首页 > 期刊论文知识库 > eviews论文主题

eviews论文主题

发布时间:

eviews论文主题

这个建议你 查十篇左右的文献 看看以前发表的毕业论文都是怎么写的 然后还可以跟上一级打听下 或者跟指导你毕业的老师咨询下 找到一个研究样本之后 再想怎么做 论文题目不急

时代金融摘 要:关键词:一、 引言一个国家的国民经济有很多因素构成, 省区经济则是我国国民经济的重要组成部分, 很多研究文献都认为中国的省区经济是宏观经济的一个相对独立的研究对象, 因此, 选取省区经济数据进行区域经济的研究, 无疑将是未来几年的研究趋势。而省区经济对我国国民经济的影响, 已从背后走到了台前, 发展较快的省区对我国国民经济的快速增长起到了很大的作用, 而发展相对较慢的省区, 其原因与解决方法也值得我们研究。本文选取华中大省湖北省进行研究, 具有一定的指导和现实意义。湖北省 2006 年 GDP 为 7497 亿元, 人均 GDP13130 元, 达到中等发达国家水平。从省域经济来说, 湖北省是一个较发达的经济实体。另一方面, 湖北省优势的地理位置和众多的人口使之对于我国整体经济的运行起到不可忽视的作用, 对于湖北省 GDP的研究和预测也就从一个侧面反映我国国民经济的走势和未来。尽管湖北省以其重要位置和经济实力在我国国民经济中占据一席之地, 但仍不可避免的面临着建国以来一再的经济波动,从最初的强大势力到如今的挣扎期, 湖北省的经济面临着发展困境。近年来, 湖北省的经济状况一再呈现再次快速发展的趋势, 但是这个趋势能够保持多久却是我们需要考虑的问题。本文选择了时间序列分析的方法进行湖北省区域经济发展的预测。时间序列预测是通过对预测目标自身时间序列的处理来研究其变化趋势的。即通过时间序列的历史数据揭示现象随时间变化的规律, 将这种规律延伸到未来, 从而对该现象的未来作出预测。二、 基本模型、 数据选择以及实证方法( 一) 基本模型ARMA 模型是一种常用的随机时序模型, 由博克斯, 詹金斯创立, 是一种精度较高的时序短期预测方法, 其基本思想是: 某些时间序列是依赖于时间 t 的一组随机变量, 构成该时序的单个序列值虽然具有不确定性, 但整个序列的变化却具有一定的规律性, 可以用相应的数学模型近似描述。通过对该数学模型的分析,能够更本质的认识时间序列的结构与特征, 达到最小方差意义下的最优预测。现实社会中, 我们常常运用 ARMA模型对经济体进行预测和研究, 得到较为满意的效果。但 ARMA模型只适用于平稳的时间序列, 对于如 GDP 等非平稳的时间序列而言, ARMA模型存在一定的缺陷, 因此我们引入一般情况下的 ARMA模型 ( ARIMA模型) 进行实证研究。事实上, ARIMA模型的实质就是差分运算与 ARMA模型的组合。 本文讨论的求和自回归移动平均模型, 简记为 ARIMA ( p, d, q) 模型,是美国统计学家 和 enkins 于 1970 年首次提出, 广泛应用于各类时间序列数据分析, 是一种预测精度相当高的短期预测方法。建立 ARIMA ( p, d, q) 模型计算复杂, 须借助计算机完成。本文介绍 ARIMA ( p, d, q) 模型的建立方法, 并利用Eviews 软件建立湖北省 GDP 变化的 ARIMA ( p, d, q) 预测模型。( 二) 数据选择1.本文所有 GDP 数据来自于由中华人民共和国统计局汇编,中国统计出版社出版的 《新中国五十五年统计数据汇编》 。2.本文的所有数据处理均使用 软件进行。( 三) 实证方法ARMA模型及 ARIMA模型都是在平稳时间序列基础上建立的, 因此时间序列的平稳性是建模的重要前提。任何非平稳时间序列只要通过适当阶数的差分运算或者是对数差分运算就可以实现平稳, 因此可以对差分后或对数差分后的序列进行 ARMA( p, q) 拟合。ARIMA ( p, d, q) 模型的具体建模步骤如下:1.平稳性检验。一般通过时间序列的散点图或折线图对序列进行初步的平稳性判断, 并采用 ADF 单位根检验来精确判断该序列的平稳性。对非平稳的时间序列, 如果存在一定的增长或下降趋势等,则需要对数据取对数或进行差分处理, 然后判断经处理后序列的平稳性。重复以上过程, 直至成为平稳序列。此时差分的次数即为ARIMA ( p, d, q) 模型中的阶数 d。为了保证信息的准确, 应注意避免过度差分。对平稳序列还需要进行纯随机性检验 ( 白噪声检验) 。白噪声序列没有分析的必要, 对于平稳的非白噪声序列则可以进行ARMA ( p, q) 模型的拟合。白噪声检验通常使用 Q 统计量对序列进行卡方检验, 可以以直观的方法直接观测得到结论。拟合。首先计算时间序列样本的自相关系数和偏自相关系的值, 根据自相关系数和偏自相关系数的性质估计自相关阶数 p 和移动平均阶数 q 的值。一般而言, 由于样本的随机性, 样本的相关系数不会呈现出理论截尾的完美情况, 本应截尾的相关系数仍会呈现出小值振荡的情况。又由于平稳时间序列通常都具有短期相性, 随着延迟阶数的增大, 相关系数都会衰减至零值附近作小值波动。根据 Barlett 和 Quenouille 的证明, 样本相关系数近似服从正态分布。一个正态分布的随机变量在任意方向上超出 2σ 的概率约为 。因此可通过自相关和偏自相关估计值序列的直方图来大致判断在 5%的显著水平下模型的自相关系数和偏自相关系数不为零的个数, 进而大致判断序列应选择的具体模型形式。同时对模型中的 p 和 q 两个参数进行多种组合选择, 从 ARMA ( p,q) 模型中选择一个拟和最好的曲线作为最后的方程结果。一般利用 AIC 准则和 SC 准则评判拟合模型的相对优劣。3.模型检验。模型检验主要是检验模型对原时间序列的拟和效果, 检验整个模型对信息的提取是否充分, 即检验残差序列是否为白噪声序列。如果拟合模型通不过检验, 即残差序列不是为白噪声序列, 那么要重新选择模型进行拟合。如残差序列是白噪声序列, 就认为拟合模型是有效的。模型的有效性检验仍然是使谭诗璟ARIMA 模型在湖北省GDP 预测中的应用—— —时间序列分析在中国区域经济增长中的实证分析本文介绍求和自回归移动平均模型 ARIMA ( p, d, q) 的建模方法及 Eviews 实现。广泛求证和搜集从 1952 年到 2006 年以来湖北省 GDP 的相关数据, 运用统计学和计量经济学原理, 从时间序列的定义出发, 结合统计软件 EVIEWS 运用 ARMA建模方法, 将 ARIMA模型应用于湖北省历年 GDP 数据的分析与预测, 得到较为满意的结果。湖北省 区域经济学 ARIMA 时间序列 GDP 预测理论探讨262008/01 总第 360 期图四 取对数后自相关与偏自相关图图三 二阶差分后自相关与偏自相关图用上述 Q 统计量对残差序列进行卡方检验。4.模型预测。根据检验和比较的结果, 使用 Eviews 软件中的forecas t 功能对模型进行预测, 得到原时间序列的将来走势。 对比预测值与实际值, 同样可以以直观的方式得到模型的准确性。三、 实证结果分析GDP 受经济基础、 人口增长、 资源、 科技、 环境等诸多因素的影响, 这些因素之间又有着错综复杂的关系, 运用结构性的因果模型分析和预测 GDP 往往比较困难。我们将历年的 GDP 作为时间序列, 得出其变化规律, 建立预测模型。本文对 1952 至 2006 年的 55 个年度国内生产总值数据进行了分析, 为了对模型的正确性进行一定程度的检验, 现用前 50 个数据参与建模, 并用后五年的数据检验拟合效果。最后进行 2007年与 2008 年的预测。( 一) 数据的平稳化分析与处理1.差分。利用 EViews 软件对原 GDP 序列进行一阶差分得到图二:对该序列采用包含常数项和趋势项的模型进行 ADF 单位根检验。