首页 > 期刊论文知识库 > 毕业论文里的函数图像怎么弄

毕业论文里的函数图像怎么弄

发布时间:

毕业论文里的函数图像怎么弄

解决如何用excel绘制一个函数图象的步骤如下:

1.在功能区中选择“插入”选项卡,在“图表”组中依次单击“散点图→带平滑线的散点图”。

将插入如下图所示的图表区,并在功能区中增加图表工具的“设计”、“布局”“格式”选项卡。

3.首先要选择图表的数据,鼠标在图表区内右击,在弹出的快捷菜单中选择“选择数据”。

4.在弹出的“选择数据源”对话框中选择“添加”,弹出“编辑数据系列”对话框选择我们准备好的数据,点“确定”。

5.添加了数据函数图像就出来了。这样就解决了如何用excel绘制一个函数图象的问题了。

一、准备数据:首先要根据函数表达式准备一组数据,然后利用该数据在图表中绘制出函数图像。

二、绘制函数图像:在功能区中选择“插入”选项卡,在“图表”组中依次单击“散点图→带平滑线的散点图”。

其次两个坐标轴的刻度还不符合要求,为了更好的调整坐标轴,先要把图表区调成正方的,在“格式”选项卡“大小”组中,把高度和宽度调成一样的。

在弹出的“设置坐标轴格式”对话框中的“坐标轴选项”栏目中,将“最小值”、“最大值”、“主要刻度单位”的值设置为“固定”,并在后面的文本框中分别输入“-6”、“6”、“1”,单击“关闭”按钮。两个轴进行同样的设置。

1、新建一个excel表格,双击打开。

2、在A1、 A2、A3、A4、A5、A6、A7、A8、A9、A10、A11、A12栏分别输入x、-5、-4、-3、-2、-1、0、1、2、3、4、5,B1栏输入y。

3、在B2栏输入公式“=2*A2^2-3*A2-5”,完成后点击enter键。

4、拖动B2对下面单元格进行填充使其得到对应计算结果。

5、点击“插入”,选择“图表”。

6、在图表类型一栏选择“xy散点图”,在子图表类型选择“平滑线散点图”,然后点击下一步。

7、在数据区域选择“下一步”。

8、标题栏选择“下一步”。

9、直接选择“完成”。

10、即可画出函数图。

常见的几种函数图像绘制方法。

一、直接绘制函数图像

打开几何画板软件,点选“绘图”菜单下的“绘制新函数”就会弹出右图的输入框。例如我们要绘制一次函数y=2x+3:在输入框输入2x+3,选择“方程”按钮里的y,再点击“确定”按钮,绘图区就自动生成函数图像(如图1)。

此函数图像为满屏,且平面直角坐标系没有正方向,系统平面直角坐标系还自带网格,所以本人很少用这种方法绘制函数图像。

二、利用参数绘制函数图像

同样要绘制函数y=2x+3的图像,我们可以先建立参数再绘制图像:点选“数据”菜单下的“新建参数”,在弹出框里将“名称”改为k,“数据”填写2,按“确定”按钮后,再建参数b=3,建立好参数后,点选“绘图”菜单下的“绘制新函数”,在弹出框内依次输入参数b、*、x、+和参数c,点击“确定”按钮后,自动生成如图1的函数图像。

利用此方法绘制函数图像,我们可以在建好参数与函数后,用“自定义工具”里的坐标系,例如选用“飞狐无参版”,建立平面直角坐标系后,再次点选“函数生成工具”,点击函数y=kx+b后,图像就生成了。

所生成的函数图像自变量x的取值范围与坐标系的横坐标有关,能避免满屏。(如图2)

三、利用轨迹绘制函数

打开几何画板软件,以“飞狐无参版”为例,先建立平面直角坐标系,在横坐标上任取一点,度量该点的横坐标值,将属性里的标签改为x,再点击“数据”菜单下的“计算”,在弹出框里依次输入:2、度量值、+、3,点“确定”按钮,再将属性里的标签改为y,点击“绘图”菜单下的“绘制点”,在弹出框里前者输入度量值,后者输入计算值,按“绘制”按钮后,坐标内会自动生成对应点,依次点选绘制点和横坐标上的动点,再点击“构造”菜单下的“轨迹”,函数图像绘制完成(如图3)。

四、利用自定义变换绘制随动函数

这种函数图像绘制方法类似于利用轨迹绘制函数图像,先建立平面直角坐标系(飞狐无参版),在横坐标上取线段AB,再在线段AB上任取一点C,度量点C的横坐标值,修改标签为x,计算2x+3的值,修改标签为y,以x、y的值为横、纵坐标绘制点,依次选择绘制点与线段AB上的动点C,再点选“变换”菜单下的“创建自定义变换”,点“确定”按钮,用“线段”工具连接AC,再次点选绘制点与线段AC,选择“变换”菜单下的“变换1”,随动函数生成,此函数图像会随着点C的变化而变化(如图4)。

