首页 > 期刊论文知识库 > 半导体发展论文

半导体发展论文

发布时间:

半导体发展论文

半导体射线探测器最初约年研究核射线在晶体上作用, 表明射线的存在引起导电现象。但是, 由于测得的幅度小、存在极化现象以及缺乏合适的材料, 很长时间以来阻碍用晶体作为粒子探测器。就在这个时期, 气体探测器象电离室、正比计数器、盖革计数器广泛地发展起来。年, 范· 希尔顿首先较实际地讨论了“ 传导计数器” 。在晶体上沉积两个电极, 构成一种固体电离室。为分离人射粒子产生的载流子, 须外加电压。许多人试验了各种各样的晶体。范· 希尔顿和霍夫施塔特研究了这类探测器的主要性质, 产生一对电子一空穴对需要的平均能量, 对射线作用的响应以及电荷收集时间。并看出这类探测器有一系列优点由于有高的阻止能力, 人射粒子的射程小硅能吸收质子, 而质子在空气中射程为, 产生一对载流子需要的能量比气体小十倍, 在产生载流子的数目上有小的统计涨落, 又比气体计数器响应快。但是, 尽管霍夫施塔特作了许多实验,使用这种探侧器仍受一些限制, 像内极化效应能减小外加电场和捕捉载流子, 造成电荷收集上的偏差。为了避免捕捉载流子, 需外加一个足够强的电场。结果, 在扩散一结, 或金属半导体接触处形成一空间电荷区。该区称为耗尽层。它具有不捕捉载流子的性质。因而, 核射线人射到该区后, 产生电子一空穴载流子对, 能自由地、迅速向电极移动, 最终被收集。测得的脉冲高度正比于射线在耗尽层里的能量损失。要制成具有这种耗尽层器件是在年以后, 这与制成很纯、长寿命的半导体材料有关。麦克· 凯在贝尔电话实验室, 拉克· 霍罗威茨在普杜厄大学首先发展了这类探测器。年, 麦克· 凯用反偏锗二极管探测“ 。的粒子, 并研究所产生的脉冲高度随所加偏压而变。不久以后, 拉克· 霍罗威茨及其同事者测量一尸结二极管对。的粒子, “ , 的刀粒子的反应。麦克· 凯进行了类似的实验, 得到计数率达, 以及产生一对空穴一电子对需要的能量为土。。麦克· 凯还观察到,加于硅、锗一结二极管的偏压接近击穿电压时, 用一粒子轰击, 有载流子倍增现象。在普杜厄大学, 西蒙注意到用粒子轰击金一锗二极管时产生的脉冲。在此基础上, 迈耶证实脉冲幅度正比于人射粒子的能量, 用有效面积为二“ 的探测器, 测。的粒子, 得到的分辨率为。艾拉佩蒂安茨研究了一结二极管的性质, 载维斯首先制备了金一硅面垒型探测器。年以后, 许多人做了大量工作, 发表了广泛的著作。沃尔特等人讨论金一锗面垒型探测器的制备和性质, 制成有效面积为“ 的探测器, 并用探测器, 工作在,测洲的粒子, 分辨率为。迈耶完成一系列锗、硅面垒型探测器的实验用粒子轰击。年, 联合国和欧洲的一些实验室,制备和研究这类探测器。在华盛顿、加丁林堡、阿什维尔会议上发表一些成果。如一结和面垒探测器的电学性质, 表面状态的影响, 减少漏电流, 脉冲上升时间以及核物理应用等等。这种探测器的发展还与相连的电子器件有很大关系。因为, 要避免探测器的输出脉冲高度随所加偏压而变, 需一种带电容反馈的电荷灵敏放大器。加之, 探测器输出信号幅度很小, 必需使用低噪声前置放大器, 以提高信噪比。为一一满足上述两个条件, 一般用电子管或晶体管握尔曼放大器, 线幅贡献为。在使用场效应晶体管后, 进一步改善了分辨率。为了扩大这种探测器的应用, 需增大有效体积如吸收电子需厚硅。采用一般工艺限制有效厚度, 用高阻硅、高反偏压获得有效厚度约, 远远满足不了要求。因此, 年, 佩尔提出一种新方法, 大大推动这种探测器的发展。即在型半导体里用施主杂质补偿受主杂质, 能获得一种电阻率很高的材料虽然不是本征半导体。因为铿容易电离, 铿离子又有高的迁移率, 就选铿作为施主杂质。制备的工艺过程大致如下先把铿扩散到型硅表面, 构成一结构, 加上反向偏压, 并升温, 锉离一子向区漂移, 形成一一结构, 有效厚度可达。这种探测器很适于作转换电子分光器, 和多道幅度分析器组合, 可研究短寿命发射, 但对卜射线的效率低, 因硅的原子序数低。为克服这一点, 采用锉漂移入锗的方法锗的原子序数为。年, 弗莱克首先用型锗口,按照佩尔方法, 制成半导体探测器,铿漂移长度为, 测‘“ 、的的射线, 得到半峰值宽度为直到年以前, 所有的探测器都是平面型, 有效体积受铿通过晶体截面积到“和补偿厚度的限制获得补偿厚度约, 漂移时间要个月, 因此, 有效体积大于到” 是困难的。为克服这种缺点, 进一步发展了同轴型探测器。年, 制成高分辨率大体积同轴探测器。之后, 随着电子工业的发展而迅速发展。有效体积一般可达几十“ , 最大可达一百多“ , 很适于一、一射线的探测。年以后广泛地用于各个部门。最近几年, 半导体探测器在理论研究和实际应用上都有很大发展。

