三维的课程目标应是一个整体,知识与技能、过程与方法、情感态度与价值观三个方面互相联系,融为一体。在教学中,既没有离开情感态度与价值观、过程与方法的知识与技能的学习,也没有离开知识与技能的情感态度与价值观、过程与方法的学习。新课程背景下的课堂教学,要求根据各学科教育的任务和学生的需求,从“知识和能力”“过程和方法”“情感态度和价值观”三个方面出发设计课程目标。具体到教学实践,就是要把原来目标单一(即知识与技能)的课堂转变为目标多维(即知识与能力、过程与方法、情感态度与价值观三个维度)的课堂。
知识目标,能力目标,情感与价值目标
《基础教育改革与发展纲要》确立了“知识与技能、过程与方法、情感态度与价值观”的三维教学目标。其中,知识与技能仍然被作为一个重要的教学目标放在了突出地位,后面两个目标则充分体现了新课程以学生发展为本的特征(可称之为“过程性目标”) 。三维目标的确立为基础教育顺应时代发展作出了科学的目标定位。教学目标是人们对教学结果的一种预设。作为构成教学诸要素中的一个至关重要的因素 ,它既是教学的出发点,又是教学的归宿。因此, 教师在教学实践中对课时教学目标的制定是否恰当,教学过程中目标的达成度如何,将直接决定一堂课的教学效果,进而决定教学质量。在此,本人拟从目前课堂教学中的一些现象分析出发,就小学数学教学中怎样理解、把握和处理三维目标的有关问题,谈一点个人的看法。[现象一] 在一些课堂上,尤其是在一些公开课中,教师为了突出过程与方法、情感态度与价值观的教学目标,尽其所能地创设了各种“生动”的教学情境,安排了大量的游戏、操作、自主探索与合作学习等活动,并在教学中不时地加入一些贴标签式的“道德情感教育”,课堂上学生兴趣高涨,气氛热烈。然而在“热闹”之余,往往看不到教师在知识与技能形成的关键处给学生以必要的引导和点拨,学生在实践活动之后缺乏理性的总结归纳,很多课堂上没有学生独立思考和独立完成作业的时间。因此,在对学生进行成绩检测时,其基础知识和基本技能的掌握情况往往达不到《课程标准》或《教学大纲》的基本要求。不少教师由此深感困惑:我在教学中如此尽力地体现新课程理念,为何在教学质量上事与愿违?[现象二] 课程改革在我县正式实施已近两年,但在一些教师的教学中,仍然表现出只追求知识技能单一目标的倾向。看其教学设计,难见数学思考、解决问题与情感态度方面的目标表述;观其课堂教学,基本沿袭传统模式,学生主要通过听讲或简单的问答去接受知识。一节课下来,除了被动接受的基础知识与基本技能,学生在其他方面鲜有收获。[反思]产生以上两种现象的根本原因,一是教师对新课程三维目标的认识不足;二是对三维目标间的关系把握失当;三是教学目标游离于教学过程之外,没有得到落实。“现象一”暴露出对知识技能目标的忽视,导致教学只有热闹的过程,学生没有掌握后继学习所必备的基础知识与基本技能,是一种华而不实、无果而终的教学;“现象二”则反映出教学中过程性目标的缺失,这样的教学使学生的思维能力、探索精神和创新意识等综合素质的发展严重受限。以上两种现象反映了当前课改背景下小学数学教学中出现的两个极端,它们都偏离了课程改革的正常轨道,若不及时纠正,将严重影响小学数学教学质量的提高和课程改革的深入推进。[对策] 一、加强理论学习,深入理解课程目标1、明确数学教学的三维目标在《数学课程标准》中,三维目标在结构和表述语言上都有变化。根据数学教学的学科特点,《数学课程标准》对“知识与技能、过程与方法、情感态度与价值观”的三维目标进行了分解和重组,从知识与技能、数学思考、解决问题、情感与态度四个方面进行了阐述。细读《标准》可知,这四个方面的目标并非纯粹的并列关系,其中含有相互间的融合与渗透。如在知识技能目标中,多次出现“经历……..过程”,即在某一个方面的目标中,蕴含了其他方面的目标。2、正确理解三维目标之间的关系。知识技能目标同过程与方法、情感态度与价值观这两方面的目标(过程性目标)应该是一种相辅相承的关系,而不是对立的关系。关于这一点,《数学课程标准》中已有明确阐述:“数学思考,解决问题,情感与态度的发展离不开知识与技能的学习,同时,知识与技能的学习必须有利于其他目标的实现为前提。”这就是说,一方面,知识技能目标是实现发展性目标的基础和依托,因为任何过程性目标的实现,都要通过对一定的具体教学内容的学习为载体来进行,如果脱离了具体知识的学习,任何“过程”都只能是无本之木、无源之水而失去价值;另一方面,过程性目标是实现知识技能目标的中介,因为任何知识和技能总是要通过一定的学习形式和学习过程来获得。只重结果不重过程的教学固然不可取,只重过程而问题得不到解决的课堂教学,也不符合新课程的要求。因此,我们应该牢固树立过程与结果并重的意识,并在教学活动中努力促成各个教学目标之间的协调统一和相互促进.二、在教学设计中整合三维目标,体现新课程教学目标的全面性鉴于以上分析,教师在制定课时教学目标时,就应从知识与技能的掌握和学生的可持续发展两方面着眼,突出教学目标的全面性。现以实例说明:教学内容:九年义务教育数学教材第九册《平行四边形面积的计算》教材分析:本课含有以下教学内容:(1)平行四边形面积公式的推导。(2)平行四边形面积公式的应用。首先,这两个教学内容显然直接对应了本课的知识技能目标。但仅仅看到这一点是不够的,因为教材中还蕴涵着丰富的发展性目标因素,即在推导公式的时候,如果不是由教师包办,而是让学生在教师的引导下去亲历知识的形成过程,就能有效地培养他们的实践能力和合作意识,并得到数学思想方法的熏陶和积极的情感体验。因此,本课的教学目标可确定为:1、使学生初步掌握平行四边形的计算方法,能用平行四边形的面积公式进行计算。2、通过经历平行四边形面积公式的推导过程,培养学生的合作意识、操作实践能力和抽象概括能力,并初步感知平移、转化的数学思想方法。3、使学生通过学习活动获得成功体验,提高学习数学的兴趣,增强学好数学的信心。在以上的教学目标中:第1条属于知识技能目标,它含有“理解并记住平行四边形的面积公式”和“会用公式进行计算”这两个具体的目标。第2、3条则体现了数学思考、解决问题、情感与态度等过程性目标。显然,此教学目标避免了前面所述两种现象中目标缺失不全的弊端,体现了三维目标的整合。三、围绕目标设计教学过程,在过程中落实目标教学目标一经确立,教师就要根据教学目标去组织教学内容,选用教学方法,设计教学过程,使一切教学活动都紧紧围绕教学目标的实现去展开。例如,根据前面确立的《平行四边形面积的计算》一课的教学目标,在设计教学过程时,就应该把握以下几个要点:1、 以复习长方形面积公式引入新课。(“转化”的起点)2、 进入探求新知的环节后,可先让学生大胆猜想平行四边形面积 的求法,再通过合作交流和教师的引导,明确转化的方向。3、 动手实践,完成转化。让学生通过剪、移、拼等操作活动,完成平行四边形到长方形的转化。此时,教师要让学生明确“延高剪开”的必要性。(转化的关键)4、 引导学生通过比较分析,得出平行四边形面积的计算公式后,教师应作小结并再现公式的推导过程,同时启发学生去感悟平移和转化的数学思想方法。(进一步落实数学思考目标)5、 保证课堂练习的质量和时间,以使学生牢记和熟用公式。同时,教师要根据课堂交流和作业反馈信息,对知识技能目标的达成度进行量化检测。(落实知识技能目标、解决问题的目标)在此,我们可以设想这样的教学进程:在教师的引导下,学生通过动手剪切、平移和拼接,将平行四边形转化成长方形;再通过观察、比较、分析和概括,归纳出平行四边形的面积公式;然后,带着成功的喜悦,利用公式去解决求面积的各种实际问题……整个过程完全围绕预先设立的教学目标来进行。学生通过亲历这个过程,不仅能够牢固掌握并熟练运用S=ah这个公式,而且对平移和转化的数学思想方法有了初步体验,在数学思维和学习方法上进行了一次有效的积累,感受了成功的快乐,增强了学习的兴趣和信心。在这样的教学中,知识技能目标与过程目标都得到了落实,而且各个目标之间在功能上形成了一种相互促进的关系,而这正是实施新课程的目的所在。 教学目标是教学的根本,是进行小学数学教学首先要完成的。如:使学生能正确地理解概念、牢固地掌握概念、正确地运用概念等一些有关基础知识、基本技能的教学目标,完成这些基本的教学目标是实现教学的首要前提。作为构成教学诸多要素中的一个至关重要的因素,它既是教学的出发点,又是教学的归宿点。因此,教师在教学实践中对课时教学目标的制定是否恰当,教学过程中目标的达成度如何,将直接决定一堂课的教学效果,进而决定教学质量。在此,本人就目前课堂教学中的一些现象和小学数学教学中怎样理解、把握和处理三维目标的有关问题,谈一点个人的看法。 