出一株产乙酸乙酯的平常假丝酵母、一株产乙酸苯乙酯的毕赤氏酵母。对两株菌进行感官评价和GC-MS检测,结果显示两株酵母即产酒又产香、可将其用于香料和酒类发酵。周世水等从酒曲富集液中筛选出一株Y2-7,发酵后酒精度可达60%、总酯量为2.1g/L,酒液醇香明显。

2.3产香酵母在低醇饮料中的应用

酵母类群中有一类酵母的产酒能力极差、但产酯、产酸、产酮类物质优良,市场对保健品的推行下,各种无醇、低醇饮料出现在生活中,为了此类饮料的广泛应用,满足广大消费人群,工业生产中常用低醇产酯酵母来提高风味。程晨从自然发酵果浆中筛选出发酵速度快且风味好的酵母C7,并将其用于低醇饮料的工艺研究,效果显著。赵晓[20]通过对五株不同来源酵母菌进行生物学特性进行研究,最后筛选出一株适合格瓦斯发酵的酵母菌Y3,可以用于生产具有面包香气的格瓦斯。格瓦斯是以谷物及果蔬为原料经由酵母菌和乳酸菌发酵一种含低度乙醇的饮品,它即具有啤酒的淡爽、香醇的特征,也具有碳酸饮料的清凉爽口特性在。低醇发酵的工艺研究中,孙丙升[21]在新疆,青海,陕西,甘肃四个地采集土壤并进行筛选,最后选出优良的白地霉GS28B和SX71A做为无醇类饮料的生产菌株,根据菌种生理特性,正交试验确定两株菌的最佳工艺组合:温度为24℃,蛋白质含量为1.0g/L,摇床转速为160r/min,GS28B接种量为5.0%,SX71A接种量为2.0%,通过GC-MS测定香气成分为酯类和2-苯乙醇,发酵生产中乙醇含量只有0.02%和0.03%,基本达到了无醇要求,毒理学评定也确定了此类无醇饮料对身体无毒。

2.4产香酵母在调味品中的应用

酵母由于功能各异、长发酵产物丰富,自身理化性质有别,不同环境的酵母会有不同的特性,酵母生存环境分布十分广泛,伴随着酿酒酵母的不断发现,研究者将菌源扩展到食品、调味品等领域,筛选出具有特殊能力的产香酵母,避缺选优的应用于调味品及农产品中。闫美从辣椒酱中筛选出一株耐盐性高达24%的鲁氏产香酵母,主要产具有玫瑰花香的苯乙醇。并与球拟酵母应用于酱油酿造。王刚等从泡菜和豆浆中筛选出一株具有潜在应用价值的产香酵母YG28B、YG28B,与活性干酵母用于发酵面包,风味独特。韩志双等从发酵豆瓣酱中筛选出一株产特殊香味物质、耐盐、发酵力强且产香的异变球拟酵母,在豆瓣酱发酵过程中能增添风味和口感。匡钰从菠萝皮上筛选出一株发酵性能好的酿酒酵母,用于果醋的发酵酿造,所得菠萝果醋具有菠萝的特殊香气,果香爽口。冯杰在对酱油发酵研究中,以一株耐高盐增香酵母菌埃切假丝酵母为研究对象,用浓度为240g/L的氯化钠对菌株进行驯化以提高酵母在酱醪中的适应能力,并通过对发酵工艺的调控,采用两阶段添加法研究了酵母对酱香风味质量的促进,较对照组酵母对主要酱香物质均有所增加,进一步丰富了酱油成分,促进了酱油的风味,提高了酱油的品质。为了提高虾酱的香气和品质,连鑫等从虾酱中分理处一株季氏毕氏产香酵母,该菌产香能力较强,耐盐度达10%,经过驯化可作为虾酱复合发酵剂的菌株使用,用于提高香气度低盐虾酱的发酵。高健等从莴苣中得到一株产香酵母命名为G0901,主要产柠檬烯,相对含量可达20%。较现今柠檬烯生产大多从植物精油中提取,G0901的分离为利用微生物高效生产柠檬烯提供了较好的研究材料。单艺等从传统云南糯米酒中分离出一株产酯能力较强的Y2,通过实验测试,可用于增加酯香味米酒生产中。张世秀等从天然点浆剂酸浆中分离出一株产香性能好的酵母CF610,所产香气浓郁,主要香味物质为苯乙醇。梁辉等从传统腊鱼中分离出两株产香酵母:季也蒙毕赤酵母和平滑假丝酵母,并对两株菌进行理化性质分析,平滑假丝酵母发酵适应性优于季也蒙毕赤酵母,可成为新型肉品发酵剂。

2.5产香酵母在烟叶中的应用

通常多酚等香味前体物质产生的已酸甲酯、苯乙酸甲酯、愈创木酚、异戊醇等挥发性香味物质,对改善烟叶香味品质具有重要的应用价值。张知晓从烟叶中分离出一株产香白地霉13-1,白地霉具有脂肪酶活性,经过线性相关性比较证明脂肪酶是影响白地霉酯类挥发性物的关键因素之一。用白地霉发酵烟叶能显著减低烟叶中还原糖。吕品等从自然陈化的白肋烟叶中分离出产生特殊酸性物质的酵母CB-2,并将其用于香料生产,发酵出的香料具有提高卷烟烟气香气质、降低干燥感和刺激感,柔和了烟气。马海昌也表明利用生香酵母对烟梗发酵液发酵,得到的香料口感以及风味都比枯草芽孢杆菌好。

3产香酵母在酿造中的工艺技术

3.1工艺参数优化

生产中单一的菌株只能提高单方面的风味,而与其它菌株混合运用不仅能很好的利用发酵液中的原料,而且混合发酵时可以产生多种芳香类物质是单一菌种不能合成的。陆振群从优质白酒曲中筛选诱导出一株产乙酸乙酯量多的生香酵母S8,但浓香型白酒的主要香味成分是已酸乙酯,为了获得已酸乙酯,将产酯酵母S8与已酸菌复合培养,能产生大量的已酸乙酯,为浓香型白酒的生产提供了一定的研究意义。丁玉振研究了产香酵母的发酵规律和在醇香果汁生产工艺上的应用。通过实验论证证明低温能有效的控制菌株的发酵进程,低温有利于发酵香气的纯正和圆满,确定在10℃下发酵香气浓郁,将产香酵母与低温发酵工艺结合应用。