返回英国房价高

半导体工业是电子工业的一个分支,本质上仍然是制造业。与网路产业不同的是,半导体产业仍然需要制造设备和工厂,有特定的产品要生产,并且需要设计、生产、包装、测试和销售。简单来说,整个产业链分为三大环节:上游公司定义与设计 芯片 、中流晶片制造芯片、下游厂商将芯片应用于个人电脑、手机等领域。        产业链的上游是电子自动化设计(EDA)软件供应商和集成电路设计公司。EDA主要有三家Synopsys、Cadence和Mentor,公司在不同领域的专业知识,但业务也是交叉的,国内厂商有华达九天。设计公司有英特尔、高通、联发科技、博通等,国内设计公司有华为海斯、紫光占瑞和惠定科技等。 图1半导体产业链上游企业         产业链的中间环节是由许多以晶圆制造商为核心的企业组成的。知名的晶片制造商包括英特尔、三星、台积电、格罗芬德和中芯国际,它们需要从设备制造商那里购买设备。此外,亦有需要向其他原料制造商购买制造晶片所需的消耗品。所购设备主要包括光刻机、蚀刻设备和沉积设备;采购的原材料主要包括单晶硅、光刻胶、湿式电子化学品、特种气体等。芯片生产完成后,将交给封装测试制造商对芯片进行测试和封装。包装企业是具有代表性的月光、安全和国内长期动力技术,通福微动力和天水华天。 图二:产业链中游企业         下游企业是联系最广泛的公司,包括移动电话制造商苹果、三星、华为、特斯拉和比亚迪在汽车领域,联想和惠普在个人电脑领域。此外,还有物联网、医疗电子等应用。 图3:下游企业、芯片应用和具有代表性的公司         半导体行业设备的头等大事,芯片节电的速度取决于工艺,工艺取决于设备。         一、摩尔定律接近极限,集成电路技术成熟,产业成熟,成本和服务将决定成熟产业的核心竞争力。        迈克尔·波特指出,在产业成熟的过程中,成本和服务将成为产业的核心竞争力。        英特尔(Intel)联合创始人戈登·摩尔(GordonMoore)在1965年提出,当价格保持不变时,集成电路类的元件数量将每18至24个月翻一番,性能将翻一番。简单地说,在大约两年的时间里,消费者将能够以同样的价格购买性能是现在的两倍的芯片。在过去的40年里,集成电路工业的发展一直遵循摩尔定律,但它不可能永远持续下去。近年来,技术更新周期有所放缓。 图4摩尔定律预测了每个集成电路的晶体管数目。        可以观察到,台积电2011年生产28 nm、2015年生产16 nm、2018年量产7 nm、20 nm和12 nm 10 nm以及其他升级的过度生产工艺。先进的工艺更新周期已经从最初的18个月减缓到2年,现在已经放缓到3年左右,未来5 nm甚至3 nm的更新周期可能会更长。        直到2000年,在光刻市场上有三家供应商,即尼康、佳能和阿斯梅尔。目前,ASMAI家族是唯一留在20 nm的公司,另外两家由于研发和利润压力而放弃最新光刻技术的开发。其余的Asmae占光刻市场的80%。图5:半导体工艺已慢慢接近物理极限        这些迹象表明,集成电路制造工艺的进步越来越困难,集成电路产业正在从成长性向成熟性转变。在成熟的产业过程中,成本和服务将成为产业的核心竞争力。        以成熟的传统汽车工业为例。2004年,该波导从南汽集团撤出。一年前,该公司获得了超过1亿元人民币的58股股份,以控制南汽集团无锡汽车车身有限公司。前后一年左右的对比如此之大,正是由于产业竞争策略的制定错误。不可否认,在2004年左右,中国的汽车工业仍然是一个积极的行业,而且这个行业已经以惊人的速度发展。我国庞大的人口和潜在的巨大需求一直是支撑着工业发展的巨大推动力,在一个快速增长的工业中。一个企业只需要伴随着工业的进步就行了,不需要太多的努力。这也许是《波导》进入汽车行业的原因,但随着汽车行业竞争的升温,无论是美国汽车巨头通用汽车和福特,还是德国大众和奔驰,以及日本的丰田和本田汽车,他们关注成本优势,同时也关注本土汽车企业,他们在中国市场上的竞争加剧,这减少了中国汽车行业巨大利润的泡沫。对于当时的汽车工业企业来说,汽车工业增长缓慢,客户多年来积累的知识和经验,以及更为成熟的技术,带来的结果是,竞争趋势变得更加注重成本和服务。这一发展改变了市场对企业在该行业取得成功的需求。        这与过去三四十年来集成电路的发展非常相似,芯片的性能主要取决于设计技术和制造技术。在过去的二十年里,芯片随着制造技术的进步而不断进步,而设计技术并没有得到很大的更新。PC芯片仍然是以Intel公司为主导的X86体系结构,而复杂计算机指令集的CISC迁移则是由ARM体系结构主导的。采用精简的计算机指令集(RISC)。制造技术依赖于制造设备的技术进步,现在设备的进步已经接近半导体的物理极限。据专家预测,半导体芯片制造工艺的物理极限为2~3 nm。摩尔定律似乎是十年来唯一可以再做的事情&现状;生存与现状;。        缓慢的增长、更多的知识客户和更先进的技术已经导致了竞争趋势变得更加以成本为导向和服务为导向。随着产品标准化、成本和技术成熟度的日益重视,产业转型往往出现明显的国际竞争。       在国际竞争中,国内企业的劣势在于起步较晚,但从后来的分析中我们可以看出,企业之间的差距正在逐年缩小。现在差距大约是2 - 3年。优点是(1)低。研发成本,制造成本和技术支持成本(2)所有研发人员和技术支持人员均在中国,可以提供更及时,更低成本的现场技术支持。 (3)研发人员更贴近国内市场,了解客户需求,并提供定制服务        1。成本优势:国内企业在研发成本和原材料成本方面具有绝对的竞争优势。       所有国际设备制造商都在中国设有办事处。他们主要负责各种生产线的设备销售和技术支持工作。它们不涉及研发和制造。众所周知,信息和通信技术行业的硕士学位毕业生每年在家领取20万至40万元人民币。在美国等发达国家,这一数字将增至80,000美元至100,000美元,是国内水平的两倍以上。设备巨头asml每年的营收占总收入的10%至15%。近年来,由于进程日益先进,这一数字有所增加。生产中原材料的成本占经营成本的50<垃圾>-60<垃圾>lt;垃圾>想到未来在设备更新缓慢,我们在人为研发成本上的绝对成本优势,和原材料价格,当国内半导体设备会发光。       2。服务优势:国内企业可提供更完善、更方便的现场技术支持,增加客户粘性。        外资企业的高服务成本已成为国内企业的共识。在这方面,国内企业可以依靠本地优势,提供更及时、更低的售后服务费用,以改善下游客户对公司的粘度和满意度。今后,公司应在不断拓展市场的基础上,努力构建和完善大客户的服务体系。具体措施包括为特定重点客户量身定制服务方案,在国内集成电路产业集中的地区建立综合工艺和技术支持中心,以及人员和技术的快速反应。为客户提供更完善、更方便、更及时的增值服务等。        在行业竞争需要密集的本地化营销服务或密集的客户交易的市场中,全球公司将难以在综合的全球基础上与本地竞争者竞争。虽然全球公司在分散的单位中为客户提供服务,但在实施过程中,管理任务非常庞大,但本地公司对客户服务请求的响应能力更强。        3.市场优势:研发人员更贴近国内市场,了解客户需求,提供定制化服务。        先进的工艺不能由设备制造商单独完成,而是设备和制造商联合研发的结果。国内设备的研发人员在国内,国际制造商不能这样做。除了提供技术支持外,国际制造商的技术支持人员还需要将遇到的问题发送给公司的研发人员进行改进。优化设备.所以我们往往更贴近国内的客户,更了解国内生产线的客户需求。 二、新型合作竞争关系       值得注意的是,传统的企业竞争模型只提到了企业与五种力量之间的竞争,而没有考虑到企业与五种力量之间的合作。在某些环境中,这些企业既有竞争关系,也有合作关系。如果一种产品或服务能使另一种产品或服务更具吸引力,那么就可以称之为互补产品或服务,两个企业之间的关系已经从竞争转变为合作。如何区分两个企业是否形成了合作与竞争的关系?一般来说,如果顾客同时拥有两家公司的产品比同时拥有一家公司的产品获得更多的价值或更少的成本,那么这两家公司就是互补的。       成功的例子包括:汽车在上个世纪是一种昂贵的产品,而消费者想要购买汽车时却没有足够的现金。目前,银行信贷机构已成为企业公司的补充,后者向消费者提供贷款,并为他们购买汽车提供资金。但是汽车贷款并不容易获得,因此通用汽车公司在1919年创立了通用汽车公司,福特公司在1959年成立了福特银行,以使消费者更容易获得贷款。这样做的好处是显而易见的:方便的贷款是人们可以购买更多的汽车,而对汽车的需求的增长促进了福特和通用汽车的贷款业务。        即使处于互补竞争关系的两家公司技术落后,它们也会获得一定的优势。没有合作伙伴的人如果拥有技术优势,就不一定会成功。例如,索尼于1975年推出了Betamax格式录像机。它曾经是电视录制领域的主导者。在美国多久,日本JVC开发了VHS格式录像机。尽管Betamax在技术的某些方面比VHS更强大,但Betamax格式录像机可以租用的电影数量太少,最终丢失,市场份额占JVC的60%。         国产设备+中鑫国际华润设备与中国合作,为进一步赢得国际市场打下基础        amat通过与台积电、英特尔和其他晶圆工厂的合作取得了技术突破。国内企业可以与中芯国际紧密合作,共同促进国内设备的发展。例如,中芯国际和北方的中国创都是国内公司。要在国际市场上发挥更大的作用,就必须相互支持、相互帮助。北芳华可以为中心提供低成本的设备和更好的服务。