为您奉上一部分,请参考:谈谈计算教学的改革小学数学数与计算教学的回顾与思考小学数学教材结构的研究与探讨小学数学应用题的研究(一)改进教学方法培养创新技能21世纪我国小学数学教育改革展望面向21世纪的小学数学课程改革与发展不拘一格育“鸣凤”使学生真正成为学习的主人改革课堂教学的着力点谈素质教育在小学数学教学中的实施素质教育与小学数学教育改革浅谈学生数学思维能力的培养浅议表象积累与培养学生的思维能力也谈学生创新意识培养实施创新教学策略 培养学生创新意识10以内加法整理和复习改良“有余数除法计算”教法给学生创新的时间和空间和谐愉悦 主动探索——一年级《统计》教学片断评析小学数学教育--教师之家--教师培训教学策略A、B、C面向21世纪的数学素质及其培养能被3整除的数的特征年、月、日培养自学能力 推进素质教育浅谈小学数学总复习的“步步反馈,逐层提高”法入情才能入理 激情方能启思实施“生活数学”教育 培养自主创新能力数学作业批改中巧用评语提高元认知水平 培养自学能力“圆的面积”的教案圆柱的认识运用多媒体辅助教学 优化数学教学方法组织课堂讨论 优化课堂教学
1、 数学中的研究性学习2、数字危机3、中学数学中的化归方法4、高斯分布的启示5、a2 b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用8、浅谈中学数学中的反证法9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策15、中学数学教学中的创造性思维的培养16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型18、中学数学教学设计前期分析的研究19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论对原函数存在条件的试探分块矩阵的若干初等运算函数图像中的对称性问题泰勒公式及其应用微分中值定理的证明和应用一元六次方程的矩阵解法‘数学分析’对中学数学的指导作用
1、谈谈计算教学的改革2、小学数学数与计算教学的回顾与思考3、小学数学教材结构的研究与探讨4、小学数学应用题的研究(一)5、改进教学方法培养创新技能6、21世纪我国小学数学教育改革展望7、面向21世纪的小学数学课程改革与发展8、不拘一格育“鸣凤”使学生真正成为学习的主人9、改革课堂教学的着力点10、谈素质教育在小学数学教学中的实施11、素质教育与小学数学教育改革12、浅谈学生数学思维能力的培养13、浅议表象积累与培养学生的思维能力14、也谈学生创新意识培养15、实施创新教学策略 培养学生创新意识16、10以内加法整理和复习17、改良“有余数除法计算”教法18、给学生创新的时间和空间和谐愉悦19、主动探索——一年级《统计》教学片断评析20、小学数学教育--教师之家--教师培训
学术堂整理了十个毕业论文题目供大家进行参考:1、小学数学教师几何知识掌握状况的调查研究2、小学数学教师教材知识发展情况研究3、中日小学数学“数与代数”领域比较研究4、浙江省Y县县域内小学数学教学质量差异研究5、小学数学教师教科书解读的影响因素及调控策略研究6、中国、新加坡小学数学新课程的比较研究7、小学数学探究式教学的实践研究8、基于教育游戏的小学数学教学设计研究9、小学数学教学中创设有效问题情境的策略研究10、小学数学生活化教学的研究
在一篇数学 教育 论文中,题目是论文的要件之首,它不同于一般 文章 的题目,我们要重视题目的重要性。以下是我为大家精心准备的数学教育论文题目,欢迎阅读!数学教育论文题目(一) 1、浅谈中学数学中的反证法 2、数学选择题的利和弊 3、浅谈计算机辅助数学教学 4、数学研究性学习 5、谈发展数学思维的 学习 方法 6、关于整系数多项式有理根的几个定理及求解方法 7、数学教学中课堂提问的误区与对策 8、中学数学教学中的创造性思维的培养 9、浅谈数学教学中的“问题情境” 0、市场经济中的蛛网模型 11、中学数学教学设计前期分析的研究 12、数学课堂差异教学 13、浅谈线性变换的对角化问题 14、圆锥曲线的性质及推广应用 15、经济问题中的概率统计模型及应用 数学教育论文题目(二) 1、二阶变系数齐次微分方程的求解问题 2、一种函数方程的解法 3、微分中值定理的再讨论 4、学生数学学习的障碍研究; 5、中学数学教育中的素质教育的内涵; 6、数学中的美; 7、数学的和谐和统一----谈论数学中的美; 8、推测和猜想在数学中的应用; 9、款买房问题的决策; 10、线性回归在经济中的应用; 11、数学规划在管理中的应用; 12、初等数学解题策略; 13、浅谈数学CAI中的不足与对策; 14、数学创新教育的课堂设计; 15、中学数学教学与学生应用意识培养; 16、关于培养和提高中学生数学学习能力的探究; 17、运用多媒体培养学生 18、高等数学课件的开发 19、 广告 效益预测模型; 数学教育论文题目(三) 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的 反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 猜你喜欢: 1. 数学教育教学论文参考范文 2. 关于数学专业毕业论文题目参考 3. 数学教育专业毕业论文 4. 有关数学教育的论文范文 5. 数学教育专业毕业论文参考
新颖的数学论文题目有:
1、数学模型在解决实际问题中的作用。
2、中学数学中不等式的证明。
3、组合数学与中学数学。
4、构造方法在数学解题中的应用。
5、高中新教材中数学教学方法探讨。
6、组合数学恒等式的证明方法。
7、浅谈中学数学教育。
8、浅谈中学不等式的几何证明方法。
9、数学教育中学生创造性思维能力的培养。
10、高等数学在初等数学中的应用。
11、向量在几何中的应用。
12、情境认识在数学教学中的应用。
13、高中数学应用题的编制和一些解题方法。
14、浅谈反证法在中学教学中的应用。
15、探索证明线段相等的方法。
16、几个带参数的二阶边界值问题的正解的存在性研究。
17、关于丢番图方程1+x+y=z的一类特殊情况的研究。
18、变限积分函数的性质及应用。
19、有限集上函数的迭代及其应用。
20、小学课堂环境改着的行动研究。
21、网络环境下小学数学主题教学模式应用研究。
22、培养小学生数学学习兴趣的教学策略研究。
23、小学五年级儿童数学学习策略干预对改善其执行功能的研究。
24、小学生数学创新思维的培养。
25、促进小学生数学课堂参与的数学策略研究。
26、使学生真正成为学习的主人。
27、改革课堂教学的着力点。
28、谈素质教育在小学数学教学中的实施。
29、素质教育与小学数学教育改革。
30、浅谈学生数学思维能力的培养。
学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个优秀的数学论文题目,有哪些比较优秀的数学论文题目呢?下面我给大家带来2022最新数学方向 毕业 论文题目有哪些,希望能帮助到大家!
