物理学是研究物质及其行为和运动的科学。它是最早形成的自然科学之一,如果把天文学包括在内则有可能是名副其实历史最悠久的自然科学。最早的物理学著作是古希腊科学家亚里士多德的《物理学》。形成物理学的元素主要来自对天文学、光学和力学的研究,而这些研究通过几何学的方法统合在一起形成了物理学。这些方法形成于古巴比和古希腊时期,当时的代表人物如数学家阿基米德和天文学家托勒密;随后这些学说被传入阿拉伯世界,并被当时的阿拉伯科学家海什木等人发展为更具有物理性和实验性的传统学说;最终这些学说传入了西欧,首先研究这些内容的学者代表人物是罗吉尔·培根。然而在当时的西方世界,哲学家们普遍认为这些学说在本质上是技术性的,从而一般没有察觉到它们所描述的内容反映着自然界中重要的哲学意义。而在古代中国和印度的科学史上,类似的研究数学的方法也在发展中。 在这一时代,包含着所谓“自然哲学”(即物理学)的哲学所集中研究的问题是,在基于亚里士多德学说的前提下试图对自然界中的现象发展出解释的手段(而不仅仅是描述性的)。根据亚里士多德以及其后苏格拉底的哲学,物体运动是因为运动是物体的基本自然属性之一。天体的运动轨迹是正圆的,这是因为完美的圆轨道运动被认为是神圣的天球领域中的物体运动的内在属性。冲力理论作为惯性与动量概念的原始祖先,同样来自于这些哲学传统,并在中世纪时由当时的哲学家菲洛彭洛斯、伊本·西那、布里丹等人发展。而古代中国和印度的物理传统也是具有高度的哲学性的。 在十七世纪的欧洲,自然哲学家逐渐展开了一场针对中世纪经院哲学的进攻,他们持有的观点是,从力学和天文学研究抽象出的数学模型将适用于描述整个宇宙中的运动。被誉为“现代自然科学之父”的意大利(或按当时地理为托斯卡纳大公国)物理学家、数学家、天文学家伽利略·伽利莱就是这场转变中的领军人物。伽利略所处的时代正值思想活跃的文艺复兴之后,在此之前列奥纳多·达芬奇所进行的物理实验、尼古拉斯·哥白尼的日心说以及弗朗西斯·培根提出的注重实验经验的科学方法论都是促使伽利略深入研究自然科学的重要因素,哥白尼的日心说更是直接推动了伽利略试图用数学对宇宙中天体的运动进行描述。伽利略意识到这种数学性描述的哲学价值,他注意到哥白尼对太阳、地球、月球和其他行星的运动所作的研究工作,并认为这些在当时看来相当激进的分析将有可能被用来证明经院哲学家们对自然界的描述与实际情形不符。伽利略进行了一系列力学实验阐述了他关于运动的一系列观点,包括借助斜面实验和自由落体实验批驳了亚里士多德认为落体速度和重量成正比的观点,还总结出了自由落体的距离与时间平方成正比的关系,以及著名的斜面理想实验来思考运动的问题。他在1632年出版的著作《关于托勒密和哥白尼两大世界体系的对话》中提到:“只要斜面延伸下去,球将无限地继续运动,而且不断加速,因为此乃运动着的重物的本质。”,这种思想被认为是惯性定律的前身。但真正的惯性概念则是由笛卡尔于1644年所完成,他明确地指出了“除非物体受到外因作用,否则将永远保持静止或运动状态”,而“所有的运动本质都是直线的”。伽利略在天文学上最著名的贡献是于1609年改良了折射式望远镜,并借此发现了木星的四颗卫星、太阳黑子以及金星类似于月球的相。伽利略对自然科学的杰出贡献体现在他对力学实验的兴趣以及他用数学语言描述物体运动的方法,这为后世建立了一个基于实验研究的自然哲学传统。这个传统与培根的实验归纳的方法论一起,深刻影响了一批后世的自然科学家,包括意大利的埃万杰利斯塔·托里拆利、法国的马林·梅森和布莱兹·帕斯卡、荷兰的克里斯蒂安·惠更斯、英格兰的罗伯特·胡克和罗伯特·波义耳。 三大定律和万有引力定律艾萨克·牛顿1687年,英格兰物理学家、数学家、天文学家、自然哲学家艾萨克·牛顿出版了《自然哲学的数学原理》一书,这部里程碑式的著作标志着经典力学体系的正式建立。牛顿在人类历史上首次用一组普适性的基础数学原理——牛顿三大运动定律和万有引力定律——来描述宇宙间所有物体的运动。牛顿放弃了物体的运动轨迹是自然本性的观点(例如开普勒认为行星运动轨道本性就是椭圆的),相反,他指出,任何现在可观测到的运动、以及任何未来将发生的运动,都能够通过它们已知的运动状态、物体质量和外加作用力并使用相应原理进行数学推导计算得出。伽利略、笛卡尔的动力学研究(“地上的”力学),以及开普勒和法国天文学家布里阿德在天文学领域的研究(“天上的”力学)都影响着牛顿对自然科学的研究。(布里阿德曾特别指出从太阳发出到行星的作用力应当与距离成平方反比关系,虽然他本人并不认为这种力真的存在)。1673年惠更斯独立提出了圆周运动的离心力公式(牛顿在1665年曾用数学手段得到类似公式),这使得在当时科学家能够普遍从开普勒第三定律推导出平方反比律。罗伯特·胡克、爱德蒙·哈雷等人由此考虑了在平方反比力场中物体运动轨道的形状,1684年哈雷向牛顿请教了这个问题,牛顿随后在一篇9页的论文(后世普遍称作《论运动》)中做了解答。在这篇论文中牛顿讨论了在有心平方反比力场中物体的运动,并推导出了开普勒行星运动三定律。