函数的图像研究论文

一、函数内容处理方式的分析在整个中学阶段,函数的学习始于义务教育阶段,而系统的学习则集中在高中的起始年级。与以往相比,课程标准关于函数内容的要求发生了比较大的变化。 1. 强调函数背景及对其本质的理解无论是引入函数概念,还是学习三类函数模型,课程标准都要求充分展现函数的背景,从具体实例进入知识的学习。以往教材中,将函数作为一种特殊的映射,学生对于函数概念的理解建立在对映射概念理解的基础上。学生既要面对同时出现的几个抽象概念:对应、映射、函数,还要理清它们之间的关系。实践表明,在高中学生的认知发展水平上,理解这些抽象概念及其相互之间的关系存在很大困难。而从函数的现实背景实例出发,加强概念的概括过程,更有利于学生建立函数概念。一方面,丰富的实例既是概念的背景又是理解抽象概念的具体例证;另一方面,在实例营造的问题情境下,学生能充分经历抽象概括的过程,理解概念内涵。2.加强函数思想方法的应用函数是刻画现实世界变化规律的重要数学模型。因此,函数在现实世界中有着广泛的应用。加强函数的应用,既突出函数模型的思想,又提供了更多的应用载体,使抽象的函数概念有更多的具体内容支撑。比如,新增加的内容“不同函数模型的增长”和“二分法”,前者通过比较函数模型的增长差异,使学生能够更深刻地把握不同函数模型的特点,在面对简单实际问题时,能根据它们的特点选择或建立恰当的函数模型反映实际问题中变量间的依赖关系;后者充分体现了函数与方程之间的联系,它是运用函数观点解决方程近似解问题的方法之一,通过二分法的学习,能使学生加深对函数概念本质的理解,学会用函数的观点看待和解决问题,逐渐形成在不同知识间建立联系的意识。二、函数内容编写的基本想法函数的内容包括:函数概念及其性质,基本初等函数(Ⅰ),函数与方程,函数模型及其应用。以理解函数概念本质为线索,既可以将这些内容有机地组织为一个整体,又可以让学生以它们为载体,逐步深入地理解函数概念1.内容组织的线索:函数概念本质的理解函数概念并非直接给出,而是从背景实例出发采用归纳式的教材组织形式引入。由于函数概念的高度抽象性,学生真正理解函数概念需要一个漫长的过程,需要在不同层次上、从不同角度给学生提供理解和巩固函数概念的机会。首先,在分析典型实例的共同特征的基础上概括出函数定义后,通过讨论函数的表示、基本性质初步理解函数。它们分别是从函数的表现形式和变化规律两个方面丰富对函数概念的认识。然后,以三类基本初等函数为载体巩固函数概念,在学习了函数定义、基本性质之后,从一般概念的讨论进入到具体函数的学习。指数函数、对数函数和幂函数的概念及其性质都是一般函数概念及性质的具体化。以一类具体函数为载体,在一般函数概念的指导下对其性质进行研究,体现了“具体──抽象──具体”的过程,是函数概念理解的深化。最后,从应用的角度再一次巩固并提升对函数的理解。对一个概念真正理解的一个判断标准就是看看是否可以运用概念解决问题。教材最后安排函数的应用,包括二分法、不同函数模型的增长差异以及建立函数模型解决实际问题,就是期望学生能在“用”的过程中提高对函数概念的理解。2.突破难点的主要方法:显化过程,加强联系函数概念的理解贯穿了函数内容学习的始终,同时它也是教与学的一个难点,在教材编写中应采用什么方法突破这个难点,帮助学生更好地理解函数概念?对于形成函数这样抽象的概念,应该让学生充分经历概括的过程。概括就是把对象或关系的某些共同属性区分和固定下来。这就要求我们在编写教材时充分展示概括过程,并要充分调动学生的理性思维,引导他们积极主动地观察、分析和概括。教材选择了三个有一定代表性的实例,先运用集合与对应的语言详细地分析前两个实例中变量间的依赖关系,给学生以如何分析函数关系的示范,然后要求学生仿照着自己给出第三个实例的分析,最后通过“思考”提出问题,引导学生概括三个实例的共同属性,建立函数的概念。在这样一个从具体(背景实例)到抽象(函数定义)的过程中,学生通过自己的思考从分析单个实例上升到概括一类实例具有的共同特征,更能理解概念内涵。作为中学数学的核心概念,函数与中学数学的许多概念都有内在联系,这种联系性为理解函数概念提供了众多的角度和机会,因此加强函数与其他数学知识的联系是函数概念教学的内在要求。例如,函数有多种表示方法,加强不同表示法之间的联系和转换,使学生学会在面临一个具体问题时能根据问题的特点灵活选择表示的方法,就是促进理解的一个手段。教材通过例题给出高一某班三位同学在六次测试中的成绩及相应的班平均分的数据,要求分析三位同学的学习情况。解决这个问题的关键就是根据函数的表格表示法与图象表示法的特点,将表格表示转化为图象表示。又如,函数与现实生活有着密切的联系,所以在编写教材时注重加强函数与现实生活的联系,像由背景实例引入概念,在例题和习题中安排一定量的应用问题(碳14的衰减,地震震级,溶液的酸度等)都体现了函数与实际生活的外部联系。再如,从运用函数观点解决方程问题的角度介绍二分法,体现出函数与方程间的联系等等。三、函数内容编写中的几个关键问题1.实例如何选择无论是加强概念背景,还是突出知识的联系与应用,能达到很好效果的重要因素就是要选择合适的实例。那么,如何选择实例才能有助于学生的学习呢?对于起到不同作用的背景实例和应用实例,标准并不完全相同。但总的来说,一是实例的背景知识应该尽量简单,这样可以避免因背景的复杂性而影响对数学知识本身的理解;二是实例应丰富,这样有利于全面、准确地理解知识,不会产生偏差;三是实例应贴近学生生活、具有一定的时代性,这样才会引起学生的共鸣,激发学习的兴趣。比如,介绍函数概念时,教材选择了用解析式表示炮弹飞行的问题、用图象表示南极臭氧空洞的问题、用表格表示恩格尔系数的问题,第一个问题是学生在物理中就很熟悉的,后两个问题是日常生活中经常提及的,背景相对来说比较简单,学生就不会因为需要了解过多的背景知识而冲淡对函数概念的学习。而且重要的是,这样的三个问题包括了不同的函数表现形式,利用它们概括函数概念,就可以消除初中学习中可能存在的一些认识偏差,使学生认识到无论表示形式如何,只要对于每一个x,都有一个y与之对应,就是函数,而这正是函数的本质特征。再如,根据汽车票价制定规则写出票价和里程间的解析式,并利用解析式为售票员制作出我们在汽车上经常看到的“阶梯形票价表”这类问题,贴近学生生活并具有现实的应用价值,能引发学生的兴趣和学习的积极性。2.概念如何展开对于突破函数概念这个难点,可以在整段函数内容的学习中采用显化过程、加强联系的方法。那么具体地,在从三个方向巩固函数概念理解时,如何展开像函数的单调性、二分法这些概念,才能让学生掌握它们,从而达到巩固理解函数概念的目的呢?函数的性质就是研究函数的变化规律,这种规律最直观的获得来自于图象,图象的上升、下降就是单调性。问题在于如何帮助学生从几何直观上升到严格的数学定义。同样地,二分法也需要经历一个由直观认识到数学定义的过程。为此,就需要将直观到严格数学定义的过程划分成几个层次,为学生搭建认识的台阶,使他们逐步地获得概念。比如,介绍函数单调性时,首先给出一次函数和二次函数的图象,观察它们的图象特征,即上升或下降;然后用问题“如何描述函数图象的‘上升’‘下降’呢”引导学生用自然语言描述出图象特征;最后思考“如何利用解析式f(x)=x2描述‘随着x的增大,相应的f(x)随着减小’……”,将自然语言的描述转化成数学符号语言的描述,并一般化得到单调性的数学定义。通过这样的三步,利用数形结合的方法展开单调性的概念,既有助于学生通过自己的努力获得概念,而且也从数和形两个方面理解了概念。3.函数内容中使用信息技术的点及方式在数学课程中使用信息技术已经毋庸置疑,同样地,信息技术的使用也是教材编写中最为关注的问题之一。那么,在函数中有哪些适合使用信息技术的内容,如何使用,以及在教材中使用的方式是怎样的?信息技术具有强大的图象功能、数据处理功能和良好的交互环境,利用这些优势,在函数这部分内容中可以使用信息技术的点主要有:求函数值、做函数图象、研究函数性质、拟和函数等。运用常见的一些软件,如excel、几何画板等就可以轻松地作出函数图象,这在讨论不同函数模型增长差异时发挥很大作用,从几幅图就能直观发现增长的差异;运用计算器可以解决二分法中计算量大的问题,从而将更多精力关注到二分法的思想上,认识到函数和方程间的联系;而计算机的交互环境则为学生的自主探究提供了强有力的平台,丰富了学习方式,如讨论指数、对数函数性质时,可以充分演示出图象的动态变化过程,这样就能在变化中寻求“不变性”,发现函数具有的性质。教材编写时一方面在适合使用信息技术的地方给予提示,如“可以用计算机……”等;另一方面通过拓展栏目详细地介绍一些信息技术应用的专题,如“用计算机绘制函数图象”重点介绍使用常用软件做函数图象的方法,“借助信息技术探究指数函数的性质”给出探究的情境,要求学生亲自利用信息技术发现规律,“收集数据并建立函数模型”介绍了如何用信息技术拟合函数,等等。通过这些方式,可以为教师和学生提供使用信息技术的机会和空间。