结果如下:由于该序列依然非平稳性, 因此需要再次进行差分, 得到如图三所式的折线图。根据一阶差分时所得 AIC 最小值, 确定滞后阶数为 1。然后对二阶差分进行 ADF 检验:结果表明二阶差分后的序列具有平稳性, 因此 ARIMA ( p, d,q) 的差分阶数 d=2。二阶差分后的自相关与偏自相关图如下:2.对数。利用 EViews 软件, 对原数据取对数:对已经形成的对数序列进行一阶差分, 然后进行 ADF 检验:由上表可见, 现在的对数一阶差分序列是平稳的, 由 AIC 和SC 的最小值可以确定此时的滞后阶数为 2。 因为是进行了一阶差分, 因此认为 ARIMA ( p, d, q) 中 d=1。( 二) ARMA ( p, q) 模型的建立ARMA ( p, q) 模型的识别与定阶可以通过样本的自相关与偏自相关函数的观察获得。图一 1952- 2001 湖北省 GDP 序列图表 1 一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC 备注0 - - - - 非平稳1 - - - - - - - - - - - - - - - - 表 2 二阶差分的 ADF 检验Lag Length t- Statistic 1% level 5% level 10% level1 (Fixed) - - - - 表 3 对数一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC SC 备注0 - - - - - - 平稳 1 - - - - - - - - - - - - - - - - - - 图五 对数后一阶差分自相关与偏自相关图理论探讨27时代金融摘 要:关键词:使用 EViews 软件对 AR, MA的取值进行实现, 比较三种情况下方程的 AIC 值和 SC 值:表 4ARMA模型的比较由表 4 可知, 最优情况本应该在 AR ( 1) , MA ( 1) 时取得, 但AR, MA都取 1 时无法实现平稳, 舍去。对于后面两种情况进行比较, 而 P=1 时 AIC 与 SC 值都比较小, 在该种情况下方程如下:综上所述选用 ARIMA ( 1, 1, 0) 模型。( 三) 模型的检验对模型的 Q 统计量进行白噪声检验, 得出残差序列相互独立的概率很大, 故不能拒绝序列相互独立的原假设, 检验通过。模型均值及自相关系数的估计都通过显著性检验, 模型通过残差自相关检验, 可以用来预测。( 四) 模型的预测我们使用时间序列分析的方法对湖北省地方生产总值的年度数据序列建立自回归预测模型, 并利用模型对 2002 到 2006 年的数值进行预测和对照:表 5 ARIMA ( 1, 1, 0) 预测值与实际值的比较由上表可见, 该模型在短期内预测比较准确, 平均绝对误差为 , 但随着预测期的延长, 预测误差可能会出现逐渐增大的情况。下面, 我们对湖北省 2007 年与 2008 年的地方总产值进行预测:在 ARIMA模型的预测中, 湖北省的地方生产将保持增长的势头, 但 2008 年的增长率不如 2007 年, 这一点值得注意。GDP毕竟与很多因素有关, 虽然我们一致认为, 作为我国首次主办奥运的一年, 2008 将是中国经济的高涨期, 但是是否所有的地方产值都将受到奥运的好的影响呢? 也许在 2008 年全国的 GDP 也许确实将有大幅度的提高, 但这有很大一部分是奥运赛场所在地带来的经济效应, 而不是所有地方都能够享有的。正如 GDP 数据显示, 1998 年尽管全国经济依然保持了一个比较好的态势, 但湖北省的经济却因洪水遭受不小的损失。作为一个大省, 湖北省理应对自身的发展承担起更多的责任。总的来说, ARIMA模型从定量的角度反映了一定的问题, 做出了较为精确的预测, 尽管不能完全代表现实, 我们仍能以ARIMA模型为基础, 对将来的发展作出预先解决方案, 进一步提高经济发展, 减少不必要的损失。四、结语时间序列预测法是一种重要的预测方法, 其模型比较简单,对资料的要求比较单一, 在实际中有着广泛的适用性。在应用中,应根据所要解决的问题及问题的特点等方面来综合考虑并选择相对最优的模型。在实际运用中, 由于 GDP 的特殊性, ARIMA模型以自身的特点成为了 GDP 预测上佳选择, 但是预测只是估计量, 真正精确的还是真实值, 当然, ARIMA 模型作为一般情况下的 ARMA 模型, 运用了差分、取对数等等计算方法, 最终得到进行预测的时间序列, 无论是在预测上, 还是在数量经济上, 都是不小的进步, 也为将来的发展做出了很大的贡献。我们通过对湖北省地方总产值的实证分析, 拟合 ARIMA( 1, 1, 0) 模型, 并运用该模型对湖北省的经济进行了小规模的预测,得到了较为满意的拟和结果, 但湖北省 2007 年与 2008 年经济预测中出现的增长率下降的问题值得思考, 究竟是什么原因造成了这样的结果, 同时我们也需要到 2008 年再次进行比较, 以此来再次确定 ARIMA ( 1, 1, 0) 模型在湖北省地方总产值预测中所起到的作用。参考文献:【1】易丹辉 数据分析与 EViews应用 中国统计出版社【2】 Philip Hans Frances 商业和经济预测中的时间序列模型 中国人民大学出版社【3】新中国五十五年统计资料汇编 中国统计出版社【4】赵蕾 陈美英 ARIMA 模型在福建省 GDP 预测中的应用 科技和产业( 2007) 01- 0045- 04【5】 张卫国 以 ARIMA 模型估计 2003 年山东 GDP 增长速度 东岳论丛( 2004) 01- 0079- 03【6】刘盛佳 湖北省区域经济发展分析 华中师范大学学报 ( 2003) 03-0405- 06【7】王丽娜 肖冬荣 基于 ARMA 模型的经济非平稳时间序列的预测分析武汉理工大学学报 2004 年 2 月【8】陈昀 贺远琼 外商直接投资对武汉区域经济的影响分析 科技进步与对策 ( 2006) 03- 0092- 02( 作者单位: 武汉大学经济与管理学院金融工程)AR(1)MA(1) AR(1) MA(1) 备注AIC - - - 最优为 AR(1)MA(1)SC - - - Coefficient Std. Error t- Statistic (1) squared - Mean dependent var R- squared - . dependent var . of regression Akaike info criterion - resid Schwarz criterion - likelihood Durbin-Watson stat AR Roots .59年份 实际值 预测值 相对误差(%) 平均误差(%)2002 - - - - - 年度 GDP 值 增长率(%) — 表 6 ARIMA ( 1, 1, 0) 对湖北省经济的预测一、模糊数学分析方法对企业经营 ( 偿债) 能力评价的适用性影响企业经营 ( 偿债) 和盈利能力的因素或指标很多; 在分析判断时, 对事物的评价 ( 或评估) 常常会涉及多个因素或多个指标。这时就要求根据多丛因素对事物作出综合评价, 而不能只从朱晓琳 曹 娜用应用模糊数学中的隶属度评价企业经营(偿债)能力问题影响企业经营能力的许多因素都具有模糊性, 难以对其确定一个精确量值; 为了使企业经营 ( 偿债) 能力评价能够得到客观合理的结果, 有必要根据一些模糊因素来改进其评价方法, 本文根据模糊数学中隶属度的方法尝试对企业经营 ( 偿债) 能力做出一种有效的评价。隶属度及函数 选取指标构建模型 经营能力评价应用理论探讨28