3.2共固定化技术

共固定化技术是固定化技术和混合发酵技术基础上发展起来的新技术,将几种细胞同时包埋与同一载体形成稳定的固定化细胞系统。可发挥不同微生物的协同作用。贺江将产酯酵母AS2.300用于多菌种共固定化技术进行苹果醋的酿造,当酵母菌1450、产酯酵母AS2.300、乳酸菌按比例(6∶3∶1)发酵可得到品质良好的苹果醋,相比酵母菌和醋酸菌共固定化颗粒酿造,其发酵性能可以长时间稳定,比酵母菌与醋酸菌共固定化更具优势。同时也避免了液体发酵和固体化技术在品质上的`不足,发酵速率也明显高于文献报道的数据。王克明等[38]在多菌种固定化技术应用于各类发酵的研究中,将红曲霉菌、葡萄酒酵母、产香酵母、嗜酸乳酸菌按比例(3∶2∶2∶1)发酵成苹果酒饮料;将根霉、酿酒酵母、产香酵母按比例(4∶3∶2)发酵成保健红醋,并确定此比例是最佳菌种配量。通过实验得出发酵功能稻米乳饮料的多菌种配比为根霉、酿酒酵母、产香酵母、嗜酸乳酸菌的比例(4∶2∶2∶1)[40]。探讨了苦瓜保健醋中根霉、酿酒酵母、产香酵母、醋酸菌的比例(4∶2∶2∶1)。以酿酒酵母、产香酵母按(4∶1)比例发酵海藻酒、效果显著[42]。以苦瓜为原料,采用固定化酿酒酵母、产香酵母(4∶1)酿造苦瓜酒。

4产香酵母在细胞工程中的应用

随着酿造工艺的发展,饮品的增多,微生物的利用也越来越频繁,从自然界中直接分离的菌株已不适合直接用于工业生产。为了获得更优良的菌株,构建工程菌成了现在的主要手段,在微生物中主要运用诱导育种及原生质体融合技术来获取工业菌种。

4.1原生质体融合技术应用

林小江利用原生质体融合技术将生香酒曲中分离的生香酵母HTE-2和经诱导选育的低甲醇酿酒酵母LM-1进行融合得到PF1。通过生理特性测定,酿酒工艺优化(温度19.07℃、时间5d、糖度17.34%、pH值4.34、接种量2%)使甲醇含量下降,总酯含量提高。以大米、小麦为原料用PF1酒曲可酿造高品质的蒸馏酒。张大为[45]从陕西兴平市梨园里面采样分离出两株酵母,一株酿酒酵母,一株产香酵母,通过原生质体融合技术,将两种菌的优良性状相结合构建基因工程菌。通过理化性质的测定,所融合的酵母具有产酒率高,产香率高的优良酵母,利用中草药代替二氧化硫的作用并与工程菌结合酿造。金磊也从陕西兴平市果园采样筛选出酿酒酵母YDJ05和产香酵母YS03通过原生质体融合技术将YDS05作为亲本菌株X,YS03通过EMS诱变得到一株精氨酸营养缺陷型菌株Y,将XY融合,筛选出一株发酵能力强,产香能力强的双亲优良特性作为适合酿造梨酒的酵母菌株。李锐利从小曲酒的酒曲中分离筛选出高产乙酸乙酯酵母菌株Y1,通过原生质体融合,诱变育种等手段对菌株进行改造得到BY2,稳定性好。并对酵母产酯条件进行了研究,最后将选育的菌株用于清香型小曲白酒酿造,可提高清香型白酒的质量。王林松利用原生质体融合技术以产香优良酵母PF14为融合亲本X,发酵力好的酵母为融合亲本Y进行融合筛选得出具有两种酵母性能的菌株。通过GC-MS对其香气进行鉴定分析,对工程菌株进行了发酵动力学研究,很好的解释和预测了发酵过程中的动态变化。

4.2诱变育种

彭帮柱以酿酒酵母菌株作为诱变出发菌株,利用甲基磺酸乙酯(EMS)进行诱变,得到一株产香的赖氨酸缺陷性突变株,将其作为亲本与发酵力强的酵母进行原生质体融合,通过GC-MS对融合子进行香气成分鉴定,最后筛选出三株产香、发酵能力均强的增香型适合苹果酒酿造的菌株。张翠英以葡萄味分离源,筛选出具有较好产香能力的YU2.28并通过60Coγ射线诱导果酒酵母菌YU2最后选育出耐低温的S15.3。将这两种菌混合发酵后产品比市售的干白葡萄酒品质更佳,对产香酵母发酵的培养基配方进行了研究,最后得出在pH值5.5,添加2%乙醇,0.1%乙酸,培养温度18度,并以玉米粉为基质生长,产香能力强且成本低廉。