在一些课堂上,尤其是在一些公开课中,有这样的现象:教师为了突出过程与方法、情感态度与价值观的教学目标,尽其所能地创设了各种“生动”的教学情境,安排了大量的游戏、操作、自主探索与合作学习等活动,并在教学中不时地加入一些贴标签式的“道德情感教育”,这样的课堂学生往往兴趣高涨,气氛热烈。然而在“热闹”之余,往往看不到教师在知识与技能形成的关键处给学生以必要的引导和点拨,学生在实践活动之后缺乏理性的总结归纳,很多课堂上没有学生独立思考和独立完成作业的时间。因此,在对学生进行成绩检测时,其基础知识和基本技能的掌握情况往往达不到《数学课程标准》的基本要求。还有一种现象,在一些教师的教学中,仍然表现出只追求知识技能单一目标的倾向。看其教学设计,难见数学思考、解决问题与情感态度诸方面的目标表述;观其课堂教学,基本沿袭传统模式,学生主要通过听讲或简单的问答去接受知识。一节课下来,除了被动接受的基础知识与基本技能,学生在其他方面鲜有收获。以上两种现象反映了当前参与式教学中数学教学出现的两个极端,它们都偏离了参与式的正常轨道,要纠正这些现象,除加强理论学习,深入理解课程目标外,还应:一、在教学设计中整合三维目标,真正体现参与式教学目标的全面性。 教师在制定课时教学目标时,应从知识与技能的掌握和学生的可持续发展两方面着眼,突出教学目标的全面性。例如《人教版九年义务教育数学教材第十二册)教材中《圆柱的体积》一节中含有以下教学内容:(1)圆柱体体积公式的推导。(2)圆柱体体积公式的应用。首先,这两个教学内容直接对应了本课的知识技能目标。同时,教材中还蕴涵着丰富的发展性目标因素,即在推导公式的时候,如果不是由教师包办,而是让学生去亲历知识的形成过程,就能培养他们的实践能力和合作意识,并得到数学思想方法的熏陶和积极的情感体验。 因此,本课的教学目标可确定为: 1.使学生初步掌握圆柱体体积计算方法,能用圆柱体体积公式进行计算。 2.通过经历圆柱体体积公式的推导过程,培养学生的合作意识、操作实践能力和抽象概括能力,并初步感知切割、转化的数学思想方法。 3.使学生通过学习活动获得成功体验,提高学习数学的兴趣,增强学好数学的信心。 在以上的教学目标中:第1条属于知识技能目标,它含有“理解并记住公式”和“会用公式进行计算”这两个具体的目标。第2、3条则体现了数学思考、解决问题、情感与态度等过程性目标。 显然,此教学目标避免了前面所述两种现象中目标缺失不全的弊端,体现了三维目标的整合。二、围绕目标设计教学过程,在过程中落实目标。 教学目标一经确立,教师就要根据教学目标去组织教学内容;选用教学方法;设计教学过程,使一切教学活动都紧紧围绕教学目标的实现去展开。 例如,根据以上所确立的《圆柱的体积》一课的教学目标,在设计教学过程时,应该着重把握以下几点: 1.以复习长方体体积公式引入新课。(“转化”的起点) 2.进入探求新知的环节后,可先让学生大胆猜想圆柱的体积的求法,再通过合作交流和教师的引导,明确转化的方向。 3.动手实践。学生通过剪、拼等操作活动,完成圆柱体到长方体的转化。此时,教师要让学生明确“延高剪开”的必要性。(转化的关键) 4.引导学生通过比较分析,得出圆柱体积的计算公式后,教师应作小结并再现公式的推导过程,同时启发学生去感悟切割和转化的数学思想方法。(进一步落实数学思考目标) 5.保证课堂练习的质量和时间,以使学生牢记和熟用公式。教师要根据课堂交流和作业反馈信息,对知识技能目标的达成度进行量化检测。(落实知识技能目标、解决问题的目标)在此,我们可以设想这样的教学进程:在教师的引导下,学生通过动手剪切、平移和拼接,将圆柱体转化成长方体;再通过观察、比较、分析和概括,归纳出圆柱体的体积公式;然后,带着成功的喜悦,利用公式去解决求体积的各种实际问题……整个过程完全围绕预先设立的教学目标来进行。学生通过亲历这个过程,不仅能够牢固掌握并熟练运用V=sh这个公式,而且对切割和转化的数学思想方法有了初步体验,在数学思维和学习方法上进行了一次有效的积累,感受了成功的快乐,增强了学习的兴趣和信心。在这样的教学中,知识技能目标与过程目标都得到了落实,而且各个目标之间在功能上形成了一种相互促进的关系,这样不仅体现了教学目标的“主体性、探索性、实践性和激励性”原则,也正是实施参与式教学的目的所在。
三维目标是教育理论中的一个新名词。它是指教育教学过程中应该达到的三个目标维度,即:知识与技能;过程与方法;情感态度与价值观。
(1)知识与技能目标: 主要包括人类生存所不可或缺的核心知识和学科基本知识;基本能力——获取、收集、处理、运用信息的能力、创新精神和实践能力、终身学习的愿望和能力。
(2)过程与方法目标:主要包括人类生存所不可或缺的过程与方法。过程——指应答性学习环境和交往、体验。方法——包括基本的学习方式(自主学习、合作学习、探究学习)和具体的学习方式(发现式学习、小组式学习、交往式学习……)。
(3)情感态度与价值观目标: 情感不仅指学习兴趣、学习责任,更重要的是乐观的生活态度、求实的科学态度、宽容的人生态度。
扩展资料:
1、要整合三维目标,前提是要整体解读文本,科学确定每一个维度的目标。“夫缀文者情动而辞发,观文者披文以入情,沿波讨源,虽幽必显。”在阅读文本时,首先要确定情感态度与价值观的发展点。
2、目标的逐维分解有利于目标的具体化、操作化,分解目标只是教学目标设计的第一步,关键是把分解后的目标整合起来,整合的目标更有利于目标的结构化和整体化。
3、在目标的表述形式上,虽然没有出现知识和能力、过程和方法、情感态度和价值观三个维度目标明显的提示语,但是每一条目标都很好地把三维目标交融在一起,并且分层递进,为课堂教学达到三维目标和谐共振奠定了基础。
参考资料:百度百科-三维目标
图片上的算字数。上传文件到检测系统,其实检测系统是基于字符数,对于如何计数字符数,论文检测系统也会有相应的介绍。您可以通过打开Word文档来检测字符数。请注意,文件是用Word打开的,底部有一个“单词计数”按钮,您也可以看到“字符计数”。在知网检测中,影响论文总数的因素很多。例如,将图片、表格或公式插入到论文中会影响字符的数量,并且在计算中应该有一定的空白,这样上传检测中的文件大小就不会太大。如果文件太大,请删除未检测到的部分内容,但不建议拆分论文并多次检测。有时,我们可以删除一些在选择初稿时不需要测试的内容,因为第一稿测试的意义在于选择需要反复修改的重要部分,而最终测试则需要在提交给学校之前进行。
论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :
原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图像识别基准上取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测了图像中每个对象类别的单个边界框和置信度得分。这样的模型捕获了围绕对象的整幅图像上下文,但如果不天真地复制每个实例的输出数量,就无法处理图像中同一对象的多个实例。在这篇论文中提出了一个显著性启发的神经网络检测模型,它预测了一组与类无关的边界框,每个框有一个分数,对应于它包含任何感兴趣的对象的可能性。该模型自然地为每个类处理数量可变的实例,并允许在网络的最高级别上进行跨类泛化。 目标检测是计算机视觉的基本任务之一。一个解决这个问题的通用范例是训练在子图像上操作的对象检测器,并在所有的场所和尺度上以详尽的方式应用这些检测器。这一范例被成功地应用于经过区别训练的可变形零件模型(DPM)中,以实现检测任务的最新结果。对所有可能位置和尺度的穷举搜索带来了计算上的挑战。随着类数量的增加,这个挑战变得更加困难,因为大多数方法都训练每个类单独的检测器。为了解决这个问题,人们提出了多种方法,从检测器级联到使用分割提出少量的对象假设。 关于对象检测的文献非常多,在本节中,我们将重点讨论利用类不可知思想和解决可伸缩性的方法。 许多提出的检测方法都是基于基于部件的模型,最近由于有区别学习和精心设计的特征,已经取得了令人印象深刻的性能。然而,这些方法依赖于在多个尺度上详尽地应用零件模板,这是非常昂贵的。此外,它们在类的数量上是可伸缩的,这对像ImageNet这样的现代数据集来说是一个挑战。 为了解决前一个问题,Lampert等人使用分支绑定策略来避免计算所有可能的对象位置。为了解决后一个问题,Song et al.使用了一个低维部件基,在所有对象类中共享。