其后牛顿发表了他的第二篇论文《论物体的运动》,在这篇论文中他阐述了惯性定律,并详细讨论了引力与质量成正比、与距离平方成反比的性质以及引力在全宇宙中的普遍性。这些理论最终都汇总到牛顿在1687年出版的《原理》一书中,牛顿在书中列出了公理形式的三大运动定律和导出的六个推论(推论1、2描述了力的合成和分解、运动叠加原理;推论3、4描述了动量守恒定律;推论5、6描述了伽利略相对性原理)。由此,牛顿统一了“天上的”和“地上的”力学,建立了基于三大运动定律的力学体系。牛顿的原理(不包括他的数学处理方法)引起了欧洲大陆哲学家们的争议,他们认为牛顿的理论对物体运动和引力缺乏一个形而上学的解释从而是不可接受的。从1700年左右开始,大陆哲学和英国传统哲学之间产生的矛盾开始升级,裂痕开始增大,这主要是根源于牛顿与莱布尼兹各自的追随者就谁最先发展了微积分所展开的唇枪舌战。起初莱布尼兹的学说在欧洲大陆更占上风(在当时的欧洲,除了英国以外,其他地方都主要使用莱布尼兹的微积分符号),而牛顿个人则一直为引力缺乏一个哲学意义的解释而困扰,但他在笔记中坚持认为不再需要附加任何东西就可以推论出引力的实在性。十八世纪之后,大陆的自然哲学家逐渐接受了牛顿的这种观点,对于用数学描述的运动,开始放弃作出本体论的形而上学解释。 牛顿的理论体系是建立在他的绝对时间和绝对空间的假设之上的,牛顿对时间和空间有着如下的理解: “ 绝对的、真正的和数学的时间自身在流逝着,而且由于其本性而在均匀地、与任何外界事物无关地流逝着。 ” “ 绝对空间,就其本性而言,是与外界任何事物无关而永远是相同的和不动的。 ” —牛顿, 《自然哲学的数学原理》 牛顿从绝对时空的假设进一步定义了“绝对运动”和“绝对静止”的概念,为了证明绝对运动的存在性,牛顿还在1689年构思了一个理想实验,即著名的水桶实验。在水桶实验中,一个注水的水桶起初保持静止。当它开始发生转动时,水桶中的水最初仍保持静止,但随后也会随着水桶一起转动,于是可以看到水渐渐地脱离其中心而沿桶壁上升形成凹状,直到最后和水桶的转速一致,水面相对静止。牛顿认为水面的升高显示了水脱离转轴的倾向,这种倾向不依赖于水相对周围物体的任何移动。牛顿的绝对时空观作为他理论体系的基础假设,却在其后的两百年间倍受质疑。特别是到了十九世纪末,奥地利物理学家恩斯特·马赫在他的《力学史评》中对牛顿的绝对时空观做出了尖锐的批判。新课标高考:高中物理学史汇总,本专题肯定会在2013年高考理综物理试题中出现,一般小题形式出现。大家一定要注意了解这方面的内容。这个比较简单,背熟就可以了!I.必考部分:(必修1、必修2、选修3-1、3-2)一、力学:1.1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快。并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的)。2.1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验。3.1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。4.17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去。得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。5.英国物理学家胡克对物理学的贡献:胡克定律 。经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对)6.1638年,伽利略在《两种新科学的对话》一书中,运用观察 ——假设——数学推理的方法,详细研究了抛体运动。7.人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表。而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。8.17世纪,德国天文学家开普勒提出开普勒三大定律。9.牛顿于 1687年正式发表万有引力定律 。1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量。10.1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星。1930年,美国天文学家汤苞用同样的计算方法发现冥王星。11.我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同。但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比)。俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。