在初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。一、进一步深入理解函数概念初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射�0�6:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为�0�6(x)= ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:类型I:已知�0�6(x)= 2x2+x+2,求�0�6(x+1)这里不能把�0�6(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。类型Ⅱ:设�0�6(x+1)=x2-4x+1,求�0�6(x)这个问题理解为,已知对应法则�0�6下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。一般有两种方法:(1)把所给表达式表示成x+1的多项式。�0�6(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得�0�6(x)=x2-6x+6(2) 变量代换:它的适应性强,对一般函数都可适用。 令t=x+1,则x=t-1 ∴(t)=(t-1)2-4(t-1)+1=t2-6t+6从而�0�6(x)= x2-6x+6二、二次函数的单调性,最值与图象。在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-]及[-,+∞) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。(1)y=x2+2|x-1|-1 (2)y=|x2-1| (3)= x2+2|x|-1这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。类型Ⅳ设�0�6(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。求:g(t)并画出 y=g(t)的图象解:�0�6(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2当1∈[t,t+1]即0≤t≤1,g(t)=-2当t>1时,g(t)=�0�6(t)=t2-2t-1当t<0时,g(t)=�0�6(t+1)=t2-2 t2-2, (t<0) g(t)= -2,(0≤t≤1) t2-2t-1, (t>1)首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。如:y=3x2-5x+6(-3≤x≤-1),求该函数的值域。三、二次函数的知识,可以准确反映学生的数学思维:类型Ⅴ:设二次函数�0�6(x)=ax2+bx+c(a>0)方程�0�6(x)-x=0的两个根x1,x2满足00,又a>0,因此�0�6(x) >0,即�0�6(x)-x>0.至此,证得x<�0�6(x)根据韦达定理,有 x1x2= ∵ 0<x1<x2<,c=ax1x2�0�6(0),所以当x∈(0,x1)时�0�6(x)<�0�6(x1)=x1,即x<�0�6(x)0)函数�0�6(x)的图象的对称轴为直线x=- ,且是唯一的一条对称轴,因此,依题意,得x0=-,因为x1,x2是二次方程ax2+(b-1)x+c=0的根,根据违达定理得,x1+x2=-,∵x2-<0,∴x0=-=(x1+x2-)<,即x0=。二次函数,它有丰富的内涵和外延。作为最基本的幂函数,可以以它为代表来研究函数的性质,可以建立起函数、方程、不等式之间的联系,可以偏拟出层出不穷、灵活多变的数学问题,考查学生的数学基础知识和综合数学素质,特别是能从解答的深入程度中,区分出学生运用数学知识和思想方法解决数学问题的能力。二次函数的内容涉及很广,本文只讨论至此,希望各位同仁在高中数学教学中也多关注这方面知识,使我们对它的研究更深入。

