首页 > 期刊论文知识库 > 基于温度的论文研究现状

基于温度的论文研究现状

发布时间:

基于温度的论文研究现状

(1)国外温度测控系统研究国外对温度控制技术研究较早,始于20世纪70年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代末出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温度测控技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展。(2)国内温度测控系统研究我国对于温度测控技术的研究较晚,始于20世纪80年代。我国工程技术人员在吸收发达国家温度测控技术的基础上,才掌握了温度室内微机控制技术,该技术仅限于对温度的单项环境因子的控制。我国温度测控设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展。在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与发达国家相比,存在较大差距。我国温度测量控制现状还远远没有达到工厂化的程度,生产实际中仍然有许多问题困扰着我们,存在着装备配套能力差,产业化程度低,环境控制水平落后,软硬件资源不能共享和可靠性差等缺点。这是本人整理的一些,仅供参考。希望对你有用。

用DS18B20测试温度,然后做出相应的控制,也可以报警创新方面可以做多路温度测试和控制吧,加温度显示,用LED数码管或者LCD显示屏

这是俺论文的第一部分,希望对你用!!!!! 国内外温度检测技术研究现状温度是在工业、农业、国防和科研等部门中应用最普遍的被测物理量。有资料表明,温度传感器的数量在各种传感器中位居首位,约占50%左右。因此,温度测量在保证产品质量,提高生产效率,节约能源,安全生产,促进国民经济发展等诸多方面起到了至关重要的作用。 常用的温度测量方法根据测温方式的不同,温度测量通常可分为接触式和非接触式测温两大类。接触式测温的特点是感温元件直接与被测对象相接触,两者进行充分的热交换,最后达到热平衡,此时感温元件的温度与被测对象的温度必然相等,温度计就可据此测出被测对象的温度。因此,接触式测温一方面有测温精度相对较高,直观可靠及测温仪表价格相对较低等优点;另一方面也存在由于感温元件与被测介质直接接触,从而影响被测介质热平衡状态,而接触不良则会增加测温误差;被测介质具有腐蚀性及温度太高亦将严重影响感温元件性能和寿命等缺点。根据测温转换的原理,接触式测温又可分为膨胀式、热阻式、热电式等多种形式。非接触式测温的特点是感温元件不与被测对象直接接触,而是通过接受被测物体的热辐射能实现热交换,据此测出被测对象的温度。因此,非接触式测温具有不改变被测物体的温度分布,热惯性小,测温上限可设计的很高,便于测量运动物体的温度和快速变化的温度等优点。两类测温方法的主要特点如下表所示。表 两种测温方法的主要特点方式 接触式 非接触式测量条件 感温元件要与被测对象良好接触;感温元件的加入几乎不改变对象的温度;被测温度不超过感温元件能承受的上限温度;被测对象不对感温元件产生腐蚀。 需准确知道被测对象表面发射率;被测对象的辐射能充分照射到检测元件上。测量范围 特别适合1200度、热容大、无腐蚀性对象的连续在线测温,对高于1300度以上的温度测量比较困难。 原理上测量范围可以从超高温到超低温。但1000度以下,测量误差比较大,能测运动物体或热容小的物体温度精度 工业用表通常为、、、级,实验室用表可达级。 通常为、、级响应速度 慢,通常为几十秒到几分钟 快,通常为2-3秒钟其他特点 整个测温系统结构简单、体积小、可靠、维护方便、价格低廉。仪表读数直接反映被测物体温度,可方便的组成多路集中测量与控制系统。 整个测量系统结构复杂、体积大、调整麻烦、价格昂贵;仪表读数通常反映被测物体表面温度(需进一步转换);不易组成测温控温一体化的温度控制装置。从温度检测使用的温度计来看,主要包括以下几种:1.利用物体热胀冷缩原理制成的温度计利用物体热胀冷缩制成的温度计分为如下三大类:(1)玻璃温度计:利用玻璃感温包内的测温物质(水银、酒精、甲苯、油等)受热膨胀、遇冷收缩的原理进行温度测量。(2)双金属温度计:采用膨胀系数不同的两种金属牢固粘合在上一起制的双金属片作为感温元件,当温度变化时,一端固定的双金属片,由于两种金属膨胀系数不同而产生弯曲,自由端的位移通过传动机构带动指针指示出相应温度。(3)压力式温度计:由感温物质(氮气、水银、二甲苯、甲苯、甘油和沸点液体如氯甲烷、氯乙烷等)随温度变化,压力发生相应变化,用弹簧管压力表测出它的压力值,经换算得出被测物质的温度值。2.利用热电效应技术制成的温度检测元件利用此技术制成的温度检测元件主要是热电偶。热电偶发展较早,比较成熟,至今仍为应用最广泛的温度检测元件。热电偶具有结构简单、制作方便、测量范围宽、精度高、热惯性小等特点。常用的热电偶有以下几种。(1)镍铬一镍硅,型号为WRN,分度号为K,测温范围0-900℃,短期可测1200℃。(2)镍铬—康铜,型号为WRK,分度号为F,测温范围0-600℃,短期可测800℃。(3)铂铑一铂,型号为WRP,分度号为S,在1300℃以下的使用,短期可测1600℃。(4)铂铑3旺铂铐6,型号为WRR,分度号为B,测温范围300-1600℃,短期可测1800℃。3.利用热阻效应技术制成的温度计用热阻效应技术制成的温度计可分成以下几种:(1)电阻测温元件,它是利用感温元件(导体)的电阻随温度变化的性质,将电阻的变化值用显示仪表反映出来,从而达到测温的目的。目前常用的有铂热电阻和铜热电阻。(2)半导体测温元件,它与热电阻的温阻特性刚好相反,即有很大负温度系数,也就是说温度升高时,其阻值降低。(3)陶瓷热敏元件,它的实质是利用半导体电阻的正温特性,用半导体陶瓷材料制作而成的热敏元件,常称为PCT或NCT热敏元件。