↓↓↓点击获取更多“知足常乐 议论文 ”↓↓↓
★ 数学应用数学毕业论文 ★
★ 大学生数学毕业论文 ★
★ 大学毕业论文评语大全 ★
★ 毕业论文答辩致谢词10篇 ★
中学数学论文题目
1、用面积思想 方法 解题
2、向量空间与矩阵
3、向量空间与等价关系
4、代数中美学思想新探
5、谈在数学中数学情景的创设
6、数学 创新思维 及其培养
7、用函数奇偶性解题
8、用方程思想方法解题
9、用数形结合思想方法解题
10、浅谈数学教学中的幽默风趣
11、中学数学教学与女中学生发展
12、论代数中同构思想在解题中的应用
13、论教师的人格魅力
14、论农村中小学数学 教育
15、论师范院校数学教育
16、数学在母校的发展
17、数学学习兴趣的激发和培养
18、谈新课程理念下的数学教师角色的转变
19、数学新课程教材教学探索
20、利用函数单调性解题
21、数学毕业论文题目汇总
22、浅谈中学数学教学中学生能力的培养
23、变异思维与学生的创新精神
24、试论数学中的美学
25、数学课堂中的提问艺术
26、不等式的证明方法
27、数列问题研究
28、复数方程的解法
29、函数最值方法研究
30、图象法在中学数学中的应用
31、近年来高考命题研究
32、边数最少的自然图的构造
33、向量线性相关性讨论
34、组合数学在中学数学中的应用
35、函数最值研究
36、中学数学符号浅谈
37、论数学交流能力培养(数学语言、图形、 符号等)
38、探影响解决数学问题的心理因素
39、数学后进学生的心理分析
40、生活中处处有数学
41、数学毕业论文题目汇总
42、生活中的数学
43、欧几里得第五公设产生背景及对数学发展影响
44、略谈我国古代的数学成就
45、论数学史的教育价值
46、课程改革与数学教师
47、数学差生非智力因素的分析及对策
48、高考应用问题研究
49、“数形结合”思想在竞赛中的应用
50、浅谈数学的 文化 价值
51、浅谈数学中的对称美
52、三阶幻方性质的探究
53、试谈数学竞赛中的对称性
54、学竞赛中的信息型问题探究
55、柯西不等式分析
56、中国剩余定理应用
57、不定方程的研究
58、一些数学思维方法的证明
59、分类讨论思想在中学数学中的应用
60、生活数学文化分析
数学研究生论文题目推荐
1、混杂随机时滞微分方程的稳定性与可控性
2、多目标单元构建技术在圆锯片生产企业的应用研究
3、基于区间直觉模糊集的多属性群决策研究
4、排队论在交通控制系统中的应用研究
5、若干类新形式的预条件迭代法的收敛性研究
6、高职微积分教学引入数学文化的实践研究
7、分数阶微分方程的Hyers-Ulam稳定性
8、三维面板数据模型的序列相关检验
9、半参数近似因子模型中的高维协方差矩阵估计
10、高职院校高等数学教学改革研究
11、若干模型的分位数变量选择
12、若干变点模型的 经验 似然推断
13、基于Navier-Stokes方程的图像处理与应用研究
14、基于ESMD方法的模态统计特征研究
15、基于复杂网络的影响力节点识别算法的研究
16、基于不确定信息一致性及相关问题研究
17、基于奇异值及重组信任矩阵的协同过滤推荐算法的研究
18、广义时变脉冲系统的时域控制
19、正六边形铺砌上H-三角形边界H-点数的研究
20、外来物种入侵的广义生物经济系统建模与控制
21、具有较少顶点个数的有限群元阶素图
22、基于支持向量机的混合时间序列模型的研究与应用
23、基于Copula函数的某些金融风险的研究
24、基于智能算法的时间序列预测方法研究
25、基于Copula函数的非寿险多元索赔准备金评估方法的研究
26、具有五个顶点的共轭类类长图
27、刚体系统的优化方法数值模拟
28、基于差分进化算法的多准则决策问题研究
29、广义切换系统的指数稳定与H_∞控制问题研究
30、基于神经网络的混沌时间序列研究与应用
31、具有较少顶点的共轭类长素图
32、两类共扰食饵-捕食者模型的动力学行为分析
33、复杂网络社团划分及城市公交网络研究
34、在线核极限学习机的改进与应用研究
35、共振微分方程边值问题正解存在性的研究
36、几类非线性离散系统的自适应控制算法设计
37、数据维数约简及分类算法研究
38、几类非线性不确定系统的自适应模糊控制研究
39、区间二型TSK模糊逻辑系统的混合学习算法的研究
40、基于节点调用关系的软件执行网络结构特征分析
41、基于复杂网络的软件网络关键节点挖掘算法研究
42、圈图谱半径问题研究
43、非线性状态约束系统的自适应控制方法研究
44、多维power-normal分布及其参数估计问题的研究
45、旋流式系统的混沌仿真及其控制与同步研究
46、具有可选服务的M/M/1排队系统驱动的流模型
47、动力系统的混沌反控制与同步研究
48、载流矩形薄板在磁场中的随机分岔
49、广义马尔科夫跳变系统的稳定性分析与鲁棒控制
50、带有非线性功能响应函数的食饵-捕食系统的研究
51、基于观测器的饱和时滞广义系统的鲁棒控制
52、高职数学课程培养学生关键技能的研究
53、基于生存分析和似然理论的数控机床可靠性评估方法研究
54、面向不完全数据的疲劳可靠性分析方法研究
55、带平方根俘获率的可变生物种群模型的稳定性研究
56、一类非线性分数阶动力系统混沌同步控制研究
57、带有不耐烦顾客的M/M/m排队系统的顾客损失率
58、小波方法求解三类变分数阶微积分问题研究
59、乘积空间上拓扑度和不动点指数的计算及其应用
60、浓度对流扩散方程高精度并行格式的构造及其应用
专业微积分数学论文题目
1、一元微积分概念教学的设计研究
2、基于分数阶微积分的飞航式导弹控制系统设计方法研究
3、分数阶微积分运算数字滤波器设计与电路实现及其应用
4、分数阶微积分在现代信号分析与处理中应用的研究
5、广义分数阶微积分中若干问题的研究
6、分数阶微积分及其在粘弹性材料和控制理论中的应用
7、Riemann-Liouville分数阶微积分及其性质证明
8、中学微积分的教与学研究
9、高中数学教科书中微积分的变迁研究
10、HPM视域下的高中微积分教学研究
11、基于分数阶微积分理论的控制器设计及应用
12、微积分在高中数学教学中的作用
13、高中微积分的教学策略研究
14、高中微积分教学中数学史的渗透
15、关于高中微积分的教学研究
16、微积分与中学数学的关联
17、中学微积分课程的教学研究
18、高中微积分课程内容选择的探索
19、高中微积分教学研究
20、高中微积分教学现状的调查与分析
21、微分方程理论中的若干问题
22、倒向随机微分方程理论的一些应用:分形重倒向随机微分方程
23、基于偏微分方程图像分割技术的研究
24、状态受限的随机微分方程:倒向随机微分方程、随机变分不等式、分形随机可生存性
25、几类分数阶微分方程的数值方法研究
26、几类随机延迟微分方程的数值分析
27、微分求积法和微分求积单元法--原理与应用
28、基于偏微分方程的图像平滑与分割研究