反过来,中芯国际稳定的制造过程可以给Beifanghua带来产品验证支持和广告效果(高品质客户的身份也可能带来广告效果,使公司销售设备,这对半导体设备来说应该是昂贵的。因此,晶圆制造商倾向于选择那些在扩大生产线方面已经得到国际制造商验证的设备公司。        目前,一些设备制造商与中芯国际的合作并不局限于设备的验证阶段。为了加快半导体生产线的国产化和替代进程,上下游厂商开始在早期研发过程中进行合作。正是在中芯国际等晶圆厂的大力帮助下,国产设备才能在短期内实现多项技术突破,进入国内先进晶圆厂乃至国际制造商的供应链系统。加快设备国产化和更新换代进程。         三是以历史为镜,把握产业转移的大趋势,规划新的市场。 应用材料(AMAT)        回顾AMAT增长的历史,从1972年纳斯达克上市开始,收入为630万美元,市值仅为300万美元,而52年后,今天的收入为170亿美元,市值超过410亿。 AMAT在此过程中经历了四个主要阶段:启动期,增长期,并购调整期和研发领导期。其中,确定其生存,生存和大发展的时期是前两个时期。        (1)在最初阶段,从1967年到1979年,Amat的主要业务是向半导体制造商提供他们所需的原材料。然而,由于产品种类繁多,Amat一度濒临破产。1977年,新上任的首席执行官Morga进行了一系列激烈的改革,精简了生产线,关闭或出售了一些部门,并集中精力生产半导体设备。这些措施效果明显,企业在危机中幸免于难。        (2)增长时期:1979-1996年,1970年代,全球半导体工业开始向美国以外的市场转移,首先是日本,然后是韩国和台湾。1977年,Morga决定搭乘参加日本半导体设备展览会后返回的飞机进入日本市场。此后,分别于1985年和1989年在韩国和台湾设立了办事处。该公司过去20年的全球布局使其在1996年实现了亿美元的收入。        泛林集团(Lrcx)也有前瞻性的眼光,全球新兴市场的布局。        大卫·K·林,一位工程师,成立于1980年,由英特尔的鲍勃·诺伊斯资助。第一台设备于1982年售出,该公司于1984年在纳斯达克首次公开募股(IPO)。目前,总市值接近300亿美元,2018年的收入为48亿美元。        它没有经历与代工半导体市场相同的竞争。在其创立的第一年,它吸引了80万美元的投资。在第三年,它有稳定的现金流。它诞生于20世纪80年代,正处于将半导体市场从美国转移到海外的阶段。除了LAM当时在半导体设备行业中具有很强的竞争力之外,其成功还归功于20世纪80年代日本半导体行业对设备的巨大需求。当时,除个人电脑外,还使用半导体产品,以及移动电话,立体声系统(功率放大器),汽车和电话。       事情并不总是顺利的。在80年代中后期,林正处于一个艰难的时期,尽管半导体设备的市场需求持续增长,但日本企业从技术引进、消化吸收等方面逐渐增强。日本从70年代末的零开始,到80年代中期已经占到全球设备销售额的50%。后来,美国半导体设备公司进行了业务重组等改革,提高了生产效率,并更加注重大容量设备的开发,更注重研究专利技术的发展。        当时,前瞻性的林氏管理层注意到新兴小市场的销售增长。从1980年代末到1990年代初,它开始了更广泛的全球布局。这一时期的重点是环太平洋和欧洲市场。海外收入占50%以上。日本住友金属工业有限公司。。。(smi)联合开发蚀刻机器,建立了一个完整的子公司:lam技术中心;1980年代中期,在台湾和韩国建立了客户支持中心;直到1990年代初,lam在中国、马来西亚和以色列也看到了增长的机会。并考虑建立研发中心。 值得借鉴的经验有: 1。战略遵循产业转移进行全球布局         巨人的成长离不开两种产业转移。上世纪七、八十年代,日本在工业DRAM产品的高可靠性和美国的技术支持下取得了飞速发展,占DRAM市场的近80%,占半导体市场的近50%。另一次是在上世纪八九十年代,韩国通过引进技术成为个人电脑DRAM的主要供应商,而台湾则在垂直分工领域的晶片合约制造和芯片封闭测试方面处于领先地位。  2.与新兴市场的当地企业和大学建立合作伙伴关系         Amat在日本、韩国、台湾、东南亚和欧洲建立了广泛的公司和机构,抢占市场第一。在大学方面,我们与新加坡科技局投资了多个研发实验室,并与亚利桑那州立大学联合开发了用于柔性显示器的薄膜晶体管技术。在企业方面,2001年,我们共同研究了使用黑钻石方案来突出晶体管,并推动了芯片的技术节点。2003年,ARM与台积电共同开发了90nm低功耗芯片设计技术,使总功耗降低了40%。         林书豪与清华大学合作设立了泛森林小组清华大学微电子论文奖,捐赠了实验室设备,并提供了就业机会。 iv。政府、财政支援及税务宽减,三管齐下        落后是要克服的,现在的理解是,在电子信息技术领域,落后受到技术封锁和国家安全的威胁。如果一个国家想被喉咙挡住,它就必须发展关键技术,而不是被其他国家控制。近年来,我国在应用领域取得了巨大的成就。20多年来,以BAT为代表的企业引领了科学技术的发展趋势,但在基础科学领域,我们还没有实现核心芯片技术的自我完善。包括设计和制造领域,而制造领域的成功取决于设备。         政策支持反映了该行业的重要性,国家必须以坚定的决心发展半导体产业        政府对半导体工业的政策支持正在增加。今年3月,在第十三届全国人民代表大会第一次会议上,李总理根据“02专项”、“国家集成电路产业发展促进计划”等重大政策,在讨论实体经济发展问题时,把集成电路产业放在实体经济第一位。在政府工作报告中。3月底,财政部发布了《关于IC厂商企业所得税政策的通知》,给予IC企业税收优惠,表明了政府对半导体产业发展的坚定态度。 图5:政府对半导体行业的支持政策       二期大型基金即将募集,全国产业基金总额突破万亿元。计划一期,大型基金募集资金1000亿元,实际募集资金1387亿元,实际投资超过1000亿元。此外,这只大型基金还投资了3600亿多家地方工业基金。总计5000亿元的半导体产业基金,以较高的资本投入,为半导体产业的发展提供了有力的支持。目前,第二阶段的大型基金正在设立,并将在年底前完成。预计将筹集1,500亿至2,000亿美元(一些外国媒体也透露,筹资额可能达到3,000亿美元)。按1:3的比例计算,二期大型基金还将举债4500亿至6000亿元地方产业基金,国家半导体产业基金总额突破万亿元。作为中国最有希望承担替代中国制造半导体设备任务的企业,微电子、上海微电子、北方华昌等企业必将充分受益于政府对该行业的支持红利。       财政部、国家税务总局、科技部联合在财政部网站上出台新政策,扣除研发费用,研发费用税前扣除比例由50%提高到75%。同时,将原科技企业的扣除范围扩大到所有企业。利润增幅最大的企业主要集中在机械、计算机、电子元器件等行业。事实上,在一些行业,特别是集成电路行业,每年的研发成本、研发开支甚至占营运收入的一半以上,而增加研发开支的税前扣减比例,无疑会释放减税的红利。 5.设备行业继续强劲增长,晶圆厂建设高峰期导致设备需求增加。        设备制造商位于半导体产业链上游,为生产线提供晶圆制造设备。2017年,全球半导体设备市场销售额达到亿美元,年均增长率稳定在10%以上。从2016年到2020年,全球共建成62家晶圆厂。此外,中国正在建设和规划26家12英寸晶圆厂,占世界的42%。因此,近年来,我国工厂建设出现了小高峰,设备需求巨大,国际企业设备产量有限,这是扩大市场份额的好时机。 全球半导体市场销售额          2017年全球半导体设备市场销售额达到亿美元。2016年至2020年,陆续建成62座晶圆工厂。设备销售年均增长率超过100亿。近年来对设备的需求将达到一个小高峰。 图六:全球半导体市场销售及其增长率         从国内实际市场看,从2018年到2020年,国产设备企业每年仍有500亿至70亿美元的潜在市场份额。        从国内市场来看,国内市场销售额从2013年开始持续增长,年增长率保持在20%以上,远远超过国际市场10%以上的增速。 2016年至2020年,中国将有26家晶圆厂,将建成并投入生产,占全球在建晶圆厂数量的42%,成为全球新晶圆厂最活跃的地区。另外,从国内市场的设备销售比例可以看出,这个数字正在缓慢而稳步上升。 2016年,中国半导体设备市场规模为亿美元,2017年销售额为亿美元。据SEMI称,2018年将达到113亿。在过去三年中,每年的增长率接近30%。        购买新晶圆厂设备的费用将占生产线的70%,其余为基础设施费用。从2016年到2018年,8至12个12英寸晶圆厂正在建设中。根据Semi对2018年100亿美元设备市场的预测,晶圆制造工艺占80%,光刻机占制造工艺的30%。剩余的市场是国内潜在的国产设备总市场,100-80%(1-30%)=56亿。据推测,从2018年到2020年,每年仍有50亿至70亿美元的潜在市场份额。 图七:半导体设备在国内市场的销售和增长情况        近几年国内装备技术进步与市场对装备的强劲需求        国内设备凭借深厚的技术积累填补了国内半导体设备领域的一些技术空白,产品已能够满足12英寸、90~28 nm工艺生产线的生产要求,部分设备批量进入中芯国际等国内主流集成电路生产线进行批量生产。展望未来2-3年,设备需求将迎来2019年90/65/55/40 nm工艺生产线设备采购高峰。而国内仓储企业将在2020年前后扩大生产设备采购高峰。 图8:国内建造/正在建造的晶圆生产线