PCT热敏分为突变型及缓变型二类。突变型PCT元件的温阻特性是当温度达到顶点时,它的阻值突然变大,有限流功能,多数用于保护电器。缓变型PCT元件的温阻特性基本上随温度升高阻值慢慢增大,起温度补偿作用。NCT元件特性与PCT元件的突变特性刚好相反,即随温度升高,它的阻值减小。4.利用热辐射原理制成的高温计热辐射高温计通常分为两种。一种是单色辐射高温计,一般称光学高温计;另一种是全辐射高温计,它的原理是物体受热辐射后,视物体本身的性质,能将其吸收、透过或反射。而受热物体放出的辐射能的多少,与它的温度有一定的关系。热辐射式高温计就是根据这种热辐射原理制成的。 国内外温度检测技术现状及发展趋势近年来,在温度检测技术领域,多种新的检测原理与技术的开发应用,已经取得了重大进展。新一代温度检测元件正在不断出现和完善,它们主要有以下几种:1.晶体管温度检测元件半导体温度检测元件是具有代表性的温度检测元件。半导体的电阻温度系数比金属大l~2个数量级,二极管和三极管的PN结电压、电容对温度灵敏度很高。基于上述测温原理己研制了各种温度检测元件。2.集成电路温度检测元件利用硅晶体管基极一发射极间电压与温度关系(即半导体PN结的温度特性)进行温度检测,并把测温、激励、信号处理电路和放大电路集成一体,封装于小型管壳内,即构成了集成电路温度检测元件。目前,国内外也进行了生产。3.核磁共振温度检测器 所谓核磁共振现象是指具有核自旋的物质置于静磁场中时,当与静磁场垂直方向加以电磁波,会发生对某频率电磁的吸收现象。利用共振吸收频率随温度上升而减少的原理研制成的温度检测器,称为核磁共振温度检测器。这种检测器精度极高,可以测量出千分之一开尔文,而且输出的频率信号适于数字化运算处理,故是一种性能十分良好的温度检测器。在常温下,可作理想的标准温度计之用。4.热噪声温度检测器它的原理是利用热电阻元件产生的噪声电压与温度的相关性。其特点如下:(1)输出噪声电压大小与温度是比例关系;(2)不受压力影响;(3)感温元件的阻值几乎不影响测量精确度;因此,它是可以直接读出绝对温度值而不受材料和环境条件限制的温度检测器。5.石英晶体温度检测器它采用LC或Y型切割的石英晶片的共振频率随温度变化的特性来制的。它可以自动补偿石英晶片的非线性,测量精度较高,一般可检测到℃,所以可作标准检测之用。6.光纤温度检测器光纤温度检测器是目前光纤传感器中发展较快的一种,己开发了开关式温度检测器、辐射式温度检测器等多种实用型的品种。它是利用双折射光纤的传输光信号滞后量随温度变化的原理制成的双折射光纤温度检测器,检测精度在士1℃以内,测温范围可以从绝对0℃到2000℃。7.激光温度检测器激光测温特别适于远程测量和特殊环境下的温度测量,用氮氖激光源的激光作反射计可测得很高的温度,精度达l%;用激光干涉和散射原理制作的温度检测器可测量更高的温度,上限可达3000℃,专门用于核聚变研究但在工业上应用还需进一步开发和实验。8.微波温度检测器采用微波测温可以达到快速测量高温的目的。它是利用在不同温度下,温度与控制电压成线性关系的原理制成的。这种检测器的灵敏度为250kHZ/℃,精度为1%左右,检测范围为20~1400℃。从以上材料可以看出,当前温度检测的发展趋势组合要集中在以下几个方面:a.扩展检测范围现在工业上通用的温度检测范围为一200~3000℃,而今后要求能测超高温与超低温。尤其是液化气体的极低温度检测更为迫切,如10K以下的度检测是当前重点研究课题。b.扩大测温对象温度检测技术将会由点测温发展到线、面,甚至立体的测量。应用范围己经从工业领域延伸到环境保护、家用电器、汽车工业及航天工业领域。C.新产品的开发利用以前的检测技术生产出适应于不同场合、不同工况要求的新型产品,以满足用户需要。同时利用新的检测技术制造出新的产品。d.加强新原理、新材料、新加工工艺的开发。如近来已经开发的炭化硅薄膜热敏电阻温度检测器,厚膜、薄膜铂电阻温度检测器,硅单晶热敏电阻温度检测器等。e.向智能化、集成化、适用化方向发展。新产品不仅要具有检测功能,又要具有判断和指令等多功能,采用微机向智能化方向发展。向机电一体化方向发展。课题的工程背景在工业领域,温度、压力、流量是最常见的三大被检测的物理参数,其中最广泛的还是温度量的测量,随着电子技术、计算机技术的飞速发展,对现场温度的测量也由过去的刻度温度计、指针温度计向数字显示的智能温度计发展,而且,对测量的精度要求也越来越高。当然,对不同的工艺要求,其测量的精度要求不尽相同,这些是显而易见的,譬如,在测量电机的轴温时,可能测量的允许差达l℃以上,但在某些场合,温度的检测与控制需要达到很高的精度。以化工生产中联碱行业为例,联碱外冷器液氨致冷技术作为80年代中期化工部重点推广的技改项目之一,已被各联碱厂相继采用,并在生产实践中得到不断改进,已成为业内公认的一项成熟、有效的节能降耗技术。但至今仍存在外冷器生产能力偏低、运行周期短和节能效果不理想等问题。而外冷器进出口母液温差是影响外冷器生产能力和运行周期的一个重要因素,从长期的生产经验看,混合溶液每次流经外冷器时,进、出口温差以℃为宜。因此,精确测量与控制通过外冷器混合溶液的进、出口温差是指导该生产工艺的一个重要环节。事实上,由于精度要求较高,在实际生产中该环节的温差测控问题一直没能得到很好解决。经调研知,在全国范围内几乎所有化工集团的联碱行业的生产情况都如此,他们迫切希望能解决这一问题。在其它许多场合(如发酵工艺)中,温度的准确测量与控制同样具有相当强的实践指导作用。目前,虽然国内外已有很多温度测控装置,但温度测量的精度达到℃,并能适用于类似制碱工艺要求的外冷器低温差的精确检测与控制在国内尚属空白。该课题的研究能实现外冷器温差的高精度检测与控制,可推广应用到其它化工生产过程及其相关领域中需要对温差与温度进行高精度实时测控的场合。因此,研发高精度温度与温差测控系统具有很好的应用前景。