29、小波与偏微分方程在图像处理中的应用研究
30、基于粒子群和微分进化的优化算法研究
31、基于变分问题和偏微分方程的图像处理技术研究
32、基于偏微分方程的图像去噪和增强研究
33、分数阶微分方程的理论分析与数值计算
34、基于偏微分方程的数字图象处理的研究
35、倒向随机微分方程、g-期望及其相关的半线性偏微分方程
36、反射倒向随机微分方程及其在混合零和微分对策
37、基于偏微分方程的图像降噪和图像恢复研究
38、基于偏微分方程理论的机械故障诊断技术研究
39、几类分数阶微分方程和随机延迟微分方程数值解的研究
40、非零和随机微分博弈及相关的高维倒向随机微分方程
41、高中微积分教学中数学史的渗透
42、关于高中微积分的教学研究
43、微积分与中学数学的关联
44、中学微积分课程的教学研究
45、大学一年级学生对微积分基本概念的理解
46、中学微积分课程教学研究
47、中美两国高中数学教材中微积分内容的比较研究
48、高中生微积分知识理解现状的调查研究
49、高中微积分教学研究
50、中美高校微积分教材比较研究
51、分数阶微积分方程的一种数值解法
52、HPM视域下的高中微积分教学研究
53、高中微积分课程内容选择的探索
54、新课程理念下高中微积分教学设计研究
55、基于分数阶微积分的线控转向系统控制策略研究
56、基于分数阶微积分的数字图像去噪与增强算法研究
57、高中微积分教学现状的调查与分析
58、高三学生微积分认知状况的思维层次研究
59、分数微积分理论在车辆底盘控制中的应用研究
60、新课程理念下高中微积分课程的教育价值及其教学研究
数学归纳思想在各学段之特点和教学启示
第一章 导论
数学教学中渗透数学精神与思想论文是我为数学专业的同学带来的论文范文,写论文时可以作为参考哦。
数学教学中渗透数学精神与思想论文【1】
【摘 要】古人言“勤学善思”,多年来,我们却是“勤”有余,“思”不足。
现在,两种“差之毫厘,谬以千里”摆在眼前,孰轻孰重,值得掂量。
从教学实践和教学经验出发,强调在数学基础教育中注重对学生数学思想和数学精神的培养,有助于学生更好地学习和驾驭数学,有助于学生养成完善的人格,有助于科学和人文素养的养成。
【关键词】数学教学 数学知识 数学方法 数学思想 数学精神
著名数学史家M.克莱茵说过:"数学是一种精神,一种理性的精神.正是这种精神,激发、促进、鼓舞并促使人类的思维得以运用到最完善的程度.……"数学的这种精神其实是数学的根本。
教育考试界对中学比较重要的思想和方法进行了层次划分和系统归类,将数学思想和方法分为三大类:
第一类,数学思想方法,主要包括函数与方程的思想、数形结合的思想、分类与整合的思想、化归与转化的思想、特殊与一般的思想、有限与无限的思想、或然与必然的思想、算法的思想。
这些是高考必考的重要数学思想方法。
第二类,数学思维方法,主要包括分析法、综合法、归纳法、演绎法、观察法、实 验法、特殊化方法等。
第三类,数学方法,主要指应用面较窄的具体方法,如配方法、换元法、待定系数法等具体的解题方法。
这三类之间的关系可以用这样一句话概括,就是在问题解决过程中人们利用第二类数学思维方法,在第一类数学思想方法的指导下采用第三类具体的数学方法解决问题。
在我们的高考试题中就是以这样的形式来考查的。
本人在教学实践中把重点放在了提醒学生仔细认真方面。
然而,越来越多的实践让我发现,这不仅仅是因为学生的粗心马虎造成的,而是因为学生们没能真正理解一个等式所包含的深层意义。
例如,我在纠正一个数学成绩还不错的学生的这种错误的时候,他迷惑地说:“老师,为什么一个数字从等号这边移到等号的另一边就要将它的前面的加减号改得与移动前完全相反呢?”他甚至还打比方说:“如果我从一座桥的西端走到东端,难道我就从男生变成了女生了吗?”当时我没有太在意这个学生的问题,只是告诉他这是运算法则的要求,不这样做就是错的。
过后便忘记了。
有机会看到了西方的数学课堂,才猛然发现,自己根本没有真正理解数学这门学问。
在西方的一些课堂上,我看到孩子们计算能力很差,老师却不介意,因为老师致力于培养孩子们的数学思维力,教导孩子数为什么是数,数有什么用,想办法让孩子们联系生活自己去设计数学题,将数学形成一种生活能力。
说到这肯定会有人问:那计算能力差怎么办?人家考虑问题可不是那么一根筋,想办法发明计算器,让计算器来为人服务就是了。
你想,你算得再准,能有计算器精准吗?把人脑变成电脑是一种悲哀,让电脑为人脑服务才是智慧。
提出“努力渗透基本的数学思想方法”,“培养辩证全面地考虑问题的习惯”,让读者通过基础知识这些“枝叶”,去理解蕴藏于其中的“数学思想方法”。
看到这种观点的时候,我突然想起来那个学生的话。
显然他不理解为什么要这么做,而他又试图去理解,他是想在理解的基础上改正自己经常犯的错误。
而我却没有及时地给他以正确的引导,只是从运算规则的角度让他仔细认真,不再犯类似的错误。
我更深刻地意识到我们数学教学工作的一个问题,那就是我们的教学几乎将全部重点放在了对学生进行数学知识和方法的教授上,而忽视了对其中的数学思想和数学精神的挖掘,而这正是帮助学生加深理解、提高数学学习能力的关键。
数学学习与日常的训练还是有着密切联系,这是一对矛盾,如何来化解矛盾,我们只能是通过平时良好的学习习惯即提高数学课堂的听课效率,提高数学作业的质量,做好补差和补缺工作着手。
题海战术不是提高效率的方法,我们应从以往反复做相同类型题目的题海战术中解脱出来,注重于训练中做错的练习订正及在学习中存在的缺漏的补习“数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。
数学思想是对数学事实与理论经过概括后产生的本质认识。
通过数学思想的培养,数学能力才会有一个大幅度的提高。
掌握数学思想,就是掌握数学的精髓。”
在教学实践中注重对学生数学思想和数学精神的培养,有助于帮助我们的数学教育从以发展智力为中心向智力和非智力协调发展的转变,有助于引导数学教育由短期功利性向终身素质教育的转变,有助于促进从单纯提高数学知识水平向数学素质教育和人文素质教育有机整合的转变。
在数学教学的实践中,注重学生数学思想和数学精神的培养,可以使学生真正理解和驾驭数学;学生在理解的基础上学习数学,其数学成绩和学习效果也会得到真正的提高。
因此,我们在数学教学中有必要将包括数学思想方法、数学意识、数学观念在内的数学精神融入数学课程和数学课堂教学中。
数学教育是教育的重要组成部分,在发展和完善人的教育活动、形成人们认识世界的态度和思想方法方面、推动社会进步和发展的进程中起着重要的作用。
在现代社会中,数学教育又是终身教育的重要方面,是终身发展的需要!
参考文献:
[1], ed., A Modern Introduction to Metaphysics, New York: Free Press of Glencoe, 1962。
[2]张华.经验课程论[M].上海:上海教育出版社,.