5结论与展望

目前,国内对产香酵母已较为全面和广泛的应用,但仍存在有待发展的地方。比如产香酵母菌发酵食品的种类和产量上与发达国家相比还有一定的距离。许多产香酵母的制品还没有形成工业化生产,应最大程度利用产香酵母菌发展产品的优势,研究开发更多的新型品种,使之投放市场。产香酵母分离筛选应用仅仅局限于可以培养的酵母,然而在自然界中可被培养的菌株仅占酵母类群的很小一部分,限制了产香酵母的应用。酵母菌群在发酵过程中不应局限于几种酵母的应用,因多菌群相互作用,可使风味多样化,而在现在的果酒酿造中还是运用单一酵母较多,产香型酵母的研究主要局限在酿造和调味品的应用。还未广泛的应用于其他生活领域;如酵母酶类的应用、产香物质的提取等。在工业生产中大多数都没有根据特殊的菌株去生产具有特异性的产品还是沿用常用的工业菌株,限制了产香酵母的发展。在我国在酿造工艺中技术相对于发达国家还有一些差距,酿造时有害微生物的存在不可避免,而如何避免产香酵母与有害微生物的竞争、如何保证产生的香味物质不被破坏不会挥发方面的研究存在不足。因此,在优良菌株的选育方面需进一步研究以提高产品的产量和品质。产香酵母也是一种重要的单细胞微生物,与人类日常生活和工业应用有这密切的联系。作为酵母的一种也是人类利用最早,应用最广泛,人类直接食用最多的一种微生物。具有发酵,营养强化,增味等功能。当今世界食品发展的潮流是保健食品,即不仅具有食品色香味,而且还具有调节人体生理功能的作用。因此从产香酵母菌发酵食品特点来看,所发酵的食品则属于保健食品,符合时代要求,有强大的生命力和广阔的前景。利用产香酵母开发更多的有利于人体健康的食品,应用高新技术开发酵母在食品上得使用。随着分子生物学、遗传学、基因工程等的发展,从分子水平出发研究产香酵母将会成为研究的主要方向。基因工程菌的建立也会加快产香酵母的应用,在以后各种菌株的应用中,酵母菌群的生态平衡发酵有望成为热门课题。在工业生产中、微生物的发酵生产比化工工业生产相对较环保、产率高、产物副作用小等优势,产香酵母在以后的发展中有望在日用品、农用品、食品、保健品、化妆品等领域广泛应用。