基于哈希算法的零件检测也取得了良好的结果。 另一种不同的工作,与我们的工作更接近,是基于对象可以本地化的想法,而不必知道它们的类。其中一些方法建立在自底向上无阶级分割[9]的基础上。通过这种方式得到的片段可以使用自上而下的反馈进行评分。基于同样的动机,Alexe等人使用一种廉价的分类器对对象假设是否为对象进行评分,并以这种方式减少了后续检测步骤的位置数量。这些方法可以被认为是多层模型,分割作为第一层,分割分类作为后续层。尽管它们编码了已证明的感知原理,但我们将表明,有更深入的模型,充分学习可以导致更好的结果。 最后,我们利用了DeepLearning的最新进展,最引人注目的是Krizhevsky等人的工作。我们将他们的边界盒回归检测方法扩展到以可扩展的方式处理多个对象的情况。然而,基于dnn的回归已经被Szegedy等人应用到对象掩模中。最后一种方法实现了最先进的检测性能,但由于单个掩模回归的成本,不能扩展到多个类。 我们的目标是通过预测一组表示潜在对象的边界盒来实现一种与类无关的可扩展对象检测。更准确地说,我们使用了深度神经网络(DNN),它输出固定数量的包围盒。此外,它为每个盒子输出一个分数,表示这个盒子包含一个对象的网络信任度。 为了形式化上述思想,我们将i-thobject框及其相关的置信度编码为最后一网层的节点值: Bounding box: 我们将每个框的左上角和右下角坐标编码为四个节点值,可以写成vectorli∈R4。这些坐标是归一化的w. r. t.图像尺寸,以实现图像绝对尺寸的不变性。每个归一化坐标是由最后一层的线性变换产生的。 Confidence: 置信度:包含一个对象的盒子的置信度得分被编码为单个节点valueci∈[0,1]。这个值是通过最后一个隐藏层的线性变换产生的,后面跟着一个sigmoid。 我们可以组合边界盒位置sli,i∈{1,…K}为一个线性层。同样,我们可以将所有置信区间ci,i∈{1,…K}作为一个s型层的输出。这两个输出层都连接到最后一个隐藏层 在推理时,我们的算法生成kbound盒。在我们的实验中,我们使用ek = 100和K= 200。如果需要,我们可以使用置信分数和非最大抑制在推理时获得较少数量的高置信框。这些盒子应该代表对象。因此,它们可以通过后续的分类器进行分类,实现目标检测。由于盒子的数量非常少,我们可以提供强大的分类器。在我们的实验中,我们使用另一个dnn进行分类。 我们训练一个DNN来预测每个训练图像的边界框及其置信度得分,以便得分最高的框与图像的groundtruth对象框很好地匹配。假设对于一个特定的训练例子,对象被标记为boundingboxesgj,j∈{1,…,M}。在实践中,pre- dictionary的数量远远大于groundtruthboxm的数量。因此,我们试图只优化与地面真实最匹配的预测框子集。我们优化他们的位置,以提高他们的匹配度,最大化他们的信心。与此同时,我们将剩余预测的置信度最小化,这被认为不能很好地定位真实对象。为了达到上述目的,我们为每个训练实例制定一个分配问题。Wexij∈{0,1}表示赋值:xij= 1,如果第i个预测被赋值给第j个真对象。这项任务的目标可以表示为 其中,我们使用标准化边界框坐标之间的el2距离来量化边界框之间的不同。此外,我们希望根据分配x优化盒子的可信度。最大化指定预测的置信度可以表示为 最终的损失目标结合了匹配损失和信心损失 受式1的约束。α平衡了不同损失条款的贡献。 对于每个训练例子,我们通过解决一个最佳的赋值x*的预测到真实的盒子 约束执行赋值解决方案。这是二部匹配的一种变体,是一种多项式复杂度匹配。在我们的应用程序中,匹配是非常便宜的——每幅图像中标记的对象的数量少于一打,而且在大多数情况下只有很少的对象被标记。然后,通过反向传播优化网络参数。例如,反向传播算法的一阶导数计算w、r、t、l和c 尽管上述定义的损失在原则上是足够的,但三次修改使其有可能更快地达到更好的准确性。第一个修改是对地面真实位置进行聚类,并找到这样的聚类/质心,我们可以使用这些聚类/质心作为每个预测位置的先验。因此,鼓励学习算法为每个预测位置学习一个残差到一个先验。 第二个修改涉及到在匹配过程中使用这些先验:不是将N个groundtruth位置与K个预测进行匹配,而是在K个先验和groundtruth之间找到最佳匹配。一旦匹配完成,就会像之前一样计算目标的置信度。此外,位置预测损失也不变:对于任何一对匹配的(目标,预测)位置,其损失定义为groundtruth和对应于匹配先验的坐标之间的差值。我们把使用先验匹配称为先验匹配,并假设它促进了预测的多样化。 需要注意的是,尽管我们以一种与类无关的方式定义了我们的方法,但我们可以将它应用于预测特定类的对象盒。要做到这一点,我们只需要在类的边框上训练我们的模型。此外,我们可以预测每个类的kbox。不幸的是,这个模型的参数数量会随着类的数量线性增长。此外,在一个典型的设置中,给定类的对象数量相对较少,这些参数中的大多数会看到很少有相应梯度贡献的训练示例。因此,我们认为我们的两步过程——首先本地化,然后识别——是一个更好的选择,因为它允许使用少量参数利用同一图像中多个对象类型的数据 我们使用的本地化和分类模型的网络架构与[10]使用的网络架构相同。我们使用Adagrad来控制学习速率衰减,128的小批量,以及使用多个相同的网络副本进行并行分布式训练,从而实现更快的收敛。如前所述,我们在定位损失中使用先验——这些是使用训练集上的均值来计算的。我们还使用α = 来平衡局部化和置信度损失。定位器可以输出用于推断的种植区以外的坐标。坐标被映射和截断到最后的图像区域。另外,使用非最大抑制对盒进行修剪,Jaccard相似度阈值为。然后,我们的第二个模型将每个边界框分类为感兴趣的对象或“背景”。为了训练我们的定位器网络,我们从训练集中生成了大约3000万幅图像,并对训练集中的每幅图像应用以下步骤。最后,样品被打乱。为了训练我们的本地化网络,我们通过对训练集中的每一幅图像应用以下步骤,从训练集中生成了大约3000万幅图像。对于每幅图像,我们生成相同数量的平方样本,使样本总数大约为1000万。对于每幅图像,样本被桶状填充,这样,对于0 - 5%、5 - 15%、15 - 50%、50 - 100%范围内的每个比例,都有相同数量的样本,其中被包围框覆盖的比例在给定范围内。训练集和我们大多数超参数的选择是基于过去使用非公开数据集的经验。在下面的实验中,我们没有探索任何非标准数据生成或正则化选项。在所有的实验中,所有的超参数都是通过对训练集。 Pascal Visual Object Classes (VOC)挑战是最常用的对象检测算法基准。它主要由复杂的场景图像组成,其中包含了20种不同的对象类别的边界框。在我们的评估中,我们关注的是2007版VOC,为此发布了一个测试集。我们通过培训VOC 2012展示了结果,其中包含了大约。11000张图片。我们训练了一个100框的定位器和一个基于深度网络的分类器。 我们在一个由1000万作物组成的数据集上训练分类器,该数据集重叠的对象至少为 jaccard重叠相似度。这些作物被标记为20个VOC对象类中的一个。•2000万负作物与任何物体盒最多有个Jaccard相似度。这些作物被贴上特殊的“背景”类标签。体系结构和超参数的选择遵循。 在第一轮中,定位器模型应用于图像中最大-最小中心方形作物。作物的大小调整到网络输入大小is220×220。单次通过这个网络,我们就可以得到上百个候选日期框。在对重叠阈值为的非最大抑制后,保留评分最高的前10个检测项,并通过21路分类器模型分别通过网络进行分类。最终的检测分数是给定盒子的定位分数乘以分类器在作物周围的最大方形区域上评估的分数的乘积。这些分数通过评估,并用于计算精确查全曲线。 首先,我们分析了本地化器在隔离状态下的性能。我们给出了被检测对象的数量,正如Pascal检测标准所定义的那样,与生成的包围框的数量相对比。在图1中,我们展示了使用VOC2012进行训练所获得的结果。此外,我们通过使用图像的最大中心面积(max-center square crop)作为输入以及使用两个尺度(second scale)来给出结果:最大中心面积(max-center crop)的第二个尺度(select3×3windows的大小为图像大小的60%)正如我们所看到的,当使用10个边界框的预算时,我们可以用第一个模型本地化的对象,用第二个模型本地化48%的对象。这显示出比其他报告的结果更好的性能,例如对象度算法达到42%[1]。