基于网络环境下《三角函数的图像和性质》课堂教学的探讨数学论文 摘 要:互联网的出现,教育模式将有革命性的变化,基于网络环境下的教学已成为当今教学改革的核心,也更能够体现新课程标准精神。基于网络环境下的数学教学,有助于突破难点,真正实现分层教学和因材施教,从而提高教学效益。基于网络环境下的数学教学应处理好网络与学生的和谐关系,网络与教师的关系,教师与学生的关系。关键词:教学 数学 网络 新课标传统的教育模式的教学方法、教学手段和教学评价已不能适应社会发展和人们学习的需要,基于网络环境下的学科教学和课堂评价的出现和普及,极大的丰富了教学改革的内容,充分有效的利用了教学资源,基于网络环境下的课堂教学与评价把文本、图像、图形、视频、音频、动画整合在一起,并通过互联网进行处理、控制传播、为学生提供了最理想的学习环境。 一、基于网络环境下的数学教学的含义 基于网络环境下的数学课堂教学,根据新课程标准的教学内容和教学目标需要,继承传统教学的合理成分,打破传统教学模式,全天候,不间断,因材施教的新型教学方法,教学与评价的信息在互联网上传输与反馈,极大的优化了教师群体,极大的丰富了学生的知识能力。基于网络环境下的教学,可以共享教学资源,传递多媒体信息,适时反馈学生学习情况,刺激学生不同的感官,符合学生的学习认知规律,提高学生的学习兴趣,扩大了信息接受量,增大了课堂教学容量,同时又具有实时性,交互性,直观性的特点大大丰富了课堂教学模式,同时又满足了分层教学,因材施教,远程教学等社会需要,开创了教学的全新局面。 二、基于网络环境下数学教学与评价的应用 基于网络环境下数学教学与评价有两大优点: 1、能做到图文并茂,再现迅速,情境创设,感染力强,能突破时空限制,特别是基于.Net技术的交互式动态网页更能提高学生的多种感官的感知效能,发挥个体的最大潜能和创造力,加快学生对知识的理解、接受和记忆,也最能体现新课标的精神,也极大的满足社会全民教育,终身教育的要求。 2、同时全体老师又能通过网络共享教学资源,适时创新资源,使每一位老师都成为名师,使教学的方法水平永不落后。如在讲授函数这部分内容时,二次函数,幂函数,指数函数,对数函数,三角函数的图像以及图像变换是重点内容,关于函数图像的传统画法,是通过师生列表,描点,连线而得,这些工作烦,静止孤立,间断的点和线。教师要自制每一节的课件难度大,时间又有限,而基于网络环境下的数学教学,就可以充分利用网络版课件,进行网上学习,从而化静为动,化繁为简,减轻教师的体力负担,使教师有更多的时间进行创新研究,同时让学生在交互的动态的网络环境下学习,函数值随自变量变化而同步变化以及对应运动的轨迹,从而得到完整精确的函数图像,通过交互学习让学生充分体会同一函数不同参数与图像特征之间的联系,充分掌握函数的性质和抓住图像的平移、反射、压缩、拉伸和对称变换特征。若有疑问或好的见解,还可以通过网络进行远程的交流互动。通过多媒体,交互反馈,使学生深刻理解,不易遗忘。也培养了学生自我学习和终身学习的能力。网络环境下的数学教学,教师教得轻松,也有更多的时间进行个别指导,学生学得愉快。学得有趣,这样数学教学的效率也提高了。 二、基于网络环境下数学教学突破教学难点 高中数学中有一些知识需要通过抽象思维来解决问题,而这也正是高中数学的难点之一,基于网络环境下的教学可以化抽象为直观,有利于突破难点。 如“二次函数即:y=ax2+bx+c(a≠0)在[m,n]上的最值的探讨,学生对二次函数的开口,对称轴移而区间不动或图像不动而区间变化时函数的最值”不易理解,在网络环境下,学生通过对网络课件的阅读和对a,b,c,m,n的动态控制,能深刻理解数学知识的要点,加上在网上的即时测试和评价,更能有效的掌握它,不再感到难以理解。 三、基于网络环境下的数学教学与评价形式多样化,即时化。 传统的教学形式是教师讲,学生听,这样教学方式课堂容量有限,反馈方式单调,信息交流少,所有的学生步伐相同不利于因材施教,不利于培养学生现代的终身的学习能力,同时不能解放教师,让教师从事更有意义的教育工作。而网络环境下的教学可以同时满足不同用户不同要求,培养活学活用的能力,真正实现教学以学生为中心,教学面向全体通过互联交流互联互动进行分层教学、个别教学实现因材施教,体现新课标的要求, 四、基于网络环境下数学教学应处理好的关系 (1)网络与学生的关系 和谐是教学成功的关键。实践中发现基于网络环境下的学科教学,应加强对互联网海量信息的搜索,筛选,加工,创新。在选好教育资源后,教师要努力探索适时、适用问题,创设学习情境,营造和谐的环境。加上学生对网络应用知识基本掌握,达到网络与人的和谐统一。 (2)网络与教师的关系 基于网络环境下的学科教学优势空前,实践中发现,只有网络环境下的教学与教师灵活生动的讲解和创新的适时评价互相配合,相互促进,协调传递信息,最大限度地发挥网络和教师的优势。 (3)教师与学生的关系 教为主导,学为主体,这是在任何教学模式中都应遵循的原则,要体现学生的主体发展与教师的主导相互作用的关系。专题教学网站和网络教学资源库的形成,即将教师从繁杂的重复劳动中解放出来了,但教师的主导作用不是减弱了而是加强了,网络环境下的教学,对教师提出了更高的要求,教师必须挤出大量的时间学习Windows,Authorwear,3Dmax,Flash等方面的知识,还要学会搜索,筛选,创新信息的能力,甚至包括各种电教媒体的操作技能和技巧,只有这样,才能使自己在网络环境下的学科教学中获得自由,掌握主动,充分发挥网络教学的优势,提高我国的教育教学质量。