yeast以糖类、淀粉和其它工农业副产物为原料,用发酵培养法生产的微生物制品。是酵母菌的简称。酵母是人类直接食用量最大的一种微生物。 1986年,全世界面包酵母的年产量为180万吨 (以30%固形物计)。酵母菌体含有丰富的蛋白质、脂肪、糖分和B族维生素等,以及酶、辅酶、核糖核酸、甾醇和一些新陈代谢的中间产物。有些酵母菌如酿酒酵母在嫌气条件下具有将糖转化为乙醇和二氧化碳的能力。发展简史 公元前2300年,人类就开始利用含酵母的“老酵”制作面包。从埃及塞倍斯(Thebes)地区出土的面包房和酿酒房的残余模型看,早在公元前2000 年人类就已较好地利用酵母制作发酵食品和酿酒。公元前13世纪,面包焙烤的技术从埃及传到地中海和其它地区。1680年 列文虎克用显微镜从一滴啤酒中发现酵母细胞,不久,人类就开始有意识地利用酵母(啤酒酵母泥)发面。酵母的重要性逐渐引起工业界的注意。19世纪中期,欧洲工业革命产生了大量人口密集地区,要求工业界大规模的生产面包酵母以满足生产面包的需要。1846年,奥地利人 M.马克霍夫在维也纳建立世界上第一个酵母厂。该厂以粮食为原料,采用温和的通风培养法同时得到酵母和酒精,此法被称为“维也纳法”。因为是采用压榨机将 酵母从培养液中分离出来,所以产品称为“压榨酵母”。1876年,法国人L.巴斯德关于空气中的氧能促进酵母繁殖理论的发表,为大规模通风培养生产酵母奠定了基础。20世纪初期,由于酵母离心机的问世,丹麦和德国开始采用楚劳夫(Zulauf)法生产酵母,即将糖液缓慢地流入通风的发酵液内,俗称“流加培 养法”、“批式培养法”。楚劳夫法产品得率高,原料消耗低,过程易于控制,一直沿用至今,并不断得到改进和完善。20世纪20年代起,酵母生产用原料扩大 到使用糖蜜、木材水解液、亚硫酸纸浆废液和糖蜜酒精糟液等。60年代,以石油、煤炭和天然气等碳氢化合物及其二次加工产品(如醋酸、乙醇和甲醇等)为原料的工厂相继建立,改变了长期以来人们利用碳水化合物为原料的传统。第一次世界大战爆发不久,德国开始研究用现代化方法生产酵母,以解决粮食缺乏和生产成本高的问题。至此,生产的实践和科学的发展为活性干酵母的生产提供了条件。第二次世界大战的爆发客观上推动了酵母生产的发展。由于压榨酵母含水量高,易于腐败,需要冷藏车运输等因素,不能满足战时特 殊环境的要求,导致活性干酵母的大规模生产。1945年,美国和欧洲一些军事机构、工厂共生产 400多万磅活性干酵母供战时急需。活性干酵母除主要供应面包和糕点等焙烤行业外,已扩大到在酿酒主要是葡萄酒和其它果酒酿造中应用。由于遗传工程和干燥技术的发展,一种新型的、高发酵力的、可直接与面粉混合使用制成面团的快速活性干酵母在60年代末问世,由荷兰古斯特公司首先开发和生产。中国的酵母生产始于1922年。1949年以前只有上海大华利卫生食料厂和上海新亚酵素厂生产面包酵母,年产量仅为12t(以干酵 母计)。50年代,中国的酵母生产有了较大的发展,建立了数十家生产厂,并形成了独立的工业体系,80年代初,酵母生产厂已迅速增加到40多家。广东省酵 母生产居全国首位,到1988年,已建成年产2kt快速活性干酵母工厂两家。此外,江苏、河南等地建成利用味精废液、酒精废液等生产饲料酵母的工厂,年产量为 100~500t。面包酵母的种类已由单一的压榨酵母增加了活性干酵母、快速活性干酵母。食用酵母、药用醇母和饲料酵母的生产也有不同程度的发展。 1985年,中国酵母总产量已达11kt,其中面包酵母为5kt左右。世界酵母生产正向大型化和自动化方向发展,生产过程已由计算机控制,劳动生产率高,如丹麦酒精公司酵母厂平均每人每年生产200t 压榨酵母。面包酵母产量较大的有荷兰吉斯特公司,年产量为200kt,其中一半加工成快速活性干酵母出口;法国勒沙夫公司为150kt;美国环球食品公司 为120kt。产品种类 酵母产品有几种分类方法。以人类食用和作动物饲料的不同目的可分成食用酵母和饲料酵母。食用酵母中又分成面包酵母、食品酵母和药用酵母等。面包酵母 又分压榨酵母、活性干酵母和快速活性干酵母。①压榨酵母:采用酿酒酵母生产的含水分70~73%的块状产品。呈淡黄色,具有紧密的结构且易粉碎,有强的发面能力。在4℃可保藏1个 月左右,在0℃能保藏2~3个月。产品最初是用板框压滤机将离心后的酵母乳压榨脱水得到的,因而被称为压榨酵母,俗称鲜酵母。发面时,其用量为面粉量的 1~2%,发面温度为28~30℃,发面时间随酵母用量、发面温度和面团含糖量等因素而异,一般为1~3小时。②活性干酵母:采用酿酒酵母生产的含水分8%左右、颗粒状、具有发面能力的干酵母产品。采用具有耐干燥能力、发酵力稳定的醇母经培养得到鲜酵母,再经挤压成型和干燥而制成。发酵效果与压榨酵母相近。产品用真空或充惰性气体(如氮气或二氧化碳)的铝箔袋或金属罐包装,货架寿命为半年到 1年。与压榨酵母相比,它具有保藏期长,不需低温保藏,运输和使用方便等优点。③快速活性干酵母:一种新型的具有快速高效发酵力的细小颗粒状(直径小于1mm)产品。水分含量为4~6%。它是在活性干酵母的基 础上,采用遗传工程技术获得高度耐干燥的酿酒酵母菌株,经特殊的营养配比和严格的增殖培养条件以及采用流化床干燥设备干燥而得。与活性干酵母相同,采用真 空或充惰气体保藏,货架寿命为1年以上。与活性干酵母相比,颗粒较小,发酵力高,使用时不需先水化而可直接与面粉混合加水制成面团发酵,在短时间内发酵完毕即可焙烤成食品。该产品在本世纪70年代才在市场上出现,深受消费者的欢迎。食品酵母 不具有发酵力的繁殖能力,供人类食用的干酵母粉或颗粒状产品。它可通过回收啤酒厂的酵母泥、或为了人类营养的要求专门培养并干燥而得。美国、日本及欧洲一些国家在普通的粮食制品如面包、蛋糕、饼干和烤饼中掺入 5%左右的食用酵母粉以提高食品的营养价值。酵母自溶物可作为肉类、果酱、汤类、奶酪、面包类食品、蔬菜及调味料的添加剂;在婴儿食品、健康食品中作为食品营养强化剂。由酵母自溶浸出物制得的5′-核苷酸与味精配合可作为强化食品风味的添加剂(见核苷酸类调味料)。从酵母中提取的浓缩转化酶用作方蛋夹心巧克力的液化剂。从以乳清为原料生产的酵母中提取的乳糖酶,可用于牛奶加工以增加甜度,防止乳清浓缩液中乳糖的结晶,适应不耐乳糖症的消费者的需要。药用酵母 制造方法和性质与食品酵母相同。由于它含有丰富的蛋白质、维生素和酶等生理活性物质,医药上将其制成酵母片如食母生片,用于治疗因不合理的饮食引起的消化不良症。体质衰弱的人服用后能起到一定程度的调整新陈代谢机能的作用。在酵母培养过程中,如添加一些特殊的元素制成含硒、铬等微量元素的酵母,对一些疾 病具有一定的疗效。如含硒酵母用于治疗克山病和大骨节病,并有一定防止细胞衰老的作用;含铬酵母可用于治疗糖尿病等。饲料酵母 通常用假丝酵母或脆壁克鲁维酵母经培养、干燥制成。是不具有发酵力,细胞呈死亡状态的粉末状或颗粒状产品。它含有丰富的蛋白质(30~40%左右)、B 族维生素、氨基酸等物质,广泛用作动物饲料的蛋白质补充物。它能促进动物的生长发育,缩短饲养期,增加肉量和蛋量,改良肉质和提高瘦肉率,改善皮毛的光泽度,并能增强幼禽畜的抗病能力。产品质量 面包酵母的主要质量指针是发酵力,即在一定时间、温度和一定种类的面团中发酵排出的二氧化碳量(以ml数表示)。目前世界上通用的测定方法为黑达克面团 法。美国、西欧国家和中国等采用此法。苏联采用面团发酵后增加的体积量计算酵母的发酵力。罗马尼亚采用将面团沉入水中,计算面团浮到水面所需的时间计算酵母的发酵力。