我给你分享几个统计学与应用这本期刊的题目吧,你参考参考:产业集聚对江苏省制造业全要素生产率的影响研究、基于文献计量分析的企业论文发表情况评价——以宁波市安全生产协会会员为例、基于泰尔指数的城乡收入差距的分析与预测、卡方分布下FSI CUSUM和VSI CUSUM控制图的比较、新冠肺炎疫情对中国旅游业的冲击影响研究——基于修正的TGARCH-M模型

分析某一地区的金融发展状况比较好写,比如说香港,美国

eviews研究论文

一,首先我根据ADF检验结果,来说明这两组数据对数情况下是否是同阶单整的(同阶单整即说明二者是协整的,这是一种协整检验的方法),我对你的两组数据分别作了单位根检验,结果如下:水平下的ADF结果:Null Hypothesis: LNFDI has a unit rootExogenous: ConstantLag Length: 2 (Automatic based on AIC, MAXLAG=3) Augmented Dickey-Fuller test statistict-Statistic Prob.* critical values:1% level level level *MacKinnon (1996) one-sided : Probabilities and critical values calculated for 20observations and may not be accurate for a sample size of 14从上面的t-Statistic对应的值可以看到, 大于下面所有的临界值,因此LNFDI在水平情况下是非平稳的。然后我对该数据作了二阶,再进行ADF检验结果如下:t-Statistic Prob.*- critical values:1% level level level 看到t-Statistic的值小于10% level下的,因此可以认为它在二阶时,有90%的可能性,是平稳的。的结果:它的水平阶情况与LNFDI类似,T统计值都是大于临界值的。因此水平下非平稳,但是二阶的时候,它的结果如下:t-Statistic Prob.* critical values:1% level level level 即,T统计值小于1% level的值,因此认为,它在二阶的时候,是有99%的可能是平稳的。这样就可以认为两者LNFDI和LNEX是单阶同整的。即通过了协整检验。二,GRANGER检验(因果关系检验)这个就是为了看这两组数据是否存在因果关系。我做了他们的二阶因果关系检验(因为他们在二阶时都平稳),结果如下:Null Hypothesis: Obs F-Statistic ProbabilityLNEX does not Granger Cause LNFDI does not Granger Cause 看到,Probability下面对应的值,和都是小于的,因此我们可以认为这两组数据之间相互存在着因果关系。写了这么多,你还有问题就在补充里说吧~我不知道你要的是结果还是做法,结果就是这样的~~