半导体发展前景论文

半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器,60年代早期,很多小组竞相进行这方面的研究。在理论分析方面,以莫斯科列别捷夫物理研究所的尼古拉·巴索夫的工作最为杰出。在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写下了有关数据。回到家后,哈尔立即制定了研制半导体激光器的计划,并与其他研究人员一道,经数周奋斗,他们的计划获得成功。像晶体二极管一样,半导体激光器也以材料的p-n结特性为敞弗搬煌植号邦铜鲍扩基础,且外观亦与前者类似,因此,半导体激光器常被称为二极管激光器或激光二极管。早期的激光二极管有很多实际限制,例如,只能在77K低温下以微秒脉冲工作,过了8年多时间,才由贝尔实验室和列宁格勒(现在的圣彼得堡)约飞(Ioffe)物理研究所制造出能在室温下工作的连续器件。而足够可靠的半导体激光器则直到70年代中期才出现。半导体激光器体积非常小,最小的只有米粒那样大。工作波长依赖于激光材料,一般为~微米,由于多种应用的需要,更短波长的器件在发展中。据报导,以Ⅱ~Ⅳ价元素的化合物,如ZnSe为工作物质的激光器,低温下已得到微米的输出,而波长~微米的室温连续器件输出功率已达10毫瓦以上。但迄今尚未实现商品化。光纤通信是半导体激光可预见的最重要的应用领域,一方面是世界范围的远距离海底光纤通信,另一方面则是各种地区网。后者包括高速计算机网、航空电子系统、卫生通讯网、高清晰度闭路电视网等。但就目前而言,激光唱机是这类器件的最大市场。其他应用包括高速打印、自由空间光通信、固体激光泵浦源、激光指示,及各种医疗应用等。晶体管利用一种称为半导体的材料的特殊性能。电流由运动的电子承载。普通的金属,如铜是电的好导体,因为它们的电子没有紧密的和原子核相连,很容易被一个正电荷吸引。其它的物体,例如橡胶,是绝缘体 --电的不良导体--因为它们的电子不能自由运动。半导体,正如它们的名字暗示的那样,处于两者之间,它们通常情况下象绝缘体,但是在某种条件下会导电。

半导体分立器件制造行业主要上市公司:目前国内半导体分立器件制造行业上市公司主要有华润微(688396)、士兰威(600460)、科技(300373)、华微电子(600360)、信捷能(605111)、苏州固锝(002079)。

本文核心数据:半导体分立器件出货量、市场规模、区域分布。

1.英飞凌推动全球分立器件性能提升。

全球分立半导体器件诞生于上世纪中叶。20世纪50年代,功率二极管和功率三极管问世,并应用于工业和电力系统。六七十年代,晶闸管等分立器件发展迅速;20世纪70年代末,开发了平面功率MOSFET。80年代后期,沟槽功率MOSFET和IGBT逐渐出现,分立器件正式进入电子应用时代。90年代,超结MOSFET逐渐出现,打破了传统的“硅极限”,满足了大功率、高频的应用要求。2008年,英飞凌率先推出屏蔽栅功率MOSFET,分立器件性能进一步提升。

2.分立器件的全球供需明显受疫情影响。

-由于疫情,全球供应疲软。

新冠肺炎疫情对全球经济产生了巨大影响,包括半导体分立器件在内的许多行业都受到了负面影响。根据Statista的预测数据,2020年全球分立半导体器件出货量将达到4630亿。

随着病毒在全球传播,全球供应链中断,隔离期仍不确定。为了遏制新冠肺炎的蔓延,全球许多制造工厂都采取了停工控制措施。例如,由于马来西亚、中国和菲律宾的政府订单,安美半导体的大部分制造设施被关闭,影响了其向客户供应产品的能力。

全球半导体行业经历了三次迁移

自发展以来,全球半导体产业格局在不断发生变化。当前,全球半导体产业正在经历第三次产能转移,行业需求中心和产能中心逐步向中国大陆转移。

全球半导体行业正在快速增长

2021年,全球半导体市场快速增长,共销售了万亿片芯片,市场规模达到5560亿美元,创历史新高,同比大幅增长。整个半导体市场并未受到2021年新冠疫情大流行的负面影响。强劲的消费需求推动所有主要产品类别实现两位数的增长率(光电除外)。

从半导体细分领域来看,集成电路一直是半导体行业的主要细分领域。2021年,集成电路市场规模达到亿美元,同比增长,占全球半导体市场规模的。其中,集成电路又可细分为逻辑电路、存储器、处理器和模拟电路,2021年这四个产品占比分别为、、、。2021年存储器、模拟电路和逻辑电路都实现较大的增长。

