激光雷达最基本的工作原理与无线电雷达没有区别,即由雷达发射系统发送一个信号,打到地面的树木、道路、桥梁和建筑物上,引起散射,经目标反射后被接收系统收集,通过测量反射光的运行时间而确定目标的距离。
至于目标的径向速度,可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度,这也是直接探测型雷达的基本工作原理。
激光雷达的作用就是精确测量目标的位置(距离与角度)、形状(大小)及状态(速度、姿态),从而达到探测、识别、跟踪目标的目的。
激光雷达是一种雷达系统,是一种主动传感器,所形成的数据是点云形式。其工作光谱段在红外到紫外之间,主要发射机、接收机、测量控制和电源组成。
扩展资料
激光雷达分类
一般来说,按照现代的激光雷达的概念,常分为以下几种:
1、按激光波段分,有紫外激光雷达、可见激光雷达和红外激光雷达。
2、按激光介质分,有气体激光雷达、固体激光雷达、半导体激光雷达和二极管激光泵浦固体激光雷达等。
3、按激光发射波形分,有脉冲激光雷达、连续波激光雷达和混合型激光雷达等。
4、按显示方式分,有模拟或数字显示激光雷达和成像激光雷达。
5、按运载平台分,有地基固定式激光雷达、车载激光雷达、机载激光雷达、船载激光雷达、星载激光雷达、弹载激光雷达和手持式激光雷达等。
6、按功能分,有激光测距雷达、激光测速雷达、激光测角雷达和跟踪雷达、激光成像雷达,激光目标指示器和生物激光雷达等。
7、按用途分,有激光测距仪、靶场激光雷达、火控激光雷达、跟踪识别激光雷达、多功能战术激光雷达、侦毒激光雷达、导航激光雷达、气象激光雷达、侦毒和大气监测激光雷达等。
参考资料来源:百度百科-激光雷达
你好,不好意思,这个我不会哦
这个在一般的硕士毕业大论文里都会论述
激光雷达探测大气的基本原理即是上述几种激光与大气相互作用的机制。激光器产生的激光束经光束准直(有的情况下需要扩束)后发射到大气中,激光在大气中传输遇到空气分子、气溶胶等成分便会发生散射、吸收等作用。散射中的小部分能量——后向散射光落入接收望远镜视场被接收。被接收到的后向散射光传输到光电探测器(通常为PMT)被转换成电信号(一般为电流信号),实现光-电转换,再经一系列的运算放大,最终被显示、记录。对于不同高度的信号,利用激光信号传输时间间隔来记录,光速c已知,便可换算成距离:。如果接收到的是回波点数,乘以系统距离分辨率即得高度。这样就获得了激光雷达P-z数据,利用激光雷达方程结合相关算法便可反演出相关大气特性,如大气垂直消光廓线、气体浓度、成分以及温度廓线等。
激光雷达是向目标发射激光束信号,接收器根据接收到的反射信号与发射信号进行比较进行一定的运算处理后得到目标物体的相关信息,比如目标距离,目标方向、目标高度、目标速度等。激光本身具有非常精确的测距能力,测距距离精度可达到几厘米,激光雷达工作原理与船用雷达原理非常接近,它是以激光束作为信号源,发射到船体上,引起散射,一部分光波会反射回激光雷达接收器,激光雷达不断发送脉冲激光进行扫描目标船体,就可以得到船舶上船体的点云数据,由此数据就可以得到精确的三维立体图像,基于激光雷达的原理和其特性,现激光雷达技术已经广泛用在军事、农业、气象、医疗、水土检测、自动驾驶等领域,作为应用场景较为单一的河道内检测船舶的可行性非常高的。
激光雷达检测船舶超高偏航
该传感器的点云密度可轻松超过128线激光雷达。面对反射率低至 10% 的物体,探测距离仍可达 320 米,可探测量程极限1000米,角度精度达 °,光束发散角低至 °(垂直)x °(水平),在工作时可射出多线激光同时进行高速非重复扫描,每秒可将多达 240,000 点的点云数据分布在约 15 度 FOV 里,仅需 100 ms 视场覆盖率即可达到 ,点云密度超过市面上主流 128 线机械式激光雷达,传统的机械激光雷达需要旋转电子元件让其扫描范围实现360度覆盖。激光雷达的独特设计不使用此类移动部件,只使用旋转棱镜,与传统的机械激光雷达相比,此种设计使其激光雷达能够工作得更久、更可靠。下图为激光雷达扫描图以及覆盖率曲线图。
激光雷达多线扫描
激光雷达覆盖率曲线图
激光雷达结构图
在桥梁防船撞智能预警系统中,激光雷达技术可精准检测船舶的高度,长度、宽度。喜讯科技做了不少的案例工程。
桥梁防碰撞预警系统具有强大的数据处理能力、可对船舶的形态分析、三维重构、吨位计算、多源数据的融合输出船舶流量、航行状态的最终结果,报送给相关管理部门。
激光雷达在于提供一种新的船舶超高与偏航检测手段,即可实现超高检测,同时有能实现偏航预警,实时性高,误判率低,检测精度高。
激光雷达检测船舶航行状态
Paperpass查重软件,格子达查重检测。格子达论文检测系统已于2015年3月正式上线,定位为互联网品牌,面向广大论文写作者提供专业的论文检测服务,并针对用户的不同需求提供了功能完善的周边增值服务。格子达论文检测提供免费的论文相似度检测系统,提供论文查重、论文在线修改等服务。paperpass官方版是一款由北京智齿数汇打造的专业论文查重软件,是大多数学校比较认可的一款权威论文查重应用。用户可以随时了解自己的论文重复率,从而进行修改、快速通过论文答辩。由于paperpass论文查重软件官方版的覆盖面范围广泛。
教师职称论文用格子达查可以吗:首先其次最后严格,格子达检测时,所有引用的内容绝对会认定为重复,也就是只要文中标了[1],[2],[3]引用符号,那么这整句内容,不管怎么改动,无论重复与否都会直接算进引用率,而这个引用率会计入全文重复率。格子达与知网由于数据库的不同和检测算法的不同,检测报告的结果会有一些差异,但是这种差异在同类软件里面来说是最小的,格子达对网络资源的抓取识别速度和精准度要好于知网,是一种作为知网初检最好的工具。规避论文查重方法一、翻译法估计很多人都是会参考外国的一些文献内容,这样直接将英文内容进行翻译,自然也就可以有效规避论文查重。毕竟我们的论文还是属于在中文论文查重系统内来查询的,而且翻译之后的内容一般都是需要我们修改成语句通顺的内容,所以基本上不会出现重复的情况。二、插入引文如果我们要进行引用,又想要规避论文查重,那么也可以适当进行插入,将一些文字内容直接通过插入的方式放入到自己的论文中,这样重新进行编辑之后可以直接成为引文。三、原创法规避论文查重更好的方法就是直接原创内容,不用担心查重率,但是可能论文内容专业度不是很高。
从理论上讲,是可以的。格子达查(Gridderach)可以用来帮助高等教育机构审核教师职称论文,其能够提供论文内容的准确性、综合性和专业性的检查。格子达查可以快速扫描教师职称论文的内容,快速将文章划分为不同的章节,并分析论文中提出的观点和说法。
教师职称论文用格子达查可以吗可以,但是要看论文的主题和内容,格子达查可以帮助你快速查找相关文献,收集有用信息,并对研究论文中涉及的问题进行分析,但是要记住,格子达查只是一种工具,最终的决定权在你自己,只有你自己能够决定论文的内容。
激光发展史激光以全新的姿态问世已二十余年。然而,发明激光器的历程却鲜为人知,至于发明者如何从事艰难曲折的探索,就更少人问津了。其实,每一项重大发明,都是科学家们智慧的结晶,里面包涵着他们的汗水和心血。自然,激光器的发明也不例外。 说得准确些,对激光的研究,只是到了20世纪50年代末才出现一个崭新阶段。在此之前,人们只对无线电波和微波有较深研究。科学家们把无线电波波长缩短到十米以内,使得世界性的通讯成为可能,那是30年代的事情。后来,随着速调管和空穴磁控管的发明,科学家便对厘米波的性质进行研究。二次世界大战中,由于射频和光谱学的发展,辐射波和原子只间的联系又重新被强调。大战期间,科学家们发明并研制了雷达(战争对雷达的制造起了推动的作用)。从技术本身来说,雷达是电磁波向超短波、微波发展的产物。大战以后,科学家又开创了微波波谱学,目的是探索光谱的微波范围并把其推广到更短的波长。当时,哥仑比亚大学有一个由汤斯()领导的辐射实验小组,他们一直从事电磁方面以及毫米辐射波的研究。1951年,汤斯提出了微波激射器(Maser全称Microwave Amplification by Stimulated Emission of Radiation)的概念。