1eviews软件是qms(quantitativemicrosoftware)公司开发的基于windows平台下的应用软件,其前身是dos操作系统下的tsp软件。该软件是由经济学家开发,主要应用在经济学领域,可用于回归分析与预测(regressionandforecasting)、时间序列(timeseries)以及横截面数据(cross-sectionaldata)分析。与其他统计软件(如excel、sas、spss)相比,eviews功能优势是回归分析与预测。eviews引入了流行的对象概念,操作灵活简便,可采用多种操作方式进行各种计量分析和统计分析,数据管理简单方便。其主要功能有:(1)采用统一的方式管理数据,通过对象、视图和过程实现对数据的各种操作;(2)输入、扩展和修改时间序列数据或截面数据,依据已有序列按任意复杂的公式生成新的序列;(3)计算描述统计量:相关系数、协方差、自相关系数、互相关系数和直方图;(4)进行t检验、方差分析、协整检验、granger因果检验;(5)执行普通最小二乘法、带有自回归校正的最小二乘法、两阶段最小二乘法和三阶段最小二乘法、非线性最小二乘法、广义矩估计法、arch模型估计法等;(6)对二择一决策模型进行probit、logit和gompit估计;(7)对联立方程进行线性和非线性的估计;(8)估计和分析向量自回归系统;(9)多项式分布滞后模型的估计;(10)回归方程的预测;(11)模型的求解和模拟;(12)数据库管理;(13)与外部软件进行数据交换

会。为了探讨和掌握论文的写作规律和特点,需要对论文进行分类。由于论文本身的内容和性质不同,研究领域、对象、方法、表现方式不同,因此,论文就有不同的分类方法。按内容性质和研究方法的不同可以把论文分为理论性论文、实验性论文、描述性论文和设计性论文。

计量经济学论文选题eviews

关于我国城镇居民储蓄存款模型的计量经济分析 (我的姓名等信息就省略了啊 呵呵) 内容摘要:本文利用我国1978年以来的统计数字建立了可以通过各种检验的城镇居民储蓄率的模型,对我国城镇居民储蓄存款情况进行实证分析。通过对该模型的经济含义分析得出各种主要因素对我国城镇居民储蓄存款数量的影响程度,并针对我国城镇居民存款储蓄现状提出自己的一些建议。 关键词:居民储蓄存款 实证分析 主要因素 一、问题的提出 1978年以来,随着我国国民经济的飞速发展,我国的居民储蓄也出现高速增长的态势。进入90年代以后.我国居民储蓄存款余额始终保持在两位数的增长速度。我国居民储蓄存款持续增长这一经济现象引起国内理论界的广泛关注。这对我国经济的进一步增长有着有利的一面,但也会带来一定程度的负面影响。所以国家相继出台了一系列积极的财政和货币政策,以刺激国内消费和投资需求,分流储蓄,但是居民储蓄依然持续增加。由于居民的储蓄存款直接影响着居民的消费行为,影响着货币的供给量,进而间接影响着国家经济的发展,宏观调控的力度和效果,因此,对我国居民存款储蓄问题的深入研究就显得尤为重要,这有助于帮助大家认清现状,做出合理的决策。虽然我们作为本科阶段的学生对这个问题的理解和研究还不够深入和透彻,但对此问题的探索有利于我们更好的掌握专业知识,了解国情,提高实际操作水平和理论联系实际、发现问题、分析问题、解决问题的能力。 二、文献综述 我国有很多学者建立了许多的储蓄模型来分析各因素对居民储蓄的影响程度,但分析结论的差异很大。整理以前的研究成果,一个社会的储蓄总量受很多因数的影响,根据经典西方宏观经济学理论,储蓄水平主要受收入因数、利息率、物价水平、收入分配等因数的影响: 1.收入因数 收入是决定储蓄的重要因数,收入的变化会直接决定着储蓄的变化。在其他条件不变的情况下,储蓄与可支配收入之间存在着正方向的变化关系,即居民的可支配收入增加,储蓄量增加;个人可支配收入减少,储蓄量减少。可支配收入是指居民户在支付个人所得税之后,余下的全部实际现金收入。 2.利息率 传统经济学认为,在收入即定的条件下,较高的利息率会使储蓄增加。在本文中,我们选用的利息率是根据当年变动月份加权平均后的一年期储蓄存款加权利率。 3.物价水平 物价水平会导致居民户的消费倾向的改变,从而也就会改变居民户的储蓄倾向。本文用通货膨胀率来考察物价水平对储蓄率的影响。 4.收入分配 凯恩斯认为,收入分配的均等化程度越高,社会的平均消费倾向就会越高,社会的储蓄倾向就会越低。在国际上,衡量收入分配平均状况最常用的指数是基尼系数。 三、变量的选取及分析 目前我国正处于改革时期,各种不确定性因素很多。因而,要分析各种因素对中国居民储蓄行为的影响,必须立足于中国的国情。1998年后,中国经济运行进入了一种新的体制约束状态,出现了明显的供给过剩,需求对经济增长的约束与拉动作用明显增强,投资、消费膨胀的内在动力明显不足;同时,由于我国市场机制尚不健全,市场经济发育不成熟,市场体制的控制力还有限,从而不能形成一种有效地传导机制。市场化的改革对人们的经济行为、心理行为带来了很大影响,银行开始考虑贷款风险,投资者开始考虑投资回报,而消费者也开始考虑最佳的消费时机和预期收入。这说明,我们的微观经济层面已生长出一种内在的约束机制,然而社会各个方面对这些积极的因素还很不适应,微观主体内在约束机制较强与宏观经济市场传导机制不畅之间的矛盾,导致了投资行为受阻、消费行为审慎和储蓄持续稳定增长。当前影响我国居民储蓄的因素有很多,概括起来有以下几点:居民对社会经济形势的预期、可选择的投资渠道、信贷消费的发展、利率因素的影响、"假性"存款的影响、消费领域的信用等级、高收入阶层消费状况、就业形势压力、体制改革、居民收入水平等。 由于我现在的时间和能力有限,只能综合考虑,选取一部分变量进行研究,而且为了方便查找数据,只建立我国城镇居民储蓄存款模型进行研究。本文选用当年的收入增长率来考察收入因数对储蓄率的影响。用城镇居民的储蓄率作为被解释变量。另外还选取了中国1979年到2002年的各年的城镇居民收入的基尼系数、一年期储蓄利率和通货膨胀率作为解释变量。 四、数据及处理 本文模型数据样本为从1979-2002年。 年份 城镇居民储蓄率 城镇居民收入增长率 一年期储蓄利率 通货膨胀率 城镇居民基尼系数 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 数据来源:各年份的《中国统计年鉴》 注:Y代表城镇居民储蓄率 X1代表城镇居民收入增长率 X2代表一年期储蓄利率 X3代表通货膨胀率 X4代表城镇居民基尼系数 五、模型及处理 基于以上数据,建立的模型是: Y=β1+β2X1+β3X2+β4X3+β5X4+u β1度量了截距项,它表示在没有收入的时候人们也要花钱消费,储蓄率为负。 β2度量了当城镇个人可支配收入率变动1%时,储蓄增长率的变动。 β3度量了当利率变动一个单位,其实也就是1%时,储蓄的增量的变动。 β4度量了当通货膨胀率变动一个单位,储蓄增量的变动。 β5度量了基尼系数对储蓄率的影响。这也是本文的重点变量。 u是随机误差项。 对Y做回归 利用eviews最小二乘估计结果如下 Variable Coefficient Std. Error t-Statistic Prob. C X1 X2 X3 X4 R-squared Mean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) 根据以上结果,初步得出的模型为 Y= +. 1.经济意义的检验 该模型可以通过初步的经济意义的检验,系数的符号符合经济理论。 2.统计检验 从表中可以看出,显然通货膨胀率的系数通不过T检验,R2=, 2值为,模型的拟合情况较好。F检验的值为,整个模型对储蓄率的增长影响是显著的。 3.多重共线性的检验 从F值可知此模型整体显著,但是分析各个变量后发现X1和X3不显著,可能存在多重共线性,运用消除多重共线性的逐步回归方法我们可以得到要放弃X3 这个变量,重新做回归分析得到: Y=β1+β2X1+β3X2+β5X4+u Variable Coefficient Std. Error t-Statistic Prob. C X1 X2 X4 R-squared Mean dependent var Adjusted R-squared . dependent var . of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) 从新模型的整体效果来看,R值和F值都很好,而且各个变量的t统计量也表明各个变量对储蓄率的增长都有显著影响。 因此模型可设为Y= 4.异方差性检验 对新模型进行异方差性的检验,运用white检验,得到如下结果: White Heteroskedasticity Test: F-statistic Probability Obs*R-squared Probability Obs*R-squared的计算结果是,,由于选用的没有交叉乘积项的方式,所以自由度为7,在的显著水平下,查表得 (7)=〉,所以接受原假设,即该模型不存在异方差性。 5.自相关性的检验 从上表可知DW值为,且样本容量n=24,有三个解释变量的条件下,给定显著性水平 =,查D-W表得,d = =,这时有d