此外,这个图表显示了在不同分辨率下观察图像的重要性。虽然我们的算法通过使用最大中心作物获得了大量的对象,但当使用更高分辨率的图像作物时,我们获得了额外的提升。进一步,我们用21-way分类器对生成的包围盒进行分类,如上所述。表1列出了VOC 2007的平均精度(APs)。达到的平均AP是,与先进水平相当。注意,我们的运行时间复杂度非常低——我们只使用top10框。示例检测和全精度召回曲线分别如图2和图3所示。值得注意的是,可视化检测是通过仅使用最大中心方形图像裁剪,即使用全图像获得的。然而,我们设法获得了相对较小的对象,例如第二行和第二列的船,以及第三行和第三列的羊。 在本工作中,我们提出了一种新的方法来定位图像中的对象,该方法可以预测多个边界框的时间。该方法使用深度卷积神经网络作为基本特征提取和学习模型。它制定了一个能够利用可变数量的groundtruth位置的多箱定位成本。在“一个类一个箱”方法的情况下,对1000个盒子进行非max-suppression,使用与给定图像中感兴趣的DeepMulti-Box方法相同的准则,并学习在未见图像中预测这些位置。 我们在VOC2007和ILSVRC-2012这两个具有挑战性的基准上给出了结果,在这两个基准上,所提出的方法具有竞争力。此外,该方法能够很好地预测后续分类器将探测到的位置。我们的结果表明,deepmultibox的方法是可扩展的,甚至可以在两个数据集之间泛化,就能够预测感兴趣的定位,甚至对于它没有训练的类别。此外,它能够捕获同一类物体的多种情况,这是旨在更好地理解图像的算法的一个重要特征。 在未来,我们希望能够将定位和识别路径折叠到一个单一的网络中,这样我们就能够在一个通过网络的一次性前馈中提取位置和类标签信息。即使在其当前状态下,双通道过程(本地化网络之后是分类网络)也会产生5-10个网络评估,每个评估的速度大约为1个CPU-sec(现代机器)。重要的是,这个数字并不与要识别的类的数量成线性关系,这使得所提出的方法与类似dpm的方法非常有竞争力。
本文介绍了一种基于激光雷达数据的激光网络自动驾驶三维目标检测方法——LaserNet。高效的处理结果来自于在传感器的自然距离视图中处理激光雷达数据。在激光雷达视场范围内的操作有许多挑战,不仅包括遮挡和尺度变化,还有基于传感器如何捕获数据来提供全流程信息。
LaserNet通过以下几个步骤实现三维检测:
上图为深层聚合网络架构。列表示不同的分辨率级别,行表示聚合阶段。
上图为特征提取模块(左)和特征聚合模块(右)。虚线表示对特征图进行了卷积。
上图为自适应NMS。在两辆车并排放置的情况下,左边的虚线描述了产生的一组可能的预测。为了确定边界框是否封装了唯一的对象,使用预测的方差(如中间所示)来估计最坏情况下的重叠(如右图所示)。在本例中,由于实际重叠小于估计的最坏情况重叠,因此将保留这两个边界框。
上图为在训练集和验证集上的边界框上的预测分布的校准的图。结果表明,该模型不能学习KITTI上的概率分布,而能够学习较大的ATG4D上的分布。
【实验结果】
上表显示了与其他最先进的方法相比,LaserNet在验证集上的结果。像KITTI基准一样,我们计算了 汽车 IoU和自行车及行人0:5 IoU的平均精度(AP)。在这个数据集上,LaserNet在0-70米范围内表现优于现有的最先进的方法。此外,LaserNet在所有距离上都优于LiDAR-only方法,只有在附加图像数据提供最大价值的长距离上,车辆和自行车上的LiDAR-RGB方法优于LaserNet。
对ATG4D数据集进行消融研究,结果如上表所示。
预测概率分布。预测概率分布最大的改进是预测边界框架的分布。当仅预测平均边界框时,公式(6)为简单平均,公式(9)为框角损失。此外,边界框的得分在本例中是类概率。实验结果表明,性能上的损失是由于概率与边界框架的准确性没有很好地相关性导致的。
图像形成: Velodyne 64E激光雷达中的激光器并不是均匀间隔的。通过使用激光id将点映射到行,并在传感器捕获数据时直接处理数据,可以获得性能上的提高。
均值漂移聚类: 每个点独立地预测边界框的分布,通过均值漂移聚类将独立的预测组合起来实现降噪。
非极大值抑制: 当激光雷达的点稀疏时,有多个边界框的配置可以解释观测到的数据。通过预测各点的多模态分布,进一步提高了该方法的查全率。在生成多模态分布时,使用具有严格阈值的NMS是不合适的。或者,我们可以使用软NMS来重新评估置信度,但是这打破了对置信度的概率解释。通过自适应NMS算法,保持了概率解释,并获得了更好的性能。
对于自动驾驶而言, 运行时性能同样重要 。上表比较了LaserNet(在NVIDIA 1080Ti GPU上测量)和KITTI上现有方法的运行时的性能。Forward Pass是指运行网络所花费的时间,除Forward Pass外,总时间还包括预处理和后处理。由于在一个小的密集的范围视场内处理,LaserNet比目前最先进的方法快两倍。
使用训练集中的5,985个扫描点训练网络,并保留其余的扫描以进行验证。使用与之前相同的学习时间表对网络进行5万次迭代训练,并在单个GPU上使用12个批处理。为了避免在这个小的训练集上过度拟合,采用数据增强手段随机翻转范围图像,并在水平维度上随机像素移动。在这样一个小的数据集中,学习边界框上的概率分布,特别是多模态分布是非常困难的。因此,训练网络只检测车辆并预测边界框上的单峰概率分布。如上表所示,我们的方法在这个小数据集上的性能比当前最先进的鸟瞰图检测器差。
论文传送门:
【欢迎大家提供行业新闻热点,商业合作请联系:】
在达摩院做3d目标检测,简单调研一下。 使用RGB图像、RGB-D深度图像和激光点云,输出物体类别及在三维空间中的长宽高、旋转角等信息的检测称为3D目标检测。 在无人驾驶、机器人、增强现实的应用场景下,普通2D检测并不能提供感知环境所需要的全部信息,2D检测仅能提供目标物体在二维图片中的位置和对应类别的置信度,但是在真实的三维世界中,物体都是有三维形状的,大部分应用都需要有目标物体的长宽高还有偏转角等信息。例如下图中,在自动驾驶场景下,需要从图像中提供目标物体 三维大小 及旋转角度等指标,在鸟瞰投影的信息对于后续自动驾驶场景中的路径规划和控制具有至关重要的作用。3DOP这篇文章是当下使用双目相机进行3D bounding-box效果做好的方法,其是Fast RCNN方法在3D领域之内的拓展。由于原论文发表于NIPS15,出于Fast RCNN的效果并没有Faster RCNN和基于回归的方法好,且远远达不到实时性,因此其处理一张图片的时间达到了。 它使用一个立体图像对作为输入来估计深度,并通过将图像平面上像素级坐标重新投影回三维空间来计算点云。3DOP将候选区生成的问题定义为Markov随机场(MRF)的能量最小化问题,该问题涉及精心设计的势函数(例如,目标尺寸先验、地平面和点云密度等)。 随着获得了一组不同的3D目标的候选框,3DOP利用FastR-CNN[11]方案回归目标位置。 论文主要基于FCOS无锚点2D目标检测做的改进,backbone为带有DCN的ResNet101,并配有FPN架构用于检测不同尺度的目标,网络结构如图1所示: 基于iou 3d,可以定义出TP和FP 通过绘制精确性×召回率曲线(PRC),曲线下的面积往往表示一个检测器的性能。然而,在实际案例中,"之 "字形的PRC给准确计算其面积带来了挑战。KITTI采用AP@SN公制作为替代方案,直接规避了计算方法。 NuScenes consists of multi-modal data collected from 1000 scenes, including RGB images from 6 cameras, points from 5 Radars, and 1 LiDAR. It is split into 700/150/150 scenes for training/validation/testing. There are overall annotated 3D bounding boxes from 10 categories. In addition, nuScenes uses different metrics, distance-based mAP and NDS, which can help evaluate our method from another perspective.