函数图像研究论文

1、知识与技能:掌握二次函数的图象与性质,能够借助于具体的二次函数应用所学知识解决简单的函数问题,理解和掌握从不同的角度研究函数的性质与图象的方法。2、过程与方法:通过老师的引导、点拨,让学生在分组合作、积极探索的氛围中,通过回顾归纳,类比分析的方法掌握从函数图象出发研究函数性质和从函数解析式性质去研究函数图象这两种从不同角度研究函数的数学方法,加深对函数概念的理解和研究函数的方法的认识。3、情感、态度、价值观:让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。重点使学生掌握二次函数的概念、图象和性质;熟悉从不同的角度研究函数的性质与图象的方法。难点借助于二次函数的解析式通过配方对函数性质的研究来分析推断二次函数的图象。

函数图像的教学研究论文

摘要: 数形结合的思想是数学中一种重要的思想方法,而在函数的教学中把刻画数量关系的数和具体直观的图形有机结合,用代数的语言揭示几何要素及其关系,同时将几何问题转化为代数问题,扬数之长,取数之优,使抽象思维与形象思维珠联璧合,不但可以提高学生对图形世界的直观感知而且可以使学生更好地理解函数,更加快捷准确的求解答案。

关键词: 函数图像 研究

从以往的教学经验来看,学习函数这部分内容要求学生进行数与形相结合的运算,即要求使符号语言、图形语言结合起来,使抽象思维和形象思维结合起来。学生会遇到很多需要“数”与“形”并举或转换的情形。因此,函数的学习是困扰很多学生的难点。作为教师,我们面临的突出问题是:如何在教学中针对学生的思维特点,制定有效的教学策略高质量地完成函数教学任务。笔者从一个数学教师的角度出发浅谈一下自己对函数教学方面的研究以及心得体会。

1加强学生对函数概念的理解

初中课本上运用“变量说”将函数描述为:设在一个变化过程中有两个变量x与y,如果变量y随着x的变化而变化,并对于x在某个变化范围内的每一个值,按照某个对应规则,都有唯一确定的y值和它对应,那么y就是x的函数,x称为自变量,x的取值范围称为函数的定义域,和x的值对应的y值称为函数值,函数值的全体称为函数的值域。高中阶段,运用“对应说”函数被定义为:设A,B是两个非空的数集,如果按某种对应法则f对于集合A中的每一个元素x,在集合B中都有唯一的元素y和它对应,这样的对应叫做从A到B的一个函数记作:y=f(x),x∈A。

以上两种函数的定义,各有各的不同特点。“变量说”是最朴素、最根本的,便于和实际相结合,初学者更容易接受。“对应说”抽象化的`程度较高,对于研究函数的精细性质具有一定的优势。适合在高中阶段介绍给学生。

讲述函数概念时,我们需要注意以下细节问题。

1。1实现由静到动的转变

学生由于长期在常量范围内计算、思维,因此以为变量一直是变,常量永远是不变。在引入函数概念之前,需要完成从常量到变量的转变,这是函数教学的一个重点。

例如“一架飞机每小时飞行1000千米,问5小时此架飞机飞行的距离是多少?”小学生只能给出正确的答案,但很少能够注意到路程S和时间t的关系。对于初中生我们要能引导他得出S=1000t的函数公式。在高中的实际教学中,我们可以把S表示为数轴上的一个定点,而把t看成是一个动点。取自变量t的一系列特定值,列出相应的另一个变量S(t)的对应值,在坐标系上描绘出这些点,这样会使学生能够比较容易地感受到变量的真实意义。

1。2突出变量之间的依赖关系

自变量和因变量之间的依赖关系是函数。通常表示为y=f(x),f表示x和y之间的对应关系。对于定义域内的任意一个x,通过对应关系f,对应唯一的一个y值。我们可以例举生活中的例子,让学生找出自变量x,然后再找出依赖此变量x的变化而变化的因变量y,最后设法找出它们之间的对应关系。从实际事例中寻找函数关系,构造事物变化过程中的具体函数关系,有利于加强学生对函数的理解。

2加强学生对函数图像的应用

在函数的教学中,我们不但要让学生深刻的理解函数的概念。还要不断帮助学生归纳各种初等函数的图形性质,并且教会学生快速画出初等函数的图形,这样在其今后的解题中将会发挥重大的作用。函数一般分为一次函数、二次函数、指数函数、对数函数和幂函数,下面以二次函数为例,来谈一下函数教学的研究体会。

在教学中,我们要引导学生对函数的图像特征进行归纳总结。可以先介绍特殊的二次函数的表达式y=ax2(a≠0),通过赋予x特殊的数值来对其图像进行描绘,进而归纳图像特征:图像形状为抛物线;顶点为原点;对称轴为y轴;a决定其开口方向,a>0时开口向上,a<0时开口向下。进而通过将y=ax2(a≠0)的图像向上下左右平移,引出二次函数的一般表达式y=ax2+bx+c(a≠0),并将其配方为y=a(x+b a="">0时开口向上,a<0时开口向下;(2)函数的对称轴为x=—b c="">0时,图像与y轴交在正半轴,c<0,图像与y轴交在负半轴,c=0,图像与y轴交在原点;(5)△=b2—4ac决定图像与x轴的交点个数,△>0时,图像与x轴有两个交点,△<0时,图像与x轴无交点,△=0时,图像与x轴无交点。

掌握了函数的基本特征后,学生就能对任一个二次函数进行绘制了,进而在一些有关函数的解题过程中就可以通过数形结合进行求解,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其尤为重要,因此我们要引导学生加强对函数图形的掌握,培养数形结合的这种思想意识,做到胸中有图,见数想图,以开拓自己的思维视野。

