首页 > 期刊论文知识库 > 毕业论文的数据字典

毕业论文的数据字典

发布时间:

毕业论文的数据字典

论文格式:word (doc)资源大小: M资源组成:开题报告+论文+程序论文页数:47P论文字数:18000↑中文题目:vb+access 学生信息管理系统(含开题报告论文程序)目录:摘要英文摘要第一章 前言一、研究的必要性二、研究的目的和意义三、其它情况说明及关键字第二章 序论一、项目的背景与意义二、相关技术与开发工具介绍第三部分 可行性分析第四章 总体设计一、系统功能描述二、数据流图与数据字典(一) 数据流图(二) 数据字典三、数据库设计第五章 详细设计一、 系统界面设计二、 系统流程分析三、 系统主要算法设计第六章 系统具体实现第七章 学生信息系统软件测试第八章 总结和展望致谢参考文献 [注:该文章转自 好论文资源网 ] 原文链接:

一. 简介 二、Linux系统下C编程原理 1. Linux系统的 2. Linux系统的主要构成 主要优异性能 3. gcc编译器的使用 三、总体设计 (1)、普通文件 (2)、目录文件 (3)、链接文件 (4)、设备文件 (5)、管道文件 2.进程基本介绍 3.库的使用

一.现今操作系统简介二.操作系统的现状(特点原理之类)三.操作系统中存在的问题四.你个人对操作系统的看法(建议)

毕业论文中的数据字典

个人意见见笑了..我认为在分析的时候E-R图和数据流图是两种并列的分析方法.E-R图一般都是分析数据库的时候较为常用.如果非要分的话 有高到低E-R图,数据流图,数据字典具体的你可以参见 信息系统开发 的专业书籍.

【摘要】随着揉社会的发展,揉对知识的需求也不断地增长。在这种形势下,书籍就渐渐地成为人们获取并增长知识的主要途径,而图书馆就自然而然地在人们的生活中占据了一定的位置,如何科学地管理图书馆不但关系到读者求知的方便程度,也关系到图书馆的发展,因此,开发一套完善的图书馆管理系统就成不可少了,本文介绍了在Visual 环境下采用“自上而下地总体规划,自下而上地应用开发”的策略开发本系统的详细过程,提出实现图书馆信息管理、资源共享的基本目标,从而推动迈向数字化图书馆的步伐,并阐述系统结构设计和功能设计,从图书的入库登记到查询浏览,从借书证发放到图书的借阅,形成了一个整体自动化管理模式,从软件工程的角度进行了科学而严谨的阐述。

【关键词】图书管理、借阅、浏览、Visual Foxpro

【 summary 】 Along with human social development, mankind also increase constantly to the need of the knowledge. Under this kind of situation, books gradually become people obtain and increase the knowledge of main path, and libraries naturally in the people’s life occupies the important position, how to develop the libraries not only relates to the readers’ convenient degreebut also relate the libraries’ development, therefore developing a set of perfect libraries management system is necessary, the text introduces to adopt" from top to bottom total programming, from bottom but top ground application development" of strategy development this system of detailed process under the environment of Visual , put forward to realize library information management, the basic target that resources share, from but the push heads into the step that arithmetic figure turn the library, combining to expatiate the system construction design with the function design, from the books store in warehouse the register the search views, from the library card issue the books borrows to read, becoming a the whole automation the management the mode, from the software engineering of the angle proceeded science but expatiate carefully.

【 key phrase 】 books management, borrow and read, view, Visual Foxpro

第一章 前言

第二章 系统需求分析

现行业务描述

现行系统存在问题的分析

解决方案

可行性分析

第三章 新系统逻辑方案

初步调研

详细调研

组织结构调研

数据流图

数据字典

第四章 系统总体结构设计

4.1软件模块结构设计

4.1.1系统方案确定

4.1.2软件结构设计

4.2数据库设计

4.3计算机系统的配置方案

4.4系统的安全性和可靠性设计

第五章 系统详细设计

系统登录

5.2系统主界面

会员注册和挂失

借还书

数据备份和恢复

借书证信息查询

第六章

6.1系统开发环境

6.2系统测试

6.3 系统运行与维护

6.4系统的转换方案

结束语

参考文献

附录

第一章 前言

随着电子计算机和通信技术的发展,揉已经逐渐地进入信息化社会。信息和材料、能源一样成为一种社会的基本生产资料,在揉的社会生产活动中发挥着重要的作用。同时人们对信息和数据的利用与处理也已进入自动化、网络化和社会化的阶段,因此,开发相关的管理信息系统已经成为各行各业的必要和必需了,管理信息系统作为一门边缘学科,集管理科学、信息科学、系统科学、现代通信技术和电子计算机技术于一体,可以解决企业或组织所面临的问题,对内来看,可以提高工作效率;对外来看,获得竞争优势。