12.1957年10月,苏联发射第一颗人造地球卫星。1961年4月,世界第一艘载人宇宙飞船 “东方1号”带着尤里加加林第一次踏入太空。13.20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。二、电磁学:13.1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律 --库仑定律,并测出了静电力常量k的值。14.1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。15.1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。16.1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。17.1826年德国物理学家欧姆(1787~1854)通过实验得出欧姆定律。18.1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象--超导现象。19.19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳--楞次定律。20.1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。21.法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,同时提出了安培分子电流假说。并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。22.荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹力)的观点。23.英国物理学家汤姆孙发现电子,并指出:阴极射线是高速运动的电子流。24.汤姆孙的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。25.1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。最大动能仅取决于磁场和D形盒直径。带电粒子圆周运动周期与高频电源的周期相同 。但当粒子动能很大,速率接近光速时,根据狭义相对论,粒子质量随速率显著增大,粒子在磁场中的回旋周期发生变化,进一步提高粒子的速率很困难。26.1831年,英国物理学家法拉第发现了由磁场产生电流的条件和规律 ——电磁感应定律。27.1834年,俄国物理学家楞次发表确定感应电流方向的定律--楞次定律。28.1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一,双绕线法制精密电阻为消除其影响应用之一。Ⅱ.选考部分:(选修3-3、3-4、3-5)三、热学(3-3选考):29.1827年,英国植物学家布朗发现悬浮在水中的花粉微粒不停地做无规则运动的现象--布朗运动。30.19世纪中叶,由德国医生迈尔 。英国物理学家焦尔。德国学者亥姆霍兹最后确定能量守恒定律。31.1850年,克劳修斯提出热力学第二定律的定性表述:不可能把热从低温物体传到高温物体而不产生其他影响,称为克劳修斯表述。次年开尔文提出另一种表述:不可能从单一热源取热,使之完全变为有用的功而不产生其他影响,称为开尔文表述。32.1848年,开尔文提出热力学温标,指出绝对零度( ℃)是温度的下限。热力学温标与摄氏温度转换关系为T=t+ K。热力学第三定律:热力学零度不可达到。四、波动学、光学、相对论(3-4选考):33.17世纪,荷兰物理学家惠更斯确定了单摆周期公式。周期是2s的单摆叫秒摆。34.1690年,荷兰物理学家惠更斯提出了机械波的波动现象规律--惠更斯原理。35.奥地利物理学家多普勒(1803~1853)首先发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象--多普勒效应(相互接近,f增大。相互远离,f减少)。36.1864年,英国物理学家麦克斯韦发表《电磁场的动力学理论》的论文,提出了电磁场理论,预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。电磁波是一种横波。37.1887年,德国物理学家赫兹用实验证实了电磁波的存在,并测定了电磁波的传播速度等于光速。38.1894年,意大利马可尼和俄国波波夫分别发明了无线电报,揭开无线电通信的新篇章。39.1800年,英国物理学家赫歇耳发现红外线。1801年,德国物理学家里特发现紫外线。1895年,德国物理学家伦琴发现x射线(伦琴射线),并为他夫人的手拍下世界上第一张x射线的人体照片。40.1621年,荷兰数学家斯涅耳找到了入射角与折射角之间的规律--折射定律。