一、图片输入层面 基于以上结论,采用多尺度训练过程中,要在避免那些极小的和极大的(多尺度后)带来的不好的影响时,考虑保证目标有足够的多样性。所以在进行多尺度训练过程中,将每种输入尺度下,不满足要求的proposal以及anchor忽略。论文中使用了三种尺度如图所示,比一般的多尺度训练的尺度跨度要大。 二、 Neck部分(采用金字塔结构改进方案的) 一般意义的FPN网络结构是最右边似的结构,而本文中采用的结构则是 该方法首先无疑是增加了计算量,优点就是最终输出的每一层的特征不是一个线性的变换(应该想表述的说不是从一层特征直接到另一层特征),而是使用共享的多层特征。最终相比RetinaNet提升一个点左右吧,效果一般。VisDrone2020检测的冠军团队采用了这个结构 该文章利用多个TUM模块试图更充分构建的特征金字塔的网络结构,靠前的TUM提供浅层特征,中间的TUM提供中间层特征,靠后的TUM提供深层特征,通过这种方式能够多次将深层浅层特征融合,参数量多了。和RetinaNet对比可以看到,512输入,都不采用multi-scale推理,mAP由33提升到,小目标精度也提升了一点;以参数量和计算量堆砌的精度提升,不是好方法。 文章认为不同层的重要程度应该和目标的绝对尺度分布有关系,所以在FPN自上而下融合的时候,加入了一个尺度因子用来平衡金字塔不同层的重要性。个人感觉意义不大,实际提升也不明显。 三、 Head部分的改进方案 在VisDrones上的冠军方案和若干其他方案都采用了这种“双头部”的方案。soft-NMS似乎可以提升几个点。 四、 小目标目前检测不好,主要原因不是小,应该是小且和背景接近,对比度不高。所以可以借鉴伪装物体检测的思路;
姓名:刘帆;学号:20021210609;学院:电子工程学院 【嵌牛导读】目标跟踪算法研究难点与挑战在于实际复杂的应用环境 、背景相似干扰、光照条件的变化、遮挡等外界因素以及目标姿态变化,外观变形,尺度变化、平面外旋转、平面内旋转、出视野、快速运动和运动模糊等。而且当目标跟踪算法投入实际应用时,不可避免的一个问题——实时性问题也是非常的重要。正是有了这些问题,才使得算法研究充满着难点和挑战。 【嵌牛鼻子】目标跟踪算法,传统算法 【嵌牛提问】利用目标跟踪检测算法要达到何目的?第一阶段的单目标追踪算法包括什么?具体步骤有哪些?它们有何特点? 【嵌牛正文】 第一阶段 目标跟踪分为两个部分,一个是对指定目标寻找可以跟踪的特征,常用的有颜色,轮廓,特征点,轨迹等,另一个是对目标特征进行跟踪。 1、静态背景 1)背景差: 对背景的光照变化、噪声干扰以及周期性运动等进行建模。通过当前帧减去背景图来捕获运动物体的过程。 2)帧差: 由于场景中的目标在运动,目标的影像在不同图像帧中的位置不同。该类算法对时间上连续的两帧或三帧图像进行差分运算,不同帧对应的像素点相减,判断灰度差的绝对值,当绝对值超过一定阈值时,即可判断为运动目标,从而实现目标的检测功能。 与二帧差分法不同的是,三帧差分法(交并运算)去除了重影现象,可以检测出较为完整的物体。帧间差分法的原理简单,计算量小,能够快速检测出场景中的运动目标。但帧间差分法检测的目标不完整,内部含有“空洞”,这是因为运动目标在相邻帧之间的位置变化缓慢,目标内部在不同帧图像中相重叠的部分很难检测出来。帧间差分法通常不单独用在目标检测中,往往与其它的检测算法结合使用。 3)Codebook 算法为图像中每一个像素点建立一个码本,每个码本可以包括多个码元(对应阈值范围),在学习阶段,对当前像素点进行匹配,如果该像素值在某个码元的学习阈值内,也就是说与之前出现过的某种历史情况偏离不大,则认为该像素点符合背景特征,需要更新对应点的学习阈值和检测阈值。 如果新来的像素值与每个码元都不匹配,则可能是由于动态背景导致,这种情况下,我们需要为其建立一个新的码元。每个像素点通过对应多个码元,来适应复杂的动态背景。 在应用时,每隔一段时间选择K帧通过更新算法建立CodeBook背景模型,并且删除超过一段时间未使用的码元。 4)GMM 混合高斯模型(Gaussian of Micture Models,GMM)是较常用的背景去除方法之一(其他的还有均值法、中值法、滑动平均滤波等)。 首先我们需要了解单核高斯滤波的算法步骤: 混合高斯建模GMM(Gaussian Mixture Model)作为单核高斯背景建模的扩展,是目前使用最广泛的一种方法,GMM将背景模型描述为多个分布,每个像素的R、G、B三个通道像素值的变化分别由一个混合高斯模型分布来刻画,符合其中一个分布模型的像素即为背景像素。作为最常用的一种背景建模方法,GMM有很多改进版本,比如利用纹理复杂度来更新差分阈值,通过像素变化的剧烈程度来动态调整学习率等。 5)ViBe(2011) ViBe算法主要特点是随机背景更新策略,这和GMM有很大不同。其步骤和GMM类似。具体的思想就是为每个像素点存储了一个样本集,样本集中采样值就是该像素点过去的像素值和其邻居点的像素值,然后将每一个新的像素值和样本集进行比较来判断是否属于背景点。 其中pt(x)为新帧的像素值,R为设定值,p1、p2、p3….为样本集中的像素值,以pt(x)为圆心R为半径的圆被认为成一个集,当样本集与此集的交集大于设定的阈值#min时,可认为此为背景像素点(交集越大,表示新像素点与样本集越相关)。我们可以通过改变#min的值与R的值来改变模型的灵敏度。 Step1:初始化单帧图像中每个像素点的背景模型。假设每一个像素和其邻域像素的像素值在空域上有相似的分布。基于这种假设,每一个像素模型都可以用其邻域中的像素来表示。为了保证背景模型符合统计学规律,邻域的范围要足够大。当输入第一帧图像时,即t=0时,像素的背景模型。其中,NG(x,y)表示空域上相邻的像素值,f(xi,yi)表示当前点的像素值。在N次的初始化的过程中,NG(x,y)中的像素点(xi,yi)被选中的可能次数为L=1,2,3,…,N。 Step2:对后续的图像序列进行前景目标分割操作。当t=k时,像素点(x,y)的背景模型为BKm(x,y),像素值为fk(x,y)。按照下面判断该像素值是否为前景。这里上标r是随机选的;T是预先设置好的阈值。当fk(x,y)满足符合背景#N次时,我们认为像素点fk(x,y)为背景,否则为前景。 Step3:ViBe算法的更新在时间和空间上都具有随机性。每一个背景点有1/ φ的概率去更新自己的模型样本值,同时也有1/ φ的概率去更新它的邻居点的模型样本值。更新邻居的样本值利用了像素值的空间传播特性,背景模型逐渐向外扩散,这也有利于Ghost区域的更快的识别。同时当前景点计数达到临界值时将其变为背景,并有1/ φ的概率去更新自己的模型样本值(为了减少缓慢移动物体的影响和摄像机的抖动)。 可以有如下总结,ViBe中的每一个像素点在更新的时候都有一个时间和空间上随机影响的范围,这个范围很小,大概3x3的样子,这个是考虑到摄像头抖动时会有坐标的轻微来回变化,这样虽然由于ViBe的判别方式仍认为是背景点,但是也会对后面的判别产生影响,为了保证空间的连续性,随机更新减少了这个影响。而在样本值保留在样本集中的概率随着时间的增大而变小,这就保证了像素模型在时间上面的延续特性。 6)光流 光流是由物体或相机的运动引起的图像对象在两个连续帧之间的视在运动模式。它是2D矢量场,其中每个矢量是一个位移矢量,显示点从第一帧到第二帧的移动。 光流实际上是一种特征点跟踪方法,其计算的为向量,基于三点假设: 1、场景中目标的像素在帧间运动时亮度(像素值或其衍生值)不发生变化;2、帧间位移不能太大;3、同一表面上的邻近点都在做相同的运动; 光流跟踪过程:1)对一个连续视频帧序列进行处理;2)对每一帧进行前景目标检测;3)对某一帧出现的前景目标,找出具有代表性的特征点(Harris角点);4)对于前后帧做像素值比较,寻找上一帧在当前帧中的最佳位置,从而得到前景目标在当前帧中的位置信息;5)重复上述步骤,即可实现目标跟踪 2、运动场(分为相机固定,但是视角变化和相机是运动的) 1)运动建模(如视觉里程计运动模型、速度运动模型等) 运动学是对进行刚性位移的相机进行构型,一般通过6个变量来描述,3个直角坐标,3个欧拉角(横滚、俯仰、偏航)。 Ⅰ、对相机的运动建模 由于这个不是我们本次所要讨论的重点,但是在《概率机器人》一书中提出了很多很好的方法,相机的运动需要对图像内的像素做位移矩阵和旋转矩阵的坐标换算。除了对相机建立传统的速度运动模型外,也可以用视觉里程计等通关过置信度的更新来得到概率最大位置。 Ⅱ、对于跟踪目标的运动建模 该方法需要提前通过先验知识知道所跟踪的目标对象是什么,比如车辆、行人、人脸等。通过对要跟踪的目标进行建模,然后再利用该模型来进行实际的跟踪。该方法必须提前知道要跟踪的目标对象是什么,然后再去跟踪指定的目标,这是它的局限性,因而其推广性相对比较差。(比如已知跟踪的物体是羽毛球,那很容易通过前几帧的取点,来建立整个羽毛球运动的抛物线模型) 2)核心搜索算法(常见的预测算法有Kalman(卡尔曼)滤波、扩展卡尔曼滤波、粒子滤波) Ⅰ、Kalman 滤波 Kalman滤波器是通过前一状态预测当前状态,并使用当前观测状态进行校正,从而保证输出状态平稳变化,可有效抵抗观测误差。因此在运动目标跟踪中也被广泛使用。 在视频处理的运动目标跟踪里,每个目标的状态可表示为(x,y,w,h),x和y表示目标位置,w和h表示目标宽高。一般地认为目标的宽高是不变的,而其运动速度是匀速,那么目标的状态向量就应该扩展为(x,y,w,h,dx,dy),其中dx和dy是目标当前时刻的速度。