经过几年的努力,1954年汤斯和他的助手高顿(J. Cordon)、蔡格(H. Zeiger)发明了氨分子束微波激射器并使其正常运行。这为以后激光器的诞生奠定了基础。当时,汤斯希望微波激射器能产生波长为半毫米的微波,遗撼的是,激射器却输出波长为1。25cm的微波。微波激射器问世以后,科学家就希望能制造输出更短波长的激射器。汤斯认为可将微波推到红外区附近,甚至到可见光波段。1958年,肖洛()与汤斯合作,率先发表了在可见光频段工作的激射器的设计方案和理论计算。这又将激光研究推上了一个新阶段。现在,人们都知道,产生激光要具备两个重要条件:一是粒子数反转;二是谐振腔。值得注意的是,自1916年爱因斯坦提出受激辐射的概念以后,1940年前后就有人在研究气体放电实验中,观察到粒子反转现象。按当时的实验技术基础,就具备建立某种类型的激光器的条件。但为什么没能造出来呢?因为没有人,包括爱因斯坦本人没把受激辐射,粒子数反转,谐振腔联系在一起加以考虑。因而也把激光器的发明推迟了若干年。在研究激光器的过程中,应把引进谐振腔的功劳归于肖洛。肖洛长期从事光谱学研究。谐振腔的结构,就是从法——珀干涉仪那里得到启示的。正如肖洛自己所说:“我开始考虑光谐振器时,从两面彼此相向镜面的法——珀干涉仪结构着手研究,是很自然的。”实际上,干涉仪就是一种谐振器。肖洛在贝尔电话实验室的七年中,积累了大量数据,于1958年提出了有关激光的设想。几乎同时,许多实验室开始研究激光器的可能材料和方法,用固体作为工作物质的激光器的研究工作始于1958年。如肖洛所述:“我完全彻底地受到灌输,使我相信,可以在气体中做的任何事情,在固体中同样可以做,且在固体中做得更好些。因此,我开始探索、寻找固体激光器的材料…...”的确,不到一年,在1959年9月召开的第一次国际量子电子会议上,肖洛提出了用红宝石作为激光的工作物质。不久,肖洛又具体地描述了激光器的结构:“固体微波激射器的结构较为简单,实质上,它有一棒(红宝石),它的一端可作全反射,另一端几乎全反射,侧面作光抽运。”遗撼的是,肖洛没有得到足够的光能量使粒子数反转,因而没获成功。可喜的是,科学家迈曼()巧妙地利用氙灯作光抽运,从而获得粒子数反转。于是,1960年6月,在Rochester大学,召开了一个有关光的相干性的会议,会议上,迈曼成功地操作了一台激光器。7月份,迈曼用红宝石制成的激光器被公布于众。至此,世界上第一台激光器宣告诞生。激光具有单色性,相干性等一系列极好的特性。从诞生那天开始,人们就预言了它的美好前景。20多年来,人们制造了输出各种不同波长的激光器,甚至是可调激光器。大功率激光器的研制成功,又开拓了新的领域。1977年出现的自由电子激光器,机制则完全不同,它的工作物质是具有极高能量的自由电子,人们可以期望通过这种激光器,实现连续大功率输出,而且覆盖频率范围可向长短两个方向发展。现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 能发1954年制成了第一台微波量子放大器,获得了高度相干的微波束。1958年.肖洛和.汤斯把微波量子放大器原理推广应用到光频范围,并指出了产生激光的方法。1960年.梅曼等人制成了第一台红宝石激光器。1961年A.贾文等人制成了氦氖激光器。1962年.霍耳等人创制了砷化镓半导体激光器。以后,激光器的种类就越来越多。按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。近来还发展了自由电子激光器,其工作介质是在周期性磁场中运动的高速电子束,激光波长可覆盖从微波到X射线的广阔波段。按工作方式分,有连续式、脉冲式、调Q和超短脉冲式等几类。大功率激光器通常都是脉冲式输出。各种不同种类的激光器所发射的激光波长已达数千种,最长的波长为微波波段的毫米,最短波长为远紫外区的210埃,X射线波段的激光器也正在研究中。 除自由电子激光器外,各种激光器的基本工作原理均相同,装置的必不可少的组成部分包括激励(或抽运)、具有亚稳态能级的工作介质和谐振腔( 见光学谐振腔)3部分。激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的定向性和相干性。 激光工作物质 是指用来实现粒子数反转并产生光的受激辐射放大作用的物质体系,有时也称为激光增益媒质,它们可以是固体(晶体、玻璃)、气体(原子气体、离子气体、分子气体)、半导体和液体等媒质。对激光工作物质的主要要求,是尽可能在其工作粒子的特定能级间实现较大程度的粒子数反转,并使这种反转在整个激光发射作用过程中尽可能有效地保持下去;为此,要求工作物质具有合适的能级结构和跃迁特性。 激励(泵浦)系统 是指为使激光工作物质实现并维持粒子数反转而提供能量来源的机构或装置。根据工作物质和激光器运转条件的不同,可以采取不同的激励方式和激励装置,常见的有以下四种。①光学激励(光泵)。是利用外界光源发出的光来辐照工作物质以实现粒子数反转的,整个激励装置,通常是由气体放电光源(如氙灯、氪灯)和聚光器组成。②气体放电激励。是利用在气体工作物质内发生的气体放电过程来实现粒子数反转的,整个激励装置通常由放电电极和放电电源组成。③化学激励。是利用在工作物质内部发生的化学反应过程来实现粒子数反转的,通常要求有适当的化学反应物和相应的引发措施。④核能激励。是利用小型核裂变反应所产生的裂变碎片、高能粒子或放射线来激励工作物质并实现粒子数反转的。 激光器的种类是很多的。下面,将分别从激光工作物质、激励方式、运转方式、输出波长范围等几个方面进行分类介绍。 按工作物质分类 根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体(晶体和玻璃)激光器,这类激光器所采用的工作物质,是通过把能够产生受激辐射作用的金属离子掺入晶体或玻璃基质中构成发光中心而制成的;②气体激光器,它们所采用的工作物质是气体,并且根据气体中真正产生受激发射作用之工作粒子性质的不同,而进一步区分为原子气体激光器、离子气体激光器、分子气体激光器、准分子气体激光器等;③液体激光器,这类激光器所采用的工作物质主要包括两类,一类是有机荧光染料溶液,另一类是含有稀土金属离子的无机化合物溶液,其中金属离子(如Nd)起工作粒子作用,而无机化合物液体(如SeOCl)则起基质的作用;④半导体激光器,这类激光器是以一定的半导体材料作工作物质而产生受激发射作用,其原理是通过一定的激励方式(电注入、光泵或高能电子束注入),在半导体物质的能带之间或能带与杂质能级之间,通过激发非平衡载流子而实现粒子数反转,从而产生光的受激发射作用;⑤自由电子激光器,这是一种特殊类型的新型激光器,工作物质为在空间周期变化磁场中高速运动的定向自由电子束,只要改变自由电子束的速度就可产生可调谐的相干电磁辐射,原则上其相干辐射谱可从X射线波段过渡到微波区域,因此具有很诱人的前景。 按激励方式分类 ①光泵式激光器。指以光泵方式激励的激光器,包括几乎是全部的固体激光器和液体激光器,以及少数气体激光器和半导体激光器。②电激励式激光器。大部分气体激光器均是采用气体放电(直流放电、交流放电、脉冲放电、电子束注入)方式进行激励,而一般常见的半导体激光器多是采用结电流注入方式进行激励,某些半导体激光器亦可采用高能电子束注入方式激励。③化学激光器。这是专门指利用化学反应释放的能量对工作物质进行激励的激光器,反希望产生的化学反应可分别采用光照引发、放电引发、化学引发。④核泵浦激光器。指专门利用小型核裂变反应所释放出的能量来激励工作物质的一类特种激光器,如核泵浦氦氩激光器等。 按运转方式分类 由于激光器所采用的工作物质、激励方式以及应用目的的不同,其运转方式和工作状态亦相应有所不同,从而可区分为以下几种主要的类型。①连续激光器,其工作特点是工作物质的激励和相应的激光输出,可以在一段较长的时间范围内以连续方式持续进行,以连续光源激励的固体激光器和以连续电激励方式工作的气体激光器及半导体激光器,均属此类。由于连续运转过程中往往不可避免地产生器件的过热效应,因此多数需采取适当的冷却措施。②单次脉冲激光器,对这类激光器而言,工作物质的激励和相应的激光发射,从时间上来说均是一个单次脉冲过程,一般的固体激光器、液体激光器以及某些特殊的气体激光器,均采用此方式运转,此时器件的热效应可以忽略,故可以不采取特殊的冷却措施。