计量经济学论文可以研究的问题有多种,期中比较简单的就是根据数据,建立方程,研究变量之间的关系,主要运用的工具就是计量经济学的初等知识和Eviews软件,思路、要求和注意事项我觉得这么说对你的帮助不大,所以给你一篇我的论文做参考,也许对你有帮助,如果你觉得看的不是很明白的话,可以再留言给我,我把什么思路等告诉你。计量经济学期末实验报告实验名称:大中城市城镇居民人均消费支出与其影响因素的分析姓 名:学 号:班 级: ()级统计学系()班指导教师:时 间:(上面是论文封皮)23个城市城镇居民人均消费支出与其影响因素的分析(题目)一、 经济理论背景近几年来,中国经济保持了快速发展势头,投资、出口、消费形成了拉动经济发展的“三架马车”,这已为各界所取得共识。通过建立计量模型,运用计量分析方法对影响城镇居民人均消费支出的各因素进行相关分析,找出其中关键影响因素,以为政策制定者提供一定参考,最终促使消费需求这架“马车”能成为引领中国经济健康、快速、持续发展的基石。二、 有关人均消费支出及其影响因素的理论我们主要从以下几个方面分析我国居民消费支出的影响因素:①、居民未来支出预期上升,影响了居民即期消费的增长居民的被动储蓄直接导致购买力的巨大分流, 从而减弱对消费品的即期需求,严重地影响了居民即期消费的增长,进而导致有效需求的不足,最终导致经济增长的乏力。90年代末期以来,我国的医疗、养老、失业保险、教育等一系列改革措施集中出台,原有的体制被打破,而新的体制尚未建立健全,因此目前的医疗、养老、失业保险、教育体制对居民个人支出的压力较大,而且基本上都是硬性支出,支出的不确定性也很大,导致居民目前对未来支出预期的上升。②、商品供求结构性矛盾依然突出从消费结构上看,我国消费品市场已发生了新的根本性变化:居民低层次消费已近饱和,而更高水平的消费又未达到。改革开放20多年来,城乡居民经过了一个中档耐用消费品的普及阶段后,目前老百姓的收入消费还不足以形成一个新的、以高档产品为内容的主导性消费热点,如轿车、住房等还远不能纳入大多数人的消费主流,居民现有的购买力不能形成推动主导消费品升级的动力。③、物价总水平持续在低水平运行,通货紧缩的压力较大,不利于消费的增长加入WTO之后,随着关税的降低和进口规模的扩大,国外产品对我国市场的冲击将进一步加大,国际价格紧缩对国内价格变化将产生负面影响。物价的持续下降,不利于居民的消费增长。因为从居民的消费心理上看,买涨不买降是居民购物的习惯心理。由于居民对物价有进一步下降的预期,因此往往推迟消费,不利于居民消费的增长。另外,从统计上分析,由于物价的下降,名义消费增长往往低于实际消费的增长,这在一定程度上也不利于消费增长幅度的提高。④、我国现阶段没有形成大的消费热点,难以带动消费的快速增长经过近几年的培育和发展,我国目前已经形成了住房消费、居民汽车消费、通信及电子产品的消费、节假日消费及旅游消费等一些消费亮点,可以促进消费的稳定增长,但始终未能形成大的消费热点,因此不能带动消费的高速增长。三、 相关数据收集相关数据均来源于2006年《中国统计年鉴》:23个大中城市城镇居民家庭基本情况(表格)地区 平均每户就业人口(人) 平均每一就业者负担人数(人) 平均每人实际月收入(元) 人均可支配收入(元) 人均消费支出(元)北京 天津 石家庄 太原 呼和浩特 沈阳 大连 长春 哈尔滨 上海 南京 杭州 宁波 合肥 福州 厦门 南昌 济南 青岛 郑州 武汉 长沙 广州 四、 模型的建立根据数据,我们建立多元线性回归方程的一般模型为:其中:——人均消费支出——常数项——回归方程的参数——平均每户就业人口数——平均每一就业者负担人口数——平均每人实际月收入——人均可支配收入——随即误差项五、实验过程(一)回归模型参数估计根据数据建立多元线性回归方程:首先利用Eviews软件对模型进行OLS估计,得样本回归方程。利用Eviews输出结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:08Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Mean dependent var R-squared . dependent var . of regression Akaike info criterion squared resid Schwarz criterion likelihood F-statistic stat Prob(F-statistic) 根据多元线性回归关于Eviews输出结果可以得到参数的估计值为: , , , ,从而初步得到的回归方程为:Se= () () () () ()T= () () () () ()F= df=18模型检验:由于在 的水平下,解释变量 、 、 的检验的P值都大于,所以变量不显著,说明模型中可能存在多重共线性等问题,进而对模型进行修正。(二)处理多重共线性我们采用逐步回归法对模型的多重共线性进行检验和处理:X1:Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:28Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Mean dependent var R-squared . dependent var . of regression Akaike info criterion squared resid Schwarz criterion likelihood F-statistic stat Prob(F-statistic) :Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:29Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Mean dependent var R-squared . dependent var . of regression Akaike info criterion squared resid 1032515. Schwarz criterion likelihood F-statistic stat Prob(F-statistic) :Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:29Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Mean dependent var R-squared . dependent var . of regression Akaike info criterion squared resid Schwarz criterion likelihood F-statistic stat Prob(F-statistic) :Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:30Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Mean dependent var R-squared . dependent var . of regression Akaike info criterion squared resid Schwarz criterion likelihood F-statistic stat Prob(F-statistic) 由得出的数据可以看出, 的调整的判定系数最大,因此首先把 引入调整的方程中,然后在分别引入变量 、 、 进行OLS得:X1、X3Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:32Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Mean dependent var R-squared . dependent var . of regression Akaike info criterion squared resid Schwarz criterion likelihood F-statistic stat Prob(F-statistic) 、X3Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:33Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Mean dependent var R-squared . dependent var . of regression Akaike info criterion squared resid Schwarz criterion likelihood F-statistic stat Prob(F-statistic) 、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:34Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Mean dependent var R-squared . dependent var . of regression Akaike info criterion squared resid Schwarz criterion likelihood F-statistic stat Prob(F-statistic) 由数据结果可以看出,引入X4时方程的调整判定系数最大,且解释变量均通过了显著性检验,再分别引入X1、X2进行分析。X1、X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:37Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Mean dependent var R-squared . dependent var . of regression Akaike info criterion squared resid Schwarz criterion likelihood F-statistic stat Prob(F-statistic) 、X3、X4Dependent Variable: YMethod: Least SquaresDate: 12/11/07 Time: 16:38Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Mean dependent var R-squared . dependent var . of regression Akaike info criterion squared resid Schwarz criterion likelihood F-statistic stat Prob(F-statistic) 由输出结果可以看出,在 的水平下,解释变量 、 的检验的P值都大于,解释变量不能通过显著性检验,因此可以得出结论模型中只能引入X3、X4两个变量。则调整后的多元线性回归方程为:Se= () () ()T= () () ()F= df=20(三).异方差性的检验对模型 进行怀特检验:White Heteroskedasticity Test:F-statistic Probability *R-squared Probability Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 12/11/07 Time: 16:53Sample: 1 23Included observations: 23Variable Coefficient Std. Error t-Statistic Mean dependent var R-squared . dependent var . of regression Akaike info criterion squared resid Schwarz criterion likelihood F-statistic stat Prob(F-statistic) 由检验结果可知, ,由White检验知,在 时,查 分布表,得临界值 (20)=,因为 < (5)= ,所以模型中不存在异方差。(四).自相关的检验由模型的输出结果可知,估计结果都比较满意,无论是回归方程检验,还是参数显著性检验的检验概率,都显著小于,D-W值为,显著性水平 =下查Durbin-Watson表,其中n=23,解释变量的个数为2,得到下限临界值 ,上限临界值 , =