41.1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象。42.1818年,法国科学家菲涅尔和泊松计算并实验观察到光的圆板衍射--泊松亮斑。43.1864年,英国物理学家麦克斯韦预言了电磁波的存在,并指出光是一种电磁波。1887年,赫兹用实验证实了电磁波的存在,光是一种电磁波。44.1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理--不同的惯性参考系中,一切物理规律都是相同的。②光速不变原理--不同的惯性参考系中,光在真空中的速度一定是c不变。45.爱因斯坦还提出了相对论中的一个重要结论——质能方程式E=mc2。46.公元前 468~前376,我国的墨翟及其弟子在《墨经》中记载了光的直线传播。影的形成。光的反射。平面镜和球面镜成像等现象,为世界上最早的光学著作。47.1849年法国物理学家斐索首先在地面上测出了光速,以后又有许多科学家采用了更精密的方法测定光速,如美国物理学家迈克尔逊的旋转棱镜法。(注意其测量方法)48.关于光的本质:17世纪明确地形成了两种学说:一种是牛顿主张的微粒说,认为光是光源发出的一种物质微粒。另一种是荷兰物理学家惠更斯提出的波动说,认为光是在空间传播的某种波。这两种学说都不能解释当时观察到的全部光现象。49.物理学晴朗天空上的两朵乌云:①迈克逊-莫雷实验一相对论(高速运动世界);②热辐射实验一一量子论(微观世界)。50.19世纪和20世纪之交,物理学的三大发现:x射线的发现,电子的发现,放射性 同位素的发现。51.1905年,爱因斯坦提出了狭义相对论,有两条基本原理:①相对性原理--不同的惯性参考系中,一切物理规律都是相同的。②光速不变原理--不同的惯性参考系中,光在真空中的速度一定是c不变。52.1900年,德国物理学家普朗克解释物体热辐射规律提出能量子假说:物质发射或吸收能量时,能量不是连续的,而是一份一份的,每一份就是一个最小的能量单位,即能量子。53.激光--被誉为20世纪的“世纪之光”。五、动量、波粒二象性、原子物理(3-5选考):54.1900年,德国物理学家普朗克为解释物体热辐射规律提出:电磁波的发射和吸收不是连续的,而是一份一份的,把物理学带进了量子世界。受其启发1905年爱因斯坦提出光子说,成功地解释了光电效应规律,因此获得诺贝尔物理奖。55.1922年,美国物理学家康普顿在研究石墨中的电子对x射线的散射时--康普顿效应,证实了光的粒子性(说明动量守恒定律和能量守恒定律同时适用于微观粒子)。56.1913年,丹麦物理学家玻尔提出了自己的原子结构假说,成功地解释和预言了氢原子的辐射电磁波谱,为量子力学的发展奠定了基础。57.1924年,法国物理学家德布罗意大胆预言了实物粒子在一定条件下会表现出波动性。58.1927年美。英两国物理学家得到了电子束在金属晶体上的衍射图案。电子显微镜与光学显微镜相比,衍射现象影响小很多,大大地提高了分辨能力,质子显微镜的分辨本能更高。59.1858年,德国科学家普里克发现了一种奇妙的射线--阴极射线(高速运动的电子流)。60.1906年,英国物理学家汤姆生发现电子,获得诺贝尔物理学奖。61.1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。62.1897年,汤姆生利用阴极射线管发现了电子,说明原子可分,有复杂内部结构,并提出原子的枣糕模型。63.1909~1911年,英国物理学家卢瑟福和助手们进行了α粒子散射实验,并提出了原子的核式结构模型。由实验结果估计原子核直径数量级为10m~15m。1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,并发现了质子。预言原子核内还有另一种粒子,被其学生查德威克于1932年在α粒子轰击铍核时发现,由此人们认识到原子核由质子和中子组成。64.1885年,瑞士的中学数学教师巴耳末总结了氢原子光谱的波长规律——巴耳末系。65.1913年,丹麦物理学家波尔最先得出氢原子能级表达式。66.1896年,法国物理学家贝克勒尔发现天然放射现象,说明原子核有复杂的内部结构。天然放射现象:有两种衰变(α、β),三种射线(α、β、γ),其中γ 射线是衰变后新核处于激发态,向低能级跃迁时辐射出的。衰变快慢与原子所处的物理和化学状态无关。67.1896年,在贝克勒尔的建议下,玛丽-居里夫妇发现了两种放射性更强的新元素--钋(Po)镭(Ra)。68.1919年,卢瑟福用α粒子轰击氮核,第一次实现了原子核的人工转变,发现了质子,并预言原子核内还有另一种粒子——中子。69.1932年,卢瑟福学生查德威克于在α粒子轰击铍核时发现中子,获得诺贝尔物理奖。70.1934年,约里奥-居里夫妇用α粒子轰击铝箔时,发现了正电子和人工放射性同位素。71.1939年12月,德国物理学家哈恩和助手斯特拉斯曼用中子轰击铀核时,铀核发生裂变。72.1942年,在费米。西拉德等人领导下,美国建成第一个裂变反应堆(由浓缩铀棒、控制棒、中子减速剂、水泥防护层、热交换器等组成)。73.1952年,美国爆炸了世界上第一颗氢弹(聚变反应、热核反应)。人工控制核聚变的一个可能途径是:利用强激光产生的高压照射小颗粒核燃料。74.1932年发现了正电子,1964年提出夸克模型。粒子分三大类:媒介子——传递各种相互作用的粒子,如:光子。轻子——不参与强相互作用的粒子,如:电子。中微子。强子——参与强相互作用的粒子,如:重子(质子、中子、超子)和介子,强子由更基本的粒子夸克组成,夸克带电量可能为元电荷。