③重复脉冲激光器,这类器件的特点是其输出为一系列的重复激光脉冲,为此,器件可相应以重复脉冲的方式激励,或以连续方式进行激励但以一定方式调制激光振荡过程,以获得重复脉冲激光输出,通常亦要求对器件采取有效的冷却措施。④调激光器,这是专门指采用一定的 开关技术以获得较高输出功率的脉冲激光器,其工作原理是在工作物质的粒子数反转状态形成后并不使其产生激光振荡 (开关处于关闭状态),待粒子数积累到足够高的程度后,突然瞬时打开 开关,从而可在较短的时间内(例如10~10秒)形成十分强的激光振荡和高功率脉冲激光输出(见技术'" class=link>激光调 技术)。⑤锁模激光器,这是一类采用锁模技术的特殊类型激光器,其工作特点是由共振腔内不同纵向模式之间有确定的相位关系,因此可获得一系列在时间上来看是等间隔的激光超短脉冲(脉宽10~10秒)序列,若进一步采用特殊的快速光开关技术,还可以从上述脉冲序列中选择出单一的超短激光脉冲(见激光锁模技术)。⑥单模和稳频激光器,单模激光器是指在采用一定的限模技术后处于单横模或单纵模状态运转的激光器,稳频激光器是指采用一定的自动控制措施使激光器输出波长或频率稳定在一定精度范围内的特殊激光器件,在某些情况下,还可以制成既是单模运转又具有频率自动稳定控制能力的特种激光器件(见激光稳频技术)。⑦可调谐激光器,在一般情况下,激光器的输出波长是固定不变的,但采用特殊的调谐技术后,使得某些激光器的输出激光波长,可在一定的范围内连续可控地发生变化,这一类激光器称为可调谐激光器(见激光调谐技术)。 按输出波段范围分类 根据输出激光波长范围之不同,可将各类激光器区分为以下几种。①远红外激光器,输出波长范围处于25~1000微米之间, 某些分子气体激光器以及自由电子激光器的激光输出即落入这一区域。②中红外激光器,指输出激光波长处于中红外区(~25微米)的激光器件,代表者为CO分子气体激光器(微米)、 CO分子气体激光器(5~6微米)。③近红外激光器,指输出激光波长处于近红外区(~微米)的激光器件,代表者为掺钕固体激光器(微米)、CaAs半导体二极管激光器(约 微米)和某些气体激光器等。④可见激光器,指输出激光波长处于可见光谱区(4000~7000埃或~微米)的一类激光器件,代表者为红宝石激光器 (6943埃)、 氦氖激光器(6328埃)、氩离子激光器(4880埃、5145埃)、氪离子激光器(4762埃、5208埃、5682埃、6471埃)以及一些可调谐染料激光器等。⑤近紫外激光器,其输出激光波长范围处于近紫外光谱区(2000~4000埃),代表者为氮分子激光器(3371埃)氟化氙(XeF)准分子激光器(3511埃、3531埃)、 氟化氪(KrF)准分子激光器(2490埃)以及某些可调谐染料激光器等⑥真空紫外激光器,其输出激光波长范围处于真空紫外光谱区(50~2000埃)代表者为(H)分子激光器 (1644~1098埃)、氙(Xe)准分子激光器(1730埃)等。⑦X射线激光器, 指输出波长处于X射线谱区(~50埃)的激光器系统,目前软X 射线已研制成功,但仍处于探索阶段[编辑本段]激光器的发明 激光器的发明是20世纪科学技术的一项重大成就。它使人们终于有能力驾驶尺度极小、数量极大、运动极混乱的分子和原子的发光过程,从而获得产生、放大相干的红外线、可见光线和紫外线(以至X射线和γ射线)的能力。激光科学技术的兴起使人类对光的认识和利用达到了一个崭新的水平。 激光器的诞生史大致可以分为几个阶段,其中1916年爱因斯坦提出的受激辐射概念是其重要的理论基础。这一理论指出,处于高能态的物质粒子受到一个能量等于两个能级之间能量差的光子的作用,将转变到低能态,并产生第二个光子,同第一个光子同时发射出来,这就是受激辐射。这种辐射输出的光获得了放大,而且是相干光,即如多个光子的发射方向、频率、位相、偏振完全相同。 此后,量子力学的建立和发展使人们对物质的微观结构及运动规律有了更深入的认识,微观粒子的能级分布、跃迁和光子辐射等问题也得到了更有力的证明,这也在客观上更加完善了爱因斯坦的受激辐射理论,为激光器的产生进一步奠定了理论基础。20世纪40年代末,量子电子学诞生后,被很快应用于研究电磁辐射与各种微观粒子系统的相互作用,并研制出许多相应的器件。这些科学理论和技术的快速发展都为激光器的发明创造了条件。 如果一个系统中处于高能态的粒子数多于低能态的粒子数,就出现了粒子数的反转状态。那么只要有一个光子引发,就会迫使一个处于高能态的原子受激辐射出一个与之相同的光子,这两个光子又会引发其他原子受激辐射,这样就实现了光的放大;如果加上适当的谐振腔的反馈作用便形成光振荡,从而发射出激光。这就是激光器的工作原理。1951年,美国物理学家珀塞尔和庞德在实验中成功地造成了粒子数反转,并获得了每秒50千赫的受激辐射。稍后,美国物理学家查尔斯·汤斯以及苏联物理学家马索夫和普罗霍洛夫先后提出了利用原子和分子的受激辐射原理来产生和放大微波的设计。 然而上述的微波波谱学理论和实验研究大都属于“纯科学”,对于激光器到底能否研制成功,在当时还是很渺茫的。 但科学家的努力终究有了结果。1954年,前面提到的美国物理学家汤斯终于制成了第一台氨分子束微波激射器,成功地开创了利用分子和原子体系作为微波辐射相干放大器或振荡器的先例。 汤斯等人研制的微波激射器只产生了厘米波长的微波,功率很小。生产和科技不断发展的需要推动科学家们去探索新的发光机理,以产生新的性能优异的光源。1958年,汤斯与姐夫阿瑟·肖洛将微波激射器与光学、光谱学的理论知识结合起来,提出了采用开式谐振腔的关键性建议,并预防了激光的相干性、方向性、线宽和噪音等性质。同期,巴索夫和普罗霍洛夫等人也提出了实现受激辐射光放大的原理性方案。 此后,世界上许多实验室都被卷入了一场激烈的研制竞赛,看谁能成功制造并运转世界上第一台激光器。 1960年,美国物理学家西奥多·梅曼在佛罗里达州迈阿密的研究实验室里,勉强赢得了这场世界范围内的研制竞赛。他用一个高强闪光灯管来刺激在红宝石水晶里的铬原子,从而产生一条相当集中的纤细红色光柱,当它射向某一点时,可使这一点达到比太阳还高的温度。 “梅曼设计”引起了科学界的震惊和怀疑,因为科学家们一直在注视和期待着的是氦氖激光器。 尽管梅曼是第一个将激光引入实用领域的科学家,但在法庭上,关于到底是谁发明了这项技术的争论,曾一度引起很大争议。竞争者之一就是“激光”(“受激辐射式光频放大器”的缩略词)一词的发明者戈登·古尔德。他在1957年攻读哥伦比亚大学博士学位时提出了这个词。与此同时,微波激射器的发明者汤斯与肖洛也发展了有关激光的概念。经法庭最终判决,汤斯因研究的书面工作早于古尔德9个月而成为胜者。不过梅曼的激光器的发明权却未受到动摇。 1960年12月,出生于伊朗的美国科学家贾万率人终于成功地制造并运转了全世界第一台气体激光器——氦氖激光器。1962年,有三组科学家几乎同时发明了半导体激光器。1966年,科学家们又研制成了波长可在一段范围内连续调节的有机染料激光器。此外,还有输出能量大、功率高,而且不依赖电网的化学激光器等纷纷问世。 由于激光器具备的种种突出特点,因而被很快运用于工业、农业、精密测量和探测、通讯与信息处理、医疗、军事等各方面,并在许多领域引起了革命性的突破。比如,人们利用激光集中而极高的能量,可以对各种材料进行加工,能够做到在一个针头上钻200个孔;激光作为一种在生物机体上引起刺激、变异、烧灼、汽化等效应的手段,已在医疗、农业的实际应用上取得了良好效果;在通信领域,一条用激光柱传送信号的光导电缆,可以携带相当于2万根电话铜线所携带的信息量;激光在军事上除用于通信、夜视、预警、测距等方面外,多种激光武器和激光制导武器也已经投入实用。 今后,随着人类对激光技术的进一步研究和发展,激光器的性能将进一步提升,成本将进一步降低,但是它的应用范围却还将继续扩大,并将发挥出越来越巨大的作用。