参考文献

[1]吴志鹃。二次函数图像的教学设计[J]。希望月刊(上半月),2007(11):108。

[2]梁小瑜。加强函数图像教学,衔接初高中数学教学[J]。师道·教研,2010(6):27~28。

[3]付尚英。浅谈利用函数的图像特征解题[J]。金色年华(教学参考),2010(12):113。

数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下文是我为大家搜集整理的关于数学毕业论文参考范文下载的内容,欢迎大家阅读参考! 数学毕业论文参考范文下载篇1 浅析高中数学二次函数的教学方法 摘要:二次函数的学习是高中数学学习的重点,也是难点。师生要一起研究学习二次函数的基本方法,掌握其学习思路和规律,这样才能学好二次函数。 关键词:高中数学;二次函数;教学方法 在高中数学教学过程中,二次函数是非常重要的教学内容。随着教学改革的不断推进,初中阶段的二次函数因为是理解内容,没有纳入到考试内容中去,使高中学生在学习二次函数时有难度。因此,教师在教学这部分内容时,必须注重巩固和复习初中二次函数的内容和知识点,同时采取有效的方法合理地进行二次函数教学,确保获得较高的效率和质量,达到提高高中生数学成绩的目的。 一、加强对二次函数定义的认识和理解 高中数学的二次函数教学主要建立在初中二次函数的知识和定义基础上。在定义和解释二次函数的内容和知识过程中,教师主要利用集合之间相互对应的关系来解释二次函数的定义。因此,高中数学的二次函数教学与初中二次函数教学之间存在本质区别,这就造成了在二次函数教学过程中,学生很难适应和接受二次函数的定义。在高中数学的二次函数教学过程中,教师要根据初中二次函数的内容和定义,引导学生全面透彻地理解二次函数的定义和相关知识,这样才能确保学生学习和掌握更多的函数知识。在二次函数教学的过程中,教师要注重引导学生复习和回顾初中阶段掌握的二次函数知识点以及相关定义,并且与高中数学的二次函数内容相比较,这样学生就能对二次函数的定义、定义域、对应关系以及值域等有更深入的认识和理解。例如,在讲解例题:f(x)=x2+1,求解f(2)、f(a)、f(x+1)的过程中,若学生对于二次函数的定义以及概念有比较清晰的认识和理解,学生就可以看出该题是一个比较简单的代换问题,学生只需要将自变量进行替换,就能求解出问题的答案。但是,在解答这类问题的过程中,教师需要正确引导学生对二次函数的定义和概念加以认识和理解,如在f(x+1)=x2+2x+2中,学生需要认识到该函数值的自变量是x+1,而不是x=x+1。 二、采用数形结合的方式进行二次函数教学 在高中数学的二次函数教学过程中,一种常见的教学方法就是数形结合教学法。在二次函数教学过程中,采用数形结合的教学方法,不仅能够帮助学生更好地理解和掌握二次函数的性质以及图象,同时还有利于解决各种各样的二次函数问题,从而达到培养学生的思维能力以及提高二次函数教学效率的目的。采用数形结合的方式进行二次函数教学,所运用到的图像既能将二次函数的性质变化、奇偶性、对称性、最值问题以及变化趋势很好地反映出来,同时也是学习二次函数解题方法以及有效开展教学的重要载体。所以,教师在二次函数的教学过程中,需采用由浅至深的方式进行教学,合理把握和控制教学的难易程度,在学生了解和熟悉二次函数图像的前提下,帮助学生总结和认识其性质变化,从而达到顺利开展二次函数教学的目的。例如,教师在引导学生绘制二次函数图像的过程中,可以采用循序渐进的方式,通过绘制简单的二次函数图像,帮助学生学习和理解图像性质。如采用描点法绘制二次函数图像f(x)=-x2、f(x)=x2、f(x)=x2+2x+1等。在学习绘制函数图像的过程中,教师还可以设置一些例题,如“假设函数f(x)=x2-2x-1,在区间[a,+∞]中,呈单调递增的变化,求解实数a的取值范围”,或者“已知函数f(x)=2x2-4x+1,且-2 三、采用开发式的教学方式,培养学生的思维能力 在高中数学的二次函数教学过程中,涉及的内容范围广,所占的比例也相对较大。因此,教师在开展二次函数教学的过程中,其涉及的教学方法以及教学思路也非常多,教师需要合理选用教学思路和方法,这样才能有效培养和提升学生的数学能力以及思维能力。例如,在二次函数教学过程中,教师可以通过引导学生求解下列例题,让学生进一步理解和掌握二次函数的定义以及外延,并思考和总结出求解二次函数的思路和方法,以培养和提升学生的数学思维能力。如已知函数y=mx2+nx+c,其中a>0,且f(x)-x=0的两个根,x1与x2满足0 参考文献: [1]高红霞.高中数学二次函数教学方法的探讨[J].数理化解题研究,2015(11). [2]郗红梅.例析求二次函数解析式的方法[J].甘肃教育,2015(19). 数学毕业论文参考范文下载篇2 浅谈高中数学教学对信息技术的应用 摘要:为了提高高中数学的教学质量与丰富数学教学内容,将原有的知识点进行整合,使得学生更容易接受相关知识,文章提出了信息技术在高中数学教学中的应用策略:以信息技术为基础,丰富课堂教学内容;以信息技术为支点,优化教学过程;利用信息技术,让学生养成探索的习惯。 