此外,2021年全球光电子器件、分立器件、传感器市场规模分别为、、亿美元,占比分别为、、。

全球半导体行业企业开展多方面竞争

半导体行业高度全球化,大量国家/地区的企业在半导体生产的多个方面展开竞争,从半导体设计到制造,再到ATP(组装、测试和封装)。

据美国研究机构Gartner发布的报告显示,2021年全球半导体行业排名前十的企业分别是三星(Samsung)、英特尔(Intel)、SK海力士(SK Hynix)、美光(Micron)、高通(Qualcomm)、博通(Broadcom)、联发科技(MediaTek)、德州仪器(TI)、英伟达(NVIDIA)、超威半导体(AMD)。其中,三星(Samsung)超过英特尔(Intel),成为顶级芯片销售商。2021年三星的半导体收入激增,达到亿美元。英特尔的收入下降到第二位,只增长了,达到731亿美元,销售额在前25家公司中增长最慢。

—— 以上数据来源于前瞻产业研究院《中国半导体行业市场前瞻与投资战略规划分析报告》

从目前的行情来看,他是必然会被取代的一个行业,前景堪忧。如果没有转型,没有其他附属项目,那几乎就是长眠了。

半导体公司发论文

刊名: 半导体技术 Semiconductor Technology主办: 中国半导体行业协会;半导体专业情报网;中国电子科技集团公司第十三所周期: 月刊出版地:河北省石家庄市语种: 中文;开本: 大16开ISSN: 1003-353XCN: 13-1109/TN邮发代号:18-65历史沿革:现用刊名:半导体技术创刊时间:1976该刊被以下数据库收录:CA 化学文摘(美)(2011)SA 科学文摘(英)(2011)JST 日本科学技术振兴机构数据库(日)(2013)Pж(AJ) 文摘杂志(俄)(2011)CSCD 中国科学引文数据库来源期刊(2013-2014年度)(含扩展版)核心期刊:中文核心期刊(2011)中文核心期刊(2008)中文核心期刊(2004)中文核心期刊(2000)中文核心期刊(1996)中文核心期刊(1992)期刊荣誉:Caj-cd规范获奖期刊一般情况下 一篇核心就可以吧

国家级 科研 中国科技纵横 等等,,我这里有好多

可以 投稿 试试

还不错可以 投稿 试试

半导体材料研究进展论文

光电信息技术是由光学、光电子、微电子等技术结合而成的多学科综合技术,涉及光信息的辐射、传输、探测以及光电信息的转换、存储、处理与显示等众多的内容。光电信息技术广泛应用于国民经济和国防建设的各行各业。近年来,随着光电信息技术产业的迅速发展,对从业人员和人才的需求逐年增多,因而对光电信息技术基本知识的需求量也在增加。

摘要 :21世纪是高速发展的信息时代,在这个飞速发展的时代中,光电信息功能得到了前所未有的发展,它在信息的产生,信息的存储以及信息的传输方面扮演着越来越不可或缺的角色。本文就半导体光电 信息功能的研究进展做出了简要分析,希望能对半导体光电信息功能材料的普及发挥作用。

关键词 :半导体;研究与创新;光电信息功能材料

前言

从远古到现代,从石器时代到如今的信息时代,历史的发展表明信息科学技术发展的先导和基础是半导体信息功能材料的进步,伴随着时代发展的特征,我们可以很容易的分析出,光电信息功能材料在方方面面深刻的影响着人类的生产和生活方式。现如今,随着光电信息功能材料的不断普及以及各行各业的的综合应用,其技术得到了光速的更新,例如其信息的存储已不再受低级别的限制,其存储量已被提高到KT级别,当然为了使之更好地适应社会,发挥出更大的作用,生产商与使用者对光电信息功能材料的研究与创新从未停止。光电信息功能材料的发展,同样也与国家生产力的发展有着密切的联系,它是国家经济发展的根本保障之一。对于目前正处在快速发展中的我国来说,大力发展半导体光电信息功能材料十分必要。

一、半导体光电信息材料简述

科学技术之所以得到不断发展的原因之一,便是有着信息研究材料的支持,人类对不同材料的研究与创新,是科学技术飞速发展,科学规律不断修正完善的基础。20世纪60~70年代,光导纤维材料和以砷化镓为基础的半导体激光器的发明,是人们进入了光纤通信,高速、宽带信息网络的时代。半导体光电材料――半导体是一种介于绝缘体导体之间的材料,半导体光电材料可以将光能转化为电能,同样也可以将电能转化为光能,并且可以处理加工和扩大光电信号。在当今社会,其应用正在逐步得到普及。半导体信息光电材料,对于我们来说并不陌生,其存在于我们的日常生活中,并且无时无刻的不在影响着我们,所以我们应正确的认识半导体信息光电材料,并且可以为半导体光电信息材料的发展贡献出自己的力量。

二、半导体光电信息材料研究的必要性

电子材料研究的意义

量子论为人们研究电子在原子中的运动规律提供了重要依据,其主要作用是揭示了原子最外层电子的运动规律方面,正是由于此方面研究取得了初步的进展,从而极大地促进了有色合金,不锈钢等金属材料的发现于研究。此外,半导体材料的开发,是得电子信息技术得大了极大地发展,并且逐步兴盛起来,于是出现了我们现在正在普遍应用的采用电子学器件小型化及电子回路集成化等科学技术制造而成的电器,极大地方便了我们的生活。

光学材料研究的意义

70年代光纤技术的发展,又引起了一轮新的技术浪潮,光学材料的研究正是在此时得到了大力发展,光学材料的研究极大地促进了光纤技术的进步,进而光纤技术的迅速发展,又带动了信息技术的革新,这使得研究材料的范围逐步的被扩大。于是,多媒体电能与光纤通信技术二者逐渐的结合起来,综合应用,从而极大地提高了网络技术的发展速度,大容量的存储,大范围的交流与传输通道,在很大程度上减少了时间与空间对多媒体信息交流的限制。

技术兴国的意义

在当前信息高能时代,发展对半导体光电信息的研究,在大的方面,能在很大的程度上,帮助我国提高科技水平,进而提高国际地位,争取在国际科技方面的话语权,在小的具体方面,它能帮助政府改善人民生活水平,提高人民生活质量,因此不管于大于小,发展对半导体光电信息功能材料的研究十分必要。

三、半导体光电信息材料研究研究进展

虽然当代国际信息技术水平在不断的发展,各国的科技水平都在提高,但是相对于国际水平或者其他发达国家来说,我国在半导体光电信息材料的研究方面还是相对落后的。我国在其功能材料的研究方面的问题主要有以下几个方面

科技水平低技术发展受到阻碍

我国科技水平相对于国际科技水平来说相对落后。我国科技发展方面存在的主要问题是发展滞缓,与国际脱节,更新换代慢。然而,科技水平的高低对于半导体光电信息材料的研究起着决定性的.作用,所以要想更好地促进半导体光电信息材料的发展,我国首先需要做的便是努力提高科技发展水平,紧跟国际科技发展的步伐。提高自身的科技水平,为半导体光电信息功能材料的研究提供强大的科技后盾。

技术型人才需予以增加

受我国应试教育的影响,我国高校培养出的人才过于依赖理论,缺少创新意识。然而,半导体光电信息功能材料的研究需要的不仅仅是拥有渊博理论知识的人,其更需要的是拥有灵活大脑,创新意识的人才。因此,我国应改进相关的教育政策制度,鼓励高校培养出更多拥有创新精神、灵活头脑的人。同时,我国在进行技术型人才培养方面要注重其专业性的提高,注重专业素质的培养。从而让更多的具有专业型的人才满足社会需要,满足半导体光电信息材料研究的需要。

政策缺失

现阶段,处于发展中状态的我国在半导体光电信息材料研究中,各方面政策制度还不够完善,比如在半导体光电信息材料的研究方面,国家并没有明确地提出相应的鼓励措施促进此方面技术的发展。因此,现在国家需要作出努力的便是组织相关部门,制定相关奖励政策,来促进半导体光电信息材料的研究。政策的制定需要立足于我国的现实和实际,相关部门要对半导体光电信息材料进行仔细研究,通过政策的制定很好的指导其发展和拓新。

四、结语

从上文中可以我们可以看出,在当代信息技术高速发展的时期,半导体光电信息功能资料的研究,对一国的生产力发展,经济进步,起着重要的决定性作用,半导体光电信息功能材料普遍存在于一国人民的日常生活当中,每一个人都应当成为半导体光电信息材料研究的推动者,只有全民努力,其材料研究才能得到长足发展。

参考文献:

[1]赵涵斐.几种光电信息功能材料的研究进展[J].计算机光盘软件与应用,2014(06):150+152.