当前,无人驾驶技术已成为汽车领城的发展趋势,障碍物探测是无人驾驶技术中的亚要环节。激光留达作为一种主到探测方法,具有测量速度快,精度高等优点,在障碍检测方面优势明显。本文以无人驾驶车障得探测为应用背最,针对扫描式多线徽光雷达成本较高、测距精度较低的不足,开展了激光香达测距技术研究,综合考应车载环境以及实际应用需求,设计了一种扫描式测距激光省达系统。论文主要工作如下:(1)对比分析了脉冲式和相位.式激光测距原理,根据无人驾驶车障碍探测的实时性要求,选择脉冲式测距方案,综合考忠影响脉冲式测量精度的关键因素,设计了一种改进型的时刻鉴别以及时间间隔测量方法,优化系统采测性能。(2)针对半导体激光器和光电探测器的具体特性,设计了发射端和接收端光学系统,在 zEMAx 软件中进行光线追迹仿真,验证了其对发射光束的准直压缩和对回波光束的有效聚焦,从而可以提高系统探测范围和精度。(3)设计并搭建了窄脉冲激光发射和信号接收电路系统,系统以 FPGA 器件和C8051F206 单片机作为主控制器,可实现重复频常为 1kHz,脉宽为 60ns 的窄脉冲激光发射:为提高接收系统的信噪比,选用高灵敏度的 APD 作为光电探测器,结合信号调理电路,从而实现微弱回波信号的有效提取:设计高精度时间差测量模块和机械旋转模块,验证扫描式激光雷达系统的测距性能。(4)为了验证测距激光雷达在无人驾驶车障碍探测中的性能,在 Visual Studio 2010平台下开发了基于 MFC 的数据重构界面,根据测量得到的距商数据实现障碍物信息重构。搭建实验平台,对近处目标物进行测量,测试并验证系统样机的探测性能,最终结果表明,所设计的脉冲式激光雷达系统基本满足预期的探测要求,并具有一定的实际应用价值。
激光雷达laser radar用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达在军事上可用于对各种飞行目标轨迹的测量。如对导弹和火箭初始段的跟踪与测量,对飞机和巡航导弹的低仰角跟踪测量,对卫星的精密定轨等。激光雷达与红外、电视等光电设备相结合,组成地面、舰载和机载的火力控制系统,对目标进行搜索、识别、跟踪和测量。由于激光雷达可以获取目标的三维图像及速度信息,有利于识别隐身目标。激光雷达可以对大气进行监测,遥测大气中的污染和毒剂,还可测量大气的温度、湿度、风速、能见度及云层高度。 激光雷达的应用●孟敏王学才 激光雷达,采用类似于激光测距机的原理与构造研制,是一种工作在从红外到紫外光谱段的探测系统。通常,把利用激光脉冲进行探测的称作脉冲激光雷达,把利用连续波激光束进行探测的称作连续波激光雷达。目前,世界上已研制出用于火控、侦察、制导、测量、导航等多种功能的激光雷达。 生化战高手:陆用激光雷达 生化战剂的探测与防范,一直是军方关注的重点项目之一。传统的探测方法,主要由士兵携带探测装置,边走边测,速度慢、功效低,并易中毒。据报道,俄罗斯一改传统方式,成功地研制出“KDKhr—1N”远距离地面毒剂激光雷达探测系统,可实时地远距探测并确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数等,及时通过有、无线技术向部队控制系统报警,以采取相应的防毒措施。在这方面,德国军方也研制出更加先进的“VTB———1型 ”遥测激光雷达,使用两台9微米—11微米、可在40个频率上调节的连续波C02激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又可靠。 飞行防撞高手:空用激光雷达 飞机尤其是直升机在低空巡逻飞行时,极易与地面小山或建筑物相撞,这是世界许多国家关注并力求解决的一大难题。美国、德国和法国等近年费尽心血研制出了直升机障碍物规避激光雷达,成功地解决了这一难题。美国率先研制的直升机超低空飞行“障碍规避雷达”,使用固体激光二极管发射机和旋转全息扫描器,可探测直升机前方很宽的空域,地面障碍物信息可实时显示在机载平视显示器或头盔显示器上,保障了飞行员的安全飞行。随之,德国研制成功的“Hellas ”激光雷达更胜一筹,它是一种固体微米成像,视场为32度×32度,能探测 300米—500米距离内直径1厘米粗的电线或障碍物,直升机采用之可确保飞行安全。法国和英国合研的吊舱载“CLARA”激光雷达,具有多种功能,采用C02激光器,不但能测得直升机飞行前方如标杆、电缆等微型障碍物,还可进行地形跟踪、目标测距和活动目标指示,保障飞行安全,这种激光雷达也适于飞机使用。 捕获水下目标高手:海用激光雷达 对水中目标进行警戒、搜索、定性和跟踪的传统方式,是采用体大而重的一般在600千克至几十吨重的声纳。自从发展了海洋激光雷达,即机载蓝绿激光器发射和接收设备后,海洋水下目标探测既简单方便,又准确无误。尤其是20世纪90 年代以后研制成功的第三代激光雷达上,增加了GPS定位、定高功能,实现了航线和高度的自动控制。如美国诺斯罗普公司研制的“ALARMS”机载水雷探测激光雷达,可24小时工作,能准确测得水下水雷等可疑目标。美国卡曼航天公司研制的水下成像激光雷达,更具优势,可以显示水下目标的形状等特征,准确捕获目标,以便采取应急措施,确保航行安全。 此外,激光雷达还可以广泛用于对抗电子战、反辐射导弹、超低空突防、导弹与炮弹制导以及陆地扫雷等。
1、研究背景:随着科技的发展,时代的进步,无人驾驶汽车逐渐兴起,然而对无人驾驶汽车周围的环境进行探测便成为了一项十分重要的问题。2、意义:通过检测目标物体的空间方位和距离,提供目标的激光反射强度信息,提供被检测目标的详细形状描述,在光照条件好的环境下表现优秀,而且在黑夜和雨天等极端情况下也有较好表现。
激光雷达laser radar用激光器作为辐射源的雷达。激光雷达是激光技术与雷达技术相结合的产物 。由发射机 、天线 、接收机 、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器、半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式,探测方法分直接探测与外差探测。激光雷达在军事上可用于对各种飞行目标轨迹的测量。如对导弹和火箭初始段的跟踪与测量,对飞机和巡航导弹的低仰角跟踪测量,对卫星的精密定轨等。激光雷达与红外、电视等光电设备相结合,组成地面、舰载和机载的火力控制系统,对目标进行搜索、识别、跟踪和测量。由于激光雷达可以获取目标的三维图像及速度信息,有利于识别隐身目标。激光雷达可以对大气进行监测,遥测大气中的污染和毒剂,还可测量大气的温度、湿度、风速、能见度及云层高度。 激光雷达的应用●孟敏王学才 激光雷达,采用类似于激光测距机的原理与构造研制,是一种工作在从红外到紫外光谱段的探测系统。通常,把利用激光脉冲进行探测的称作脉冲激光雷达,把利用连续波激光束进行探测的称作连续波激光雷达。目前,世界上已研制出用于火控、侦察、制导、测量、导航等多种功能的激光雷达。 生化战高手:陆用激光雷达 生化战剂的探测与防范,一直是军方关注的重点项目之一。传统的探测方法,主要由士兵携带探测装置,边走边测,速度慢、功效低,并易中毒。据报道,俄罗斯一改传统方式,成功地研制出“KDKhr—1N”远距离地面毒剂激光雷达探测系统,可实时地远距探测并确定毒剂气溶胶云的斜距、中心厚度、离地高度、中心角坐标以及毒剂相关参数等,及时通过有、无线技术向部队控制系统报警,以采取相应的防毒措施。在这方面,德国军方也研制出更加先进的“VTB———1型 ”遥测激光雷达,使用两台9微米—11微米、可在40个频率上调节的连续波C02激光器,利用微分吸收光谱学原理遥测化学战剂,既安全又可靠。 飞行防撞高手:空用激光雷达 飞机尤其是直升机在低空巡逻飞行时,极易与地面小山或建筑物相撞,这是世界许多国家关注并力求解决的一大难题。美国、德国和法国等近年费尽心血研制出了直升机障碍物规避激光雷达,成功地解决了这一难题。美国率先研制的直升机超低空飞行“障碍规避雷达”,使用固体激光二极管发射机和旋转全息扫描器,可探测直升机前方很宽的空域,地面障碍物信息可实时显示在机载平视显示器或头盔显示器上,保障了飞行员的安全飞行。随之,德国研制成功的“Hellas ”激光雷达更胜一筹,它是一种固体微米成像,视场为32度×32度,能探测 300米—500米距离内直径1厘米粗的电线或障碍物,直升机采用之可确保飞行安全。法国和英国合研的吊舱载“CLARA”激光雷达,具有多种功能,采用C02激光器,不但能测得直升机飞行前方如标杆、电缆等微型障碍物,还可进行地形跟踪、目标测距和活动目标指示,保障飞行安全,这种激光雷达也适于飞机使用。 捕获水下目标高手:海用激光雷达 对水中目标进行警戒、搜索、定性和跟踪的传统方式,是采用体大而重的一般在600千克至几十吨重的声纳。自从发展了海洋激光雷达,即机载蓝绿激光器发射和接收设备后,海洋水下目标探测既简单方便,又准确无误。尤其是20世纪90 年代以后研制成功的第三代激光雷达上,增加了GPS定位、定高功能,实现了航线和高度的自动控制。如美国诺斯罗普公司研制的“ALARMS”机载水雷探测激光雷达,可24小时工作,能准确测得水下水雷等可疑目标。美国卡曼航天公司研制的水下成像激光雷达,更具优势,可以显示水下目标的形状等特征,准确捕获目标,以便采取应急措施,确保航行安全。 此外,激光雷达还可以广泛用于对抗电子战、反辐射导弹、超低空突防、导弹与炮弹制导以及陆地扫雷等。