最好有以下几块东西1、选定研究对象(确定被解释变量,说明选题的意义和原因等。)2、确定解释变量,尽量完备地考虑到可能的相关变量供选择,并初步判定个变量对被解释变量的影响方向。( 作出相应的说明 )3、确定理论模型或函数式(根据相应的理论和经济关系设立模型形式,并提出假设,系数是正的还是负的等。)(二)数据的收集和整理(三)数据处理和回归分析(先观察数据的特点,观看和输出散点图,最后选择相应的变量关系式进行OLS回归,并输出会归结果。)(四)回归结果分析和检验(写出模型估计的结果)1、回归结果的经济理论检验,方向正确否?理论一致否?2、统计检验,t检验 F 检验 R2— 拟合优度检验3、模型设定形式正确否?可试试其他形式。4、模型的稳定性检验。(五)模型的修正(对所发现的模型变量选择问题、设定偏误、模型不稳定等,进行修正。)(六)确定模型(七)预测

一般数据都在数据库里直接下,宏观经济的指标要什么有什么,不用统计年鉴一年一年找太麻烦了,你看看别人几篇论文 觉得你能做什么,大概确定一个目标。说几个数据,发上来,大家会帮你下的。数据库一般都是付费的,ceic Bloomberg wind 财汇 这些都能下到经济数据。基本上要什么有什么把

金融计量学论文eviews

首先根据先确定你要分析的问题,然后大概查找一下问题的数据好不好找。(在国家数据网可以查到许多数据:)可以分析的问题很多,建议你找自己感兴趣,或者比较在行的领域,一是因为那样做完Eviews的操作后,分析比来会比较顺手;二是如果你写自己专业相关的,老师应该会给比较高分。如果因为学国贸的,你就调查一下影响进出口的因素,学投资理财,就调查一下储蓄方面的之类的。建议你这样哈。

发至邮箱了!送分哦!