[3]钟启泉《为了中华民族的复兴 为了每位学生的发展:基础教育课程改革纲要(试行)解读》(华东师范大学出版社2001)
[4]【日】米山国藏《数学的精神思想和方法》(四川教育出版社1986)
[5]李醒民;论科学的精神功能[J];厦门大学学报(哲学社会科学版);2005年05期
数学教育的数学价值及数学意义【2】
摘要:本文从数学的实用价值中分析数学教育对人的作用,然后分析了数学教育中数学文化的作用及对人的发展的意义。
关键词:数学教育;教育价值;数学文化;数学意义
数学,从小学到初中、高中,都是必须要学的一门重要的课程。
甚至到了大学,很多专业依然要开设高等数学。
为什么我们要学这么多的数学呢?数学在一个人的教育经历中究竟扮演者怎样的角色呢?数学对于一个人的发展又有怎样的意义呢?先进技术对社会生活带来的好处,一般我们是很容易看到的,但是在其背后,基础科学所起到的作用却常常被忽略,尤其是数学的作用。
关于数学的意义,我们很难找到一个既正确又简明易懂的解释。
在数学教育中,数学意义的认识在不断深入和完善。
在数学教学中,部分师生常思考“数学有没有用?”这个问题。
对于数学,我们应该在考虑实用意义的同时考虑它对人的发展的意义。
下面我们将从数学的实用价值,数学的文化价值,及数学教育的数学意义方面来进行分析。
一、数学的实用价值
在每个人从小到大的求知过程中,数学总是占据着非常大的比例,也起着非常重要的作用。
那么,人究竟为什么要学习数学呢?对于这个问题有这样的一个回答,“数学告诉我们如何理解周围的世界,如何处理日常生活中的问题,如何为将来的职业作准备”。
[1]数学有一个非常重要的特征,就是它的研究对象具有抽象性。
数学研究对象的抽象性使得数学的'应用非常广泛。
在数学中,我们要确定一个定理或者一条规律必须靠严格的逻辑推理,仅仅靠一些实验数据或者平常的经验总结是远远不够的,更别提依靠直觉或想象了,这是数学具有的一种严谨的精神。
从历史上来看数学是非常重要的,回顾一下科学发展的历史,我们就会发现,数学的进步影响着天文学、物理学、生物学的很多重大发展。
比如黎曼几何是爱因斯坦的相对论发展的基础,而微积分的创立,则促进了物理学的发展,特别是牛顿力学中万有引力定律的发现,诸多名人的话语也让我们感受到数学在科学发展历史上起到的重要作用。
恩格斯说:数学是研究现实世界中的数量关系和空间形式的科学。
这句话告诉我们,数学为我们探索未知的科学提供了一种分析问题、处理问题的工具。
在现代化的今天,数学看似已经没那么重要了。
其实,数学仍然是迅速发展的高科技的重要基础,而且高科技的发展也使得数学的应用领域越来越广泛。
电子计算机的发明与应用使人类进入了信息时代,而电子计算机的发明应归功于数学家图灵和冯诺依曼。
在计算机出现之前,数理逻辑中就有一种图灵机,图灵机是计算机的一种简单的数学模型,它诱发了电子计算机的产生。
在计算机技术的迅速发展及其在其他领域越来越广泛的应用中,数学都起到了基础性的作用。
还有很多例子,如医学上的CT技术、网络系统安全技术、指纹的识别、网络系统安全等,在这些技术的背后,数学都起着十分重要的作用。
在这些领域中,数学常常是解决实际问题时用到的关键的基础工具。
数学的实用价值还表现在我们现代社会生活的各个方面,数学己经成为我们生活的基本工具,比如表示空气污染程度的百分数,天气预报中用到的降雨概率,买房、卖车、购买股票等投资活动中所采用的具体方案策略,购物过程中的各种打折方式的换算,房屋装修设计和装修费用的估算,对媒体中各种信息的统计分析,都需要数学知识。
没有数学,现代人几乎不能生活,至少不能更好地生活。
人们一旦掌握了公式,就能对具体的、实际的、直观的生活世界中的事件作出实践上所需要的,具有经验的确定性的预言。
……因此数学化及其所建立的公式对我们的生活来说具有决定性的意义[2]。
二、数学文化及其对人的发展的意义
“为什么教”的问题,是数学文化在中小学数学教育中需要阐述的主要问题。
就其作用来说,数学文化能够对学生进行能力训练,培养学生的学习兴趣,促进德育教育的开展,并且在学生综合素质培养等各方面都起着非常重要的作用。
数学文化教学可以改造学生的数学观念,提升学生的数学素养;学生良好的数学素养能够提高学生的整体素质,帮助他们更好地适应未来社会的发展。
数学教育可以培养人的思维,而这种思维习惯会影响人的一生。
朱正先生提到:“我在学术研究方面所做的工作,凭仗的也就是当年数学“体操”所训练出来的思维能力。
我的一本《1957年的夏季:从百家争鸣到两家争鸣》,……其实是得益于数学的。”[3]王蒙先生在著作《我的人生哲学》里有一段话,“回想童年时代花的时间一大部分用在做数学题上,这些数学知识此后直接用到的很少,但是数学的学习对于我的思维的训练却是极其有益的。”[4]两位文学家的话,是对“为什么学数学”这个问题给出的一个完美的回答。
它使我们明白了一个道理:一个人工作以后所从事的职业即使是和数学没有多少关系,原来他学过的数学的定义定理也几乎全忘光了,然而那时数学的学习对他思维的训练依然是有用的,对他后来的工作也一直会起到潜移默化的作用。
数学能够使人养成说话、做事严密的好习惯,数学能够使人变得更加深刻,更加富有智慧。
所有的学校都要求学生从小学到中学学数学、练数学,通过大量的数学知识的学习与数学题目的练习,来培养学生思维的逻辑性与严密性。
数学本身的逻辑性与严密性可以训练人的科学的思维方式,而科学的思维方法是现代人生存与发展所必备的。
有人将数学文化对数学课堂教学所产生的作用做了总结:即利用数学文化培养学生的理性精神,利用数学文化培养学生的科学精神,利用数学文化培养学生的创新精神,利用数学文化培养学生的应用意识[6]。
随着社会的发展与科学技术的进步,在选拔人才的时候,越来越多的用人单位意识到,一个人的能力,即分析问题、解决问题的能力以及创新能力,对于用人单位来说是非常重要的。
在中小学里学数学时要求的数学证明的严密推理,数学问题求解的有理有据,这种概念定理证明的准确无误与严谨的推理训练是必要的和有意义的,是数学教育中数学文化与数学意义的体现,也是良好数学素养养成的必经过程。
这些数学的训练能够提升、开发青少年的心智与潜能,对青少年一生的影响是深刻的、长远的,这种作用也是任何其他学科难以取代的。
参考文献:
[1]ICMI Study 14:Applications and Modeling in Mathematics Education-Discussion 2002,34(5),229-239.
[2][德]埃德蒙德.胡塞尔.欧洲科学危机和超验现象学[M].张庆熊,译.上海译文出版社,2005:57.
[3]朱正.字纸篓[M].广州:广东人民出版社,2000.
[4]王蒙.我的人生哲学[M].北京:人民文学出版社,2003.
[5]张楚廷.数学文化[M].北京:高等教育出版社,2006.
[6]张敬书.数学文化与数学课程改革[J].重庆师范学院学报(自然科学版),2002,(3):59-62.
一、课内重视听讲,课后及时复习。 新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。 二、适当多做题,养成良好的解题习惯。 要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。 三、调整心态,正确对待考试。 首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。 在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。 由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。 如何学好数学2 高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。 有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。 至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。 l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而 y=f(x-l)与 y=f(1-x)的图象却关于直线 x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。 2‘学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。 3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。 4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,对大家都有益。
好的,不知道什么时候要呢。
学术堂整理了十五个思政专业毕业论文题目供大家进行参考:1.高校毕业论文工作的改革探索——以中国青年政治学院本科毕业论文为例2.未就业毕业大学生群体思想政治状况分析与教育路向探析3.毕业仪式的缺失对大学生思想政治教育的影响4.提高本科毕业论文质量之我见——以广西师范学院思想政治教育专业为例5.坚定理想信念 培养高尚品格——在中国青年政治学院2008年毕业典礼上的讲话6.高校毕业分配中的思想政治工作7.关于做好学员毕业阶段思想政治工作的几点思考8.高中政治毕业会考与高考的教学衔接及导向问题9.思想政治教育类专业毕业论文的问题与对策10.浅谈对毕业大学生思想政治工作的预见性11.对军校毕业学员思想政治状况的调查与思考12.以学生为本 开展毕业实习阶段的思想政治工作13.政治演讲中人际意义的身份建构功能分析——以奥巴马在美国海军学院2013届毕业生毕业典礼上的演讲为例14.高校毕业典礼的思想政治教育价值——以兰州大学为例15.英语专业学生的政治认知及其思想工作——以英语专业学生毕业论文为例