激光发展史激光以全新的姿态问世已二十余年。然而,发明激光器的历程却鲜为人知,至于发明者如何从事艰难曲折的探索,就更少人问津了。其实,每一项重大发明,都是科学家们智慧的结晶,里面包涵着他们的汗水和心血。自然,激光器的发明也不例外。 说得准确些,对激光的研究,只是到了20世纪50年代末才出现一个崭新阶段。在此之前,人们只对无线电波和微波有较深研究。科学家们把无线电波波长缩短到十米以内,使得世界性的通讯成为可能,那是30年代的事情。后来,随着速调管和空穴磁控管的发明,科学家便对厘米波的性质进行研究。二次世界大战中,由于射频和光谱学的发展,辐射波和原子只间的联系又重新被强调。大战期间,科学家们发明并研制了雷达(战争对雷达的制造起了推动的作用)。从技术本身来说,雷达是电磁波向超短波、微波发展的产物。大战以后,科学家又开创了微波波谱学,目的是探索光谱的微波范围并把其推广到更短的波长。当时,哥仑比亚大学有一个由汤斯()领导的辐射实验小组,他们一直从事电磁方面以及毫米辐射波的研究。1951年,汤斯提出了微波激射器(Maser全称Microwave Amplification by Stimulated Emission of Radiation)的概念。经过几年的努力,1954年汤斯和他的助手高顿(J. Cordon)、蔡格(H. Zeiger)发明了氨分子束微波激射器并使其正常运行。这为以后激光器的诞生奠定了基础。当时,汤斯希望微波激射器能产生波长为半毫米的微波,遗撼的是,激射器却输出波长为1。25cm的微波。微波激射器问世以后,科学家就希望能制造输出更短波长的激射器。汤斯认为可将微波推到红外区附近,甚至到可见光波段。1958年,肖洛()与汤斯合作,率先发表了在可见光频段工作的激射器的设计方案和理论计算。这又将激光研究推上了一个新阶段。现在,人们都知道,产生激光要具备两个重要条件:一是粒子数反转;二是谐振腔。值得注意的是,自1916年爱因斯坦提出受激辐射的概念以后,1940年前后就有人在研究气体放电实验中,观察到粒子反转现象。按当时的实验技术基础,就具备建立某种类型的激光器的条件。但为什么没能造出来呢?因为没有人,包括爱因斯坦本人没把受激辐射,粒子数反转,谐振腔联系在一起加以考虑。因而也把激光器的发明推迟了若干年。在研究激光器的过程中,应把引进谐振腔的功劳归于肖洛。肖洛长期从事光谱学研究。谐振腔的结构,就是从法——珀干涉仪那里得到启示的。正如肖洛自己所说:“我开始考虑光谐振器时,从两面彼此相向镜面的法——珀干涉仪结构着手研究,是很自然的。”实际上,干涉仪就是一种谐振器。肖洛在贝尔电话实验室的七年中,积累了大量数据,于1958年提出了有关激光的设想。几乎同时,许多实验室开始研究激光器的可能材料和方法,用固体作为工作物质的激光器的研究工作始于1958年。如肖洛所述:“我完全彻底地受到灌输,使我相信,可以在气体中做的任何事情,在固体中同样可以做,且在固体中做得更好些。因此,我开始探索、寻找固体激光器的材料…...”的确,不到一年,在1959年9月召开的第一次国际量子电子会议上,肖洛提出了用红宝石作为激光的工作物质。不久,肖洛又具体地描述了激光器的结构:“固体微波激射器的结构较为简单,实质上,它有一棒(红宝石),它的一端可作全反射,另一端几乎全反射,侧面作光抽运。”遗撼的是,肖洛没有得到足够的光能量使粒子数反转,因而没获成功。可喜的是,科学家迈曼()巧妙地利用氙灯作光抽运,从而获得粒子数反转。于是,1960年6月,在Rochester大学,召开了一个有关光的相干性的会议,会议上,迈曼成功地操作了一台激光器。7月份,迈曼用红宝石制成的激光器被公布于众。至此,世界上第一台激光器宣告诞生。激光具有单色性,相干性等一系列极好的特性。从诞生那天开始,人们就预言了它的美好前景。20多年来,人们制造了输出各种不同波长的激光器,甚至是可调激光器。大功率激光器的研制成功,又开拓了新的领域。1977年出现的自由电子激光器,机制则完全不同,它的工作物质是具有极高能量的自由电子,人们可以期望通过这种激光器,实现连续大功率输出,而且覆盖频率范围可向长短两个方向发展。现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 能发1954年制成了第一台微波量子放大器,获得了高度相干的微波束。1958年.肖洛和.汤斯把微波量子放大器原理推广应用到光频范围,并指出了产生激光的方法。1960年.梅曼等人制成了第一台红宝石激光器。1961年A.贾文等人制成了氦氖激光器。1962年.霍耳等人创制了砷化镓半导体激光器。以后,激光器的种类就越来越多。按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。近来还发展了自由电子激光器,其工作介质是在周期性磁场中运动的高速电子束,激光波长可覆盖从微波到X射线的广阔波段。按工作方式分,有连续式、脉冲式、调Q和超短脉冲式等几类。大功率激光器通常都是脉冲式输出。各种不同种类的激光器所发射的激光波长已达数千种,最长的波长为微波波段的毫米,最短波长为远紫外区的210埃,X射线波段的激光器也正在研究中。 除自由电子激光器外,各种激光器的基本工作原理均相同,装置的必不可少的组成部分包括激励(或抽运)、具有亚稳态能级的工作介质和谐振腔( 见光学谐振腔)3部分。激励是工作介质吸收外来能量后激发到激发态,为实现并维持粒子数反转创造条件。激励方式有光学激励、电激励、化学激励和核能激励等。工作介质具有亚稳能级是使受激辐射占主导地位,从而实现光放大。谐振腔可使腔内的光子有一致的频率、相位和运行方向,从而使激光具有良好的定向性和相干性。 激光工作物质 是指用来实现粒子数反转并产生光的受激辐射放大作用的物质体系,有时也称为激光增益媒质,它们可以是固体(晶体、玻璃)、气体(原子气体、离子气体、分子气体)、半导体和液体等媒质。对激光工作物质的主要要求,是尽可能在其工作粒子的特定能级间实现较大程度的粒子数反转,并使这种反转在整个激光发射作用过程中尽可能有效地保持下去;为此,要求工作物质具有合适的能级结构和跃迁特性。 激励(泵浦)系统 是指为使激光工作物质实现并维持粒子数反转而提供能量来源的机构或装置。根据工作物质和激光器运转条件的不同,可以采取不同的激励方式和激励装置,常见的有以下四种。①光学激励(光泵)。是利用外界光源发出的光来辐照工作物质以实现粒子数反转的,整个激励装置,通常是由气体放电光源(如氙灯、氪灯)和聚光器组成。②气体放电激励。是利用在气体工作物质内发生的气体放电过程来实现粒子数反转的,整个激励装置通常由放电电极和放电电源组成。③化学激励。是利用在工作物质内部发生的化学反应过程来实现粒子数反转的,通常要求有适当的化学反应物和相应的引发措施。④核能激励。是利用小型核裂变反应所产生的裂变碎片、高能粒子或放射线来激励工作物质并实现粒子数反转的。 激光器的种类是很多的。下面,将分别从激光工作物质、激励方式、运转方式、输出波长范围等几个方面进行分类介绍。 