关键词:信息技术;高中数学;教学 信息技术在当下社会的发展给教学带来了许多改变,不仅使得教学变得更为高效,同时还令教学的内容变得丰富多彩。因此,随着信息技术在教学中的应用越来越广泛,教师就要对于这种教学模式进行探究,让教材与信息技术可以在进行授课的时候有效结合。只要是做好了以上的内容,就可以将高中数学与信息技术有机地结合到一起,以此推动数学教学的全面发展。从另一方面来说,信息技术也从另一个角度丰富了课堂内容,让学生可以从更多的方面来接触并了解数学中相关的知识与内容。从而使得学生可以养成多方面思考的习惯,让创新精神在他们的心底萌芽。 一、以信息技术为基础,丰富课堂教学内容 学习是一件非常枯燥的事情,驱使学生进行学习的动力是对于未知事物探索的兴趣。高中数学尤为如此,因为数学是一门理论性的学科,因此在学习的过程中,肯定会涉及到一些比较抽象的知识。对于这些抽象的知识,学生在学习起来多少都会有点困难,并且会影响学生的学习积极性。那么面对高中数学的学习,教师如何缓解并改变这一现状呢?目前比较好的办法就是将数学教学与信息技术进行结合,利用信息技术的多样化以及对丰富内容的获取能力,来为学生提供更多、更好的信息内容,供学生理解与学习。多媒体可以将声音、图片、甚至是视频都集中整合起来,立体直观地将数学中的抽象知识展现给学生。并且以此来激发学生的学习兴趣,除此之外,教师利用信息技术可以让课程变得更有层次感,让学生在学习的过程中减少疲劳的感觉。比如,教师在讲解各种函数曲线及其特性的时候,就可以利用多媒体动画的方式,向学生展现相关的函数知识。通过直观的表现,学生可以轻松地理解各种函数对应的图像以及相关的变化,在今后的学习过程中,会更为熟练地运用这些知识。 二、以信息技术为支点,优化教学过程 数学是一门自然科学,它的理论都是源自我们身边的生活。因此,在教学的过程中,教师要根据知识不断地引入实例,让学生可以更好地了解所学的知识。在高中的教材中,对于知识来说,理论知识已经非常丰富,但是对于实例的列举就显得不足。那么学生在学习的时候,理解起这些枯燥的定理与公式就显得非常吃力。这就是因为教材忽略学生的学习能力,编写得太过于理论化,因此就需要教师利用多媒体的优势,来为学生搜集一些关于实际应用数学知识的例子,来让学生了解并掌握其中的规律。这样有利于培养学生的思维与抽象能力,有助于他们今后解决问题时具有明确的思路。比如,在学习概率这一部分的知识时,学生很难联想到生活中相关的事情,教师可以搜集一些类似于老虎机、彩票甚至是其他的一些生活中博彩类性质的事情让学生进行了解。然后带领学生根据其规则进行计算,让学生了解到概率知识在生活中的运用,使学生认识到赌博的坏处。 三、利用信息技术,让学生养成探索的习惯 学习对于学生来说,不是教师的任务,而是每个人自己的事情。学生作为学习的主人,应当对学习具有一定的主导性。在日常的学习中,由于枯燥的内容以及过于逻辑性的思考,会使得学生丧失对于学习的乐趣与动力。正确的教学应当是教师进行适当的引导,让学生可以在他们的好奇心以及兴趣的驱使下自由地进行学习,充分地满足他们的爱好。只有这样,才能最大程度地发挥他们的主观能动性。而将信息技术应用于高中数学,正是给学生搭建了一个这样的平台,让学生可以更好地接触到大量的数学知识以及数学理念。同时,在网络上,各种优质的教学录像比比皆是,学生如果对于某个知识点有疑问,可以随时在网络上进行查看。这对于知识的探索与掌握有着很大的帮助。此外,利用信息技术与网络的优势,还可以让学生在进行资料与问题查询的过程中,养成良好的动手与动脑习惯,不再单单地依靠教师来进行解答,而是学会尝试用自己的方式来找到答案,这对学生的自主探究能力产生了一种提升作用。同时,由于结论是学生自己得到的,那么印象自然非常深刻。总之,信息技术在高中数学教学中的应用,是一件一举多得的事情,不仅可以改变高中数学枯燥的教学环境,而且能充分调动学生的学习积极性,让学生在学习的同时还能了解到更为广泛的信息与其他知识,并且可以激励学生对于疑难问题进行自主探索,提高了他们动手动脑的能力,并且也提高了教学质量。 参考文献: [1]唐冬梅,陈志伟.信息技术在高中数学学科教学中的应用研究文献综述[J].电脑知识与技术,2016(18):106-108. [2]傅焕霞,张鑫.浅议信息技术与高中数学教学有效整合的必要性[J].科技创新导报,2011(35):163. [3]王继春.跨越时空整合资源:信息技术与高中数学教学的有效整合[J].中国教育技术装备,2011(31):135-136. [4]崔志.浅析新课程标准的背景下信息技术在高中数学教学中的应用[J].中国校外教育,2014(10):93. 猜你喜欢: 1. 关于数学的论文范文免费下载 2. 数学系毕业论文范文 3. 数学本科毕业论文范文 4. 数学文化的论文免费下载 5. 大学数学毕业论文范文