你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向? 老师有没有和你说论文往哪个方向写比较好?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出现大改的情况!!学校的格式要求、写作规范要注意,否则很可能发回来重新改,你要还有什么不明白或不懂可以问我,希望你能够顺利毕业,迈向新的人生。 (一)选题毕业论文(设计)题目应符合本专业的培养目标和教学要求,具有综合性和创新性。本科生要根据自己的实际情况和专业特长,选择适当的论文题目,但所写论文要与本专业所学课程有关。(二)查阅资料、列出论文提纲题目选定后,要在指导教师指导下开展调研和进行实验,搜集、查阅有关资料,进行加工、提炼,然后列出详细的写作提纲。(三)完成初稿根据所列提纲,按指导教师的意见认真完成初稿。(四)定稿初稿须经指导教师审阅,并按其意见和要求进行修改,然后定稿。一般毕业论文题目的选择最好不要太泛,越具体越好,而且老师希望学生能结合自己学过的知识对问题进行分析和解决。不知道你是否确定了选题,确定选题了接下来你需要根据选题去查阅前辈们的相关论文,看看人家是怎么规划论文整体框架的;其次就是需要自己动手收集资料了,进而整理和分析资料得出自己的论文框架;最后就是按照框架去组织论文了。你如果需要什么参考资料和范文我可以提供给你。还有什么不了解的可以直接问我,希望可以帮到你,祝写作过程顺利毕业论文选题的方法: 一、尽快确定毕业论文的选题方向 在毕业论文工作布置后,每个人都应遵循选题的基本原则,在较短的时间内把选题的方向确定下来。从毕业论文题目的性质来看,基本上可以分为两大类:一类是社会主义现代化建设实践中提出的理论和实际问题;另一类是专业学科本身发展中存在的基本范畴和基本理论问题。大学生应根据自己的志趣和爱好,尽快从上述两大类中确定一个方向。二、在初步调查研究的基础上选定毕业论文的具体题目在选题的方向确定以后,还要经过一定的调查和研究,来进一步确定选题的范围,以至最后选定具体题目。下面介绍两种常见的选题方法。 浏览捕捉法 :这种方法就是通过对占有的文献资料快速地、大量地阅读,在比较中来确定论文题目地方法。浏览,一般是在资料占有达到一定数量时集中一段时间进行,这样便于对资料作集中的比较和鉴别。浏览的目的是在咀嚼消化已有资料的过程中,提出问题,寻找自己的研究课题。这就需要对收集到的材料作一全面的阅读研究,主要的、次要的、不同角度的、不同观点的都应了解,不能看了一些资料,有了一点看法,就到此为止,急于动笔。也不能“先入为主”,以自己头脑中原有的观点或看了第一篇资料后得到的看法去决定取舍。而应冷静地、客观地对所有资料作认真的分析思考。在浩如烟海,内容丰富的资料中吸取营养,反复思考琢磨许多时候之后,必然会有所发现,这是搞科学研究的人时常会碰到的情形。 浏览捕捉法一般可按以下步骤进行: 第一步,广泛地浏览资料。在浏览中要注意勤作笔录,随时记下资料的纲目,记下资料中对自己影响最深刻的观点、论据、论证方法等,记下脑海中涌现的点滴体会。当然,手抄笔录并不等于有言必录,有文必录,而是要做细心的选择,有目的、有重点地摘录,当详则详,当略则略,一些相同的或类似的观点和材料则不必重复摘录,只需记下资料来源及页码就行,以避免浪费时间和精力。 第二步,是将阅读所得到的方方面面的内容,进行分类、排列、组合,从中寻找问题、发现问题,材料可按纲目分类,如分成: 系统介绍有关问题研究发展概况的资料; 对某一个问题研究情况的资料; 对同一问题几种不同观点的资料; 对某一问题研究最新的资料和成果等等。 第三步,将自己在研究中的体会与资料分别加以比较,找出哪些体会在资料中没有或部分没有;哪些体会虽然资料已有,但自己对此有不同看法;哪些体会和资料是基本一致的;哪些体会是在资料基础上的深化和发挥等等。经过几番深思熟虑的思考过程,就容易萌生自己的想法。把这种想法及时捕捉住,再作进一步的思考,选题的目标也就会渐渐明确起来。
一、数形结合的思想方法 数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。 例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。 二、集合的思想方法 把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。 如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。 三、对应的思想方法 对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。 如人教版一年级上册教材中,分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。 四、函数的思想方法 恩格斯说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。学生对函数概念的理解有一个过程。在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。 函数思想在人教版一年级上册教材中就有渗透。如让学生观察《20以内进位加法表》,发现加数的变化引起的和的变化的规律等,都较好的渗透了函数的思想,其目的都在于帮助学生形成初步的函数概念。 五、极限的思想方法 极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。 现行小学教材中有许多处注意了极限思想的渗透。在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1÷3=…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。 六、化归的思想方法 化归是解决数学问题常用的思想方法。化归,是指将有待解决或未解决的的问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,以求得解决。客观事物是不断发展变化的,事物之间的相互联系和转化,是现实世界的普遍规律。数学中充满了矛盾,如已知和未知、复杂和简单、熟悉和陌生、困难和容易等,实现这些矛盾的转化,化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易,都是化归的思想实质。任何数学问题的解决过程,都是一个未知向已知转化的过程,是一个等价转化的过程。化归是基本而典型的数学思想。我们实施教学时,也是经常用到它,如化生为熟、化难为易、化繁为简、化曲为直等。 如:小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等;在教学平面图形求积公式中,就以化归思想、转化思想等为理论武器,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生的认知结构。 七、归纳的思想方法 在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。 如:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度。这就运用归纳的思想方法。 八、符号化的思想方法 数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国著名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。 人教版教材从一年级就开始用“□”或“()”代替变量x,让学生在其中填数。例如:1+2=□,6+()=8,7=□+□+□+□+□+□+□;再如:学校有7个球,又买来4个。现在有多少个?要学生填出□○□=□(个)。 符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。因此,教师在教学中要注意学生的可接受性。 九、统计的思想方法 在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法
一、数形结合的思想方法 数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。它是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。 例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。 二、集合的思想方法 把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。集合思想作为一种思想,在小学数学中就有所体现。在小学数学中,集合概念是通过画集合图的办法来渗透的。 如用圆圈图(韦恩图)向学生直观的渗透集合概念。让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。利用图形间的关系则可向学生渗透集合之间的关系,如长方形集合包含正方形集合,平行四边形集合包含长方形集合,四边形集合又包含平行四边行集合等。 三、对应的思想方法 对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。 如人教版一年级上册教材中,分别将小兔和砖头、小猪和木头、小白兔和萝卜、苹果和梨一一对应后,进行多少的比较学习,向学生渗透了事物间的对应关系,为学生解决问题提供了思想方法。 四、函数的思想方法 恩格斯说:“数学中的转折点是笛卡儿的变数。有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了。”我们知道,运动、变化是客观事物的本质属性。函数思想的可贵之处正在于它是运动、变化的观点去反映客观事物数量间的相互联系和内在规律的。学生对函数概念的理解有一个过程。在小学数学教学中,教师在处理一些问题时就要做到心中有函数思想,注意渗透函数思想。 函数思想在人教版一年级上册教材中就有渗透。如让学生观察《20以内进位加法表》,发现加数的变化引起的和的变化的规律等,都较好的渗透了函数的思想,其目的都在于帮助学生形成初步的函数概念。 五、极限的思想方法 极限的思想方法是人们从有限中认识无限,从近似中认识精确,从量变中认识质变的一种数学思想方法,它是事物转化的重要环节,了解它有重要意义。 