按工作物质分类 根据工作物质物态的不同可把所有的激光器分为以下几大类:①固体(晶体和玻璃)激光器,这类激光器所采用的工作物质,是通过把能够产生受激辐射作用的金属离子掺入晶体或玻璃基质中构成发光中心而制成的;②气体激光器,它们所采用的工作物质是气体,并且根据气体中真正产生受激发射作用之工作粒子性质的不同,而进一步区分为原子气体激光器、离子气体激光器、分子气体激光器、准分子气体激光器等;③液体激光器,这类激光器所采用的工作物质主要包括两类,一类是有机荧光染料溶液,另一类是含有稀土金属离子的无机化合物溶液,其中金属离子(如Nd)起工作粒子作用,而无机化合物液体(如SeOCl)则起基质的作用;④半导体激光器,这类激光器是以一定的半导体材料作工作物质而产生受激发射作用,其原理是通过一定的激励方式(电注入、光泵或高能电子束注入),在半导体物质的能带之间或能带与杂质能级之间,通过激发非平衡载流子而实现粒子数反转,从而产生光的受激发射作用;⑤自由电子激光器,这是一种特殊类型的新型激光器,工作物质为在空间周期变化磁场中高速运动的定向自由电子束,只要改变自由电子束的速度就可产生可调谐的相干电磁辐射,原则上其相干辐射谱可从X射线波段过渡到微波区域,因此具有很诱人的前景。 按激励方式分类 ①光泵式激光器。指以光泵方式激励的激光器,包括几乎是全部的固体激光器和液体激光器,以及少数气体激光器和半导体激光器。②电激励式激光器。大部分气体激光器均是采用气体放电(直流放电、交流放电、脉冲放电、电子束注入)方式进行激励,而一般常见的半导体激光器多是采用结电流注入方式进行激励,某些半导体激光器亦可采用高能电子束注入方式激励。③化学激光器。这是专门指利用化学反应释放的能量对工作物质进行激励的激光器,反希望产生的化学反应可分别采用光照引发、放电引发、化学引发。④核泵浦激光器。指专门利用小型核裂变反应所释放出的能量来激励工作物质的一类特种激光器,如核泵浦氦氩激光器等。 按运转方式分类 由于激光器所采用的工作物质、激励方式以及应用目的的不同,其运转方式和工作状态亦相应有所不同,从而可区分为以下几种主要的类型。①连续激光器,其工作特点是工作物质的激励和相应的激光输出,可以在一段较长的时间范围内以连续方式持续进行,以连续光源激励的固体激光器和以连续电激励方式工作的气体激光器及半导体激光器,均属此类。由于连续运转过程中往往不可避免地产生器件的过热效应,因此多数需采取适当的冷却措施。②单次脉冲激光器,对这类激光器而言,工作物质的激励和相应的激光发射,从时间上来说均是一个单次脉冲过程,一般的固体激光器、液体激光器以及某些特殊的气体激光器,均采用此方式运转,此时器件的热效应可以忽略,故可以不采取特殊的冷却措施。③重复脉冲激光器,这类器件的特点是其输出为一系列的重复激光脉冲,为此,器件可相应以重复脉冲的方式激励,或以连续方式进行激励但以一定方式调制激光振荡过程,以获得重复脉冲激光输出,通常亦要求对器件采取有效的冷却措施。④调激光器,这是专门指采用一定的 开关技术以获得较高输出功率的脉冲激光器,其工作原理是在工作物质的粒子数反转状态形成后并不使其产生激光振荡 (开关处于关闭状态),待粒子数积累到足够高的程度后,突然瞬时打开 开关,从而可在较短的时间内(例如10~10秒)形成十分强的激光振荡和高功率脉冲激光输出(见技术'" class=link>激光调 技术)。⑤锁模激光器,这是一类采用锁模技术的特殊类型激光器,其工作特点是由共振腔内不同纵向模式之间有确定的相位关系,因此可获得一系列在时间上来看是等间隔的激光超短脉冲(脉宽10~10秒)序列,若进一步采用特殊的快速光开关技术,还可以从上述脉冲序列中选择出单一的超短激光脉冲(见激光锁模技术)。⑥单模和稳频激光器,单模激光器是指在采用一定的限模技术后处于单横模或单纵模状态运转的激光器,稳频激光器是指采用一定的自动控制措施使激光器输出波长或频率稳定在一定精度范围内的特殊激光器件,在某些情况下,还可以制成既是单模运转又具有频率自动稳定控制能力的特种激光器件(见激光稳频技术)。⑦可调谐激光器,在一般情况下,激光器的输出波长是固定不变的,但采用特殊的调谐技术后,使得某些激光器的输出激光波长,可在一定的范围内连续可控地发生变化,这一类激光器称为可调谐激光器(见激光调谐技术)。 按输出波段范围分类 根据输出激光波长范围之不同,可将各类激光器区分为以下几种。①远红外激光器,输出波长范围处于25~1000微米之间, 某些分子气体激光器以及自由电子激光器的激光输出即落入这一区域。②中红外激光器,指输出激光波长处于中红外区(~25微米)的激光器件,代表者为CO分子气体激光器(微米)、 CO分子气体激光器(5~6微米)。③近红外激光器,指输出激光波长处于近红外区(~微米)的激光器件,代表者为掺钕固体激光器(微米)、CaAs半导体二极管激光器(约 微米)和某些气体激光器等。④可见激光器,指输出激光波长处于可见光谱区(4000~7000埃或~微米)的一类激光器件,代表者为红宝石激光器 (6943埃)、 氦氖激光器(6328埃)、氩离子激光器(4880埃、5145埃)、氪离子激光器(4762埃、5208埃、5682埃、6471埃)以及一些可调谐染料激光器等。⑤近紫外激光器,其输出激光波长范围处于近紫外光谱区(2000~4000埃),代表者为氮分子激光器(3371埃)氟化氙(XeF)准分子激光器(3511埃、3531埃)、 氟化氪(KrF)准分子激光器(2490埃)以及某些可调谐染料激光器等⑥真空紫外激光器,其输出激光波长范围处于真空紫外光谱区(50~2000埃)代表者为(H)分子激光器 (1644~1098埃)、氙(Xe)准分子激光器(1730埃)等。⑦X射线激光器, 指输出波长处于X射线谱区(~50埃)的激光器系统,目前软X 射线已研制成功,但仍处于探索阶段[编辑本段]激光器的发明 激光器的发明是20世纪科学技术的一项重大成就。它使人们终于有能力驾驶尺度极小、数量极大、运动极混乱的分子和原子的发光过程,从而获得产生、放大相干的红外线、可见光线和紫外线(以至X射线和γ射线)的能力。激光科学技术的兴起使人类对光的认识和利用达到了一个崭新的水平。 激光器的诞生史大致可以分为几个阶段,其中1916年爱因斯坦提出的受激辐射概念是其重要的理论基础。这一理论指出,处于高能态的物质粒子受到一个能量等于两个能级之间能量差的光子的作用,将转变到低能态,并产生第二个光子,同第一个光子同时发射出来,这就是受激辐射。这种辐射输出的光获得了放大,而且是相干光,即如多个光子的发射方向、频率、位相、偏振完全相同。 此后,量子力学的建立和发展使人们对物质的微观结构及运动规律有了更深入的认识,微观粒子的能级分布、跃迁和光子辐射等问题也得到了更有力的证明,这也在客观上更加完善了爱因斯坦的受激辐射理论,为激光器的产生进一步奠定了理论基础。20世纪40年代末,量子电子学诞生后,被很快应用于研究电磁辐射与各种微观粒子系统的相互作用,并研制出许多相应的器件。这些科学理论和技术的快速发展都为激光器的发明创造了条件。 如果一个系统中处于高能态的粒子数多于低能态的粒子数,就出现了粒子数的反转状态。那么只要有一个光子引发,就会迫使一个处于高能态的原子受激辐射出一个与之相同的光子,这两个光子又会引发其他原子受激辐射,这样就实现了光的放大;如果加上适当的谐振腔的反馈作用便形成光振荡,从而发射出激光。这就是激光器的工作原理。1951年,美国物理学家珀塞尔和庞德在实验中成功地造成了粒子数反转,并获得了每秒50千赫的受激辐射。稍后,美国物理学家查尔斯·汤斯以及苏联物理学家马索夫和普罗霍洛夫先后提出了利用原子和分子的受激辐射原理来产生和放大微波的设计。 然而上述的微波波谱学理论和实验研究大都属于“纯科学”,对于激光器到底能否研制成功,在当时还是很渺茫的。 但科学家的努力终究有了结果。1954年,前面提到的美国物理学家汤斯终于制成了第一台氨分子束微波激射器,成功地开创了利用分子和原子体系作为微波辐射相干放大器或振荡器的先例。 汤斯等人研制的微波激射器只产生了厘米波长的微波,功率很小。生产和科技不断发展的需要推动科学家们去探索新的发光机理,以产生新的性能优异的光源。1958年,汤斯与姐夫阿瑟·肖洛将微波激射器与光学、光谱学的理论知识结合起来,提出了采用开式谐振腔的关键性建议,并预防了激光的相干性、方向性、线宽和噪音等性质。同期,巴索夫和普罗霍洛夫等人也提出了实现受激辐射光放大的原理性方案。 