函数图像的应用和研究论文

1)函数解析式的求法: ①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法: 含参问题的定义域要分类讨论; 对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。(3)函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;②逆求法(反求法):通过反解,用y来表示x,再由x的取值范围,通过解不等式,得出y的取值范围;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域。⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域函数的性质:函数的单调性、奇偶性单调性:定义:注意定义是相对与某个具体的区间而言。判定方法有:作差比较和图像法。应用:比较大小,证明不等式,解不等式。奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数; f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。例:已知f(x)为奇函数,当x>0时,f(x)=x(1-x),则x<0时,f(x)=_______ 解:设x<0,那么-x>0代入f(x)=x(1-x),得f(-x)=-x(1+x), f(x)为奇函数 所以f(-x)=-f(x) 得f(x)=x(1+x),

看完图片你就会知道捷径的!

1、知识与技能:掌握二次函数的图象与性质,能够借助于具体的二次函数应用所学知识解决简单的函数问题,理解和掌握从不同的角度研究函数的性质与图象的方法。2、过程与方法:通过老师的引导、点拨,让学生在分组合作、积极探索的氛围中,通过回顾归纳,类比分析的方法掌握从函数图象出发研究函数性质和从函数解析式性质去研究函数图象这两种从不同角度研究函数的数学方法,加深对函数概念的理解和研究函数的方法的认识。3、情感、态度、价值观:让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;同时通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识。重点使学生掌握二次函数的概念、图象和性质;熟悉从不同的角度研究函数的性质与图象的方法。难点借助于二次函数的解析式通过配方对函数性质的研究来分析推断二次函数的图象。

毕业论文的图表怎么弄

可以用visio,也属于办公软件的一种,用它画图方便,画好的图用在word文档中也方便,就全选,复制,粘贴到word就行了,visio还提供了很多种类的绘图类型,用起来很方便

1、加题注:打开word,给我们的图表加上相应的题注,把光标停留在适当的地方,一般是图表的下方,然后,选择上功能选项卡的引用——》插入题注,2、点击插入题注后,弹出题注对话题,我们在题注处输入我们的图表的说明或是其它一些信息,然后点击确定,。3、这样,我们的图表的对应一条题注就加上了,如图。同理,我们给word所有需要生成图表目录的图表都加上题注。4、如果我们修改或是复制过去的话,就需要选择其中的数字,点击右键,弹出菜单,点击更新域,5、插入图表目录:我们的题注都添加完成之后,我们就可以插入图表目录了。我们把鼠标的光标停留在插入图表目录的地方。同样,点击引用功能卡,选择插入表目录,6、弹出图表目录的对话框,我们可以对相应的格式、样式进行设置,一般默认就可以了,不需要设置,弄好后,点击确定,7、确定后,我们的图表目录就插入成功了,8、如果,我们对图表进行了修改,记得对我们的图表目录进行更新域,如图,点击右键,弹出菜单,选择更新域即可。

word可以画,但是扩展性不好。推荐visio,微软的专业作图工具,使用类似Office套件

问题一:如何利用Excel画论文常用折线图 2003及其以下版本: 选定数据――菜单栏――插入――图表――图表类型:折线图――下一步或默认完成。 2007及其以上版本: 选定数据――菜单栏――插入――图表版块――折线图。 问题二:如何利用Excel2007画论文常用折线图 高尔基说过:“(开头)好像音乐里定调一样,全曲的音调都是它给予的,也是作者花功夫的所在。”议论文的开头要讲究“短、快、靓”。短,即要简捷,最好三两句成段,引入本论。开头短,可避免冗长之赘,而且短句成段,在空间上突出其内容的重要性。快,即入题要快,最好三言两语就点明文章的基本观点或议论的话题。因为评分标准中有“中心明确”的细则。开篇确定中心,有利于阅卷者按等计分,也有利于作者展开论述,不致出现主旨不清、中途转换论题等作文大忌。靓,即要精彩。这也是传统文论中所说的“凤头”。精彩的开头,最突出的效果是吸引阅卷者,给阅卷者留下好的印象。文章开头要精彩,多用比喻、类比、排比等修辞引入论点,还可引述名言,讲述寓言故事导入话题。 中间段写好首句和末句 议论文的结构是否严谨,条理是否清楚,论证是否严密,论据是否典型,关键在中间段的写作。而结构、条理、论证和论据等是议论文评分的重要细则,因此,写作议论文要尽量符合这些标准。 常见的论述模式是:首句为小论点或承上启下的过渡词句;中间围绕小论点,运用恰当的事实、理论论据,或针对现实生活中的某些现象,分析说理;最后结合论述内容写一两句小结的话语。其中首句和末句的写作最重要,它能直接勾勒文章的脉络,显示全文的论述思路。另外,文章的整体论证结构常用正反对比式。许多道理只要从正反两面说了,就基本上可做到论述严密。在考场中熟练地运用这种作文模式,可迅速地展开写作,减少失误,节省时间。同时,它可使阅卷者能便捷地依据评分标准,在中档以上分项计分,避免不利于考生的个人评分因素出现。 问题三:论文写作 word怎样插入折线图 插入--->图表,然后选择图表类型,折线图。编辑数据就可以了 问题四:大专毕业论文折线图如何完善 你好!根据我的经验,如果是图片格式的话,一般是不会查重的,如果是自己用软件做出来的就可能被查重了。 问题五:毕业论文折线图形格式 可以不一样,只要和你的论文,开题内容相关就可以了,采纳 问题六:论文需要一张折线图,图的下方写上图1就行了,很急急急。画好的截给我。 按照对你需求的理解,我把数据做在一个表格里面了,希望对你有用。 另:如果你是写论文的话“图下方写上图1”的需求最好在WORD里标出。 问题七:那种论文中的曲线或折线走势图是用什么画 论文的表达方式:叙述、描写(语言,动作,外貌,心理,神态,环境等或正面,侧面)、议论、抒情、说明等 论文的语言的特点:准确,生动 论文的表现手法:白描、衬托、渲染、对比、伏笔、铺垫等。 问题八:拜托问大家一件事,有点傻傻的,用什么来做论文的饼图、柱图、折线图方便呢??? 传说中有一种东西叫Excel 问题九:论文中的这种图表一般用什么软件做的,求高人指点,急 Microsoft word 2003或2007就有,选择图表-折线图就OK了~~~ 问题十:WPS表格中如何制作折线图 步骤: 1、选中数据区--> 2、工具栏菜单-->插入-->图表-->选择“折线图”--> 3、点击“系列”-->X轴区域-->选择对应X轴标记区域--> 4、根据需要,完成图表有关项目(如:Y轴单位、图表标题、X轴单位等)的补充-->点击“完成”--> 5、根据需要,右击相应区域(如,绘图区、数据系列、坐标轴等),进入相关菜单,完成进一步的修改和调整即可。

  • 索引序列
  • 毕业论文里的函数图像怎么弄
  • 函数的图像研究论文
  • 函数图像研究论文
  • 函数图像的应用和研究论文
  • 毕业论文的图表怎么弄
  • 返回顶部