希望以上网站内容能帮到你

知识经济条件下,人力资源已成为决定企业兴衰的主要因素,人力资源会计在现代企业管理中的重要地位毋庸置疑,在我国实施人力资源会计是必然的趋势。实施人力资源会计要解决的关键问题是人力资源的确认和计量。关键词:知识经济 人本论文由无忧论文网整理提供力资源会计 确认和计量人力资源会计这一概念的提出已经40多年了,但由于人力资源核算的复杂性,如何确认人力资源会计仍是当今会计界的难题之一。知识经济条件下,人力资源已成为决定企业兴衰的主要因素,人力资源会计在现代企业管理中的重要地位也毋庸置疑,作为一门会计学领域的新分支,其产生和发展具有一定的科学性,它不是纯抽象的理论,应是实践性非常强的一项工作,在我国实施人力资源会计是必然的趋势。笔者在此就人力资源会计的确认和计量问题进行一些浅薄的探讨,还望各位专家批评指正。一、进行人力资源会计核算的基础和原则 (一)在探讨人力资源会计核算之前,首先要弄清以下三个基础性问题:1. 人力资源是企业的一项资产(随后还有阐述)。2. 人力资源是通过负债的方式取得的。3. 在核算人力资源的时候,既要核算其取得、开发与使用成本,又要核算其原有价值。其中取得和开发成本属于资本性支出,应将其资本化,作为资产处理;使用成本属于收益性支出,应将其费用化,计入当期损益。人力资产原有价值应作为资产的一部分进行核算,同时作为“租用人力”增加一项负债。 (二)人力资源会计核算的确认本论文由无忧论文网整理提供原则 1. 重要性原则。人力资源是企业的重要经济资源,应重点加以体现,尤其是那些不可替代人力资源的信息、数额巨大的培训项目等。 2. 配比性原则。当人力资源数额较大,涉及多个会计期间时,应遵循配比原则对其价值进行合理摊销。 3. 历史成本原则。将招聘、培训和开发人才等一切人力资源方面的支出均作为人力资产和成本,其数据是根据原始发生时的金额归集的。 4. 相关性原则。企业人事管理部门,它对于职工的管理不仅是看其工资发生额的大小,而且重要的是如何合理配置人力资源,所以要求人力资源会计提供的信息应体现相关性原则。 5. 效益成本原则。人力资源会计在很多方面发挥了较大的作用,但在核算时还应考虑对那些核算成本较高,对决策意义不大的核算项目可不予揭示。 6. 划分资本性支出与收益性支出原则。将递延资产中的职工培训费、费用中的职工教育经费、数额较大的培训费、招聘广告费、稀有人才离职损失费予以资本化,将工资福利费等各期发生额均衡的支出计入费用,作为收益性支出。二、人力资源会计核算的内容和方法的确认 人力资源会计核算内容包括如下几点: (一)人力资产的核算。人力资本论文由无忧论文网整理提供产就是企业所拥有的人力资源的总价值,包括人力资产原有价值、人力资产取得和开发成本,以及进知识经济下人力资源会计确认和计量问题研究马雅丽 河南省三门峡市市政工程处 472000行人力资产评估时的增值部分(减值时冲减)。 1. 人力资产原有价值。在企业取得前由于劳动者已经具备一定的知识、技能而具有一定的价值。它被企业拥有后,原有价值依然存在,因此它应作为人力资产的重要组成部分。不过对其进行计量有一定难度,这可以由会计学会等权威部门研讨制定统一标准,由国家颁布实施。2. 人力资产附带成本。企业在取得或开发人力资源时,总要发生一定的费用。如付给招聘人员薪金和津贴,招聘广告费、测验费,如教育培训人员的工资津贴、教材费及学费等。这些都应作为人力资产附带成本,记入人力资产价值,平均分摊在劳动合同期内。 3. 人力资产评估增值(或减值)部分。人力资产价值除了受劳动者的知识技术水平影响外,还受劳动者的职位、年龄、身体健康状况及敬业程度等多种因素的影响。所以,定期对人力资产进行评估很有必要。评估增值增加人力资产价值,评估减值则冲减人力资产价值。它可由权威的人力资产评估机构,结合每个人的情况,采用科学的方法统一评估确定。 4. 租用人力的核算。企业一开始拥有人力资源,就负有合同到期时无条件地把这部分人力资源归还给劳动者的义务,从而形成负债——租用本论文由无忧论文网整理提供人力。它在数值上应等于人力资产原有价值加上人力资产评估增值(或减去人力资产评估减值)。 5. 人力资产使用成本的核算。企业在使用人力资源时,要支付工资、福利费等,并发生其他相关支出;此外还有与各期收益相配比而摊销的资本性支出(人力资产附带成本摊销)。这些都构成了人力资产使用成本。(二)人力资源会计账户设置的确认 为了进行人力资源会计核算,应设置以下账户: 1. “人力资产”账户。该账户根据其内容构成,下设三个明细账户: (1)人力资产原值。本账户核算具有不同标准的劳动者在进入企业前就拥有的价值量。企业在取得人力资源时记借方,在劳动合同到期劳动者离开企业时记贷方。期末余额在借方,表示期末人力资产原值结余额。 (2)人力资产附带成本。本账户核算企业在取得或开发人力资源时所发生的必要支出。支出发生时记借方,在合同期内分期平均摊销时记贷方,直接冲减“人力资产”价值。期末余额在借方,表示尚未摊销的附带成本。 (3)人力资产评估增值。本账户核算在对人力资产进行评估时的评估增加额或减少额。评估增值时记借方,评估减值时记贷方。当劳动者离开企业时全额冲减该项人力资产的增值额。期末余额在借方,表示增值量;期末余额在贷方,表示减值量。