问题提交方向有问题,建议去学术板块去问一下在,这里是历史话题板块

关于温度测量的国内研究现状论文

这是俺论文的第一部分,希望对你用!!!!! 国内外温度检测技术研究现状温度是在工业、农业、国防和科研等部门中应用最普遍的被测物理量。有资料表明,温度传感器的数量在各种传感器中位居首位,约占50%左右。因此,温度测量在保证产品质量,提高生产效率,节约能源,安全生产,促进国民经济发展等诸多方面起到了至关重要的作用。 常用的温度测量方法根据测温方式的不同,温度测量通常可分为接触式和非接触式测温两大类。接触式测温的特点是感温元件直接与被测对象相接触,两者进行充分的热交换,最后达到热平衡,此时感温元件的温度与被测对象的温度必然相等,温度计就可据此测出被测对象的温度。因此,接触式测温一方面有测温精度相对较高,直观可靠及测温仪表价格相对较低等优点;另一方面也存在由于感温元件与被测介质直接接触,从而影响被测介质热平衡状态,而接触不良则会增加测温误差;被测介质具有腐蚀性及温度太高亦将严重影响感温元件性能和寿命等缺点。根据测温转换的原理,接触式测温又可分为膨胀式、热阻式、热电式等多种形式。非接触式测温的特点是感温元件不与被测对象直接接触,而是通过接受被测物体的热辐射能实现热交换,据此测出被测对象的温度。因此,非接触式测温具有不改变被测物体的温度分布,热惯性小,测温上限可设计的很高,便于测量运动物体的温度和快速变化的温度等优点。两类测温方法的主要特点如下表所示。表 两种测温方法的主要特点方式 接触式 非接触式测量条件 感温元件要与被测对象良好接触;感温元件的加入几乎不改变对象的温度;被测温度不超过感温元件能承受的上限温度;被测对象不对感温元件产生腐蚀。 需准确知道被测对象表面发射率;被测对象的辐射能充分照射到检测元件上。测量范围 特别适合1200度、热容大、无腐蚀性对象的连续在线测温,对高于1300度以上的温度测量比较困难。 原理上测量范围可以从超高温到超低温。但1000度以下,测量误差比较大,能测运动物体或热容小的物体温度精度 工业用表通常为、、、级,实验室用表可达级。 通常为、、级响应速度 慢,通常为几十秒到几分钟 快,通常为2-3秒钟其他特点 整个测温系统结构简单、体积小、可靠、维护方便、价格低廉。仪表读数直接反映被测物体温度,可方便的组成多路集中测量与控制系统。 整个测量系统结构复杂、体积大、调整麻烦、价格昂贵;仪表读数通常反映被测物体表面温度(需进一步转换);不易组成测温控温一体化的温度控制装置。从温度检测使用的温度计来看,主要包括以下几种:1.利用物体热胀冷缩原理制成的温度计利用物体热胀冷缩制成的温度计分为如下三大类:(1)玻璃温度计:利用玻璃感温包内的测温物质(水银、酒精、甲苯、油等)受热膨胀、遇冷收缩的原理进行温度测量。(2)双金属温度计:采用膨胀系数不同的两种金属牢固粘合在上一起制的双金属片作为感温元件,当温度变化时,一端固定的双金属片,由于两种金属膨胀系数不同而产生弯曲,自由端的位移通过传动机构带动指针指示出相应温度。(3)压力式温度计:由感温物质(氮气、水银、二甲苯、甲苯、甘油和沸点液体如氯甲烷、氯乙烷等)随温度变化,压力发生相应变化,用弹簧管压力表测出它的压力值,经换算得出被测物质的温度值。2.利用热电效应技术制成的温度检测元件利用此技术制成的温度检测元件主要是热电偶。热电偶发展较早,比较成熟,至今仍为应用最广泛的温度检测元件。热电偶具有结构简单、制作方便、测量范围宽、精度高、热惯性小等特点。常用的热电偶有以下几种。(1)镍铬一镍硅,型号为WRN,分度号为K,测温范围0-900℃,短期可测1200℃。(2)镍铬—康铜,型号为WRK,分度号为F,测温范围0-600℃,短期可测800℃。(3)铂铑一铂,型号为WRP,分度号为S,在1300℃以下的使用,短期可测1600℃。(4)铂铑3旺铂铐6,型号为WRR,分度号为B,测温范围300-1600℃,短期可测1800℃。3.利用热阻效应技术制成的温度计用热阻效应技术制成的温度计可分成以下几种:(1)电阻测温元件,它是利用感温元件(导体)的电阻随温度变化的性质,将电阻的变化值用显示仪表反映出来,从而达到测温的目的。目前常用的有铂热电阻和铜热电阻。(2)半导体测温元件,它与热电阻的温阻特性刚好相反,即有很大负温度系数,也就是说温度升高时,其阻值降低。(3)陶瓷热敏元件,它的实质是利用半导体电阻的正温特性,用半导体陶瓷材料制作而成的热敏元件,常称为PCT或NCT热敏元件。PCT热敏分为突变型及缓变型二类。突变型PCT元件的温阻特性是当温度达到顶点时,它的阻值突然变大,有限流功能,多数用于保护电器。缓变型PCT元件的温阻特性基本上随温度升高阻值慢慢增大,起温度补偿作用。NCT元件特性与PCT元件的突变特性刚好相反,即随温度升高,它的阻值减小。4.利用热辐射原理制成的高温计热辐射高温计通常分为两种。一种是单色辐射高温计,一般称光学高温计;另一种是全辐射高温计,它的原理是物体受热辐射后,视物体本身的性质,能将其吸收、透过或反射。而受热物体放出的辐射能的多少,与它的温度有一定的关系。热辐射式高温计就是根据这种热辐射原理制成的。 国内外温度检测技术现状及发展趋势近年来,在温度检测技术领域,多种新的检测原理与技术的开发应用,已经取得了重大进展。新一代温度检测元件正在不断出现和完善,它们主要有以下几种:1.晶体管温度检测元件半导体温度检测元件是具有代表性的温度检测元件。半导体的电阻温度系数比金属大l~2个数量级,二极管和三极管的PN结电压、电容对温度灵敏度很高。基于上述测温原理己研制了各种温度检测元件。2.集成电路温度检测元件利用硅晶体管基极一发射极间电压与温度关系(即半导体PN结的温度特性)进行温度检测,并把测温、激励、信号处理电路和放大电路集成一体,封装于小型管壳内,即构成了集成电路温度检测元件。目前,国内外也进行了生产。3.核磁共振温度检测器 所谓核磁共振现象是指具有核自旋的物质置于静磁场中时,当与静磁场垂直方向加以电磁波,会发生对某频率电磁的吸收现象。利用共振吸收频率随温度上升而减少的原理研制成的温度检测器,称为核磁共振温度检测器。这种检测器精度极高,可以测量出千分之一开尔文,而且输出的频率信号适于数字化运算处理,故是一种性能十分良好的温度检测器。在常温下,可作理想的标准温度计之用。4.热噪声温度检测器它的原理是利用热电阻元件产生的噪声电压与温度的相关性。其特点如下:(1)输出噪声电压大小与温度是比例关系;(2)不受压力影响;(3)感温元件的阻值几乎不影响测量精确度;因此,它是可以直接读出绝对温度值而不受材料和环境条件限制的温度检测器。5.石英晶体温度检测器它采用LC或Y型切割的石英晶片的共振频率随温度变化的特性来制的。它可以自动补偿石英晶片的非线性,测量精度较高,一般可检测到℃,所以可作标准检测之用。6.光纤温度检测器光纤温度检测器是目前光纤传感器中发展较快的一种,己开发了开关式温度检测器、辐射式温度检测器等多种实用型的品种。它是利用双折射光纤的传输光信号滞后量随温度变化的原理制成的双折射光纤温度检测器,检测精度在士1℃以内,测温范围可以从绝对0℃到2000℃。7.激光温度检测器激光测温特别适于远程测量和特殊环境下的温度测量,用氮氖激光源的激光作反射计可测得很高的温度,精度达l%;用激光干涉和散射原理制作的温度检测器可测量更高的温度,上限可达3000℃,专门用于核聚变研究但在工业上应用还需进一步开发和实验。8.微波温度检测器采用微波测温可以达到快速测量高温的目的。它是利用在不同温度下,温度与控制电压成线性关系的原理制成的。这种检测器的灵敏度为250kHZ/℃,精度为1%左右,检测范围为20~1400℃。从以上材料可以看出,当前温度检测的发展趋势组合要集中在以下几个方面:a.扩展检测范围现在工业上通用的温度检测范围为一200~3000℃,而今后要求能测超高温与超低温。尤其是液化气体的极低温度检测更为迫切,如10K以下的度检测是当前重点研究课题。b.扩大测温对象温度检测技术将会由点测温发展到线、面,甚至立体的测量。应用范围己经从工业领域延伸到环境保护、家用电器、汽车工业及航天工业领域。C.新产品的开发利用以前的检测技术生产出适应于不同场合、不同工况要求的新型产品,以满足用户需要。同时利用新的检测技术制造出新的产品。d.加强新原理、新材料、新加工工艺的开发。如近来已经开发的炭化硅薄膜热敏电阻温度检测器,厚膜、薄膜铂电阻温度检测器,硅单晶热敏电阻温度检测器等。e.向智能化、集成化、适用化方向发展。新产品不仅要具有检测功能,又要具有判断和指令等多功能,采用微机向智能化方向发展。向机电一体化方向发展。课题的工程背景在工业领域,温度、压力、流量是最常见的三大被检测的物理参数,其中最广泛的还是温度量的测量,随着电子技术、计算机技术的飞速发展,对现场温度的测量也由过去的刻度温度计、指针温度计向数字显示的智能温度计发展,而且,对测量的精度要求也越来越高。当然,对不同的工艺要求,其测量的精度要求不尽相同,这些是显而易见的,譬如,在测量电机的轴温时,可能测量的允许差达l℃以上,但在某些场合,温度的检测与控制需要达到很高的精度。以化工生产中联碱行业为例,联碱外冷器液氨致冷技术作为80年代中期化工部重点推广的技改项目之一,已被各联碱厂相继采用,并在生产实践中得到不断改进,已成为业内公认的一项成熟、有效的节能降耗技术。但至今仍存在外冷器生产能力偏低、运行周期短和节能效果不理想等问题。而外冷器进出口母液温差是影响外冷器生产能力和运行周期的一个重要因素,从长期的生产经验看,混合溶液每次流经外冷器时,进、出口温差以℃为宜。因此,精确测量与控制通过外冷器混合溶液的进、出口温差是指导该生产工艺的一个重要环节。事实上,由于精度要求较高,在实际生产中该环节的温差测控问题一直没能得到很好解决。经调研知,在全国范围内几乎所有化工集团的联碱行业的生产情况都如此,他们迫切希望能解决这一问题。在其它许多场合(如发酵工艺)中,温度的准确测量与控制同样具有相当强的实践指导作用。目前,虽然国内外已有很多温度测控装置,但温度测量的精度达到℃,并能适用于类似制碱工艺要求的外冷器低温差的精确检测与控制在国内尚属空白。该课题的研究能实现外冷器温差的高精度检测与控制,可推广应用到其它化工生产过程及其相关领域中需要对温差与温度进行高精度实时测控的场合。因此,研发高精度温度与温差测控系统具有很好的应用前景。