由于各酵母厂采用的测定条件如温度、时间、酵母用量、面团种类不同,尚没有统一的国际标准。一般发酵力的范围为500~1200,数值越大表 明酵母的发酵力越高,产品质量越好。食品酵母和药用酵母主要以蛋白质和 B族维生素含量为标准。饲料酵母主要以蛋白质含量为分级标准。生理酵母营专性或兼性好氧生活,目前未知专性厌氧的酵母。在缺乏氧气时,发酵型的酵母通过将糖类转化成为二氧化碳和乙醇来获取能量。C6H12O6 (葡萄糖) →2C2H5OH + 2CO2在酿酒过程中,乙醇被保留下来;在烤面包或蒸馒头的过程中,二氧化碳将面团发起,而酒精则挥发。生殖酵母可以通过出芽进行无性生殖,也可以通过形成子囊孢子进行有性生殖。无性生殖即在环境条件适合时,从母细胞上长出一个芽,逐渐长到成熟大小后与母体分离。在营养状况不好时,一些可进行有性生殖的酵母会形成孢子,在条件适合时再萌发。一些酵母,如假丝酵母(或称念珠菌,Candida)不能进行无性繁殖。生产方法利用发酵工业中常用的通风流加培养法,将琼脂斜面试管内的纯种酵母经过数次逐级扩大增殖培养,再在发酵罐内增殖培养后,经过离心分离、压榨和干燥得到酵母产品。下图表示以糖蜜为原料生产面包酵母的流程。分离多数酵母可以分离于富含糖类的环境中,比如一些水果(葡萄、苹果、桃等)或者植物分泌物(如仙人掌的汁)。一些酵母在昆虫体内生活。用途最常提到的酵母酿酒酵母(也称面包酵母)(Saccharomyces cerevisiae),自从几千年前人类就用其发酵面包和酒类,在酦酵面包和馒头的过程中面团中会放出二氧化碳。在医药工业中,酵母及其制品用于治疗某些消化不良症,并能提高和调整人体的新陈代谢机能。因此,药用酵母的生产在酵母工业中占有重要的地位。因酵母属于简单的单细胞真核生物,易于培养,且生长迅速,被广泛用于现代生物学研究中。如酿酒酵母作为重要的模式生物,也是遗传学和分子生物学的重要研究材料。危害有些酵母菌对生物或用具是有害的,例如红酵母(Rhodotorula)会生长在浴帘等潮湿的家具上;白色假丝酵母(或称白色念珠菌)(Candida albicans)会生长在阴道衬壁等湿润的人类上皮组织。酵母菌在畜牧业中,酵母广泛用作精饲料以增加饲料中的蛋白质含量,对提高禽畜的出肉率、产蛋率和产乳率,对肉质的改良和毛皮质量的提高均有明显的效果。①菌种:用于生产面包酵母的菌种为酿酒酵母。用于生产食品酵母和药用酵母的菌种有酿酒酵母和葡萄汁酵母。用于生产饲料酵母的菌种有产朊假丝酵母和脆壁克鲁维酵母,后者也可用于生产食用酵母和用于制备酵母自溶物等产品。②原料:主要是甜菜糖蜜(见甜菜制糖)、甘蔗糖蜜(见甘蔗制糖)和粮食原料。甜菜糖蜜含糖量高(还原糖50%左右),生产出的酵母颜色较浅。由于其含有不能被酵母利用的甜菜碱,因此酵母废水中的生物需氧量(BOD)较 高。甘蔗糖蜜的含糖量稍低于甜菜糖蜜,酵母生长时必需的生物素含量较高,灰分含量也较高。生产酵母时,如能采用80%甜菜糖蜜和20%甘蔗糖蜜,得到的酵 母无论在质量上还是数量上都比较好。但不论何种糖蜜都含有妨害酵母生长和繁殖、影响最终产品质量的杂质,必须经过处理才能用于生产。常用的处理方法有硫酸或磷酸加热处理澄清法。糖蜜稀释后,加少量酸并升温到90~100℃,在该温度下维持~小时,然后加石灰乳中和至糖液的pH为左右,用 自然沉清法或机械分离法得到澄清的糖液供酵母生长和繁殖用。玉米、小麦和土豆等也可作为生产酵母的原料。但由于酵母不能直接利用淀粉,必须用酸或酶法将淀粉水解为糖。由于淀粉水解和其它因素的影响,培养酵母的条件亦与糖蜜不同。此外,亚硫酸纸浆废液、木材水解液、乳清以及酒精废液和味精废液等都可作为生产饲料酵母的原料。苏联等国利用正烷烃和 甲醇等石油加工产品作为生产饲料酵母的原料。为了保证酵母生长繁殖,除供应上述的碳源外,还必需添加一定量的营养盐如磷酸铵、硫酸铵、硫酸镁、氨水和尿素等作为氮源和磷源。为了使面包酵母具有高的发酵力,添加的氮源与磷源量应有一定的比例。此外,生物素、泛酸、肌醇和硫胺素等都是酵母生长和繁殖的基本要素,可根据产品的种类及所用的原料加以适量补充。③增殖培养:从实验室的斜面试管纯种开始,在严格的无菌条件下,经三角瓶(500~5000ml)、卡氏罐(10l)、种母罐 (500~10000l)等逐级扩大培养,使酵母细胞量成倍增加,然后将种母罐内的酵母作为种母接入发酵罐,用通风流加培养法得到酵母,称为第一代酵母。继续用这种酵母为种母进行培养得到第二代酵母。用同样方法得到第三代酵母即为商品酵母。从三角瓶培养到种母罐培养一般采用12°Be′麦芽汁为培养基, 30℃微量通风培养12~24小时。如种母罐较大,可采用部分麦芽汁和部分糖蜜为培养基,30℃通风培养12~14小时,培养结束时,用显微镜检查酵母的 生长情况,酵母细胞应大小均匀,强壮,无杂菌。一般500l种母罐内培养可得到鲜酵母约5kg(以压榨酵母计)。商品酵母的繁殖是在发酵罐 (50~200m3)内用通风流加培养法进行。将种母罐内的酵母加入发酵罐与一定量水混合成一定浓度,在通风条件下将糖液和营养盐按比例流加,30℃培养12~18小时。培养过程中残糖量控制在~,并用氢氧化钠或碳酸钠调节培养液pH为±范围。通风量随发酵罐类型、培养条件及酵母种类而异,一般为1:1左右,即每分钟通入与发酵培养液体积 等量的空气。培养过程中产生的泡沫用食用油或合成消泡剂消泡。培养结束时,酵母浓度一般为4~6%(干基计)。在理想条件下,酵母细胞可在小时内成 倍增长,可将100g糖转化为干细胞物质。④分离和压榨:酵母繁殖培养阶段结束后,用离心机将酵母从发酵液内分离出,用水将酵母乳洗涤2~3次,除去发酵液内酵母代谢副产物、 杂质和杂菌等。一般最终酵母乳内含有18~20%酵母(以压榨酵母计)。如酵母乳的颜色较深,可增加水洗涤次数和水量,或添加少量的酸至洗涤水中以增加洗涤效果。正常的酵母乳为乳白色或略带米黄色。酵母乳再经板框压滤机或真空转鼓过滤机脱水。脱水后的酵母成饼状,水分含量为70~73%,加入少许食油及调 整水分后,经挤压机挤压成一定形状和重量的块状产品(如50g和500g),用蜡纸包装成为产品,在0~4℃贮藏、销售。⑤干燥:将鲜酵母制成活性干酵母的干燥是技术要求很高的过程,要避免酵母在干燥过程中受热而丧失发酵力。传统的干燥方法是先将鲜酵母挤压成圆柱形(2~3mm长)后,在箱式干燥机内采用连续或间歇式干燥,热空气温度不超过40℃。此法所用设备简单,但干燥时间较长,发酵力损失较大。现采用此法生产活性干酵母的厂家已为数不多。国际上普遍采用流化床干燥设备用于商品活性干酵母和快速活性干酵母的生产,分连续和间歇式两种。干燥过程中,酵母颗粒处于沸腾状态。干燥初期,酵母含水分较高,进入的空气温度可达100~150℃,酵母脱水速度较快;干燥后期空气温度应适当降低,使酵母温度始终维持在30~40℃ 之间,总的干燥时间约 1小时左右,随干燥机的形状、装料量、空气状况等而异。在干燥前,往鲜酵母内加入某些种类的乳化剂可以改善干醇母的再水化性能,增强酵母对热干燥的抵抗能 力,减少发酵力的损失。通常采用的乳化剂有单硬脂酸山梨糖醇酐、蔗糖酯和柠檬酸酯等,添加量为酵母干物质量的~%。为防止干酵母的氧化,亦可 添加少量的抗氧化剂如丁酰羟基苯甲醚等,添加量为%。由于这些化合物的添加,使活性干酵母的贮藏稳定性大为改善。食品酵母、药用酵母和饲料酵母的干燥较为简单。由于这些产品不要求保留酵母的发酵力,可采用离心喷雾干燥法和滚筒干燥法。