通过kalman滤波器来估计每个时刻目标状态的大致过程为: 对视频进行运动目标检测,通过简单匹配方法来给出目标的第一个和第二个状态,从第三个状态开始,就先使用kalman滤波器预测出当前状态,再用当前帧图像的检测结果作为观测值输入给kalman滤波器,得到的校正结果就被认为是目标在当前帧的真实状态。(其中,Zt为测量值,为预测值,ut为控制量,Kt为增益。) Ⅱ、扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF) 由于卡尔曼滤波的假设为线性问题,无法直接用在非线性问题上,EKF和UKF解决了这个问题(这个线性问题体现在用测量量来计算预测量的过程中)。EKF是通过构建线性函数g(x),与非线性函数相切,并对每一时刻所求得的g(x)做KF,如下图所示。 UKF与EKF去求解雅可比矩阵拟合线性方程的方法不同,通过对那个先验分布中的采集点,来线性化随机变量的非线性函数。与EKF所用的方法不同,UKF产生的高斯分布和实际高斯分布更加接近,其引起的近似误差也更小。 Ⅲ、粒子滤波 1、初始状态:基于粒子滤波的目标追踪方法是一种生成式跟踪方法,所以要有一个初始化的阶段。对于第一帧图像,人工标定出待检测的目标,对该目标区域提出特征; 2、搜索阶段:现在已经知道了目标的特征,然后就在目标的周围撒点(particle), 如:a)均匀的撒点;b)按高斯分布撒点,就是近的地方撒得多,远的地方撒的少。论文里使用的是后一种方法。每一个粒子都计算所在区域内的颜色直方图,如初始化提取特征一样,然后对所有的相似度进行归一化。文中相似性使用的是巴氏距离; 3、重采样:根据粒子权重对粒子进行筛选,筛选过程中,既要大量保留权重大的粒子,又要有一小部分权重小的粒子; 4、状态转移:将重采样后的粒子带入状态转移方程得到新的预测粒子; 5、测量及更新:对目标点特征化,并计算各个粒子和目标间的巴氏距离,更新粒子的权重; 6、决策阶段:每个粒子都获得一个和目标的相似度,相似度越高,目标在该范围出现的可能性越高,将保留的所有粒子通过相似度加权后的结果作为目标可能的位置。 3)Meanshift算法 MeanShift算法属于核密度估计法,它不需要任何先验知识而完全依靠特征空间中样本点的计算其密度函数值。对于一组采样数据,直方图法通常把数据的值域分成若干相等的区间,数据按区间分成若干组,每组数据的个数与总参数个数的比率就是每个单元的概率值;核密度估计法的原理相似于直方图法,只是多了一个用于平滑数据的核函数。采用核函数估计法,在采样充分的情况下,能够渐进地收敛于任意的密度函数,即可以对服从任何分布的数据进行密度估计。 Meanshift算法步骤 1、通过对初始点(或者上一帧的目标点)为圆心,绘制一个半径为R的圆心,寻找特征和该点相似的点所构成的向量; 2、所有向量相加,可以获得一个向量叠加,这个向量指向特征点多的方向; 3、取步骤二的向量终点为初始点重复步骤一、二,直到得到的向量小于一定的阈值,也就是说明当前位置是特征点密度最密集的地方,停止迭代,认为该点为当前帧的目标点; 4)Camshift算法 Camshift算法是MeanShift算法的改进,称为连续自适应的MeanShift算法。Camshift 是由Meanshift 推导而来 Meanshift主要是用在单张影像上,但是独立一张影像分析对追踪而言并无意义,Camshift 就是利用MeanShift的方法,对影像串列进行分析。 1、首先在影像串列中选择目标区域。 2、计算此区域的颜色直方图(特征提取)。 3、用MeanShift演算法来收敛欲追踪的区域。 4、通过目标点的位置和向量信息计算新的窗口大小,并标示之。 5、以此为参数重复步骤三、四。 Camshift 关键就在于当目标的大小发生改变的时候,此算法可以自适应调整目标区域继续跟踪。 3、小结 第一阶段的单目标追踪算法基本上都是传统方法,计算量小,在嵌入式等设备中落地较多,opencv中也预留了大量的接口。通过上面的两节的介绍,我们不难发现,目标检测算法的步骤分为两部分,一部分是对指定目标寻找可以跟踪的特征,常用的有颜色,轮廓,特征点,轨迹等,另一部分是对目标特征进行跟踪,如上文所提及的方法。所以目标检测方法的发展,也可总结为两个方面,一个是如何去获得更加具有区分性的可跟踪的稳定特征,另一个是如何建立帧与帧之间的数据关联,保证跟踪目标是正确的。 随着以概率为基础的卡尔曼滤波、粒子滤波或是以Meanshift为代表向量叠加方法在目标检测的运用,使得目标检测不再需要假设自身的一个状态为静止的,而是可以是运动的,更加符合复杂场景中的目标跟踪。
能不能给我发一份呢?
去百度文库里有我去年写的一篇论文,可以参考一下,名字是奇瑞qq3电喷系统分析,介绍的是发动机传感器的,可以下载的哦
对于汽车来讲,发动机是核心部件,关系到汽车的整体性能,在汽车组成上非常关键。下面是我为大家精心推荐的汽车发动机的检测与维修技术论文,希望能够对您有所帮助。
汽车发动机的检测与维修
【摘要】对于汽车来讲,发动机是核心部件,关系到汽车的整体性能,在汽车组成上非常关键。为了保证汽车的正常行驶,我们要对汽车发动进行正常的维护和保养,在出现故障的时候要及时进行检测和维修。通过研究发现,在目前汽车发动机的检测与维修中,大部分故障主要表现为七个部分,分别为:曲柄连杆机构故障、配气机构故障、化油器式燃料供给系故障、电控燃油喷射系统故障、柴油机燃料供给系故障、润滑系故障、冷却系故障。这七个部分的故障属于发动机在运行过程中常见的故障,我们在汽车发动机的检测与维修中,要重视对这些故障的分析和判断,并制定详细的维修方案,保证汽车发动机故障得到妥善处理。
【关键词】汽车 发动机 检测 维修
1汽车发动机的整体结构分析
对于汽车发动机来讲,整体结构分为两个主要机构和五个子系统。其中两个机构主要是指曲柄连杆机构和配气机构,五个子系统主要是指燃料供给系统、点火系统、冷却系统、润滑系统、启动系统。
曲柄连杆机构不但是实现热能转换的核心,也是发动机的装配基础。曲柄连杆机构在做功行程时,将燃料燃烧以后产生的气体压力,经过活塞、连杆转变为曲轴旋转的转矩,然后,利用飞轮的惯性完成进气、压缩、排气3个辅助行程。曲柄连杆机构由气缸曲轴箱组、活塞连杆组和曲轴飞轮组3部分组成。
配气机构作用是根据发动机的工作顺序和各缸工作循环的要求,及时地开启和关闭进、排气门,使可燃混合气(汽油发动机)或新鲜空气(柴油发动机)进入气缸,并将废气排入大气。
汽油机燃料供给系统的作用在于根据发动机不同工作情况的需要,将纯净的空气和汽油配制成适当比例的可燃混合气,送入各个气缸进行燃烧后将所产生的废气排入大气中。柴油机燃料供给系的作用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。
点火系统主要指在汽油机中,气缸内的可燃混合气是靠电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内,能够按时在火花塞电极间产生电火花的全部设备。
冷却系统的功能在于将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。
润滑系统的功能是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦、减小摩擦阻力、减轻机件的磨损。并对零件表面进行清洗和冷却。
曲轴在外力作用下开始转动到发动机开始自动地怠速运转的全过程,称为发动机的起动。完成起动过程所需的装置,称为发动机的起动系统。
2对汽车发动机进行定期检测的必要性
由于汽车发动机在运行的时候处于高温高压状态,运行工况比较恶劣,在这种状态下长期运行之后,发动机的各个机构和系统,难免会有所损伤。因此出于保护发动机配件,延长发动机寿命的原因,我们必须对汽车发动机进行定期的检测,其必要性主要表现在以下几个方面:
汽车发动机的整体结构决定了必须进行定期检测
由于汽车发动机的整体结构比较复杂,主要分为两大机构和五个子系统,在运行的过程中,这些机构是相互连接共同作用,任何一个机构或系统如果出现故障,都会引起发动机的瘫痪,造成发动机无法正常使用。因此,为了保证汽车发动机能够保持正常运行状态,就需要定期对发动机进行检测,用来检测其主要机构和系统是否存在故障和安全隐患。
汽车发动机的运行条件决定了必须进行定期检测
在汽车发动机中,两大机构和五个子系统在运行的过程中,处于高温高压的状态之下,运行条件十分恶劣,对机构和配件的磨损也是比较大的。在这种状态之下,如果不对汽车发动机进行定期检修,则无法及时发现机构和配件的薄弱之处,将会诱发发动机运行故障,进而损伤发动机的整体寿命。所以,我们要采取定期检测的方式,对发动机进行检测和维修。
汽车发动机的寿命需要决定了必须进行定期检测
汽车发动机在运行过程当中,为了保证正常运行并适当延长其寿命,需要我们按照保养要求和使用需要,对其进行定期的检测。在汽车发动机的使用过程中,有时候忽略了定期的检测和维修,导致了汽车发动机机构和配件损坏,影响了发动机的整体使用寿命,对发动机造成了永久的伤害。因此,为延长发动机寿命的实际需要,我们要对发动机进行定期的检测。
3汽车发动机常见故障分类
通过对汽车发动机的实际检测和维修发现,其常见故障主要分为以下几种:
发动机敲缸以及内部出现异响
发动机敲缸是比较常见的故障,主要原因是其中曲柄机构发生了故障引起的,主要是曲柄机构中的配件在运行的过程中变形或者移位,导致了敲缸和内部异响的出现。
气门有漏气现象,气门出现异响
气门出现漏气或者异响,证明气门封闭不严,或者气门系统的配件发生了故障,对于这种故障我们可以通过定期检测排查出来,做到提前发现提前解决。