现在测温的前沿产品应该就是五星光纤出的旋转反射式光纤测温

◆基于有线传输数字式粮情测控系统

◇基于无线数字自组织网络技术的粮情测控系统

◆基于因特网的远程视频与粮情信息检测系统

◇储油罐温度与液位监测系统

◆地上通风笼,仓储设备,简易测温设备

温湿度专家

哈尔滨新良伟业科技有限公司

(原中谷粮油信团旗下武汉新良科技开发有限公司)

2012年

CWS-901数字型粮情测控系统

(电子检温系统)

“CWS-901”是由武汉交通科技大学和原武汉新良科技开发有限公司合作开发的数字式粮情测控系统。该系统通过国家粮食储备局检测,并在世行贷款项目中得到了应用和推广。经过10年的使用,实践证明我们开发的产品使用寿命长,售后服务好,换代升级及时。

◆系统安全性高,主电源电缆采用24伏直流供电,二次变压后,到模块时采用5V直流供电,对人安全,并且完全不会引发火花,杜绝了电火灾的发生。

◆分布式控制网络系统,各控制器分散在各库房独立工作,主机和控制器之间采用双绞线进行连接,传输距离可达公里, 因此抗干扰能力极强☆抗干扰性强系统采用全隔离技术,过压过流保护,数字化传输,传输电缆金属屏蔽等措施。具有抗静电、抗电磁场、抗噪声、抗瞬间大电流、高电压冲击等抗干扰功能。容错性好。

◆该系统的温度传感器采用美国进口的数字化温度传感器DS18B20,温度传感器采用法国进口HS1101,具有精确度高,稳定,常年不漂移的特性,传感器与放大器A/D转换高度集成,因此,传感器直接输出的是数字信号,无须经过中间环节可直接进入控制器,所以精度和可靠性高、误差小、线性度好,而且不需要校正,稳定可靠。

◆防尘、防爆、防熏蒸

系统设备CWS-901智能控制器,KDF风机控制器,置于通过国家检验的DIP塑料盒内;具有良好的防尘、防爆、防熏蒸性能。

CWS-901的控制器是一个标准的,达到IEC529标准中IP67等级,不仅便于安装和拆卸,而且具有防水、防气体腐蚀、防粉尘功能。◆KDF-4是风机电源控制器,可以同时提供4路程控电源,控制多路通风风机。此外KDF控制也可发出各种报警讯号.向风机控制箱提供自动启停指令。

◆系统采用组态软件包,全屏幕多画面显示,主要内容包括:全库区仓房位置显示、库房内各测试点位置显示、报警显示、风机启/停显示和多菜单参数设定。在正常情况下,各测试点在画面上的显示为绿色符号,当画面上出现红色检测点符号时,说明这些测试点的情况出现异常,操作员可以立即进行仔细检查以便尽快排除故障,整个系统具有报表打印功能,操作简便,易懂易学。

◆防雷击

系统设计过压过流和光电隔离电路加上采用专业避雷厂家生产的数据保护器,形成多级保护,具有较强的抗雷击性能。

◆性价比高

由于系统结构简单,运行稳定可靠,故障率低,性能价格比高。

CWS-901系统主要性能指标:

系统硬件容量(最大测点数)                      32768点

检测范围

测温范围(℃)                             -40℃—+60℃

测湿范围(%RH)                            20%—99%RH

检测误差

温度误差(±℃)                           ≤±℃

湿度误差(±%RH)                          ±4%RH

重复误差(五次以上测量结果与平均值的最大差值)

温度重复误差(±℃)                       ≤±℃

湿度重复误差(±%RH)                      ≤±4%RH

温度采集速度(点/秒)                           ≥30点/秒

最大通讯距离(Km)                              ≥ Km

系统使用寿命(年)                              ≥8 年

是否能够自动控制通风Yes/No                      YES.;’;

CWS-901无线数字粮情测控系统

(无线数字通信)

CWS-901无线数字粮情测控系统由温度模块CWS-901与无线模块CWS-1020L组成。

CWS-1020L低功率无线数传模块,是一种远距离无线数据传输产品,它体积小,功耗低,稳定性及可靠性极高,能方便为用户提供双向的数据信号传输、检测和控制。

1、500MW的发射功率,高接收灵敏-118DBM(9600bps)。

2、ISM频段工作频率,无需申请频点

载频频率433MHZ

3高抗干扰能力和低误码率

基于FSK/GFSK的调制方式,采用高效通信协议,在信道误码率为10-2时,可得到实际误码率10-5-10-6。

4、传输距离远

2KM(BER=10-5@9600BPS,标配10CM天线,空旷地,天线高度)

5、高速无线通讯和大的数据缓冲区。

6、智能数据控制

7、低功耗,三种休眠模式

接收电流<25MA,发射电流<300MA,休眠时电流<20UA.

8、高可靠性,体积小、重量轻。采用高性能、低功耗单片机,外围电路少,可靠性高,故障率低。

温室自动控制系统是专门为农业温室、农业、环境控制、气象观测开发生产的环境自动控制系统。1、温室自动控制系统国外研究现状 .科学家成功开发了一系列计算机软件,硬件,实现了温室供水,施肥和环境自动化控制。英国农业部对温室发展也很重视,科学家们先后进行了温室环境与作物生理,温室环境因子的计算机优化,温室节能,温室自动控制,温室作物栽培与产后处理的研究。另外,国外温室正致力于高科技发展。遥测技术,网络技术,控制局域网已逐渐应用予温室的控制与管理中。世界发达国家如荷兰,美国,英国等大力发展集约化的温室产业,已经研制成功对温室内温度,湿度,光照,气体交换,滴灌,营养液循环等实现计算机自动控制的现代化高科技温室,甚至于育苗,移栽,清洗,包装等也实现了机械化,自动化。 2、温室自动控制系统国内研究现状。从目前的研究情况来看,我国的温室自动控制系统科研水平跟国外比仍有较大差距,主要表现在以下几个方面:一是尚未建立温室结构的国家标准,研究者给出的控制系统大都有较强针对性。由于温室结构千差万别,执行机构各不相同,对于控制系统的优劣缺乏横向可比性。二是缺乏与我国气候特点相适应的温室自动控制软件。目前我国引进温室自动控制系统大多投资大,运行费用过高,并且控制系统中所侧重考虑的环境参数与我国的气候特点存在矛盾,如荷兰由于温度变化很小,故降温,通风问题考虑很少,而采光问题考虑得较多,如果将这种温室应用于我国新疆地区,肯定不合适,因为新疆的温差变化大。三是我国综合环境控制技术的研究刚刚起步,目前仍然停留在研究单个环境因子调控技术的阶段,而实际上,温室内的日照量,气温,地温,空气湿度,土壤湿度,CO浓度等环境因素,是在相互影响,相互制约的状态中对作物的生长产生影响的,环境因素的空间变化,时间变化都很复杂。此外,优化值的设定是一项复杂的工作,作物生长是多因素综合作用的结果,当我们改变某一环境因子时,常会把其他环境因子变到一个不适宜的水平,因此,将温室内的物理模型,作物的生长模型,温室生产的经济模型结合起来,进行作物生长环境参数的优化研究,开发一套与我国温室生产现状相适应的环境控制软件是很重要的。