现行小学教材中有许多处注意了极限思想的渗透。在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想;在循环小数这一部分内容中,1÷3=…是一循环小数,它的小数点后面的数字是写不完的,是无限的;在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。 六、化归的思想方法 化归是解决数学问题常用的思想方法。化归,是指将有待解决或未解决的的问题,通过转化过程,归结为一类已经解决或较易解决的问题中去,以求得解决。客观事物是不断发展变化的,事物之间的相互联系和转化,是现实世界的普遍规律。数学中充满了矛盾,如已知和未知、复杂和简单、熟悉和陌生、困难和容易等,实现这些矛盾的转化,化未知为已知,化复杂为简单,化陌生为熟悉,化困难为容易,都是化归的思想实质。任何数学问题的解决过程,都是一个未知向已知转化的过程,是一个等价转化的过程。化归是基本而典型的数学思想。我们实施教学时,也是经常用到它,如化生为熟、化难为易、化繁为简、化曲为直等。 如:小数除法通过“商不变性质”化归为除数是整数的除法;异分母分数加减法化归为同分母分数加减法;异分母分数比较大小通过“通分”化归为同分母分数比较大小等;在教学平面图形求积公式中,就以化归思想、转化思想等为理论武器,实现长方形、正方形、平行四边形、三角形、梯形和圆形的面积计算公式间的同化和顺应,从而构建和完善了学生的认知结构。 七、归纳的思想方法 在研究一般性性问题之前,先研究几个简单的、个别的、特殊的情况,从而归纳出一般的规律和性质,这种从特殊到一般的思维方式称为归纳思想。数学知识的发生过程就是归纳思想的应用过程。在解决数学问题时运用归纳思想,既可认由此发现给定问题的解题规律,又能在实践的基础上发现新的客观规律,提出新的原理或命题。因此,归纳是探索问题、发现数学定理或公式的重要思想方法,也是思维过程中的一次飞跃。 如:在教学“三角形内角和”时,先由直角三角形、等边三角形算出其内角和度数,再用猜测、操作、验证等方法推导一般三角形的内角和,最后归纳得出所有三角形的内角和为180度。这就运用归纳的思想方法。 八、符号化的思想方法 数学发展到今天,已成为一个符号化的世界。符号就是数学存在的具体化身。英国著名数学家罗素说过:“什么是数学?数学就是符号加逻辑。”数学离不开符号,数学处处要用到符号。怀特海曾说:“只要细细分析,即可发现符号化给数学理论的表述和论证带来的极大方便,甚至是必不可少的。”数学符号除了用来表述外,它也有助于思维的发展。如果说数学是思维的体操,那么,数学符号的组合谱成了“体操进行曲”。现行小学数学教材十分注意符号化思想的渗透。 人教版教材从一年级就开始用“□”或“()”代替变量x,让学生在其中填数。例如:1+2=□,6+()=8,7=□+□+□+□+□+□+□;再如:学校有7个球,又买来4个。现在有多少个?要学生填出□○□=□(个)。 符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。数学符号是抽象的结晶与基础,如果不了解其含义与功能,它如同“天书”一样令人望而生畏。因此,教师在教学中要注意学生的可接受性。 九、统计的思想方法 在生产、生活和科学研究时,人们通常需要有目的地调查和分析一些问题,就要把收集到的一些原始数据加以归类整理,从而推理研究对象的整体特征,这就是统计的思想和方法。例如,求平均数是一种理想化的统计方法。我们要比较两个班的学习情况,以班级学生的平均数作为该班成绩的标志是有一定说服力的,这是一种最常用、最简单方便的统计方法
数学课程标准总体目标的第一条就明确提出:“让学生获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能。”美国教育心理家布鲁纳也指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。在人的一生中,最有用的不仅是数学知识,更重要的是数学的思想方法和数学的意识,因此数学的思想方法是数学的灵魂和精髓。掌握科学的数学思想方法对提升学生的思维品质,对数学学科的后继学习,对其它学科的学习,乃至对学生的终身发展都具有十分重要的意义。在小学数学教学中,教师有计划、有意识地渗透一些数学思想方法,是实施素质教育,发展学生能力,提高数学能力,减轻学生课业负担的重要举措,在课程数学改革中有举足轻重的位置。那么,在小学数学教学中,究竟应如何渗透数学思想方法呢?一、转变观念,重视挖掘数学思想方法。数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。教师讲不讲,讲多讲少,随意性较大,常常因教学时间紧而将它作为一个“软任务”挤掉。对于学生的要求是能领会多少算多少。因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。在小学数学教学中,教师不能仅仅满足于学生获得正确知识的结论,而应该着力于引导学生对知识形成过程的理解。让学生逐步领会蕴涵其中的数学思想方法。也就是说,对于数学教学重视过程与重视结果同样重要。教师要站在数学思想方面的高度,对其教学内容,用恰当的语言进行深入浅出的分析,把隐蔽在知识内容背后的思想方法提示出来。例如,圆的认识概念教学,可以按下列程序进行:(1)由实物抽象为几何图形,建立圆的表象;(2)在表象的基础上,指出圆的半径、直径及其特点,使学生对圆有一个更深层次的认识;(3)利用圆的各种表象,分析其本质特征,抽象概括为用文字语言表达的圆的概念;(4)使圆的有关概念符号化。显然,这一数学过程,既符合学生由感知到表象再到概念的认知规律,又能让学生从中体会到教师是如何应用数学思想法,对有联系的材料进行对比的,对空间形式进行抽象概括的,对教学概念进行形式化的。二、 相机而动,及时引入数学思想方法。为了更好地在小学数学教学中渗透数学思想方法,教师不仅要对教材进行研究,潜心挖掘,而且还要讲究思想渗透的手段和方法。小学阶段,数学思想方法的渗透一般常用直观法、问题法、反复法和剖析法。所谓直观法就是以图表形式将数学思想方法直观化、形象化。直观法的观点是能将高度抽象的数学思想方法变成学生容易感知具体材料,特别是生动有趣的图画给学生留下鲜明的印象。问题法是指学生在教师的启发下,在探究问题答案的过程中,通过回顾、思考、总结,逐步领会数学问题的规律性,进而加深对解题方法、技巧的认识。反复法是指通过同一类情景的多次出现,让学生持续接受某一数学思想方法的熏陶。剖析法是解剖典型的范例,从方法论的角度用儿童能理解的数学语言去描述数学现象,解释数学规律。在教学过程中,教师应掌握方法,不失时机的向学生渗透数学思想方法。教师可以通过以下途径渗透:(1)在知识的形成过程中渗透。如概念的形成过程,结论的推导过程等,都是向学生渗透数学思想和方法,训练思维,培养能力的极好机会。(2)在问题的解决过程中渗透。如:教学“倒过来推想” 这一课时,在解决问题的过程中,用图表、摘录条件等方法让学生逐步领会“倒过来推想”这种策略的奥妙所在。(3)在复习小结中渗透。在章节小结、复习的数学教学中,我们要注意从纵横两个方面,总结复习数学思想与方法,使师生都能体验到领悟数学思想,运用数学方法,提高训练效果,减轻师生负担,走出题海误区的轻松愉悦之感。如教学完“圆的认识”这一单元之后,可及时帮助学生依靠圆的面积的推导过程回忆多边形面积公式的推导方法,使学生能清楚地意识到:“转化”是解决问题的有效方法。(4)在数学讲座等教学活动中渗透。数学讲座是一种课外教学活动形式,它不仅为广大学生所喜爱,而且是数学教师普遍选用的数学活动方式。特别是在数学讲座等活动中适当渗透数学思想和方法,给数学教学带来了生机,使过去那死水般的应试题海教学一改容颜,焕发了青春,充满了活力。三、千锤百炼——自觉运用数学思想方法。数学思想方法的教学,不仅是为了指导学生有效地运用数学知识、探寻解题的方向和入口,更是对培养人的思维素质有着特殊不可替代的意义。它在新授中属于“隐含、渗透”阶段,在练习与复习中进入明确、系统的阶段,也是数学思想方法的获得过程和应用过程。这是一个从模糊到清晰的飞跃。而这样的飞跃,依靠着系统的分析与解题练习来实现。学生做练习,不仅对已经掌握的数学知识以及数学思想方法会起到巩固和深化的作用,而且还会从中归纳和提炼出新的数学思想方法。数学思想方法的教学过程首先是从模仿开始的。学生按照例题师范的程序与格式解答和例题相同类型的习题,实际上是数学思想方法的机械运用。此时,并不能肯定学生已领会了所用的数学思想方法,只当学生将它用于新的情景,解决其他有关的问题并有创意时,才能肯定学生对这一教学本质、数学规律有了深刻的认识。我们知道,对于学习者来说,最好的学习效果是主动参与,亲自发现,数学思想方法的学习也不例外。在教学中,通过数学思想方法的广泛应用,让学生从主观上重视数学思想方法的学习,进而增强自觉提炼数学思想方法的意识。教师对习题的设计也应该从数学思想方法的角度加以考虑,尽量多安排一些能使各种学习水平的学生深入浅出地作出解答的习题,它既有具体的方法或步骤,又能从一类问题的解法去思考或从思想观点上去把握,形成解题方法,进而深化为数学思想。如在教学完圆环面积的计算以后,可以由易到难,出几题运用移动、割补等方法解决的实际问题,这样做不仅可以让学生领会到转化的数学思想方法,对提高学生的学习兴趣也大有好处。让学生在操作中掌握,在掌握后领悟,使数学思想方法在知识能力的形成过程中共同生成。数学思想方法是一项系统工程,受诸多因素的影响和制约。我们小学数学教师只有重视对数学思想方法的学习研究,探讨其教学规律,才能适应课程教学改革需要。当然应该看到,数学思想方法的渗透具有长期性、反复性。对学生进行数学思想方法的渗透必定要经历一个循环往复、螺旋上升的过程,往往是几种思想方法交织在一起,在教学过程中教师要依据具体情况,在某一段时间内重点渗透与明确一种数学思想方法,这样反复训练,才能使学生真正地有所领悟。
作为一名小学数学教师,我们应强化自身的职能意识,为学生的进一步学习打下坚实的基础。随着新课程改革的进一步深入,小学数学教师逐渐解放思想,积极探索新的教学方法。本文是我为大家整理的小学数学教学方法探析论文,欢迎查看!