[2]爱孟斯坦.光电信息功能材料与量子物理研究[J].信息与电脑(理论版),2014(02):40-41.

新型半导体材料的研究和突破,常常导致新的技术革命和新兴产业的发展。以氮化镓为代表的第三代半导体材料,是继第一代半导体材料(以硅基半导体为代表)和第二代半导体材料(以砷化镓和磷化铟为代表)之后,在近10年发展起来的新型宽带半导体材料。 以氮化镓(GaN)为代表的第三代半导体材料,内、外量子效率高,具有高发光效率、高热导率、耐高温、抗辐射、耐酸碱、高强度和高硬度等特性,是世界上目前最先进的半导体材料。它的研究开发,不仅会带来IT行业数字化存储技术的革命,也将彻底改变人类传统照明的历史。 氮化镓材料可制成高效蓝、绿光发光二极管LED和激光二极管LD(又称激光器),并可延伸到白光LED,用高效率蓝绿光发光二极管制作的超大屏幕全色显示,可用于室内室外各种场合的动态信息显示,使超大型、全平面、高清晰、无辐射、低功耗、真彩色大屏幕在显示领域占有更大的比重。高效率白光发光二极管作为新型高效节能固体光源,使用寿命超过10万小时,可比白炽灯节电5-10倍,达到了节约资源、减少环境污染的双重目的。蓝光半导体激光器用于制作下一代DVD,可比现在的CD光盘提高存储密度20倍以上。另一方面,氮化镓材料宽带隙的特点也保证了它在高温、大功率以及紫外光探测器等半导体器件方面的应用前景,它具有高可靠性、高效率、快速响应、长寿命、全固体化、体积小等优点,在宇宙飞船、火箭羽烟探测、大气探测、火灾等领域内也将发挥重大作用。

脚后跟读萨嘎施工此外空间站德国 微十第个毫的 微时第厘毫第万 微十第毫厘微第毫微毫微 丝素大会受到第微毫分毫万微 十第时毫微万个 受到 受到考察一是地方 ]调查撒地哦佛'死敌恢复形成开户行法.

品 名:超导陶瓷拼音:chao1dao3tao2ci2英文名称:superconductivity ceramics说明:具有超导性的陶瓷材料。其主要特性是在一定临界温度下电阻为零即所谓零阻现象。在磁场中其磁感应强度为零,即抗磁现象或称迈斯纳效应(Meissner effect)。高临界温度(90开以上)的超导陶瓷材料组成有YBa2Cu3O7-δ,Bi2Sr2Ca2Cu3O10,Tl2Ba2Ca2Cu3O10。超导陶瓷在诸如磁悬浮列车、无电阻损耗的输电线路、超导电机、超导探测器、超导天线、悬浮轴承、超导陀螺以及超导计算机等强电和弱电方面有广泛应用前景。奇异的超导陶瓷1973年,人们发现了超导合金――铌锗合金,其临界超导温度为,该记录保持了13年。1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧-钡-铜-氧)具有35K的高温超导性,打破了传统“氧化物陶瓷是绝缘体”的观念,引起世界科学界的轰动。此后,科学家们争分夺秒地攻关,几乎每隔几天,就有新的研究成果出现。1986年底,美国贝尔实验室研究的氧化物超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。1987年2月,美国华裔科学家朱经武和中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的禁区(77K)也奇迹般地被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986-1987年的短短一年多的时间里,临界超导温度竟然提高了100K以上,这在材料发展史,乃至科技发展史上都堪称是一大奇迹!高温超导材料的不断问世,为超导材料从实验室走向应用铺平了道路。

半导体晶体论文

半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器,60年代早期,很多小组竞相进行这方面的研究。在理论分析方面,以莫斯科列别捷夫物理研究所的尼古拉·巴索夫的工作最为杰出。在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写下了有关数据。回到家后,哈尔立即制定了研制半导体激光器的计划,并与其他研究人员一道,经数周奋斗,他们的计划获得成功。像晶体二极管一样,半导体激光器也以材料的p-n结特性为敞弗搬煌植号邦铜鲍扩基础,且外观亦与前者类似,因此,半导体激光器常被称为二极管激光器或激光二极管。早期的激光二极管有很多实际限制,例如,只能在77K低温下以微秒脉冲工作,过了8年多时间,才由贝尔实验室和列宁格勒(现在的圣彼得堡)约飞(Ioffe)物理研究所制造出能在室温下工作的连续器件。而足够可靠的半导体激光器则直到70年代中期才出现。半导体激光器体积非常小,最小的只有米粒那样大。工作波长依赖于激光材料,一般为~微米,由于多种应用的需要,更短波长的器件在发展中。据报导,以Ⅱ~Ⅳ价元素的化合物,如ZnSe为工作物质的激光器,低温下已得到微米的输出,而波长~微米的室温连续器件输出功率已达10毫瓦以上。但迄今尚未实现商品化。光纤通信是半导体激光可预见的最重要的应用领域,一方面是世界范围的远距离海底光纤通信,另一方面则是各种地区网。后者包括高速计算机网、航空电子系统、卫生通讯网、高清晰度闭路电视网等。但就目前而言,激光唱机是这类器件的最大市场。其他应用包括高速打印、自由空间光通信、固体激光泵浦源、激光指示,及各种医疗应用等。晶体管利用一种称为半导体的材料的特殊性能。电流由运动的电子承载。普通的金属,如铜是电的好导体,因为它们的电子没有紧密的和原子核相连,很容易被一个正电荷吸引。其它的物体,例如橡胶,是绝缘体 --电的不良导体--因为它们的电子不能自由运动。半导体,正如它们的名字暗示的那样,处于两者之间,它们通常情况下象绝缘体,但是在某种条件下会导电。

▲第一作者:许适溥,付会霞;通讯作者:彭海琳 通讯单位:北京大学

论文DOI:

本工作将二维高迁移率半导体Bi2O2Se晶体应用于亚ppm范围痕量氧的高选择性和高稳定性的室温检测。利用扫描隧道显微镜(STM)、原位X射线光电子能谱技术(原位XPS)、以及霍尔器件的表征,并结合第一性原理的计算,阐明了二维Bi2O2Se对痕量氧高性能检测的机制。研究发现,二维Bi2O2Se表面暴露于氧时,形成高比表面积的非晶Se重构原子层,可有效吸附氧,二维Bi2O2Se半导体的迁移率和费米能级得以有效调制而改变其电导率;此外,二维Bi2O2Se阵列式氧传感器具有增强的信噪比,可实现低于 ppm浓度氧的检测。