此后,世界上许多实验室都被卷入了一场激烈的研制竞赛,看谁能成功制造并运转世界上第一台激光器。 1960年,美国物理学家西奥多·梅曼在佛罗里达州迈阿密的研究实验室里,勉强赢得了这场世界范围内的研制竞赛。他用一个高强闪光灯管来刺激在红宝石水晶里的铬原子,从而产生一条相当集中的纤细红色光柱,当它射向某一点时,可使这一点达到比太阳还高的温度。 “梅曼设计”引起了科学界的震惊和怀疑,因为科学家们一直在注视和期待着的是氦氖激光器。 尽管梅曼是第一个将激光引入实用领域的科学家,但在法庭上,关于到底是谁发明了这项技术的争论,曾一度引起很大争议。竞争者之一就是“激光”(“受激辐射式光频放大器”的缩略词)一词的发明者戈登·古尔德。他在1957年攻读哥伦比亚大学博士学位时提出了这个词。与此同时,微波激射器的发明者汤斯与肖洛也发展了有关激光的概念。经法庭最终判决,汤斯因研究的书面工作早于古尔德9个月而成为胜者。不过梅曼的激光器的发明权却未受到动摇。 1960年12月,出生于伊朗的美国科学家贾万率人终于成功地制造并运转了全世界第一台气体激光器——氦氖激光器。1962年,有三组科学家几乎同时发明了半导体激光器。1966年,科学家们又研制成了波长可在一段范围内连续调节的有机染料激光器。此外,还有输出能量大、功率高,而且不依赖电网的化学激光器等纷纷问世。 由于激光器具备的种种突出特点,因而被很快运用于工业、农业、精密测量和探测、通讯与信息处理、医疗、军事等各方面,并在许多领域引起了革命性的突破。比如,人们利用激光集中而极高的能量,可以对各种材料进行加工,能够做到在一个针头上钻200个孔;激光作为一种在生物机体上引起刺激、变异、烧灼、汽化等效应的手段,已在医疗、农业的实际应用上取得了良好效果;在通信领域,一条用激光柱传送信号的光导电缆,可以携带相当于2万根电话铜线所携带的信息量;激光在军事上除用于通信、夜视、预警、测距等方面外,多种激光武器和激光制导武器也已经投入实用。 今后,随着人类对激光技术的进一步研究和发展,激光器的性能将进一步提升,成本将进一步降低,但是它的应用范围却还将继续扩大,并将发挥出越来越巨大的作用。
激光加工就是利用其所具有的输出光线的高指向性和高能量,进行微小孔及狭缝等的精密加工、切割、微细焊接等。下面是我整理了激光加工技术论文,有兴趣的亲可以来阅读一下!
谈机械制造激光加工技术
摘要:激光加工就是利用其所具有的输出光线的高指向性和高能量,进行微小孔及狭缝等的精密加工、切割、微细焊接等。激光有固体激光、液体激光和气体激光等。目前,作为加工用的以固体激光为最好。
关键词:机械 制造 激光 加工 技术
激光是通过入射光子使亚稳态高能级的原子、离子或分子跃迁到低能级受激幅射(不是自发幅射)时发出的光,也可解释为“光受激幅射后发射加强”。它是由于受激发射的发光放大现象。激光具有单色性好、方向性强、能量高度集中等特性,因此在军事、工农业生产和科学研究的很多领域中得到了广泛应用。激光加工就是利用其所具有的输出光线的高指向性和高能量,进行微小孔及狭缝等的精密加工、切割、微细焊接等。激光有固体激光、液体激光和气体激光等。目前,作为加工用的以固体激光为最好。
激光加工具有以下特点:激光加工不需要加工工具,所以不存在工具损耗问题,很适宜自动化连续操作,可以在大气中进行。功率密度高,几乎能加工所有的材料,如果是透明材料(如玻璃),只要采取一些色化和打毛 措施 ,仍可加工。加工速度快,效率高,热影响区小。因不需要工具,又能聚焦成极细的光束,所以能加工深而小的微孔和窄缝(直径可小至几微米,深径比可达10以上),适合于精微加工。可通过透明材料(如玻璃)对工件进行加工。
1、激光器
气体激光器
通常用二氧化碳激光器。
二氧化碳激光器的激光管内充有二氧化碳,同时加进一些辅助气体,这些辅助气体有助于提高激光器输出功率。二氧化碳激光器是目前气体激光器中连续输出功率最大、能量转换效率最高的一种激光器,能以大功率连续输出波长的激光,而且方向性、单色性及相干性好,能聚焦成很小的光斑。缺点是设备体积大,输出瞬时功率小,而且是看不见的红外光,调整光束位置不方便。
固体激光器
包括红宝石激光器、钇铝石榴石激光器、钕玻璃(掺钕的盐酸玻璃)激光器等。固体激光器的特点是体轵小,输出能量大,可以打较大较深的孔;但其能量转换效率低,制造较难,成本高。而二氧化碳激光器则具有造价低,结构简单,工作效率高,打孔质量好等优点;不足是体积大,占地面积大。
2、影响激光加工的因素
激光主要用于各种材料的小孔、窄缝等微型加工,虽然也有生产率和表面粗糙度的要求,但主要是加工精度问题,如孔和窄缝大小、深度和几何形状等。因工艺对象的最小尺寸只有几十微米,所以加工误差一般为微米级。为此,除保证光学系统和机械方面精度外,还有光的特殊影响。
输出功率与照射时间
激光输出功率大,照射时间长,工件所获得能量大。当焦点位置一定时,激光能量越大, 加工孔就大而深,锥度小。照射时间一般为几分之一至几毫秒。激光能量一定时,照射时间太长会使热量传散到非加工区;时间太短则因能量密度过大,蚀除物的高温气体喷出,也会使激光使用效率降低。
焦距与发散角
发散角小的激光束,经短焦距的聚焦物镜以后,在焦面上可以获得更小的光斑及更高的功率密度。光斑直径小,打的孔也小,且由于功率密度大,打出的孔不仅深,而且锥度小。
焦点位置
焦点位置低,透过工件表面的光斑面积大,不仅会产生喇叭口,而且因能量密度减小而影响加工深度。焦点位置太高,同样,工作表面尖斑大,进入工件后越来越大,甚至无法继续加工。激光的实际焦点在工件表面或略低于工件表面为宜。
光斑内的能量分布
激光束经聚焦后,在焦面上的光点实际上是一个直径为d的光斑,光斑内能量分布不均。中心点的光强最大,离开中心点迅速减弱,能量以焦点为轴心对称分布,这种光束加工出来的孔是正圆形的。若激光束能量分布不对称,打出的孔也不对称。
激光的多次照射
激光照射一次,加工孔的深度大约是孔径的五倍左右,且锥度较大。激光多次照射,深度将大大增加,锥度减小,孔径几乎不变。但是,孔加工到一定深度后,由于孔内壁的反射、透射以及激光的散射或吸收及抛出力减小,排屑困难等原因,使孔前端的能量密度不断减小,加工量逐渐减少,以致不能继续加工。
第一次照射后打出一个不太深而且带锥度的孔;第二次照射后,聚焦光在第一次照射所打的孔内发散,由于光管效应,发散的光在孔壁上反射的下深入孔内,因此第二次照射后所打出的孔是原来孔形的延伸,孔径基本上不变。多次照射的焦点位置固定在工件表面,不向下移动。
工件材料
各种工件材料的吸收光谱不同,经透镜聚焦到工件上的激光能量不可能全部被吸收,有相当一部分能量被反射或透射散失,吸收效率与工件材料吸收光谱及激光波长有关。在生产实践中,应根据工件材料的性能(吸收光谱)选择激光器。对于高反射和透射率的工件表面应作打毛或黑化处理,增大对激光的吸收效率。
3、激光加工的应用
激光打孔
利用激光打微型小孔,目前已应用于火箭发动机和柴油机的燃料喷嘴加工、化学纤维喷丝头打孔、钟表及仪表的宝石轴承打孔、金刚石拉丝模加工等方面。
激光打孔不需要工具,适合于自动化连续打孔。采用超声调制的激光打孔,是把超声振动的作用与激光加工复合起来。把激光谐振腔的全反射镜安装在超声换能器变幅杆的端面上作超声振动,使输出的激光尖锋波形由不规则变为较平坦排列,调制成多个尖锋激光脉冲。由此可以增加打孔深度,改善孔壁粗糙度和提高打孔效率。
激光切割
激光切割具有如下特点:(1)可以用来切割各种高硬度、高熔点的金属或非金属材料。(2)切缝窄,可以节省贵重材料(如半导体材料等)。(3)速度快,成品率高,质量好。目前,激光切割已成功应用于半导体材料、钛板、石英、陶瓷等材料的切割加工中。
激光焊接激光焊接与激光打孔的原理稍有不同
焊接时不需要那么髙的能量密度,使工件材料气化、蚀除,只需将工件加工区烧熔粘合在一起。因此,激光焊接所需的能量密度较低,通常可用减小激光输出功率来实现。
脉冲输出的红宝石激光器和钕玻璃激光器适合于点焊;而连续输出的二氧化碳激光器和YAG激光器适合于缝焊。
激光焊接过程迅速,被焊材料不氧化,热影响区小,适合于热敏感元件焊接。
参考文献
[1]哈尔滨工业大学,上海工业大学.机床夹具设计(第二版).上海:上海科学技术出版社,1989.