以下是系统截图,查看全文请查看参考链接,本文引自于此

毕业论文的数据

毕业论文中的数据必须真实的。

写毕业论文的方法:

1、调查法调查是科学研究中最常用的方法之一。它是一种有目的、有计划、有系统的收集研究课题的实际或历史情况的资料的方法。综合运用历史、观察、对话、问卷、案例研究、测试等科学方法,有计划、深入、系统地了解教育现象。

对调查中收集的大量数据进行分析、综合、比较和总结,为人们提供常规知识。调查方法中最常用的方法是问卷调查法,这是一种以书面方式收集数据的研究方法,即调查人员为调查项目编制表格,分发或邮寄给有关人员,要求指示填写答案,然后回收、统计和研究。

2、观察法观察法是指研究者根据一定的研究目的、研究大纲或观察表,用自己的感官和辅助工具直接观察研究对象,以获取数据的方法。

3、实验法实验方法是通过改革主体,控制研究对象,发现和确认事物之间因果关系的一种科学研究方法。

毕业论文数据可以从中央和地方政府网站上找统计数据,也可以在专业的期刊上进行查找。

1、考生可以从查阅图书馆、资料室的资料,做实地调查研究、实验与观察等三个方面来搜集资料。搜集资料越具体、细致越好,最好把想要搜集资料的文献目录、详细计划都列出来。

2、查阅资料时要熟悉、掌握图书分类法,要善于利用书目、索引,要熟练地使用其他工具书,如年鉴、文摘、表册、数字等。

3、做实地调查研究,调查研究能获得最真实可靠、最丰富的第一手资料,调查研究时要做到目的明确、对象明确、内容明确。

4、实验与观察是搜集科学资料数据、获得感性知识的基本途径,是形成、产生、发展和检验科学理论的实践基础。

写毕业论文的注意事项:

1、写毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,使学生得到从事本专业工作和进行相关的基本训练。

2、写毕业论文是为了培养学生巩固与扩展所学的基础理论和专业知识,培养学生独立分析、解决实际问题能力、培养学生处理数据和信息的能力。

3、培养学生正确的理论联系实际的工作作风,严肃认真的科学态度。

4、培养学生进行社会调查研究;文献资料收集、阅读和整理、使用;提出论点、综合论证、总结写作等基本技能。

毕业论文需要的数据可以从下面几个方面获取:

一、问卷调查。很多文科的同学,用问卷调查的数据比较多,这种数据比较好收集,自己设计一套问卷,去找目标人群收集数据就行了。现在有很多专门的调查问卷的网站和小程序之类的,收集这类数据就简单多了。

二、实验数据。这种数据一般理科的同学用的比较多,通过自己的实验拿到的数据也比较可靠,自己用起来也很有底气。

三、国家和政府公布的数据,这种数据大多都是月度,季度,年度数据。数据范围比较广,官方数据很有说服力,如果是做行业调查之类的很实用,而且也不需要自己收集,直接拿来就可以用,很方便。

四、就是行业数据,行业数据可能来自于行业协会,行业专业网站等等。

五、常用的数据来源网站有:

1、国家统计局,这个网站上的数据比较官方权威。

2、中国旅游研究院,适合一些旅游专业的学生。

3、产业信息网,了解不同产业的收益、市场占额等信息。

4、国土资源部,获取土地资源、矿产资源、海洋资源等自然资源的规划、管理、保护与合理利用等信息。

5、国家企业信用信息公示系统,收集企业的信用信息。

6、中国知网,阅读参考文献的网站

7、新浪财经,了解全球经济宏观数据。

毕业论文的数据不

不可以,要一致。论文里面阐述的不就是你的题目的要求,到时候答辩,老师问你里面的数据和来源以及相关问题你回答不出来那不惨了,所以还是要一致才有说服力。毕业论文中的数据必须真实的。一般情况下,答辩过程中老师不会让你演示数据的分析过程,但一般会问到你你的论文理论基础,数据是如何收集的(即通过哪些途径收集的),你的问卷设计,数据分析结果,得出结论等。