一、小学数学趣味教学的实践意义
教师利用趣味教学法讲授知识,学生对于晦涩难懂的理论知识也不再抱有畏惧的心态了,他们会更加积极主动地投入到学习中,对知识的掌握也会更加透彻。小学数学教师在课堂上使用趣味教学法,能减轻学生对数学的抗拒心理,逐渐化解和消除数学学科的逻辑性与小学生形象思维之间的矛盾。
二、对小学数学趣味教学的误用
随着新课程改革的进一步深入,小学数学教师逐渐解放思想,积极探索新的教学方法。在小学数学教学课堂上许多教师开始接受并使用趣味教学方法。但是由于认知水平以及其他一系列因素的制约,部分教师对趣味性教学还存在一定的认识误差,片面强调课堂教学的趣味性,对课堂教学的基础性较为忽视,从而导致“趣味性”越来越差。教师在教学过程中使用的方法不当,会使严肃的数学课堂呈现出体育课以及音乐课的特征,难以完成预定的教学目标。同时部分数学教师过分夸大了趣味教学的方法,在教学中全程使用趣味教学法,整个课堂教学都充斥着欢声笑语,使学生难以分清主次,由此可见过分追求数学教学中的趣味性会使学生忽视数学学习的重要性,而且他们的学习心理也会发生一定程度的动摇。学生在不恰当的趣味教学中,会以为数学学习是一件随意的事,从而以一种玩乐的心态对待学习,对教师教学会产生一定的负面影响。在趣味性教学过程中学生做小动作、打瞌睡以及讲话的频率大幅度降低,但是由于教师的误用,教师仍然难以达到预期的教学目标,学生也无法从根本上提升自己的数学能力和素养。
三、小学数学趣味教学的体现
作为一名小学数学教师,我们应强化自身的职能意识,为学生的进一步学习打下坚实的基础。为此,小学数学教师要鼓励学生学习,充分挖掘学生学习数学的潜力,激发其学习热情。在趣味教学的过程中要将教学过程中的“数学味”放在十分重要的地位,明确数学学习的突出作用,提升课堂教学效率。小学数学教师在数学课堂教学中,不能在整个课堂教学中一味采用趣味教学法。教师应该始终明确,趣味教学法无法代替传统的教学法,它只是教学过程中的一个辅助性手段。教师在教学中可以适时加入趣味教学,不时地给学生感官以及心理上的刺激,以极富吸引力的动作、行为以及语言等给学生以启发。同时教师还要与学生保持交流和沟通,保证课堂教学良好的氛围。另外,教师在普遍采用趣味性教学法的过程中,要从根本上保证教学质量,不能因为重视“趣味性”而忽视了“数学味”。小学数学教师要积极探索趣味性教学的新思路,在教学方法的选择上既要有较强的趣味性,又要有利于开发学生的智力以及思维潜能。如,小学教师在采用趣味性教学法的过程中,可以设置智力游戏环节,激发学生的求知欲和探求欲。小学数学具备一定的逻辑性,培养小学生的数学学习能力和水平,能从根本上提升小学生的逻辑思维能力。智力游戏在一定程度上实现了“数学味”和“趣味性”的结合。由此可见,小学数学教师在课堂教学中要适当添加智力游戏环节,充分激发学生的想象力,培养学生的创造性思维能力。与此同时小学数学教师要充分尊重学生的主体地位,尊重其个性发展差异。在教学过程中教师要给学生充分的自由空间,让学生独立思考,教师在课堂上只能起引导作用,而绝不能成为教学活动的主体。在小学数学课堂教学中,教师要满足学生的个性发展需求,学会放手,让学生自主发现问题并解决问题。总之,小学数学教师应强化自身素养,深入理解趣味教学法的内涵,不断发挥自己的职能,运用积极的方法教育学生,在进行教学环节以及教学内容的设置过程中,要从科学的眼光出发,激发学生的学习欲望,减轻学生的课业负担,并尽可能帮助学生掌握更多的数学知识。
作者:谈建军 工作单位:江苏省淮安市平桥镇同兴小学
一、小学数学思想方法
所谓的数学思想方法是指在对数学的探究的过程中,提炼出来的一些理论,这些理论代表了数学学习中的一些规律,然后根据这些规律对数学问题进行解答。数学方法就是思想的直接反映,数学思想是对于数学学习的指导方法,数学方法是解决问题的直接手段。由于小学的数学比较基础,思想和方法在一定程度上是统一的。因此这种数学思想与数学方法的结合就称为小学数学思想方法。
二、小学数学思想方法的内容
目前小学的数学思想方法主要包括以下的内容:有对应思想方法、假设思想方法、比较思想、符号化思想方法、类比思想方法、转化思想方法、分类思想方法、集合思想方法、数形结合思想方法、统计思想方法、极限思想方法、代换思想方法、可逆思想方法、化归思维方法、变中抓不变思想方法、数字模型思想方法、整体思想方法。
三、小学数学思想方法指导的现状
1.教师不明确数学思想方法
数学教师在进行教学的过程中,不能完全掌握数学思想方法,甚至不能说出数学思想方法有哪些,在很大程度上限制了对学生进行数学思想方法的教学,不能使学生利用数学思想方法进行数学的学习和研究,也就是大大的降低了学生对数学的系统性的理解和掌握。
2.不重视数学思想方法的指导
在课堂教学上,教师通常运用传统的方式向学生进行教学,不能向学生进行数学思想方法的指导。由于小学的数学较为基础,教师在一定程度上只注意了用传统的教学模式使学生掌握数学知识,不能意识到数学思想方法对学生后续数学学习的作用和意义,因此忽视了在课堂上对学生进行数学思想方法的指导。
3.不明确指导方向
在数学的教学过程中,教师不能对课本知识进行深人的探讨,使教师不明确该用哪个数学思想方法进行指导,或不明确联系到某一数学思想时会不会影响学生对知识点的理解,从而不能真正意义上的明确数学思想的指导方向,在很大程度上阻碍了数学思想方法的推广应用。
4.方法运用不当
在数学教学时,教师会对学生进行数学思想方法的知道教学,但由于学生的实际情况,导致学生不能再数学的学习中很好的运用。有时,教师会在学习数学知识的过程中直接指导学生运用何种数学思想方法,并不是学生根据自身的学习研究而明确的,这也是学生在运用的时候出现问题,不能真正的理解和掌握,在很大程度上阻碍了数学学习。
四、小学数学思想方法指导的对策
1.培养学生自主学习感悟的能力
因为数学思想比数学知识更加的难以理解,并不是教师在教学中就能教会的,因此必须依靠学生本身不断的去探索去发现。因此,要想要学生能不断的在数学的学习中熟练的运用数学思想方法进行学习,就必须要培养学生资助学习、自主感悟的能力。只有学生在学习中,进行思维的创造,理解掌握数学思想的体系,才能真正意义上促进学生数学的学习。
2.使学生不断的进行练习
学生在学习数学中,要不断的加强对习题的练习,才能更充分的掌握知识,促进数学饿进步。学习数学过程中,学生要不断的进行习题训练,同类型的习题通过不同的数学思想进行探究,找到最合适的思想方法,能够构建一个良好的数学思想体系,真正的帮助自身进行数学的学习。