温度控制技术行业研究现状论文

温室自动控制系统是专门为农业温室、农业、环境控制、气象观测开发生产的环境自动控制系统。1、温室自动控制系统国外研究现状 .科学家成功开发了一系列计算机软件,硬件,实现了温室供水,施肥和环境自动化控制。英国农业部对温室发展也很重视,科学家们先后进行了温室环境与作物生理,温室环境因子的计算机优化,温室节能,温室自动控制,温室作物栽培与产后处理的研究。另外,国外温室正致力于高科技发展。遥测技术,网络技术,控制局域网已逐渐应用予温室的控制与管理中。世界发达国家如荷兰,美国,英国等大力发展集约化的温室产业,已经研制成功对温室内温度,湿度,光照,气体交换,滴灌,营养液循环等实现计算机自动控制的现代化高科技温室,甚至于育苗,移栽,清洗,包装等也实现了机械化,自动化。 2、温室自动控制系统国内研究现状。从目前的研究情况来看,我国的温室自动控制系统科研水平跟国外比仍有较大差距,主要表现在以下几个方面:一是尚未建立温室结构的国家标准,研究者给出的控制系统大都有较强针对性。由于温室结构千差万别,执行机构各不相同,对于控制系统的优劣缺乏横向可比性。二是缺乏与我国气候特点相适应的温室自动控制软件。目前我国引进温室自动控制系统大多投资大,运行费用过高,并且控制系统中所侧重考虑的环境参数与我国的气候特点存在矛盾,如荷兰由于温度变化很小,故降温,通风问题考虑很少,而采光问题考虑得较多,如果将这种温室应用于我国新疆地区,肯定不合适,因为新疆的温差变化大。三是我国综合环境控制技术的研究刚刚起步,目前仍然停留在研究单个环境因子调控技术的阶段,而实际上,温室内的日照量,气温,地温,空气湿度,土壤湿度,CO浓度等环境因素,是在相互影响,相互制约的状态中对作物的生长产生影响的,环境因素的空间变化,时间变化都很复杂。此外,优化值的设定是一项复杂的工作,作物生长是多因素综合作用的结果,当我们改变某一环境因子时,常会把其他环境因子变到一个不适宜的水平,因此,将温室内的物理模型,作物的生长模型,温室生产的经济模型结合起来,进行作物生长环境参数的优化研究,开发一套与我国温室生产现状相适应的环境控制软件是很重要的。

已把我毕业论文的一部分发给你了,应该是你想要的。还需要其它的说一声

温度相关的毕业设计 ·基于单片机的数字温度计的设计·基于MCS-51数字温度表的设计·单片机的数字温度计设计·基于单片机的空调温度控制器设计·基于数字温度计的多点温度检测系统·设施环境中温度测量电路设计·DS18B20数字温度计的设计·多点温度采集系统与控制器设计·基于PLC和组态王的温度控制系统设计·温度监控系统的设计·用单片机进行温度的控制及LCD显示系统的设计·单片机电加热炉温度控制系统·全氢罩式退火炉温度控制系统·数字温度计的设计·基于单片机AT89C51的语音温度计的设计·基于单片机的多点温度检测系统·基于51单片机的多路温度采集控制系统·基于单片机的数字显示温度系统毕业设计论文·基于MCS51单片机温度控制毕业设计论文·西门子S7-300在温度控制中的应用·燃气锅炉温度的PLC控制系统·焦炉立火道温度软测量模型设计·温度检测控制仪器·智能温度巡检仪的研制·电阻炉温度控制系统·数字温度测控仪的设计·温度测控仪设计·多路温度采集系统设计·多点数字温度巡测仪设计·LCD数字式温度湿度测量计·64点温度监测与控制系统·温度报警器的电路设计与制作·基于单片机的数字温度计的电路设计·全氢煤气罩式炉的温度控制系统的研究与改造·温度检测与控制系统·红外快速检测人体温度装置的设计与研制·具有红外保护的温度自动控制系统的设计·基于单片机的温度测量系统的设计·数字温度计设计·DS18B20温度检测控制·PN结(二极管)温度传感器性能的实验研究·多功能智能化温度测量仪设计·软胶囊的单片机温度控制(硬件设计)·空调温度控制单元的设计·大容量电机的温度保护——软件设计·大容量电机的温度保护 ——硬件电路的设计·基于DS18B20温度传感器的数字温度计设计·热轧带钢卷取温度反馈控制器的设计·基于单片机的温度采集系统设计·多点温度数据采集系统的设计·基于单片机的数字式温度计设计·18B20多路温度采集接口模块·基于单片机的户式中央空调器温度测控系统设计·单片机电阻炉温度控制系统设计·基于单片机的电阻炉温度控制系统设计·基于ARM的嵌入式温度控制系统的设计·基于DS18B20的多点温度巡回检测系统的设计·基于单片机的多点无线温度监控系统·基于MSC1211的温度智能温度传感器·用集成温度传感器组成测温控制系统·室内温度控制报警器·自动温度控制系统·烤箱温度控制系统·基于单片机的电加热炉温度控制系统设计·基于PLC的温度监控系统设计·基于无线传输技术的室温控制系统设计——温度控制器软件设计·温度箱模拟控制系统·基于无线传输技术的室温控制系统设计——温度控制器硬件设计·数字式温度计的设计·温度监控系统设计·基于单片机的电阻炉温度控制系统·基于plc的温度湿度检测和显示系统设计·基于单片机的3KW电炉温度控制系统的设计·腔型肿瘤热疗仪温度控制系统设计·基于AT89S51单片机的数字温度计设计·吹塑薄膜挤出机温度控制与检测系统设计·电加热炉PLC温度自适应控制系统的研究·高压母线温度自动监测装置的设计·高压母线温度自动检测装置·小型热水锅炉单片机温度控制系统·消毒柜单片机温度控制·嵌入式系统在多点温度控制中的应用·单片机温度控制系统·上下限温度报警器的设计·基于单片机的饮水机温度控制系统设计·基于单片机的温度测量系统设计

价格合理!信工毕业 就会单片机

国内外温湿度监测研究现状论文

国内的温湿度这几年发展还不错,湿度最主要的是湿敏电容技术还不是很成熟,据我所知好像只有我们一家在做湿敏电容,其它的都是用国外的,湿敏电容好像只有法国一家在对外销售,其它的都是做成探头对外出售

基于PLC的温湿度控制系统国内外研究的现状你可以去万方或者知网下载一些硕士学位的论文一般硕士学位的论文都有国内外研究的章节你可以直接拿来用或者几篇综合一下如果是下载问题,我可以帮你下载。一、题目学位论文的题目应能概括整个论文的核心内容。题目所用的词语应简明,具体,确切,符合编制题录、索引和检索等二次文献的有关原则,并有助于选择关键词和分类号。题目要力求引人注目,且与论文内容贴切,应避免使用非公知公用的缩略语、字符、代号、结构式和公式。中文题目的字数不宜过多,一般不超过20个汉字,必要时可加副标题。英文题目与中文题目内容上要一致,但不要求词语一一对应翻译。每个词的首字母大写,但3个或4个字母以下的冠词、连词、介词全部小写。英文题目长度一般不超过2行。二、摘要摘要要以浓缩的形式概括研究的目的、内容、方法、观点及所取得的成果和结论等。突出论文的创造性成果和新的见解。摘要应具有独立性和自含性。使读者在只阅读摘要的情况下,就能获得该论文的中心思想或主要信息。作者要用精练概括的语言来表述,不宜展开论证和说明,也不宜加主观评价。摘要应能反映出论文的整体水平。英文摘要另起一页排列于中文摘要之后,是一篇独立的英文短文,要符合英文写作规范,而不应是中文摘要的勉强翻译。三、关键词关键词是学位论文的文献检索标志,是表达文献主题概念的自然语言词汇。学位论文的关键词是从其题目、层次标题和正文中选出来的,能反映论文主题概念的词或词组。关键词选用是否恰当,关系到该文被检索的概率和利用率。四、目录目录既是学位论文的提纲,也是论文组成部分的小标题。目录应将文内的章节标题依次排列,标题应该简明扼要。目录页中每行均由标题名称和页码组成,包括引言(或前言)、主要内容的篇、章、条、款、项序号和标题、小结、参考文献、注释、附录、可供参考的文献题录、索引等。论文中如图表较多,可以分别列出清单置于目录页之后。图的清单应有序号、图题和页码。表的清单应有序号、表题和页码。