乳酸杆菌发酵条件毕业论文

微生物微生物(microorganism简称microbe)是包括细菌、病毒、真菌以及一些小型的原生动物等在内的一大类生物群体,它个体微小,却与人类生活密切相关。微生物在自然界中可谓“无处不在,无处不有”,涵盖了有益有害的众多种类,广泛涉及健康、医药、工农业、环保等诸多领域。原核:细菌、放线菌、螺旋体、支原体、立克次氏体、衣原体。真核:真菌、藻类、原生动物。非细胞类:病毒和亚病毒。微生物一般地,在中国大陆地区的教科书中,均将微生物划分为以下8大类:细菌、病毒、真菌、放线菌、立克次体、支原体、衣原体、螺旋体。微生物的定义一切肉眼看不见的或看不清的微小生物的总称1 特点: 个体微小,一般<。构造简单,有单细胞的,简单多细胞的,非细胞的进化地位低。2 分类 原核类: 三菌,三体 。真核类: 真菌,原生动物,显微藻类。非细胞类: 病毒,亚病毒 ( 类病毒,拟病毒,朊病毒)3 五大共性: 体积小,面积大吸收多,转化快生长旺,繁殖快适应强,易变异分布广,种类多二、微生物的类群1 细菌:(1)定义:一类细胞细短,结构简单,胞壁坚韧,多以二分裂方式繁殖和水生性强的原核生物(2)分布:温暖,潮湿和富含有机质的地方(3)结构:主要是单细胞的原核生物,有球形,杆形,螺旋形细胞壁基本结构 细胞膜细胞质结构 拟核鞭毛特殊结构 荚膜芽孢(4)繁殖: 主要以二分裂方式进行繁殖的(5)菌落: 单个细菌用肉眼是看不见的,当单个或少数细菌在固体培养基啊行大量繁殖时,便会形成一个肉眼可见的,具有一定形态结构的子细胞群落.菌落是菌种鉴定的重要依据.不同种类的细菌菌落的大小,形状光泽度颜色硬度透明毒都不同.2 放线菌(1)定义:一类主要成菌丝状生长和以孢子繁殖的陆生性较强的原核生物(2)分布:含水量较低,有机物较丰富的,呈微碱性的土壤中(3)形态构造:主要由菌丝组成,包括基内菌丝和气生菌丝(部分气生菌丝可以成熟分化为孢子丝,产生孢子)(4)繁殖:通过形成无性孢子的形式进行无性繁殖无性繁殖 有性繁殖(5)菌落:在固体培养基上:干燥,不透明,表面呈致密的丝绒状,彩色干粉3 病毒(1) 定义:一类由核酸和蛋白质等少数几种成分组成的”非细胞生物”,但是它的生存必须依赖于活细胞.(2)结构:(3)大小:一般直径在100nm左右最大的病毒直径为200nm的牛痘病毒最小的病毒直径为28nm的脊髓灰质炎病毒(4)增殖:以 噬菌体为例:吸附 侵入 增殖 装配 释放第二节微生物的营养一、微生物的化学组成C,H,O,N,P,S以及其他元素二、微生物的营养物质1 水和无机盐2 碳源:凡能为微生物提供生长繁殖所需碳元素的营养物质来源作用3氮源:凡能为微生物提供所必需氮元素的营养物质来源作用:主要用于合成蛋白质,核酸以及含氮的代谢产物4 能源:能为微生物生命活动提供最初能源来源的营养物质或辐射能根据碳源和能源分类:5生长因子:微生物生长不可缺少的微量有机物能引起人和动物致病的微生物叫病源微生物有八大类:1.真菌:引起皮肤病。深部组织上感染。2放线菌:皮肤,伤口感染。3螺旋体:皮肤病,血液感染 如梅毒,钩端螺旋体病。4细菌:皮肤病化脓,上呼吸道感染 ,泌尿道感染,食物中毒,败血压症,急性传染病等。5立克次氏体:斑疹伤寒等。6衣原体:沙眼,泌尿生殖道感染。7病毒:肝炎,乙型脑炎,麻疹,艾滋病等。8支原体:肺炎,尿路感染。生物界的微生物达几万种,大多数对人类有益,只有一少部份能致病。有些微生物通常不致病,在特定环境下能引起感染称条件致病菌。 能引起食品变质,腐败,正因为它们分解自然界的物体,才能完成大自然的物质循环。有些人误将真菌当作细菌,是一种比较普遍的误解。尤其以80年代以前未受过系统生物学教育者。微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。微生物千姿百态,有些是腐败性的,即引起食品气味和组织结构发生不良变化。当然有些微生物是有益的,它们可用来生产如奶酪,面包,泡菜,啤酒和葡萄酒。微生物非常小,必须通过显微镜放大约1000 倍才能看到。比如中等大小的细菌,1000个叠加在一起只有句号那么大。想像一下一滴牛奶,每毫升腐败的牛奶中约有5千万个细菌,或者讲每夸脱牛奶中细菌总数约为50亿。也就是一滴牛奶中可有含有50 亿个细菌。微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。微生物间的相互作用机制也相当奥秘。例如健康人肠道中即有大量细菌存在,称正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,而微生物基因组研究又是其中的重要分支。世界权威性杂志《科学》曾将微生物基因组研究评为世界重大科学进展之一。通过基因组研究揭示微生物的遗传机制,发现重要的功能基因并在此基础上发展疫苗,开发新型抗病毒、抗细菌、真菌药物,将对有效地控制新老传染病的流行,促进医疗健康事业的迅速发展和壮大!从分子水平上对微生物进行基因组研究为探索微生物个体以及群体间作用的奥秘提供了新的线索和思路。为了充分开发微生物(特别是细菌)资源,1994年美国发起了微生物基因组研究计划(MGP)。通过研究完整的基因组信息开发和利用微生物重要的功能基因,不仅能够加深对微生物的致病机制、重要代谢和调控机制的认识,更能在此基础上发展一系列与我们的生活密切相关的基因工程产品,包括:接种用的疫苗、治疗用的新药、诊断试剂和应用于工农业生产的各种酶制剂等等。通过基因工程方法的改造,促进新型菌株的构建和传统菌株的改造,全面促进微生物工业时代的来临。工业微生物涉及食品、制药、冶金、采矿、石油、皮革、轻化工等多种行业。