用eviews分析的金融论文

计量经济学课程论文小组成员:组长:指导教师:日期:2010/年5月27日2006年我国各城市的GDP变动的多因素分析摘要:本文主要通过对各城市同一时期的GDP进行多因素分析,建立以各城市同一时期的GDP为被解释变量,以其它可量化横截面数据作为解释变量建立多元线性回归模型,从而对各城市同一时期的GDP进行数量化分析。关键词:GDPY(亿元)多因素分析模型计量经济学检验一、引言部分GDP(国内生产总值)指一个国家(或地区)所有常住单位在一定时期内生产活动的最终成果,从价值形态看,它是所有常住单位在一定时期内生产的全部货物和服务价值超过同期中间投入的全部非固定资产货物和服务价值的差额,即所有常住单位的增加值之和。GDP在创造的同时也被相应的生产要素分走了,主要体现为劳动报酬和利润。在现代社会政府还要以税收的形式拿走一部分GDP。本文主要研究就业人数L(万人)、各地区资本形成总额K(亿元)剔除价格影响因素即商品零售价格指数P(上年=100)之后对各城市同一时期的GDP的影响。二、文献综述注:2006年各城市同一时期的GDP总量的数据来源于《中国统计年鉴2007》;2006年就业人数L(万人)的数据来源于《中国统计年鉴2007》;2006年资本形成总额K(亿元)的数据来源于《中国统计年鉴2007》,本表按2006年价格计算;2006年商品零售价格指数P(上年=100)的数据来源于《中国统计年鉴2007》;三、研究目的通过研究各个城市在同一时期的GDP建立以各城市同一时期的GDP为被解释变量,以其它可量化横截面数据作为解释变量建立多元线性回归模型,从而对各城市同一时期的GDP进行数量化分析。掌握建立多元回归模型和比较、筛选模型的方法。四、实验内容根据生产函数理论,生产函数的基本形式为:。其中,L、K分别为产出GDP的过程中投入的劳动与资金,本文未考虑时间变量即技术进步的影响。上表列出了我国2006年我国各个城市的GDP的有关统计资料;其中产出Y为各城市同一时期的GDP(可比价),L、K分别为2006年年末职工人数和各地区资本形成总额(可比价)。五、建立模型并进行模型的参数估计、检验及修正(一)我们先建立Y1与L的关系模型:其中,Y1——各个城市在同一时期的实际GDP(亿元)L——2006年年末职工人数(万人)模型的参数估计及其经济意义、统计推断的检验利用EVIEWS软件,经回归分析,作出Y1与L的散点图如下:利用EVIEWS软件,用OLS方法估计得:DependentVariable:Y1Method:LeastSquaresDate:05/27/10Time:14:45Sample:136Includedobservations:(F-statistic)可见,L的t值显著,且系数符合经济意义。从经济意义上讲,劳动每增加一单位,都可以使实际GDP相应增加,这在一定条件下可以实现。另外,修正可决系数为,F值为,明显通过了F检验。且L的P检验值为0,小于,所以通过了P值检验(二)建立Y1与K1的关系模型:其中,Y1——各个城市在同一时期的实际GDP(亿元)K1——各地区资本形成总额(实际投入额)(亿元)模型的参数估计及其经济意义、统计推断的检验利用EVIEWS软件,经回归分析,作出Y1与K1的散点图如下:利用EVIEWS软件,用OLS方法估计得:DependentVariable:Y1Method:LeastSquaresDate:05/27/10Time:17:16Sample:136Includedobservations:(F-statistic)可见,K1的t值显著,且系数符合经济意义。从经济意义上讲,资本每增加一单位,都可以使实际GDP相应增加,这在一定条件下可以实现。另外,修正可决系数为,F值为,明显通过了F检验。且K1的P检验值为0,小于,所以通过了P值检验通过两个模型的可绝系数、调整可决系数、T检验、F检验、P值检验的比较,明显的,Y1与K1的关系模型优于Y1与L的关系模型。因此,在以Y1与K1的关系模型为基础模型的条件下,建立二元关系模型。(三)建立Y1与K1和L的二元关系模型其中,Y1——各个城市在同一时期的实际GDP(亿元)K1——各地区资本形成总额(实际投入额)(亿元)L——2006年年末职工人数(万人)利用EVIEWS软件,用OLS方法估计得DependentVariable:Y1Method:LeastSquaresDate:05/27/10Time:17:23Sample:136Includedobservations:(F-statistic)可见,K1和L的t值显著,且系数符合经济意义。从经济意义上讲,资本每增加一单位,都可以使实际GDP相应增加。另外,修正可决系数为,F值为,明显通过了F检验。且K1和L的P检验值为0,均小于,所以通过了P值检验。通过两个模型的可绝系数、调整可决系数、T检验、F检验、P值检验的比较,明显的,Y1与K1和L的关系模型优于Y1与K1的关系模型。因此,建立二元关系模型更符合实际经济情况。(四)建立非线性回归模型——C-D生产函数。C-D生产函数为:,对于此类非线性函数,可以采用以下两种方式建立模型。方式1:转化成线性模型进行估计;在模型两端同时取对数,得:在EViews软件的命令窗口中依次键入以下命令:GENRLNY1=log(Y1)GENRLNL=log(L)GENRLNK1=log(K1)LSLNY1CLNLLNK1则估计结果如图所示。DependentVariable:LNY1Method:LeastSquaresDate:05/27/10Time:17:29Sample:136Includedobservations:(F-statistic)可见,K1和L的t值显著,且系数符合经济意义。从经济意义上讲,资本每增加一单位,都可以使实际GDP相应增加。另外,修正可决系数为,F值为,明显通过了F检验。且K1和L的P检验值为0,均小于,所以通过了P值检验。通过对以上模型的可决系数、调整可决系数、F检验的比较,明显的,该模型最优。因此,选用该模型为以各城市同一时期的GDP为被解释变量,以其它可量化横截面数据作为解释变量建立的最优多元线性回归模型。六、总结综上所述,我们采用截面数据拟合的模型成功的反映各城市同一时期的GDPY1与就业人数L(万人)和各地区剔除价格影响因素即商品零售价格指数P(上年=100)的资本形成总额K1(亿元)间的数量关系,是一个成功的模型。从模型中看出,各城市同一时期的GDPY1与就业人数L(万人)和各地区剔除价格影响因素即商品零售价格指数P(上年=100)的资本形成总额K1(亿元)有非常密切的关系,与柯布-道格拉斯(C-D)生产函数密切吻合,验证了柯布-道格拉斯(C-D)生产函数的正确。参考文献:1、《国民经济核算——国家统计年鉴2007》2、《价格指数——国家统计年鉴2007》3、《中国国内生产总值核算》,作者:许宪春编著,

选题太多了啊,无数的选题

金融的我给你好了。、先确立一个论点。全文围绕这一论点展开论证。对“开卷有益”这种说法,既不能全盘否定,写驳论文;也不宜全盘肯定,写成立论文。因为这种说法既有它正确的一面。又有它不够全面的地方,所以对这个看法要采取“一分为二”的方法进行分析,肯定其有益的一面,否定其有害的一面,从中总结出正确的论点来。只有这样才能对这一说法作出合乎事实的评价,最终达到以理服人的目的。

  • 索引序列
  • eviews论文主题
  • eviews研究论文
  • 计量经济学论文选题eviews
  • 金融计量学论文eviews
  • 用eviews分析的金融论文
  • 返回顶部