下面是以前写过的一篇论文 希望对你能有帮助第1章 绪 论 课题研究背景和意义 国内外的研究现状 温度传感器 湿度传感器 第2章设计任务分析及方案论证 温度传感器的选择 湿度传感器的选择 控制芯片的的选择 单片机 FPGA 输出显示设备选择 本章小结 第3章 硬件电路的设计 信号采集 温度传感器 湿度传感器 信号分析 单片机的内部结构 单片机最小系统 信号处理 显示电路 本章小结 第4章 软件设计 软件总体模块 测温度子程序流程图 测湿度子程序流程图 液晶显示程序流程图 本章总结 第5章 结束语 参考文献

国外温室研究现状论文

文献综述的范文

在学习、工作生活中,大家都经常接触到论文吧,论文是指进行各个学术领域的研究和描述学术研究成果的文章。写起论文来就毫无头绪?下面是我为大家收集的文献综述的范文,仅供参考,欢迎大家阅读。

本科毕业论文(设计)文献综述范例

论文题目: 温室环境测控系统及其发展趋势

摘要 :本文阐述了温室环境测控系统在国内外的发展情况,包括从温室诞生起,美国、日本、荷兰等温室测控技术发展比较先进的国家在各自领域内的研究成果,以及国内引进温室技术后,各个高校及专业人员就自己擅长的方面进行探索并取得一定的研究成果。其次浅谈了温室测控系统的发展前沿,即该领域的先进技术,如无线电监控系统、GPRS技术、远程温室大棚控制系统等。最后具体讲述了温室测控中主要的影响因素,包括温度、湿度、光照、CO2浓度,以及当下比较适宜的处理办法。

关键词 : 温室环境测控;无线电监控;远程监控

Greenhouse environment controling systems and its

development

Abstract : This paper said the development of the greenhouse environment control system at home and aborad , since the birth of greenhouse , United States , Japan , the Netherlands and other greenhouse monitoring and control technology more advanced countries in their respective areas of research , and after the introduction of greenhouse technology as well as domestic , various universities and professionals to explore their own good and have made certain aspects of the research results . Second ,on the forefront of the development of the greenhouse control system , such as radio control system , GPRS technology , remote control system of greenhouse and so on . Finally , Specific about the main factors of greenhouse monitoring and control , Including temperature, humidity , light , CO2 concentration and the more appropriate approach at present Keyword: greenhouse monitoring and control technology ; radio control system ; remote control system of greenhouse.

引言

目前,我国农业正处于从传统农业向以优质、高效、高产为目标的现代化农业转化新阶段。而温室作为现代化设施农业的重要产物,在国内多数地区得到了广泛应用。温室可以模拟成一个由人工智能监测的半封闭生态系统,它可以避开外界种种不利因素的影响,人为控[1]制或创造适宜农作物生长的气候环境。由于温室中各种环境因素是可以人为控制的,因此控制技术直接决定着温室中农作物的产量和质量。

温室测控系统一般包括三个模块:环境信息采集模块、数据处理模块和执行模块。在目前的测控系统中,环境因子的采集主要包括温度、湿度、CO2浓度、光照强度、土壤湿度等。

1温室环境测控在国内外的发展

自二十世纪七十年代温室诞生以来,各国对测控技术的研究越来越多,也越来越深入,逐步向着网络化、智能化、综合化的方向发展[2]

国外温室技术发展概况

美国是最早发明计算机的国家,也是将计算机应用于温室控制和管理最早、最多的国家之一。美国开发的温室计算机控制与管理系统可以根据温室作物的特点和要求,对温室内光照、温度、水、气、化肥等诸多因子进行自动调控,还可利用温差管理技术实现对花卉、果蔬等产品的开花和成熟期进行调节及控制。

在日本,作为设施农业主要内容的设施园艺建设相当发达,比如塑料温室和其它人工栽培设施达到普遍应用,设施栽培面积位居世界前列,蔬菜、花卉、水果等普遍实行设施温室生产,并针对种苗生产设施的高温、多湿等不良环境进行了若干设施项目的研究[3],主要有设施内播种装置、苗接触刺激装置、苗灌水装置和遮光装置的开闭装置、缺苗不良苗的检测及去除和补栽装置、CO2施肥装置等方面的自动化研究[4]。

2002年,英国伦敦大学农学院利用计算机遥控技术,可以观测50km以外温室内的温度、湿度等环境状况并远程控制。另外针对CO2浓度对作物的影响这一点,温室中通常安装通风机,搅动空气使温室中的CO2浓度一致[5]。

荷兰园艺温室发展较早,由于地处高纬度地区,日照短,全年平均气温较低等不利于作物生长的气候因素,因此集中较大力量发展经济价值高的鲜花和蔬菜,大规模地发展玻璃温室和配套的工程设施并且全部采用计算机控制,大大提高了作物的产出及品质要求。

现今随着科技的不断发展,国外温室业正致力于高科技的广泛应用。遥测技术、网络技术、控制局域网已逐渐应用于温室的管理与控制中,近几年各国温度控制技术提出建立温室行业标准并朝着网络化,大规模,无人化的方向发展[6]。

国内温室技术发展概况

国内的计算机应用开始于70年代中期,当时主要用于数据的统计分析和计算。自70年代末起,我国陆续从美国、日本、荷兰等国引进了许多先进的现代化温室技术,在借鉴及学习发达国家高科技温室技术的基础上,我国农业科研工作人员进行了温室内部温度、湿度、光照、CO2浓度等环境因子控制技术的综合研究,在边学习边发展的道路上我国温室技术也有了长足的进步。

早期温室技术引进是1987年中国农业科学院引进了FELIXC 512系统,并建立了全国农业系统的第一个计算机应用研究机构[7]。到了90年代初期,计算机开始用于温室的管理和控制领域。

2000年,金钰研究了工业控制机IPC在自动化温室控制中的应用[8]。该研究是以工业控制机为核心采集环境信息,控制外围设施执行控制。实现了温室的封闭环境控制,但该系统布线复杂,维护困难且成本过高。

2005年,杜辉等研究了基于蓝牙技术的分布式温室监控系统[9]。该系统将蓝牙技术和现场总线技术相结合运用于温室群的监控,提高了系统的可靠性、降低了数据传输过程中干扰。但由于蓝牙技术本身的不成熟,与其他技术相结合以后会导致系统的紊乱,难以调控,顾该系统的实际应用仍需要深入研究。

2007年,唐娟等研究了基于新型AVR单片机的温室测控系统[10]。该系统把个体生产和规模化生产相结合,在单个温室大棚生产实现智能自动化的基础上实现连栋温室大棚的规模化生产。

2008年,周茂雷,郭康权研究出了基于ARM7微处理器的温室控制器系统[11]。该系统能通过AD算法实现温室各路模拟量、开关量实时动态采集,将采集到的数据经处理后定时保存并送出控制量。