检查与实验相关的过程

与实验有关的过程直接影响实验结果,相对来说具体形象,容易分析。分析的目的是确保你设计的实验是可以用来检验假设的,并且获得的实验结果是可靠的。

需要检查的与实验相关的过程包括三方面:实验设计的合理性、实验数据的可靠性、数据分析的合理性。

丢失重要数据

也许由于实验室出现问题或存储数据的硬盘出现技术问题等,你丢失了大量对项目至关重要的数据。

首先,你应该请教导师,询问解决方法。在你有时间、有资源的情况下,可以考虑重新进行数据收集或实地考察,再次获取这些数据。

如果无法重新收集数据,那么可以与导师讨论如何把数据丢失纳入项目,成为研究的一部分。例如,如果是由于你所使用的某种研究方法导致数据丢失(比如,一个实验出现重大错误,导致部分数据被破坏),那就会引发非常耐人寻味、同时也十分重要的讨论。你可以研究并讨论数据丢失和错误的研究方法所带来的影响,这样也能够向该领域贡献有价值的原创知识。

对于实验来说,没有修正实验数据这一项内容。实验数据显示的都是正确的。但是实验出现错误,会导致得到的数据不正确。此时要从新做实验。这是正确的做法。如何判断实验数据是否正确呢?或者说实验的步骤出错如何尽早发现?预习实验时,要把实验里每步的理论值算出来。做实验时得到的数据与理论值对比,如果差很多,那就是实验出现了错误,须重新做实验。直接将实验数据改成理论值附近的数据的做法是不负责任的。

有数据的毕业论文

毕业论文数据分析的做法如下:

首先,针对实证性论文而言,在开始撰写论文之前,必须要提前确定好数据研究方法。而数据研究方法的确定与选择需要根据大家毕业论文的研究课题来确定。

另外,大家也可以跟自己的的论文指导老师多多交流,尽可能多的了解更多关于研究方法的知识,以供自己选择。除此之外,大家还需要大量查找文献资料,见多识广有大量输入之后才能有所输出,本环节需要大家跟导师沟通商议后决定。

接下来一个比较重要的步骤是搜集和整理实验数据。在这一部分,很多同学朋友都会遇到各种各样的问题,比如,不知道去哪里找数据,找到的数据可靠性无法保障,需要的数据总是无法搜集全面等等各种问题。

那么在这里需要跟大家强调一下,推荐大家使用国家统计局、中国统计年鉴、国泰安、万方等等这些比较权威的网站去搜集数据资料。

在此需要注意的是,国泰安和万方等这些网站是需要收费的,上去看了一下,价格不是很亲民。

给大家分享一下,如果有些数据在国家官方网站确实找不到或者毕业论文所需的最新数据还没及时发布,推荐大家可以上某宝,因为某宝上电子版数据往往都很全面,而且价格大都可以接受。

在此提醒大家搜集到数据之后,一定要按照自己的习惯整理保存好,避免后期使用数据时出现差错。

大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。

学术堂整理了十五个和大数据有关的毕业论文题目,供大家进行参考:1、大数据对商业模式影响2、大数据下地质项目资金内部控制风险3、医院统计工作模式在大数据时代背景下改进4、大数据时代下线上餐饮变革5、基于大数据小微金融6、大数据时代下对财务管理带来机遇和挑战7、大数据背景下银行外汇业务管理分析8、大数据在互联网金融领域应用9、大数据背景下企业财务管理面临问题解决措施10、大数据公司内部控制构建问题11、大数据征信机构运作模式监管12、基于大数据视角下我国医院财务管理分析13、大数据背景下宏观经济对微观企业行为影响14、大数据时代建筑企业绩效考核和评价体系15、大数据助力普惠金融

数据挖掘在软件工程技术中的应用毕业论文

【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。

【 关键词 】数据挖掘技术;软件工程中;应用软件技术

随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。

1数据挖掘技术应用存在的问题

信息数据自身存在的复杂性

软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。

在评价标准方面缺乏一致性

数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。

2数据挖掘技术在软件工程中的应用

数据挖掘执行记录

执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。

漏洞检测

系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.

开源软件

对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。

版本控制信息

为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。

3数据挖掘在软件工程中的应用

关联法

该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。

分类方法

该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。

聚类方法

该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。

4数据挖掘在软件工程中的应用

对克隆代码的数据挖掘

在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。

软件数据检索挖掘

该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。

①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。

②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。

③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。

应用于设计的三个阶段

软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。

面向项目管理数据集的挖掘

软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。

5结束语

软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。

参考文献

[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).

[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).

[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).

  • 索引序列
  • 毕业论文的数据字典
  • 毕业论文中的数据字典
  • 毕业论文的数据
  • 毕业论文的数据不
  • 有数据的毕业论文
  • 返回顶部