怠速运转不良
发动机在启动之后处于怠速状态,我们通过对怠速状态的观察,可以很好的了解发动机的运行状态。通常怠速运转不良都是发动机整体故障的前兆。
发动机不能启动,加速不良
正常状态下发动机应该能够正常启动,并且保持持续的线性加速。但是由于内部启动机构的损坏,会导致不能正常启动,这时我们就要对启动系统进行仔细检查。
机油压力异常,消耗异常
发动机在正常状态下,所消耗的机油和燃油维持在固定的水平,如果出现烧机油和燃料消耗异常的情况,则表明发动机润滑效果不好,内部机构出现了严重的磨损。
发动机过热或过冷,有漏水现象
发动机要想保持平稳运行,其缸体温度是比较固定的。如果发动机出现过热或者过冷的情况,并伴有漏水的现象,我们就必须及时对发动机进行开缸检修了。 发动机启动困难,发动机动力不足,怠速不稳
发动机如果出现启动困难,并且伴有怠速不稳,进而整体动力不足的情况,则表明发动机的启动系统和运行系统出现了问题,我们要针对启动系统进行重点检修。
排气管出现噪声,有漏气现象
发动机正常运行的时候,排气管是没有噪音的,所排出的尾气也达到排放标准。如果排气管出现噪声并伴有漏气现象,证明排气系统出现故障,我们要对排气系统进行检修。
4汽车发动机典型故障维修方案分析
(1)发动机敲缸故障现象:主要的故障表现是发动机在怠速状态下出现强烈的敲击声音。在发动机冷启动的时候敲击声音比较明显,在发动机热车以后,响声逐渐消失,在发动机熄火之后敲击声彻底消失。故障原因分析:之所以会出现敲击声,主要原因在于缸体内的活塞与气缸存在一定的间隙,或者是由于活塞销子与连杆衬套过紧导致的,最终引起连杆变形而引起缸体敲击声的出现。
故障排除办法:利用气缸专用听诊器听取敲击声音,并调整活塞与气缸缸体的间隙,或者调整活塞销子与连杆衬套的松紧度。
(2)活塞销出现异响的故障现象:活塞销异响主要是指在发动机怠速和中速运行的过程中,随着转速的增加出现嗒、嗒的杂音,发动机温度升高之后响声随之消失。对其原因进行分析后发现,主要原因在于活塞销与连杆衬套太过松散,没有实现与活塞销座孔的紧密配合。
故障排除办法:利用听诊器判断声音位置,并适当调整活塞销与其他部件的孔距。
(3)连杆轴承部位出现异响的故障现象:发动机在平稳运行的时候一切正常,只有在突然加速的过程中,会出现连续的敲击声,如果发动机熄火,则敲击声随之消失。对其原因进行分析后可知:造成此种异响的原因主要是连杆轴承盖的位置螺栓出现了松动,造成了连杆轴承与轴颈出现磨损,进而影响轴承的润滑,最终导致轴承合金脱落。
故障诊断与排除:利用听诊器判断声音位置,进而对所在位置的连杆及配套件进行维修。
(4)主轴承异响故障现象的发生:主要是指发动机在急加速的时候轴承部位出现敲击声,整个发动机发生较大震动,异响随着转速的加大而变大。其根本原因在于轴颈与轴承过度磨损导致了间隙较大,造成了主轴承盖螺栓松动。
故障诊断与排除:利用听诊器直接听气缸的下半部,找出异响位置,更换配件。
5结语
通过本文的分析可知,对于汽车发动机而言,要想保证其正常使用,并有效延长寿命,就要定期的对其进行检测与维修,同时积极采取维修措施,对发生的故障进行检测和维修,保证发动机能够正常使用。通过本文故障排除方法的介绍,让我们对汽车发动机的检测与维修有了更深的认识。
参考文献:
[1]刘志忠.自动变速器故障的系统分析诊断法[J].河北交通科技,2005年03期.
[2]翁荣伟.浅谈汽车发动机故障诊断专家系统[J].科技资讯,2007年15期.
[3]刁一峰,唐进,刘红武.数控机床FANUC伺服系统故障诊断与排除方法[J].电气技术;2008年10期.
[4]苟新超,唐世应,唐咏,周川.滑动轴承故障诊断案例[J].冶金动力,2008年06期.
[5]冯志鹏.计算智能在机械设备诊断中的应用研究[D].大连理工大学,2003年.
[6]苗海滨,任新广.尖峰能量谱技术用于滚动轴承故障诊断[J].设备管理与维修,2008年05期.
点击下页还有更多>>>汽车发动机的检测与维修技术论文
汽车维修论文范文
随着我国汽车工业发展以及人们的生活水平的提高,汽车的使用越来越普遍,汽车的维修业发展空间进一步扩大。下面是我为大家整理的汽车维修论文,供大家参考。
摘要随着社会经济的飞速发展,汽车行业的发展也极为迅速,而且,汽车也逐渐受到人们的重视,汽车的应用也越来越广泛,而汽车在运行的过程中,会出现相应的故障,给汽车使用的安全性、可靠性造成直接的影响,因此,为了保证人们使用汽车的安全性、可靠性,则必须做好汽车的维修工作,为汽车的运行做好充分的保障工作,可见汽车维修的重要性。
关键词信息技术;汽车维修;故障排除;信息收集
近些年来,信息技术的发展极为迅速,而且,信息技术被广泛的应用到各个领域中,尤其是在汽车维修中的应用,对提升汽车维修的效率有着极大地作用。在以往汽车维修工作中,整体的维修效率不高,尤其是在故障排除以及车辆内部零件的检测方面,主要采用人工检测方式,整体检测的效率不高,而在运用信息技术之后,可以解决传统汽车维修过程中的弊端,切实有效地提升汽车的维修效率,对此,本文主要对信息技术在汽车维修中的应用进行分析。
1信息技术在汽车维修中的作用
有利于提升汽车维修的效率
汽车维修是一项非常复杂的工作,其中涉及到的汽车设备零部件比较多,在维修的过程中,需要精准的确定汽车故障,才能对其展开相应的维修工作,才能有效地提升汽车的维修效率[1]。如果采取以往的人工对各项零部件进行分析的话,很难把握各个零部件的运行情况,从而影响到汽车维修的整体效率,而信息技术能够通过先进的神经网络分析,对汽车运行的各个零部件进行全面的检测,从而提升了对汽车各个零部件的检查效率,有效地提升汽车维修的效率。
缩短汽车故障排除的时间
在汽车维修的过程中,首先要做到的就是要先确定汽车的故障,才能针对故障的实际情况展开针对性的处理,才能在最短的时间内做好汽车维护工作[2]。通过对以往汽车维修的调查发现,在对汽车故障排除的过程中,需要工作人员对汽车各项硬件按设备进行逐一的检验,这样会耽误汽车故障排除的大量时间,会影响到汽车维修的效率,而信息技术则对缩短汽车故障排除的时间有着极大地作用。信息技术能够在最短的.时间内对汽车的各项零部件进行全面的分析,能够有效地对汽车的运行故障进行定位,对缩短汽车故障排除的时间,以及提升汽车维修的效率有着极大地作用,被广泛地应用到汽车维修的工作中。
2信息技术在汽车维修中的应用分析
通过以上的分析了解到,将信息技术应用于汽车维修中之后,对提升汽车维修的效率以及缩短汽车故障排除的时间有着极大地作用,以下主要对信息技术在故障排除中的应用、在汽车部件运行信息收集中的应用、在汽车维修检测中的应用进行分析。
在故障排除中的应用
汽车维修首先要确定汽车所发生的故障,然后才能根据实际的情况采取针对性的维修措施,而且,对故障位置的确定以及故障的排除等也将直接影响到汽车维修的效率[3]。以往在对汽车故障排除的过程中,所采用的方法老套,对故障的排除效率不高,需要维修人员根据汽车故障所发生的实际情况,对可能会存在的故障部件进行全面的检查排除,而在这个过程中,将会涉及到对很多无故障的部件检测,这样就会耽误大量的故障排除时间,从而影响到汽车维修的效率。而将信息技术应用到汽车维修故障排除的工作中,可以通过信息技术对汽车的实际故障情况进行全面的分析,并对各项数据的实际运行情况进行全面的检测,准确地对汽车故障进行定位,从而迅速排除故障,减少了汽车的维修时间,进一步提升汽车故障维修的效率。
在汽车部件运行信息收集中的应用
汽车部件运行信息的收集对汽车维修具有非常重要的作用,而且,通过对各项信息的分析才能够了解汽车的运行状况,并根据汽车的实际运行状况进行检测[4]。以往对汽车的维修过于盲目,尤其是在汽车部件运行信息的收集上更是缺乏,只能根据汽车所发生的故障进行表面上的维修,而在这种情况下汽车的维修效果不高,甚至会遗漏一些汽车的故障,从而给汽车的安全运行造成极大地影响。在信息技术的应用下,能够通过电脑来对汽车的各个部件运行信息进行搜集,以进一步了解汽车的各项部件运行信息,能够对汽车运行过程中所引发故障因素的其他相关因素展开针对性的处理,保证汽车故障维修的全面性,避免经过维修后遗漏部分故障因素信息,从而确保汽车维修的全面性、可靠性。
在汽车维修检测中的应用
在进行汽车维修之前,需要对其进行检测,而且,检测信息的有效性也将直接影响到汽车维修的有效性。以往对汽车维修的过程中,对汽车的检测不足,甚至缺乏相应的检测设备,从而影响到检测的效率,不利于汽车维修工作的顺利实施[5]。通过应用信息技术,在汽车维修过程中可以实现对各项设备的检测,不仅如此,在汽车维修工作完成之后,也可以对汽车的检测,确保维修的有效性,避免在维修完成后留下后遗症,进一步保证汽车运行的安全性。
3结论
综上所述,随着社会经济的飞速发展,人们生活水平的不断提高,汽车的使用也越来越广泛,私家汽车的数量不断地增加。而在人们使用汽车的过程中,会受到内部或外部的影响而产生汽车的运行故障,如果不能及时对故障进行维修的话,势必会影响到汽车运行的安全性,给人们的安全造成一定的威胁,而且,如果汽车故障不能得到及时的维修,甚至会产生其他的故障,可见汽车维修的重要性。以往所采用的汽车维修方式,主要是运用人工的方式来进行汽车维修,维修效率不高,而通过本文对信息技术在汽车维修中的应用分析,作者主要对信息技术在汽车维修中的作用以及应用的具体情况展开研究,希望通过本文的分析,能够进一步提升汽车维修的效率,同时,也希望能够与同行人士共同探索相关性问题,切实有效地提升信息技术在汽车维修中的应用效果。
参考文献
[1]赵越,魏立军,常树民.依靠科技进步提高汽车维修质量[J].黑龙江科技信息,2014(10).