2 温室技术新型发展

现代化农业设施技术得到了极大的发展,利用不同的先进科技创造了利于作物生长的温室环境,下面讲述了五种新型温室技术。

无线电监控系统

随着生产规模的不断扩大,大棚数量的增多,有线监测系统布线复杂、维护困难、不能任意增加节点等缺点就暴露出来了. 随着电子技术的发展,出现了一体化的无线收发芯片nRF905,该芯片体积小巧,外围只需添加少量几元件即可工作,而且编程简单,可实现信息的无线传输, 以上位机为信息处理终端,构成了温室大棚环境参数监控系统, 该系统具有无需布线、可以任意增减采集点、结构简单、功耗低及组网方便等特点,因而具有较高的实用价值[12]

GPRS技术的应用

GPRS (General Packet Radio Service)是通用分组无线业务的简称,是一种基于GSM (Global System for Mobile Communications)系统的无线分组交换技术。同一无线信道又可以由多个用户共享,只有当某个用户需要发送或接收数据的时候才会占用信道资源,从而有效地利用了信道资源。监控中心服务器通过GPRS 可以在移动状态下使用各种采集到的信息数据, 在移动通信服务商提供的GPRS业务平台上构建温室大棚环境监控信息数据传输系统, 实现智能化温室控制信息采集点的无线数据传输,监控系统同时可以实现资料、指令的.反向传输,以达到远程控制的目[13]。的温室大棚环境监控中心也可以通过服务器来浏览各个温室大棚的作物生长状况。

基于CAN和Profibus总线的温室分布式监控系统

CAN(controller area network)总线是一种分布式实时控制系统的串行通信局域网[14-15],其信号传输采用短帧结构,具有传输时间短、受干扰的概率低、实时性强、性能好和可靠性高等优点,广泛应用于各种控制系统中的检测和执行机构之间的数据通信。

Profibus总线的温湿度分布式测控系统也和CAN总线的功能差不多。在现有的各种现场总线中, Profi2bus 总线占有很大的市场份额, 并提供了DP、PA3和FMS三种协议类型。

虚拟仪器的应用

温室大棚测量系统的发展经过了模拟仪器、分立元件仪器、数字化仪器和智能化仪器,到现在发展到了虚拟仪器。虚拟仪器以计算机为核心组成的虚拟仪器平台,可以通过不同的虚拟仪器软件实现多种测试功能,能由虚拟仪器代替部分传统的仪器硬件,并利用虚拟仪器强大的数据采集和数据分析功能,进行各种信息的处理,然后将结果送出显示或控制调节机构,调节大棚的环境参数[16]。

远程温室大棚控制系统

为实现农民对大棚的简捷控制,实现农民增产增收,远程温室大棚控制系统显然是一项值得研究和推广的工程。该系统实时要求很高, 传输距离较远, 对稳定性以及抗干扰性的要求也很高, CC2Link造价低廉, 能满足现场环境的通讯要求而成为主要的新型现场通讯方式,另外以太网实时、高速且传输距离较远, 而成为主流的远程通讯方式。两者相结合便实现了温室大棚远程控制网[17]。

3 影响作物生长的各项因素及处理办法

作物的生长发育,一方面取决于作物本身的遗传特性,另一方面取决于外界环境条件。在生产上,则要通过优良的栽培技术及创造适宜的环境条件来控制生长和发育。

影响作物生长发育的主要环境条件包括:温度(空气温度及土壤温度)、光照(光的强度和光周期)、水分(空气湿度和土壤湿度)、土壤(土壤肥力及土壤溶液的反应)、空气(大气及土壤中空气的特性,CO2的含量,有毒气体的含量)、生物条件(土壤微生物及病虫害)等。下面就温度、湿度、光照、CO2浓度这四方面进行具体的论述。

温度

作物的生长发育环境中以温度最为敏感,也是最重要的。自然环境下,温度在时间上随

四级变化而周期变化,在空间上随纬度和海拔的升高而降低。

另外在室内的话,由于作物的茂密生长会使得温度的空间变得比较复杂,实际上温度的空间分布受室外气候因子、室内调控方式、植物群体结构的综合影响,空气温度不论在水平方向还是在垂直方向往往都不均匀。

处理办法:

目前温室的温度调控主要包括增温、保温、降温[18]。加温有热风采暖系统、热水采暖系统、土壤加温三种形式;保温包括减少贯流放热和通风换气量、增大保温比、增大地表热流量;降温最简单的途径是通风.

湿度

适宜的空气湿度和土壤湿度是温室内作物健康生长的重要条件。根据研究发现,除了阴雨天以外,室内午后过低的空气湿度会导致作物发生光合作用的午休现象。

一般情况下,作物适宜的相对湿度是60%~80%。所以温室内空气相对湿度的大小直接影响作物的光合作用,影响作物生产的质量;另外,空气湿度过大,作物植株也易于生病。

土壤湿度对植物的影响也很大,若温室内排水不良,灌水不当,土壤渗水性不好,造成土壤水分过剩,使土壤中的氧气减少,植物根部呼吸的水分减少,从而影响植物的水分代谢,阻滞植物的生长或者发生根部腐烂的情况[19]。

处理办法:

除湿的方法有通风换气、加温除湿、覆盖地膜、使用除湿机、除湿型热交换通风装置。 加湿的方法包括喷雾加湿、湿帘加湿、温室内顶部安装喷雾系统[20]。这几种方法除了有加湿功能还可以达到降温的功效.