[2]刘文剑等.夹具工程师手册.哈尔滨:黑龙江科学技术出版社,1992.
[3]李庆寿.机床夹具设计.北京:机械工业出版社,1984.
[4]孔巴德.机床夹具图册.北京:机械工业出版社,1984.
点击下页还有更多>>>激光加工技术论文
撰写文章的第一步,是整理实验数据、研究结果等,并开展材料与思路(Materials and methods)部分的写作。在这一部分中,我们要详实认真地对实验背景、实验环境、搭建的平台,实验过程的设计思路,数据采集的方式,数据的统计方法和分析与计算等等进行阐明。但这一部分的叙述要掌握好一个度,篇幅过大,描述过于细致,会造成文章的比例不和谐,使得其它部分在衬托之下显得单薄苍白;描述过于简略,则会导致支持作者观点的材料缺失,引发读者对研究结果的不信任甚至是质疑。科研过程中,我们会得到很多数据,因此,认真筛选,抓住要点就十分重要。这个部分也是一个 ” 我 ” 的安全地带,在进行叙述时,可以写 ”We do sth…” 一类的句型。结果部分的撰写(Results)先将结果分为几个部分,逐个撰写,可以借助图表(chart)和表格(等)对结果进行直观的反应。配以解释的段落,先介绍图表所反应的信息再依次进行叙述,按照一定的逻辑关系,重点突出、条理清晰。如果结果(Results)和讨论(Discussion)是独立的两个章节,那么,在结果(Results)中尽量不要进行讨论,也就是尽量避免主观色彩的叙述(也就是要把”我”藏起来详见《学术英语写作的词汇三境界》中的无”我”之境界部分的介绍),不合适的主观叙述,一面影响后续讨论(Discussion)中的问题,一面会使文章的严谨性有所折扣。并且在叙述中一定要集中于突出主次,着重强调有价值的信息,不要事无巨细、写流水账,要有目的、有意义地去描述。胡编乱造小例子一个XD:(假装有个柱状图,一切简化,大家不要学)A:20 B:30比较(例句):B is fifty percent greater than A…错误表达:A is 20 and 30 is for B…讨论部分的撰写(Discussion)讨论(Discussion)部分是整篇文章的重点和难点,是对实验结果的升华和萃取。所需要的内容大体可分为以下的方面:Previous research(前人研究结果):这一部分中的前人结果主要意在铺垫,要能够引出自己后续的叙述。Things I have done(我的研究结果):简练叙述,毕竟你的整篇文章都在叙述自己的研究,这一部分的叙述是为了引出你的观点而进行的。Point(我的观点):讨论的深度和广度都要足够,要在下笔之前先找出要写的观点、列出提纲,充分构思之后,以严谨的逻辑逐一开展。引言部分的撰写(Introduction)胜利在望!胜利在望!经过对结果(Results)部分和讨论(Discussion)部分的撰写过程,我们对自己所进行的研究有了更加深入的了解,也对实验结果有了更加系统的认识。这个时候,再对引言(Introduction)部分进行撰写会有事半功倍的效果。首先,引言(Introduction)部分中所提出的设想可以与讨论(discussion)部分中的一些idea进行首尾呼应。引言(Introduction)部分要开门见山地点出工作的意义,并简要介绍所进行的研究。第一步,要介绍本研究领域的重要意义。第二步,要结合所阅读的文献对前人的研究成果进行一个总结与介绍,甚至可以简单地进行文献综述,但要加以归类概括与分析,不能是单纯地铺陈文献。第三步,综述过后,要提出自己的设想(与所进行的工作进行呼应)。引言就像一篇文章的龙头,总领全文,为其定下基调。最后,可以简单介绍研究的大体路线和预期的结果。切记要把握好篇幅,过长,会使文章头重脚轻,过短又会使得读者无法了解研究的意义。建议三至四段为宜。总结部分的撰写(Conclusions)当我们文章的结果(Results)部分和讨论(Discussion)部分撰写完毕后。可以将主要的成果和该项研究的意义归纳于这个部分之中即可。但并不是简单铺陈,而是把主要结果结合归纳起来,重新组织语言。
1.理清行文脉络首先要明确论文的选题是什么,要解决什么问题。论文的正文部分由背景、意义、国内外研究现状、存在问题、解决方案等等组成。其实就是去解决为什么提出这个选题,选题有什么意义,目前现状如何存在哪些问题,如何解决,最终的解决成果。解决了这些问题就能理清行文脉络。2.勾勒文章重点章节框架知道论文每个章节要回答什么问题以后就要细致的去列出章节框架。背景、意义、研究现状存在问题等往往都是一章的,对它们本身做出解释,还要写出它们之间的关系,就是章节的大框架。3.填充打磨框架出来以后就可以填充论文了,论文作为学术文章语言一定要详实精简,不能长篇大论不知所云。打磨是在填充完论文主体以后再仔细去查看论文内容是否符合逻辑,能否说明第一步部分提出的问题。对写完的初稿要去查重,对重复的地方进行降重,这也是一次打磨。其实写论文和写作文是一样的,提出自己的观点然后使用论据对自己的论点进行验证即可。论文的写作不是一日之功,提早准备才能做到运筹帷幄之中
轻松无忧论文网认为,写论文主要有一下5大步骤: 1、选题; 2、收集、占有资料; 3、确立论点,拟定写作提纲; 4、撰写初稿; 5、修改定稿. 写论文必须要有认真和严谨的态度,这样才能将论文写得尽可能完美.
本科到研究生阶段,大大小小的论文写了不少,现在还在做论文查重,可以说是长期跟论文打交道了,对于如何写好一篇论文已经非常了解,但一些新手写论文非常难,那写论文的步骤是什么?写论文1确定题目:论文题目可以从专业知识中来,也可以从时政热点中来,平常多看书、多积累、多思考,便会发现很多问题,这些问题或大或小,都可以成为论文选题的一个方向。同时,根据自身兴趣加以甄别、优选,然后确定一个合适的论文题目。要精炼论文题目,使得一看题目就很具吸引力。2细列提纲:确定题目后,要全面收集资料,最好是通过中国知网下载一些与所写论文相关的核心期刊文章;要花点时间精读文献,即便是在确定论文题目时,心中已有提纲,也必须再去阅读一些相关文献,这是列好提纲的基础,也是后面撰写论文的必要积累和热身。3全心撰写:在一二步完成后,接下来就是按计划撰写。要根据提纲内容,规定每天应该完成的撰写部分,且不折不扣地执行;当然,也可以根据自身的习惯来,有些人喜欢不间断写,因为思想观点转瞬即逝,高度集中撰写时,思想观点连续性强,写起来效率高;有些则喜欢每天完成一点,这样不仅不累,而且有更多的时间思考。4精心修改:论文主体内容完成后,不意味着论文完成。这时可以放一放,过一两天再看论文,从头到尾阅读、查看论文,有无错别字,有无不通顺,有无撰写不深不全的地方等等,修改可以一次甚至多次,完全根据自己对待论文的态度来,精益求精当然最好。5导入引言:论文一般还需要一个引言。这是论文开头的部分,主要阐述写作的原因,目的,意义等等,是进入正文的必备程序,如果直接从提纲进入,难免有所缺失,似乎没有开头。这一部分可以在撰写正文前写,也可以正文完成后再写。这里建议是完成正文后再写,这样可以更精准地把握全文,写好引言。7完善要素:全文完成后,还需完善一些要素,主要有参考文献、中英文摘要、关键词、作者简介、页码等要素。特别是摘要,要在写完论文后,在对全文精深把握的基础之上再写摘要,这样可以更好的把握摘要内容、写好摘要内容。以上是关于写论文的步骤,如果你自己不会写论文,那你可以看看上面的写论文步骤,希望可以帮助到你吧!