通过微生物发酵途径生产抗生素、丁醇、维生素C以及一些风味食品的制备等;某些特殊微生物酶参与皮革脱毛、冶金、采油采矿等生产过程,甚至直接作为洗衣粉等的添加剂;另外还有一些微生物的代谢产物可以作为天然的微生物杀虫剂广泛应用于农业生产。通过对枯草芽孢杆菌的基因组研究,发现了一系列与抗生素及重要工业用酶的产生相关的基因。乳酸杆菌作为一种重要的微生态调节剂参与食品发酵过程,对其进行的基因组学研究将有利于找到关键的功能基因,然后对菌株加以改造,使其更适于工业化的生产过程。国内维生素C两步发酵法生产过程中的关键菌株氧化葡萄糖酸杆菌的基因组研究,将在基因组测序完成的前提下找到与维生素C生产相关的重要代谢功能基因,经基因工程改造,实现新的工程菌株的构建,简化生产步骤,降低生产成本,继而实现经济效益的大幅度提升。对工业微生物开展的基因组研究,不断发现新的特殊酶基因及重要代谢过程和代谢产物生成相关的功能基因,并将其应用于生产以及传统工业、工艺的改造,同时推动现代生物技术的迅速发展。农业微生物基因组研究认清致病机制发展控制病害的新对策据资料统计,全球每年因病害导致的农作物减产可高达20%,其中植物的细菌性病害最为严重。除了培植在遗传上对病害有抗性的品种以及加强园艺管理外,似乎没有更好的病害防治策略。因此积极开展某些植物致病微生物的基因组研究,认清其致病机制并由此发展控制病害的新对策显得十分紧迫。经济作物柑橘的致病菌是国际上第一个发表了全序列的植物致病微生物。还有一些在分类学、生理学和经济价值上非常重要的农业微生物,例如:胡萝卜欧文氏菌、植物致病性假单胞菌以及我国正在开展的黄单胞菌的研究等正在进行之中。日前植物固氮根瘤菌的全序列也刚刚测定完成。借鉴已经较为成熟的从人类病原微生物的基因组学信息筛选治疗性药物的方案,可以尝试性地应用到植物病原体上。特别像柑橘的致病菌这种需要昆虫媒介才能完成生活周期的种类,除了杀虫剂能阻断其生活周期以外,只能通过遗传学研究找到毒力相关因子,寻找抗性靶位以发展更有效的控制对策。固氮菌全部遗传信息的解析对于开发利用其固氮关键基因提高农作物的产量和质量也具有重要的意义。环境保护微生物基因组研究找到关键基因降解不同污染物在全面推进经济发展的同时,滥用资源、破坏环境的现象也日益严重。面对全球环境的一再恶化,提倡环保成为全世界人民的共同呼声。而生物除污在环境污染治理中潜力巨大,微生物参与治理则是生物除污的主流。微生物可降解塑料、甲苯等有机物;还能处理工业废水中的磷酸盐、含硫废气以及土壤的改良等。微生物能够分解纤维素等物质,并促进资源的再生利用。对这些微生物开展的基因组研究,在深入了解特殊代谢过程的遗传背景的前提下,有选择性的加以利用,例如找到不同污染物降解的关键基因,将其在某一菌株中组合,构建高效能的基因工程菌株,一菌多用,可同时降解不同的环境污染物质,极大发挥其改善环境、排除污染的潜力。美国基因组研究所结合生物芯片方法对微生物进行了特殊条件下的表达谱的研究,以期找到其降解有机物的关键基因,为开发及利用确定目标。极端环境微生物基因组研究深入认识生命本质应用潜力极大在极端环境下能够生长的微生物称为极端微生物,又称嗜极菌。嗜极菌对极端环境具有很强的适应性,极端微生物基因组的研究有助于从分子水平研究极限条件下微生物的适应性,加深对生命本质的认识。有一种嗜极菌,它能够暴露于数千倍强度的辐射下仍能存活,而人类一个剂量强度就会死亡。该细菌的染色体在接受几百万拉德a射线后粉碎为数百个片段,但能在一天内将其恢复。研究其DNA修复机制对于发展在辐射污染区进行环境的生物治理非常有意义。开发利用嗜极菌的极限特性可以突破当前生物技术领域中的一些局限,建立新的技术手段,使环境、能源、农业、健康、轻化工等领域的生物技术能力发生革命。来自极端微生物的极端酶,可在极端环境下行使功能,将极大地拓展酶的应用空间,是建立高效率、低成本生物技术加工过程的基础,例如PCR技术中的TagDNA聚合酶、洗涤剂中的碱性酶等都具有代表意义。极端微生物的研究与应用将是取得现代生物技术优势的重要途径,其在新酶、新药开发及环境整治方面应用潜力极大。微生物在整个生命世界中的地位!当人类在发现和研究微生物之前,把一切生物分成截然不同的两大界-动物界和植物界。随着人们对微生物认识的逐步深化,从两界系统经历过三界系统、四界系统、五界系统甚至六界系统,直到70年代后期,美国人Woese等发现了地球上的第三生命形式-古菌,才导致了生命三域学说的诞生。该学说认为生命是由古菌域(Archaea)、细菌域(Bacteria)和真核生物域(Eucarya)所构成。在图示“生物的系统进化树”中,左侧的黄色分枝是细菌域;中间的褐色和紫色分枝是古菌域;右侧的绿色分枝是真核生物域。古菌域包括嗜泉古菌界(Crenarchaeota)、广域古菌界(Euryarchaeota)和初生古菌界(Korarchaeota);细菌域包括细菌、放线菌、蓝细菌和各种除古菌以外的其它原核生物;真核生物域包括真菌、原生生物、动物和植物。除动物和植物以外,其它绝大多数生物都属微生物范畴。由此可见,微生物在生物界级分类中占有特殊重要的地位。生命进化一直是人们关注的热点。Brown等依据平行同源基因构建的“Cenancestor”生命进化树,认为生命的共同祖先Cenancestor是一个原生物。原生物在进化过程中产生两个分支,一个是原核生物(细菌和古菌),一个是原真核生物,在之后的进化过程中细菌和古菌首先向不同的方向进化,然后原真核生物经吞食一个古菌,并由古菌的DNA取代寄主的RNA基因组而产生真核生物。从进化的角度,微生物是一切生物的老前辈。如果把地球的年龄比喻为一年的话,则微生物约在3月20日诞生,而人类约在12月31日下午7时许出现在地球上。对我有帮助