3.培养学生独立思考的能力
在学生的数学学习过程中,要不断的培养学生的独立思考能力,不能让学生过分的依赖教师或书本。在遇到难题的时候,必须让学生进行独立的思考,在很大程度上也锻炼了学生的逻辑思维能力,把问题的每一步都思考的透彻,这样才能够促进学生充分的人事数学思想方法,在思考问题的同时,建立起数学思想体系,把数学思想代人难题,促进难题的解答,在很大程度上增强了学生的学习能力,促进了数学成绩的真正意义上的提高。
4.加强对学生的引导
对于小学数学的学习,是数学学习的基础环节,因此教师必须加强引导,学生不理解数学思想的时候,必须加强对数学方法的指导,指引学生用正确的数学方法进行学习,久而久之,在学生掌握学习方法之后,就会增强思维上的训练,从而建立起完整的数学思想体系,促进了数学思想方法的运用。
5.进行专门的训练
在数学思想方法指导的过程中,要用专题对学生进行训练,使学生明白各个思想方法的运用,只有不断加强学生对专题的练习,才能使学生完全掌握数学思想的内容,才能更好的为后续的数学学习做好铺垫。
6.引导学生进行数学思想方法的尝试
在数学教学的过程中,引导学生进行数学思想方法的尝试,让学生尽量多的进行数学方法的试验,找到最适合的方法,从而使学生对数学方法的学习更加的明确,只有不断的尝试,才能使学生更快的接受、领悟知识,找到最好的解决问题的思想方法。
五、结束语
随着教育事业的不断发展,小学数学的教学作为培养学生逻辑思维能力、思考能力、自主学习能力的学科,受到了广泛的关注。在数学学习过程中,数学思想方法被广泛的应用,只有学生不断的加强自身的独立思考能力、不断的进行自主的学习和领悟才能更好的运用数学思想方法进行探究和学习,此外,教师要加强对学生的引导,不断的对学生进行专门的训练,培养学生的学习能力,才能真正的使数学思想方法更好的帮助学生学习数学。全面的培养数学能力,充分的学习好数学思想方法,才能真正的为后续的数学学习打下基础,才能使学生不断的进步。
作者:陈园园 工作单位:海港区大乐安寨小学
一、小学数学教科书习题特点
现阶段,为了保障教学质量,在小学课堂学习中,从不同角度、不同层次对学生进行习题训练,让教学工作更具有计划性、目的性、针对性,是当前小学教学的主要特征。通过层次多样、内容不一的习题训练,不仅能满足学生爱玩、好奇心理,让其对数学教学产生兴趣,从而发散思维对相关问题进行思考,还能让学生在掌握知识的同时,不断提高学习与教学能力。小学数学教科书习题作为小学教材的重要部分,我们必须正视小学数学教学以及学生特点,将“以人为本”的教学历年始终贯穿到教学工作中去。
(一)减小计算繁、难度。在目前的素质教育中,针对学生特点以及知识掌握情况,对以往的数学教科书进行了一定程度上的整改。修订后的小学数学在习题方面,明显减小了习题难度。新课标根据小学生正处于智力开发、性格塑造的阶段,繁琐、复杂的课后练习,不仅会对小学数学教学质量造成影响,还会消耗学生大量的时间与精力,同时还会影响学生对数学学习的兴趣,打击学生学习信心,从而不利于开发学生智力。新课改后的小学数学教科书更加注重学生认识能力、学习效率以及智商差距,在数学习题编排中,不是鼓励学生向着“谁算得又快有对”,而是希望每个学生都能算对,从而激发学生学习兴趣,调动学习积极性与主动性。这种减小习题难度的方法,不是削弱学生计算能力,而是更注重学生兴趣培养,在对数学具有学习热诚后,让学生更加主动、用心的学习,从而保障学生学习质量与效率。
(二)益智性。在当代小学数学习题演练中,为了让教学工作更加符合生活,改变传统教学的死板形式,它把握住了现代小学数学本质,通过开发富有想象、鲜活的数学原型,从中构建或者提炼数学问题;通过训练学生思维,使用有针对性的数学问题,帮助学生开发智力。例如:小猴子吃桃子,剩下的吃掉的少4个,当小猴子又吃掉1个桃子,吃掉的就变成剩下的3倍,求小猴子总共有多少桃子?细看这道数学题型,没有繁琐、复杂的计算,但是也不太简单,也有一定难度,这样不尽不的会打击学生学习积极性,还能带动学生兴趣,提高学生智力,让学生感到数学的智慧力量与亲切感。
(三)趣味性。兴趣作为最好的老师,不管是数学还是其他学科。小学数学作为基础学科,对其他学科学习具有很大帮助;同时它也是一门自然醒很强的学科,和其他学科相比,它更加乏味、枯燥。因此,在教学中必须调动学生兴趣,通过设计学生感兴趣的题目,改变传统文字出题的特征,使用图片吸引学生注意力,从而提高数学学习兴趣。
二、小学数学教学方法
教学方法作为小学数学教学质量的保障,对提高教学效率具有重要作用。
(一)转变教育思想。我国很多小学教学中仍然以老师讲、学生听为教学途径,尤其是条件落后、师资紧缺的农村,在教学中,老师始终是教学的主体,如此一来忽视了学生培养目标和教育理念。在新时期的小学数学教学中,老师必须转变教学意识,让老师成为引导者,而非对学生进行知识灌输,在帮助学生主动学习的过程中,让其成为学习的主人。同时,这样也能让学生带着带着自己的思考参与学习,让学生更富有思想活跃性、创造性,在提高学习兴趣的同时,保障教学质量与效率。
(二)充分利用多媒体设施。随着网络技术与多媒体的应用,多媒体逐渐成为当代教学的重要设施。在现代小学教学中,为了帮助学生集中精神,激发学习动力,可以利用学生好奇心强等特点,充分利用多媒体技术,将死板的教材内容变成形象生动的教学。通过动态视频,也能将枯燥、单调的文字变得更加形象、充实。因此,利用多媒体教学,对教学方法进行创新,可以进一步促进小学数学教学现代化。
(三)教学内容生活化。为了让数学教学更贴近生活,从教材编排到课堂教学都必须将生活与实际联系起来。例如:在钟表认识中,可以利用日常钟表,让学生主动探讨怎样确定半点、整点、快到整点、整点刚过,这种生活化的教学就能让学生感到趣味性、亲切行。同时,显示生活也有很多与数学教学紧密相关的事物,所以老师在教学中,必须从生活出发,用生活的形式展现数学内容,从而提高学生学习兴趣与教学效率。
三、结束语
数学作为一门博大的学科,在小学教学中对启发学生智力、促进学生成长具有重要作用。因此,在现代小学数学教学中,必须增强对教科书以及教学方式的探讨,在提高学生学习兴趣的同时,让学生主动领略数学内涵,提高教学质量与效率。
作者:唐秀云 工作单位:吉林省梨树县郭家店镇镇郊中心小学校