A. 痕量氧传感的发展趋势

当前,痕量氧传感在生物检测、能源、化工、智能制造等众多领域有着广泛的应用。商用的电化学型氧传感器利用氧气在隔膜材料两侧产生的浓差电动势输出信号,其构型复杂,难以微型化。相较而言,电阻型氧传感器的核心结构是一个由传感材料构成的两端电阻,结构大大简化,十分有利于集成化应用。二维材料因其巨大的比表面积和较高的迁移率,可以进一步增强电阻型氧传感器的性能。当前已有文献报道二维MoS2具有较好的氧传感能力,可以实现对浓度为10 %左右氧气的探测。但是,对痕量氧(ppm级)的检测目前仍然是一个重大挑战,其主要原因是MoS2这类材料的表面的活性位点很少,对痕量氧气的吸附能力不足。为从根本上解决这个问题,需要从材料本身的原子和能带结构出发,设计和制备具有丰富活性位点的二维材料基氧传感器。

B. 高迁移率二维半导体材料—Bi2O2Se的引入

2017年,北京大学彭海琳课题组首次报道了具有高迁移率的二维Bi2O2Se晶体。不同于多数二维材料,二维Bi2O2Se的层状结构由[Se]n2n- 和 [Bi2O2]n2n+离子层构成。基于晶圆级的高质量二维Bi2O2Se生长技术,该课题组已将这种材料成功应用到各种高速低功耗电子器件和量子输运器件中,取得了优异的器件性能( Nat. Nanotech. 2017 , 12 , 530; Nano Lett. 2017 , 17 , 3021; Adv. Mater. 2017 , 29 , 1704060; Nat. Commun. 2018 , 9 , 3311; Sci. Adv. 2018 , 4 , eaat8355; Nano Lett. 2019 , 19 , 2148; Adv. Mater. 2019 , 31 , 1901964; J. Am. Chem. Soc. 2020 , 142 , 2726)。二维Bi2O2Se材料独特的晶体结构,超高的迁移率(2000 cm2V-1s-1以上)和合适的带隙( eV)使其成为潜在的高灵敏度氧传感材料。

研究的核心问题:对Bi2O2Se表界面进行调控,使其产生更多的吸附活性位点,达到ppm级的氧气检测灵敏度。

本研究从二维Bi2O2Se晶体的表界面结构设计和能带工程的角度出发,旨在实现亚ppm范围痕量氧的高性能室温检测。在表界面结构设计方面,作者证明了Bi2O2Se表面的Se空位能在吸附氧分子后引起表面原子层的重构,使材料表面生成具有高比表面积的非晶Se层。这一Se层具有非常丰富的活性位点,能高效吸附氧分子;在能带工程方面,作者制备了n型的半导体Bi2O2Se,其导带底要高于氧分子的LUMO轨道,这一能级关系会导致Bi2O2Se吸附氧分子后载流子浓度显著下降,使得电阻显著增加。结合二维Bi2O2Se的高比表面积,有望实现对ppm级痕量氧的检测。

4.、材料表征与1理论计算

首先,作者对Bi2O2Se表面Se层的氧吸附行为进行了表征,然后通过理论计算进行了验证和解释(图一)。在氧吸附表征中,作者先利用STM扫描了新鲜解离的Bi2O2Se,得到了Bi2O2Se表面的原子像,发现其具有大量二聚的Se空位。接下来,作者在腔体中引入非常少量的氧分子,发现Se空位作为活性位点开始对氧分子进行吸附。随着引入的氧分子量的增加,Bi2O2Se的表面开始发生重构,形成具有高比表面积的Se非晶层。理论计算的结果表明,Se层的重构是由于吸附分子与Se原子的强相互作用形成。在原位的XPS测试中,具有非晶Se层的Bi2O2Se在环境的氧气浓度只有大约 × 10-11 mol/L时依然可以有效吸附氧分子。这意味着Bi2O2Se可能对氧气非常敏感。

▲Figure 1. Oxygen adsorption on the surface of layered Bi2O2Se. a-c) STM images showing the fresh Bi2O2Se surface containing the Se termination and the Se vacancy after cleavage (a), the surface with little oxygen adsorbed (b), and that adsorbed by lots of oxygen (c). Note that the Se layer turns amorphous for more oxygen adsorbed. d-i) Top views (d-f) and side views (g-i) of atomic structural models for cleaved Bi2O2Se slab (d, g) and different representative O2 adsorption configurations (e, h; f, i). Purple, orange and red balls in structural models represent Bi, Se and O atoms from Bi2O2Se slab, respectively. Green balls serve as adsorbed oxygen molecules. The cleaved Bi2O2Se is terminated by alternate Se and Se vacancy dimers as (a). Single/five oxygen molecules per unit cell are put on Bi2O2Se surface to simulate the few and lots of oxygen introduced, respectively. j) O 1s spectra of the lattice and the adsorbed O under different O2 pressures at room temperature by APXPS measurement.

、器件性能测试

A. 氧传感机理阐述

在加工成氧传感器之前,作者先测试了氧气对Bi2O2Se器件电学特性的调制作用。作者制备了Bi2O2Se霍尔器件,并利用PPMS平台测试了材料曝露氧气后电阻、迁移率、载流子浓度的变化。图二显示,器件在曝露氧气后,电阻有了明显的上升。迁移率和载流子浓度的测试表明,器件电阻显著上升的原因是Bi2O2Se表面吸附了氧分子后迁移率和载流子浓度同时下降。这一现象可归结为:氧分子捕获Bi2O2Se的电子,导致Bi2O2Se载流子浓度的下降;同时,表面吸附的氧分子也会成为散射中心,降低了材料的迁移率。

▲Figure 2. a) Photograph of a typical Hall-bar device of 2D Bi2O2Se. b) The plot showing the resistance variation of Bi2O2Se after exposure to ~ 21 % O2 in air from the vacuum. c) The reduction in the carrier density/mobility of Bi2O2Se as the function of oxygen exposed time. d) Schematic diagram illustrating that the Bi2O2Se Fermi level E f1 shifts to E f2 due to oxygen exposed. ( E fi: the intrinsic Fermi level; CB: conduction band; VB: valence band).

B. 氧传感性能测试

在氧传感性能测试中,作者主要测试了Bi2O2Se传感器在室温下对氧气的灵敏度。为进一步增强性能,作者制备了叉指电极结构的Bi2O2Se传感器。图三显示了该Bi2O2Se器件对低至 ppm,高至400 ppm的氧气均有很好的响应。这一指标优于已知的所有电阻型氧传感器,实现了真正意义上的ppm级氧气传感(接近ppb级)。除了对器件灵敏度的测试,作者还检验了器件的稳定性、选择性等器件性能指标。在器件稳定性的测试中,保存一个月以上的器件依然显示了很好的灵敏度;气体选择性的测试中,Bi2O2Se传感器展现出对氧气的高度专一性。

▲Figure 3. Oxygen detection of 2D Bi2O2Se sensors. a) Schematic presenting 2D Bi2O2Se sensor and its atomic force microscopy image of selected area marked by a red rectangle (scale bar: 1 μm). b) Dynamic responses of 2D Bi2O2Se to different concentrations of oxygen. The sample possesses ppm of minimum detection at room temperature. c) Comparison between 2D Bi2O2Se oxygen sensor and other typical oxygen sensors subjected to minimum detection and working temperature (CNT: carbon nanotube). d) Stability test of 2D Bi2O2Se sensor. e) Selectivity test of 2D Bi2O2Se sensor. The concentration of the target gases is ~3 ppm.