[2]陈宏云.我国汽车维修中存在的诚信问题和技术设备问题[J].科技致富向导,2012(21).
[3]高京京,顾纯.浅谈汽车维修产业现状及存在问题[J].黑龙江科技信息,2013(16).
[4]李玉川,高洪祥,张宗奎.TB3-117发动机功率协调器故障引起机体摆动及性能参数变化原因分析[J].航空维修与工程,2013(6).
[5]张雄.搭一片无雨的天空——汽车维修救援网络建设的误区及对策[J].运输经理世界,2014(4).
摘要:在新的历史时期,中职教育迎来了改革发展的新机遇,但同时也面临发展的新挑战。中职汽车维修专业教学存在诸多问题,这些问题的出现,一方面是教育改革推动下的必然显现。
关键词:汽车维修专业;教学质量
1中职汽车维修专业教学存在的问题分析
学生主体地位不突显,实践教学开展不深入
汽车维修专业强调理论与实践并重的教学模式。在实际的教学中,以教师为教学主体的现象比较明显,无论是在课堂理论教学,还是在实训练习之中,教师牵引学生如何学、如何做,缺乏学生主体地位下的自主学习与实践。与此同时,理论与实践并重的教学形态不平衡,出现理论与实践相脱节的问题,往往出现理论与技能训练不同步,技能训练明显滞后。这样一来,出现了“学生理论没学好,实践技能没锻炼”的教学现状,让中职汽车维修专业教学质量堪忧。
教学方式单一,难以激发学生兴趣
中职汽车维修专业人才培养,以市场需求为导向,强调学生就业能力的培养。当前,中职学校在汽车维修专业的教学中,虽然广泛应用了多媒体教学,但单一的教学现状仍未改变。教师教得累、学生学得枯燥的教学尴尬比较突出。多媒体成为教师教学的万能教学工具,单向的教学输出,逐渐弱化了学生学习的兴趣,在学习中出现疲惫感与厌倦感,在学习上缺乏积极主动性。
教学一体化欠缺,实际教学效果不理想
一体化教学模式是当前中职汽车维修专业教育教学改革的重要方向。当前,汽车维修专业一体化教学模式强调依托现代教育技术,实现理论与实训教学的一体化。而从实际情况来看,中职学校由于教学资源有限、办学条件限制等诸多因素的影响,在一体化教学模式的构建上比较欠缺。一方面,教师专业水平欠缺,在理论与实践教学中存在较大的不适应性;另一方面,中职教育存在短板,一体化教学模式的实现仍需时间,是一个教学改革发展的过程,需要人力、物力各方资源的积极投入。
2新时期优化汽车维修专业教学质量的策略
随着中职教育教学改革的不断深入,新时期的汽车维修专业教学,更加强调以市场需求为导向,培育综合型应用人才的重要性。当前,中职汽车维修专业教学质量欠佳,实现教学的优化与调整,关键在于人才培养模式的创新,并在此基础之上,加强教师队伍建设,以及优化课程设置与实现系统的模块训练,推动教育教学的改革发展。一方面,在汽车维修专业的教学中,一定要针对市场的需求,制定完善的教学目标、内容及方法,并不断地优化学生学习的环境;另一方面,要深化改革的力度,对于传统教学模式,要逐一击破,转而以创新的教学形态,实现教学质量的有效提升。那么,具体而言,新时期优化汽车维修专业教学质量的策略,主要在于落实以下几点工作:
以市场需求为导向,创新人才培养模式
中职教育以培养应用型人才为主,以市场需求为导向的人才培养模式,更加强调实践教学的重要性。一方面,中职学校要依据市场需求、立足专业优势,确定汽车维修专业人才的培养目标,以便于教学的全面开展;另一方面,以就业为主轴,提高学生的就业竞争力。对此,中职学校要围绕市场需求的导向性和就业竞争的主导性,制定合理的人才培养计划,培育综合性应用人才。那么,首先,中职学校要强化校企合作,通过联合办学、顶岗实习的方式,确保人才培养模式“落地”,如图1所示,是基于校企合作下的人才培养升级,突出理论与实践并重、同步的教学形态;其次,中职学校要注重学生专业素养、专业能力的培养,学生不仅熟练地掌握汽车维修技能,而且具备良好的职业道德,爱岗敬业、勤勤恳恳,这些品质都是就业中的竞争优势。
强化教师队伍建设,推动教学一体化进程
教师队伍建设,是优化中职汽车维修专业教学质量的重要基础。首先,中职学校要狠抓骨干教师培养,强化对专业教师的培养与选拔。通过安排教师继续深造或参加省级培训等方式,逐渐强化其专业水平。并且鼓励教师到企业中去,通过挂职顶岗的方式,提高实践水平。其次,落实好“双师型”教师队伍建设,从本质上推动教学一体化进程。落实好“双师型”教师队伍建设,有助于提高中职学校汽车维修专业的教学质量,推动教育教学的改革发展。再次,注重人才的引进与培养,通过聘请专业技术、专业经验以及专业理论过硬的人才,作为专业教师。并且切实做好专业带头人的遴选工作,依托带头人的专业素养和学术影响力,推动汽车维修专业的建设与发展。优化已有课程设置,实现系统的模块训练实践性是汽车维修专业的特点,也是契合人才培养的重要基础。当前,为优化中职汽车维修专业教学质量,应注重实践教学的开展,进一步优化已有课程,为学生构建系统的模块训练。是相应实验室或实训室下,学生综合实践能力的培养。从表1可知,汽车维修专业教学强调学生综合实践能力的培养,不仅需要学生熟练操作技术,而且需要学生了解汽车结构,实现有效教学。
3结语
综上所述,在新的历史时期,中职教育迎来了改革发展的新机遇,但同时也面临发展的新挑战。中职汽车维修专业教学存在诸多问题,这些问题的出现,一方面是教育改革推动下的必然显现;另一方面,说明中职汽车维修专业教学在教学理念、教学方法等方面仍存在不足。对此,在中职教育教学改革发展的新时期,优化汽车维修专业教学质量,应切实做到:
(1)以市场需求为导向,创新人才培养模式;
(2)强化教师队伍建设,推动教学一体化进程;
(3)优化已有课程设置,实现系统的模块训练,从本质上推动中职汽车维修专业教学的改革发展,提升实际教学的质量。
参考文献
1、汽车维修行业的现状及对策研究张进重庆大学2008-11-01
2、3D打印技术在汽车制造与维修领域应用研究王菊霞吉林大学2014-06-01