近代意义的物理学诞生于欧洲15—17世纪。人们一般将欧洲历史 作为物理学史的社会背景。从远古到公元5世纪属古代史时期;5—13世纪为中世纪时期;14—16世纪为文艺复兴运动时期;16—17世纪为科学革命时期,以N.哥白尼、伽利略、牛顿为代表的近代科学在此时期产生。
从此之后,科学随各个世纪的更替而发展。近半个世纪,人们按照物理学史特点,将其发展大致分期如下:从远古到中世纪属古代时期。从文艺复兴到19世纪,是经典物理学时期。牛顿力学在此时期发展到顶峰,其 时空观、物质观和因果关系影响了光、声、热、电磁的各学科。
甚而影响到物理学以外的自然科学和社会科学。随着20世纪的到来,量子论和相对论相继出现;新的时空观、概率论和不确定度关系等在宇观和微观领域取代牛顿力学的相关概念,人们称此时期为近代物理学时期。
扩展资料:
伽利略·伽利雷(1564~1642年)人类现代物理学的创始人,奠定了人类现代物理科学的发展基础。1900~1926年 建立了量子力学。1926年 建立了费米狄拉克统计。1927年 建立了布洛赫波的理论。1928年 索末菲提出能带的猜想。1929年 派尔斯提出禁带、空穴的概念。
同年贝特提出了费米面的概念。1947年贝尔实验室的巴丁、布拉顿和肖克莱发明了晶体管,标志着信息时代的开始。1957年 皮帕得测量了第一个费米面超晶格材料纳米材料光子。1958年杰克.基尔比发明了集成电路。20世纪70年代出现了大规模集成电路。
发展前景:
应用物理学专业的毕业生主要在物理学或相关的科学技术领域中从事科研、教学、技术开发和相关的管理工作。科研工作包括物理前沿问题的研究和应用,技术开 发工作包括新特性物理应用材料如半导体等,应用仪器的研制如医学仪器、生物仪器、科研仪器等。
应用物理专业的就业范围涵盖了整个物理和工程领域,融物理理 论和实践于一体,并与多门学科相互渗透。应用物理学专业的学生如具有扎实的物理理论的功底和应用方面的经验,能够在很多工程技术领域成为专家。我国每年培养本科应用物理专业人才约12000人。
和该专业存在交叉的专业包括物理专业,工程物理专业,半导体和材料专业等。人才需求方面,我国对应用物理专业的人才需求仍旧是供不应求。
参考资料来源:百度百科-物理学史
康普顿效应是指美国物理学家在1923年研究x射线时发现的物理现象, 在散射光中不仅有原波长λ0的X光,还产生了波长λ>λ0的X光,而且波长的增量会随着散射角变化,这也是第一次利用实验证明了爱因斯坦光子带有能量的假设,下面就和本站一起看看吧。
康普顿出生于1892年,是美国比较有名的物理学家,同时康普顿效应也是他发现的。他本身就是出生于一个高级知识分子的家庭,他父亲和大哥都是超级厉害的学霸,也在给予了他很多指导算是人生路上很好的引路人。
康普顿大学期间开始喜欢起X射线,他在大学毕业论文中就提出了相关的概念,主要含义就是晶体中的X射线衍射的强度和晶体原来含有的原子电子分布有着极大的关系,后来他在毕业后依旧进行着相关的研究,最终获得了很多想要了解的。
康普顿效应主要指的是,这位美国物理学家在1923年研究x射线的时候,发现了一个全新的现象,就是在散射光中不仅有原波长λ0的x光,同时还产生了波长λ>λ0 的x光,而波长的增量还会随着散射角的不同有变化。
假如用经典的电磁理论来解释这种效应的话,有一定的困难,而康普顿借助了爱因斯坦的科学理论,从光子与电子碰撞的角度进行解释。
实际上康普顿散射现象的研究并不是那么容易的,也是经过了十几二十年的时间最终获得了正确的结局。而这个效应也是第一次通过试验证明了爱因斯坦光子带有能量的假设,这在物理学上面有着很重要的位置。大家也知道光在介质中和物质微粒相互作用下,最终可以向任何方向随意传播,这也是就是光的散射。
单色电磁波作用在比波长尺寸小的带电粒子上的时候,会引起受迫振动,最终会向各个方向辐射同频率的电磁波。不过用经典理论来解释频率不变的一般散射是可以的,但是对于复杂的康普顿效应来说似乎没太大用。
不管是之前在生活中遇到的旁观者效应、多米诺骨牌效应也好,还是这个物理方面的效应也好对于生活都有一定的启示作用。
目标函数是什么 还有约束条件
这个比较专业,为什么不去请教一下数学系的教授?