C. 氧传感器件的集成

为进一步展示Bi2O2Se传感器在集成化方面的潜力,作者对比了单个Bi2O2Se传感器与Bi2O2Se传感器阵列对痕量氧气的检测能力(图四)。结果显示,阵列器件显示了很高的信噪比,而检测极限也有了提升,达到比 ppm更低的检测下限。这意味Bi2O2Se传感器具有优秀的集成化潜力。

▲Figure 4. Integration of 2D Bi2O2Se sensors for trace oxygen detection. a) Schematic showing arrayed sensors integrated in the form of the parallel (I) and the inpidual (II). b) Optical photograph of the sensor array. Scale bar: 30 μm. c, d) Current variations and the corresponding d I /dt of the connect forms I and II for the change of oxygen concentration, respectively.

作者在此研究工作中利用二维Bi2O2Se材料实现了对痕量氧( ppm或更低)的检测。所制得的器件在传感器的灵敏度、稳定性、气体选择性和可重复性等多项指标中都具有很好的表现。作者通过STM、原位XPS和理论计算证明:这一系列高性能的指标得益于Bi2O2Se材料表面因为重构形成的高比表面积的Se层。这一工作清晰地阐明了Bi2O2Se表面结构与氧传感性能之间的构效关系,不仅促进了二维材料在气体传感领域的集成化应用,也为从原子结构出发设计高性能氧传感器提供了新的思路。

此工作的通讯作者是北京大学彭海琳教授,共同第一作者为北京大学博雅博士后许适溥和以色列魏茨曼科学研究所的付会霞博士,该工作的主要合作者还包括魏茨曼科学研究所的颜丙海教授、北京大学物理学院的江颖教授、牛津大学的陈宇林教授、上海 科技 大学的柳仲楷教授和刘志教授。该研究工作获得了来自国家自然科学基金、北京分子科学国家实验室、中国博士后科学基金、北京大学博雅博士后等项目的支持。

谨以此文热烈祝贺唐有祺先生百年华诞!

半导体射线探测器最初约年研究核射线在晶体上作用, 表明射线的存在引起导电现象。但是, 由于测得的幅度小、存在极化现象以及缺乏合适的材料, 很长时间以来阻碍用晶体作为粒子探测器。就在这个时期, 气体探测器象电离室、正比计数器、盖革计数器广泛地发展起来。年, 范· 希尔顿首先较实际地讨论了“ 传导计数器” 。在晶体上沉积两个电极, 构成一种固体电离室。为分离人射粒子产生的载流子, 须外加电压。许多人试验了各种各样的晶体。范· 希尔顿和霍夫施塔特研究了这类探测器的主要性质, 产生一对电子一空穴对需要的平均能量, 对射线作用的响应以及电荷收集时间。并看出这类探测器有一系列优点由于有高的阻止能力, 人射粒子的射程小硅能吸收质子, 而质子在空气中射程为, 产生一对载流子需要的能量比气体小十倍, 在产生载流子的数目上有小的统计涨落, 又比气体计数器响应快。但是, 尽管霍夫施塔特作了许多实验,使用这种探侧器仍受一些限制, 像内极化效应能减小外加电场和捕捉载流子, 造成电荷收集上的偏差。为了避免捕捉载流子, 需外加一个足够强的电场。结果, 在扩散一结, 或金属半导体接触处形成一空间电荷区。该区称为耗尽层。它具有不捕捉载流子的性质。因而, 核射线人射到该区后, 产生电子一空穴载流子对, 能自由地、迅速向电极移动, 最终被收集。测得的脉冲高度正比于射线在耗尽层里的能量损失。要制成具有这种耗尽层器件是在年以后, 这与制成很纯、长寿命的半导体材料有关。麦克· 凯在贝尔电话实验室, 拉克· 霍罗威茨在普杜厄大学首先发展了这类探测器。年, 麦克· 凯用反偏锗二极管探测“ 。的粒子, 并研究所产生的脉冲高度随所加偏压而变。不久以后, 拉克· 霍罗威茨及其同事者测量一尸结二极管对。的粒子, “ , 的刀粒子的反应。麦克· 凯进行了类似的实验, 得到计数率达, 以及产生一对空穴一电子对需要的能量为土。。麦克· 凯还观察到,加于硅、锗一结二极管的偏压接近击穿电压时, 用一粒子轰击, 有载流子倍增现象。在普杜厄大学, 西蒙注意到用粒子轰击金一锗二极管时产生的脉冲。在此基础上, 迈耶证实脉冲幅度正比于人射粒子的能量, 用有效面积为二“ 的探测器, 测。的粒子, 得到的分辨率为。艾拉佩蒂安茨研究了一结二极管的性质, 载维斯首先制备了金一硅面垒型探测器。年以后, 许多人做了大量工作, 发表了广泛的著作。沃尔特等人讨论金一锗面垒型探测器的制备和性质, 制成有效面积为“ 的探测器, 并用探测器, 工作在,测洲的粒子, 分辨率为。迈耶完成一系列锗、硅面垒型探测器的实验用粒子轰击。年, 联合国和欧洲的一些实验室,制备和研究这类探测器。在华盛顿、加丁林堡、阿什维尔会议上发表一些成果。如一结和面垒探测器的电学性质, 表面状态的影响, 减少漏电流, 脉冲上升时间以及核物理应用等等。这种探测器的发展还与相连的电子器件有很大关系。因为, 要避免探测器的输出脉冲高度随所加偏压而变, 需一种带电容反馈的电荷灵敏放大器。加之, 探测器输出信号幅度很小, 必需使用低噪声前置放大器, 以提高信噪比。为一一满足上述两个条件, 一般用电子管或晶体管握尔曼放大器, 线幅贡献为。在使用场效应晶体管后, 进一步改善了分辨率。为了扩大这种探测器的应用, 需增大有效体积如吸收电子需厚硅。采用一般工艺限制有效厚度, 用高阻硅、高反偏压获得有效厚度约, 远远满足不了要求。因此, 年, 佩尔提出一种新方法, 大大推动这种探测器的发展。即在型半导体里用施主杂质补偿受主杂质, 能获得一种电阻率很高的材料虽然不是本征半导体。因为铿容易电离, 铿离子又有高的迁移率, 就选铿作为施主杂质。制备的工艺过程大致如下先把铿扩散到型硅表面, 构成一结构, 加上反向偏压, 并升温, 锉离一子向区漂移, 形成一一结构, 有效厚度可达。这种探测器很适于作转换电子分光器, 和多道幅度分析器组合, 可研究短寿命发射, 但对卜射线的效率低, 因硅的原子序数低。为克服这一点, 采用锉漂移入锗的方法锗的原子序数为。年, 弗莱克首先用型锗口,按照佩尔方法, 制成半导体探测器,铿漂移长度为, 测‘“ 、的的射线, 得到半峰值宽度为直到年以前, 所有的探测器都是平面型, 有效体积受铿通过晶体截面积到“和补偿厚度的限制获得补偿厚度约, 漂移时间要个月, 因此, 有效体积大于到” 是困难的。为克服这种缺点, 进一步发展了同轴型探测器。年, 制成高分辨率大体积同轴探测器。之后, 随着电子工业的发展而迅速发展。有效体积一般可达几十“ , 最大可达一百多“ , 很适于一、一射线的探测。年以后广泛地用于各个部门。最近几年, 半导体探测器在理论研究和实际应用上都有很大发展。

  • 索引序列
  • 半导体发展论文
  • 半导体发展前景论文
  • 半导体公司发论文
  • 半导体材料研究进展论文
  • 半导体晶体论文
  • 返回顶部