乳酸菌是厌氧菌 (有些种可以承受部分氧气 另一些会被氧气杀死)通常酸奶发酵使用的菌种(保加利亚乳杆菌 嗜热链球菌)都是兼性厌氧菌 静止密封环境就可以发酵了 无需严格厌氧 其他条件 温度大概37℃左右 养分 主要是糖了 葡萄糖 蔗糖 乳糖等等都可以 牛奶中就含有比较高含量的乳糖

乳酸菌在无氧呼吸的时候产生乳酸,但没有亚硝酸盐。在乳酸杆菌代谢过长中,还可能产生很多其他的对人体有益的代谢产物,所以喝酸奶很健康。但亚硝酸盐是有毒的物质,常在腌制食品中存在。不易多吃,会致癌。

做酸奶的时候你有没有注意酸奶的发酵条件是什么呢?其实做酸奶时酸奶的发酵条件也是很关键的一步,下面由我为大家整理的酸奶的发酵条件,希望大家喜欢!

1、将原料奶及容器作灭菌处理

2、原料奶中不能含有抗菌素等抑制细菌生长的成分

3、足够数量的乳酸活菌发酵剂

4、温度恒定(最佳发酵温度为40℃~45℃)

5、一定的发酵时间(一般发酵时间为3-4小时)

①帮助消化、保持肠道健康:乳酸菌能帮助消化,调整大、小肠的蠕动,以利肠道正常运作。此外,乳酸也能够帮助钙质吸收。

②防止腹泻:外出旅游时,常因水土不服而导致腹泻或呕吐,你可以在外出时服用乳酸菌食品;或者原本肠道内平衡的菌丛生态遭到破坏,而产生的腹泻,也可以补充大量的乳酸菌,保持体内菌丛生态的平衡。

③预防癌症:乳酸菌在肠胃道中生长,由于有微生物族群的抗拮作用,会使产生致癌物的不良细菌大量减少,进而减少致癌机率。

④消除便秘:乳酸菌所分泌的乳酸能增加大、小肠的蠕动,而且作用温和自然,不同于市面上的轻泻剂。

⑤制造维生素:乳酸菌在肠道中可以制造人体所需的维生素,例如维他命K、B2、B6、B12、叶酸等。乳酸菌种中以嗜酸乳杆菌和双歧乳杆菌对人体的影响最显著,它们主要的功用在于促进免疫调节,增强人体对肠道感染的抵抗能力,减少腹泻,并帮助生成维他命B族和K,更加强吸收钙、铁、钾等。市面上含乳酸菌的产品,一般上是指有益菌类的发酵乳。这类产品大多强调可以帮助和维持人体内有益菌的平衡而达到健康的目的。乳酸菌的发酵作用可以将牛奶的乳糖分解到只剩原本20%至30%的含量,因此喝牛奶会拉肚子的人可以用这类乳酸饮料代替牛乳,而吸收到相同的养分。另外,由于乳酸菌状牛奶中的酪蛋白和脂肪变得更易消化,也帮助奶类中的钙和乳酸结合后更易被吸收,使肠内环境因乳酸的影响而呈现酸性,对于消化和健胃整肠等都有帮助。

1、是能将牛奶中的乳糖和蛋白质分解,使人体更易消化和吸收;

2、是酸奶有促进胃液分泌、提高食欲、加强消化的功效;

3、是乳酸菌能减少某些致癌物质的产生,因而有防癌作用;

4、是能抑制肠道内腐败菌的繁殖,并减弱腐败菌在肠道内产生的毒素;

5、是有降低胆固醇的作用,特别适宜高血脂的人饮用。

5、骨质疏松患者酸奶中含有极易被人所吸收的乳酸钙。

  • 索引序列
  • 阿维菌素霉菌发酵毕业论文
  • 阿维菌素论文开题报告
  • 阿维菌素的生产工艺毕业论文
  • 关于酵母菌发酵的文献论文
  • 乳酸杆菌发酵条件毕业论文
  • 返回顶部