我这里有一个粒子群的完整范例:<群鸟觅食的优化问题>function main()clc;clear all;close all;tic; %程序运行计时E0=; %允许误差MaxNum=100; %粒子最大迭代次数narvs=1; %目标函数的自变量个数particlesize=30; %粒子群规模c1=2; %每个粒子的个体学习因子,也称为加速常数c2=2; %每个粒子的社会学习因子,也称为加速常数w=; %惯性因子vmax=; %粒子的最大飞翔速度x=-5+10*rand(particlesize,narvs); %粒子所在的位置v=2*rand(particlesize,narvs); %粒子的飞翔速度%用inline定义适应度函数以便将子函数文件与主程序文件放在一起,%目标函数是:y=1+(*(1-x+2*x.^2).*exp(-x.^2/2))%inline命令定义适应度函数如下:fitness=inline('1/(1+(*(1-x+2*x.^2).*exp(-x.^2/2)))','x');%inline定义的适应度函数会使程序运行速度大大降低for i=1:particlesize for j=1:narvs f(i)=fitness(x(i,j)); endendpersonalbest_x=x;personalbest_faval=f;[globalbest_faval i]=min(personalbest_faval);globalbest_x=personalbest_x(i,:);k=1;while k<=MaxNum for i=1:particlesize for j=1:narvs f(i)=fitness(x(i,j)); end if f(i) 毕业论文(设计)题目: 粒子群算法及其在任务调度中的应用 题目类型 理论研究 题目来源 教师科研题 毕业论文(设计)时间从 2008年2月24日至 2008年6月14日 1毕业论文(设计内容要求): 多处理机调度问题是指有n台相同的处理机和m个独立的作业, 处理机以互不相关的方式处理作业,其中,任何作业可以在任何一台处理机上运行,但未完工前不允许中断作业,作业也不能拆分成更小的作业,使n个作业在尽可能短的时间内由这m台相同的处理机完成。粒子群算法是模拟鸟群觅食的过程,采用速度- 位置模型进行搜索。每个优化问题的解都是搜索空间的一只鸟,称为粒子,粒子群中的每个粒子通过追随个体最优粒子和全局最优粒子进行搜索. 本课题要求学生查找资料,学习、理解、掌握遗传算法的基本思想,总结遗传算法的改进方法,选定一种粒子群算法应用到多处理机调度问题并编程实现该算法,对该算法与首次最优匹配法在调度长度上进行实验比较 。 通过本次毕业设计,学生懂得如何查找资料并对资料进行分析总结,培养科研与独立分析问题的能力,掌握一门程序开发语言,培养程序开发技巧和能力。 在盛有水的脸盆里斜放着一面镜子,然后,把太阳光反射到纸上,不断调整镜子的角度,会看到七色光这是因为光把水分成去种颜色,再通过镜子反射出去的缘故:这是因为水起到了光棱镜的做用,把光分解成本来的颜色. 再通过镜子反射出去.你的想法是正确的! 1、三棱镜,prism,白光经过三棱镜的棱,会产生色散,dispersion;2、色散出来的光是按频率严格排列而成;3、这些光不能再进一步色散,这些光叫做单色光,monochromatic light。4、按频率排列的原因是:A、其实不存在白光,白光是所有光的混合;B、正因为不存在白光,所以平时所说的水、玻璃的折射率全是糊弄人的;C、色散揭示了同一种玻璃,对于不同频率的光有不同的折射率,不存在一个对白光的统一的折射率。 D、其实,更进一步,还会发现,不同偏振方向还有不同折射率。 E、再进一步,还会出现旋光现象Optical rotation。楼主若按着A、B、C、D、E 这五点仔细展开,写上几十页,甚至一本书,是轻而易举的事情。若需要提示,请追问。 这是因为水起到了光棱镜的做用,把光分解成本来的颜色.在通过镜子反射出去.是正确的! 度娘会告诉你的 物理学报、物理学进展、高压物理学报、工程热物理学报、计算物理、原子核物理评论、原子能科学技术、中国科学(物理学, 力学, 天文学)、 光学学报 中国激光 发光学报 光子学报 声学学报 原子与分子物理学报 光谱学与光谱分析 量子电子学报 量子光学学报 物理 低温物理学报 计算物理 核聚变与等离子体物理 大学物理 波谱学杂志 光散射学报 国外的有 Nature 和 Science 以最新的《中文核心期刊要目总览(2014年版)》分类表来看,不是。在此目录中,涉及物理学的核心期刊如下: 1 物理学报 2 光学学报 3 中国激光 4 发光学报 5 物理学进展 6 光子学报 7 声学学报 8 原子与分子物理学报 9 光谱学与光谱分析 11 量子电子学报 12 量子光学学报 13 物理 14 低温物理学报 15 计算物理 16 核聚变与等离子体物理 17 原子核物理评论 18 高压物理学报 19 大学物理 20 波谱学杂志 21 光散射学报 《物理教师》杂志是中国教育学会物理教学专业委员会会刊,是中等教育类全国中文核心期刊, 按照超声波换能器通道在桩体中的不同的布置方式,超声波透射法基桩检测主要有三种方法:桩内单孔透射法在特殊情况下只有一个孔道可供检测使用,例如在钻孔取芯后,需进一步了解芯样周围混凝土质量,作为钻芯检测的补充手段,这时可采用单孔检测法,此时,换能器放置于一个孔中,换能器间用隔声材料隔离(或采用专用的一发双收换能器)。超声波从发射换能器出发经耦合水进入孔壁混凝土表层,并沿混凝土表层滑行一段距离后,再经耦合水分别到达两个接收换能器上,从而测出超声波沿孔壁混凝土传播时的各项声学参数。需要注意的是,运用这一检测方式时,必须运用信号分析技术,排除管中的影响干扰,当孔道中有钢质套管时,由于钢管影响超声波在孔壁混凝土中的绕行,故不能用此法。桩外孔透射法当桩的上部结构已施工或桩内没有换能器通道时,可在桩外紧贴桩边的土层中钻一孔作为检测通道,检测时在桩顶面放置一发射功率较大的平面换能器,接收换能器从桩外孔中自上而下慢慢放下,超声波沿桩身混凝土向下传播,并穿过桩与孔之间的土层,通过孔中耦合水进入接收换能器,逐点测出透射超声波的声学参数,根据信号的变化情况大致判定桩身质量。由于超声波在土中衰减很快,这种方法的可测桩长十分有限,且只能判断夹层、断桩、缩颈等。桩内跨孔透射法此法是一种较成熟可靠的方法,是超声波透射法检测桩身质量的最主要形式,其方法是在桩内预埋两根或两根以上的声测管,在管中注满清水,把发射、接收换能器分别置于两管道中。检测时超声波由发射换能器出发穿透两管间混凝土后被接收换能器接收,实际有效检测范围为声波脉冲从发射换能器到接收换能器所扫过的面积。根据不同的情况,采用一种或多种测试方法,采集声学参数,根据波形的变化,来判定桩身混凝土强度,判断桩身混凝土质量,跨孔法检测根据两换能器相对高程的变化,又可分为平测、斜测、交叉斜测、扇形扫描测等方式,在检测时视实际需要灵活运用。 声波透射技术是近几年发展起来的一种无损性检测新技术,它能直观、可靠地反应基桩的密实度,准确地判定桩缺陷的性质和位置,且不受桩长的限制。下面结合实例着重说明缺陷性质和位置的判定。 (一)工作原理 声波透射法是以施工时预埋的平行的声测管作为换能器的通道,每两根声测管为一组,通过水的耦合,从一根声测管中的换能器发射超声脉冲信号,声波透射混凝土介质,另一根声测管中的换能器接收透射过来的信号,采集到声波声时(减去了系统延时、声测管壁中的延迟、耦合水层延迟)、波幅、波形等声波参量,进而达到判断该位置处两个声测管间混凝土是否正常的无损检测方法。收发换能器由桩底按一定的距离(≤250mm)同步往上移动并逐点依次检测,从获得的声波参数(声时、波幅、波形等)可了解整个剖面的混凝土完整性,如图3-78所示。测试所有剖面即可获知各个剖面乃至整个桩的状况。 图3-78 声波透射法测试示意图 声波在弹性不同的介质(即波阻抗不同,Z=ρv,式中Z为波阻抗,ρ为介质密度,v为速度)中传播时其传播速度和能量衰减情况不同。当混凝土介质中存在不同介质或者密实度不同等缺陷时,缺陷面形成波阻抗界面,声波将在其上产生明显的反射、散射、绕射等现象,使透射波能量减弱,呈现首波声时变大、波速降低、波形畸形等明显的异常。通过分析含有混凝土内部信息的首波声时(速度)、振幅、波形等参数对该深度对应的混凝土剖面完整性进行判断,进而对整根基桩的完整性、内部缺陷位置、缺陷程度及桩身混凝土总体的均匀性做出评价。 (二)混凝土缺陷性质与位置及其程度的判定 混凝土灌注桩由于施工难度大、隐蔽性强、混凝土硬化环境及成型条件复杂,若施工质量控制不好,则容易使桩身产生夹泥、离析、断桩等缺陷,利用声波透射法可以检测和判断出这些缺陷的性质和位置。 1.混凝土缺陷性质的判定 声波为弹性波,弹性波在不同介质中传播时,其声学参数具有不一样的体现,通过声学参数在不同介质中的差异可以达到判定混凝土完整性的目的。下面介绍各声学参数与混凝土质量之间的关系及各声学异常所反应的缺陷。 (1)声速与混凝土质量的关系 声速与混凝土质量有如下关系: 环境与工程地球物理勘探 式中:E为介质的杨氏弹性模量;σ为介质的泊松比;ρ为介质的密度。 由式(3-69)中的参数不难看出,声速与混凝土的内部结构(如密度、孔隙率等)密切相关。 弹性介质的性质及种类不同,弹性模量及密度也就不同,因此弹性波在介质中传播的速度也不同。实践证明,物体的密实性越好,孔隙率越低,其声速就越高。因此,当测出混凝土的声速时就可以推算出混凝土的密实度,从而判断其质量的好坏。 (2)波幅与混凝土质量的关系 声波穿过桩身缺陷时,部分声能被缺陷内所含物质所吸收,部分声能被缺陷的不规则表面反射和散射,因而到达接收探头的声能明显减少,反应为波幅降低。实践证明,波幅对缺陷的存在非常敏感,细小的缺陷都能使波幅有明显的变化。所以波幅能很明显地反应混凝土中的缺陷。 (3)波形与混凝土质量的关系 波形是声时(声速)、波幅、频率等声学参数的综合反映,所以其对于混凝土的各种缺陷均有直观的表现,在检测过程中对于缺陷的判别具有重要的指示意义。实践证明,当声波遇见缺陷时其波形会发生畸变。波形的好坏可以为检测人员对基桩完整性的现场判断提供依据。 由声波各声学参数与混凝土质量的关系可知,当混凝土中存在缺陷时,声波脉冲通过该缺陷介质传播的时间比相同材料条件下的无缺陷混凝土的传播时间要大,进而能量衰减增大,声速减小,接收信号的波形平缓甚至发生畸变,接收信号的主频也会发生变化。通过这些声学参数就可以判定基桩混凝土的质量状况。 在正常的情况下,声时曲线基本是一条直线,无明显折点,波幅也无明显衰减,波形为正常波形,如图3-79(a)所示;当出现离析、不密实时,声时基本有一定的增加,波幅有一定的衰减,波形出现畸变,如图3-79(b)所示,此时应注意是否是因为声测管与混凝土之间出现空隙而导致出现这种不密实状况;出现夹泥和断桩时,声时显著增大,波幅严重衰减,波形严重畸变甚至接收不到波形,如图3-79(c)所示,此时要判断这种缺陷是夹泥还是出现了断桩。区分夹泥和断桩,要结合在这根桩上所测的其他几个剖面的情况,看看在这个高程上是否也出现了这种状况(当声测管有四根时特别注意对角线的剖面),如果其他剖面在相同高程出现此类现象,那么这根桩很可能是出现断桩;当其他的剖面有部分是完好的时候,则可判断只是局部夹泥。 图3-79 超声透射波波形 声速对混凝土质量的反应主要通过测点的声速和声速临界值的比较来判定,临界值一般采用概率法确定。即 环境与工程地球物理勘探 式中:v0为临界点声速值,又称异常判定值;vm为(n-k)个数据的平均值, ;sx为(n-k)个数据的标准差,sx= ;λ为由统计数(n-k)对应的λ值,可查表获得,见表3-10;n为测点数;k为将全部测点的声速值由小到大依次排序,去掉明显不合理的低声速值的个数。 表3-10 统计数据个数(n-k)与对应的λ值 根据测点声速与临界点声速的差异,当声速大于临界点声速时,表明桩身正常;当存在蜂窝、局部夹泥沙团时,声速有一定的降低,相差一般为10%~20%;当局部有夹层和断桩时,声速明显降低,最大相差可达30%以上。 2.混凝土缺陷位置判定 当平测普查查出疑似缺陷时,首先采用加密平测的方法,核对可疑点的异常情况,并确定异常部位的高程。 对于缺陷的空间位置、范围的确定则要应用交叉斜测和扇形扫测的方法。 扇形扫测的具体做法是:先将发射换能器放到出现缺陷的高程位置,而在出现缺陷的剖面对应的另一声测管中将接收换能器放到缺陷高程稍下一段距离的地方,保持发射换能器不动而将接收换能器从下往上提到夹泥高程之上一定高度,即完成一次扫测。完成了一个扇形扫测之后移动发射换能器,继续进行扇形扫测。因各测点测距是各不相同的,波幅值不具有可比性(波幅除与测距有关外还与方位角有关,且不是线性变化的),只能根据相邻测点测值的突变来发现测线是否遇到缺陷。所以利用扇形扫测可以画出缺陷的边界。 交叉斜测是第一次让发射换能器比接收换能器高,第二次使发射换能器比接收换能器低,保持一定的高程差,在声测管中以相同的步长同步升降两个换能器进行测试,采集声学参数数据,如图3-80所示,根据波幅和声时的异常特征可交叉圈出异常的范围。 图3-80 交叉斜测 (三)工程实例 某大桥的2-2号桩,桩长为,桩径为2m,设计混凝土强度为C30,预埋有四根直径为50mm的钢管作为声测管。本次检测采用北京智博联研制的ZBL-U520非金属检测仪进行检测。 首先采用平测法进行普查,测点间距为,从桩底往桩顶依次检测,采集每一测点处的声时(声速)、波幅、波形等声学参数。平测结果显示2-2号桩六个剖面同时在距桩顶15m左右出现声时变大、速度变小、波幅严重衰减的现象,如图3-81所示。采取加密测量后确定缺陷出现在~之间,而其上下桩身的声波反应都是正常的,因六个剖面同时出现异常,所以有很大可能是出现了断桩,于是采用交叉斜测和扇形扫测的方法圈定了缺陷的范围,最后判定在距桩顶~处存在缺陷。 声波透射法判定2-2号桩在~处的缺陷为断桩。随后进行了钻探取心验证,在进行钻孔取心时,在声波检测正常的地方,钻进时所冒出的水为清水,所取心样完整(混凝土心样连续、完整、表面光滑、胶结较好、断口吻合),表明桩身完整性较好。而在声波判定为断桩的~处,钻进时冒出泥浆水(注入的冷却水为清水,而此处出现泥浆水表明此刻进尺处含泥),钻进时阻力较小且无法获得心样,说明此处出现了断桩。钻孔取心结果证实了声波透射法的判定结论。 图3-81 2-2号桩六个剖面的PSD、声速-深度、波幅-深度曲线 在混凝土灌注桩的检测中,采用声波透射法,依据透射波的初至时间、振幅能量的衰减程度和波形是否畸变可以达到判定桩身的均匀性和完整性的目的。从检测的成果和钻孔取心的结果来看,声波透射法能够较准确地判定缺陷的性质和位置,可以为施工单位下一步工作提供科学而可靠的依据。光的色散实验研究论文
光散射学报网址
声波透射法检测实验论文