光照强度

光照是作物生长发育的关键条件之一。没有光照,就谈不上植物的生长,光照不足,势必影响植物的生长发育。

光照的强度直接影响到作物光合作用的强度。与室外相比较,室内光明显的差异表现在数量减少,光质改变及光分布不均匀等三个方面,从而形成独特的温室光环境[21]。

处理办法:人工调节大棚外部设施的方法来改变温室内的光照强度

全球气候变暖是一种“自然现象”。由于人们焚烧化石矿物以生成能量或砍伐森林并将其焚烧时产生的二氧化碳等多种温室气体,由于这些温室气体对来自太阳辐射的可见光具有高度的透过性,而对地球反射出来的长波辐射具有高度的吸收性,也就是常说的“温室效应”,导致全球气候变暖。近100多年来,全球平均气温经历了冷-暖-冷-暖两次波动,总的看为上升趋势。进入八十年代后,全球气温明显上升。全球变暖的后果,会使全球降水量重新分配,冰川和冻土消融,海平面上升等,既危害自然生态系统的平衡,更威胁人类的食物供应和居住环境。 什么是全球气候变暖 全球变暖是指全球气温升高。近100多年来,全球平均气温经历了冷-暖-冷-暖两次波动,总的看为上升趋势。进入八十年代后,全球气温明显上升。 1981~1990年全球平均气温比100年前上升了℃。导致全球变暖的主要原因是人类在近一个世纪以来大量使用矿物燃料(如煤、石油等),排放出大量的CO2等多种温室气体。由于这些温室气体对来自太阳辐射的可见光具有高度的透过性,而对地球反射出来的长波辐射具有高度的吸收性,也就是常说的“温室效应”,导致全球气候变暖。 全球变暖的后果,会使全球降水量重新分配,冰川和冻土消融,海平面上升等,既危害自然生态系统的平衡,更威胁人类的食物供应和居住环境。 出现全球变暖趋势的具体原因是,人们焚烧化石矿物以生成能量或砍伐森林并将其焚烧时产生的二氧化碳进入了地球的大气层。政府间气候变化问题小组根据气候模型预测,到2100年为止,全球气温估计将上升大约摄氏度(华氏度)。根据这一预测,全球气温将出现过去10,000年中从未有过的巨大变化,从而给全球环境带来潜在的重大影响。 为了阻止全球变暖趋势,1992年联合国专门制订了《联合国气候变化框架公约》,该公约于同年在巴西城市里约热内卢签署生效。依据该公约,发达国家同意在2000年之前将他们释放到大气层的二氧化碳及其它“温室气体”的排放量降至1990年时的水平。另外,这些每年的二氧化碳合计排放量占到全球二氧化碳总排放量60%的国家还同意将相关技术和信息转让给发展中国家。发达国家转让给发展中国家的这些技术和信息有助于后者积极应对气候变化带来的各种挑战。截止2004年5月,已有189个国家正式批准了上述公约。 全球变暖的历史与预测 根据仪器记录,相对于1860年至1900年期间,全球陆地与海洋温度上升了摄氏度。自1979年,陆地温度上升速度比海洋温度快一倍(陆地温度上升了摄氏度,而海洋温度上升了摄氏度)。根据卫星温度探测,对流层的温度每十年上升摄氏度至度。在1850年前的一两千年,虽然曾经出现中世纪温暖时期与小冰河时期,但是大众相信全球温度是相对稳定的。 根据美国国家航空航天局戈达德太空研究所的研究报告估计,自1800年代有测量仪器广泛地应用开始,2005年是最温暖的年份,比1998年的记录高了摄氏百分之几度。 世界气象组织和英国气候研究单位也有类似的估计,曾经预计2005年是仅次于1998年第二温暖的年份。 在人类近代历史才有一些温度记录。这些记录都来自不同的地方,精确度和可靠性都不尽相同。在1860年才有类似全球温度仪器记录,相信当年的记录很少受到城市热岛效应的影响。从最近的千禧年内的多方记录所展示的长远展望,在过去1000年的温度记录中可以看到有关的讨论及其中的差异。最近50年的气候转变的过程是十分清晰,全赖详细的温度记录。到了1979年,人类更开始利用卫星温度测量来量度对流层的温度。 在2000年后,各地的高温记录经常被打破。譬如:2003年8月11日,瑞士格罗诺镇录得摄氏度,破139年来的记录。同年,8月10日,英国伦敦的温度达到摄氏,破了1990年的记录。同期,巴黎南部晚上测得最低温度为摄氏度,破了1873年以来的记录。8月7日夜间,德国也打破了百年最高气温记录。在2003年夏天,台北、上海、杭州、武汉、福州都破了当地高温记录,而中国浙江省更快速地屡破高温记录,67个气象站中40个都刷新记录。2004年7月,广州的罕见高温打破了五十三年来的记录。2005年7月,美国有两百个城市都创下历史性高温记录。2006年8月16日,重庆最高气温高达43度。台湾宜兰在2006年7月8日温度高达度,破了1997年的记录。2006年11月11日是香港整个十一月最热的一日,最高气温高达度,比1961年至1990年的平均最高温度还要高。 美国科学家发现史前农业活动曾使世界避免进入新冰川期 据新华社电美国科学家研究发现,古代农业活动曾使世界避免进入新冰川期。这说明,人类活动引起全球气候变暖可能持续了数千年。 研究人员说,砍倒大树并开垦第一片田地的史前农民使大气中甲烷和CO 2等温室气 体含量发生了很大变化,全球气温因此逐渐回升。 美国弗吉尼亚大学教授拉迪曼说:“要不是早期农业带来的温室气体,目前地球气温很可能还是冰川时期的气温。”拉迪曼承认,研究结果非常容易引起争议。 美国国家大气研究中心17日说,科学家通过两项最新研究预测,即使现在全世界温室气体的排放量稳定在2000年的水平,本世纪全球变暖和海平面上升的趋势已经不可逆转。 国家大气研究中心的科学家在18日出版的《科学》杂志上连续发表两篇论文,从不同角度预测了全球气候变化的趋势。他们的成果将由联合国下属的政府间气候变化专家委员会评估,收录到2007年公布的下一份全球气候变化报告中。 在第一篇论文中,国家大气研究中心的魏格雷提出了一个较简单的数学模型来理解全球气候变化。他认为,由于海洋存在“热惯性”,对温室气体等外界影响的反应有所滞后,本世纪全球变暖的趋势只不过是以前排放温室气体的后果。 据魏格雷预测,到2400年,已存在于大气中的温室气体成分,将至少使全球平均气温升高1摄氏度;不断新排放的温室气体,又将导致全球平均气温额外升高2至6摄氏度。这两个因素还会分别引起海平面每世纪上升10厘米和25厘米。 他在论文中说,要遏制气候变暖的趋势,现在就必须将全球温室气体排放控制在极其低的水平,即使这样海平面上升的趋势恐怕也难以避免,每世纪10厘米的上升速度可能是最乐观的预测。 由杰拉尔德·梅尔等人发表的第二篇论文则预测,由于“热惯性”的存在,即使本世纪中人类不向大气排放任何温室气体,到2100年全球平均气温也将至少升高摄氏度,海平面将上升11厘米以上,其中海平面上升的速度比科学家早先的预测值高了一倍多。梅尔对此解释说,这是因为以前的预测没有考虑到冰川融化等的影响。 梅尔的研究小组用两套数学模型,借助超级计算机模拟了全球温室气体排放量分别为低、中、高时的气候和海平面变化情况。 全球变暖的条件 地球气候变暖和人类大量排放温室气体导致温室效应有关。但日本和丹麦科研人员近日指出,温室气体增加并非导致气候变暖的惟一原因,太阳活动变化在其中也起到了推动作用。 据《日本经济新闻》报道,日本横滨国立大学环境信息研究院的伊藤公纪教授制作了一张图表。从图上看,过去200年间地球平均气温和太阳磁场强度的变化曲线基本吻合。伊藤公纪由此推断,太阳活动对气候变暖也有影响,仅用温室气体增加解释气候变暖可能不够全面。 太阳活动对地球气温的影响已被专家们关注了很长时间。一般来说,太阳黑子多的时候,太阳活动剧烈。比如史料曾记载,公元17世纪时太阳黑子很少出现,当时的地球气候也相对寒冷。但地面获得的探测信息也显示,太阳活动强弱变化引起的太阳辐射能量变化幅度仅为,如此微小的变化似乎不足以对气候造成太大影响。 然而,最近国际空间科学界出现了一种假说,认为太阳活动的变化会改变地球上空的云量,“放大”太阳对地球的影响,从而左右气候变化。提出这种假说的丹麦科学家推测,射向地球的宇宙射线可较稳定地使部分大气离子化,使云容易生成,从而吸收太阳的大量辐射,降低地球温度。但是,太阳活动高峰时释放出的高速带电粒子流,能干扰宇宙射线射向地球,使云不易形成,进而导致地球温度升高。目前,丹麦科研人员正在研究与云形成有关的各种因素,以论证上述假说。 也有日本专家提出,虽然太阳辐射能量的变化幅度只有,但他们发现这种能量变化能使地球大气对于太阳紫外线的吸收量变化幅度达到百分之几,这种吸收量的增加会使大气臭氧层温度升高。日本气象研究所第二研究部负责人小寺邦彦表示,臭氧层温度的变化会波及对流层,从而对寒流和季风造成影响,但目前尚不清楚上述机制能对地球气候变暖产生多大影响。为了继续研究这个课题,小寺邦彦等人组成的国际研究小组已于去年开始工作。 全球持续变暖 中国气象局国家气候中心副主任罗勇表示,据世界上许多科学家预测,未来50—100年人类将完全进入一个变暖的世界。由于人类活动的影响,21世纪温室气体和硫化物气溶胶的浓度增加很快,使未来100年全球、东亚地区和我国的温度迅速上升,全球平均地表温度将上升℃℃。到2050年,我国平均气温将上升℃。 “入冬以来罕见大雾天气频发也是暖冬的一个征兆。”罗勇说,大雾天气系“暖冬”造成强冷空气非常弱所致。全球变暖的现实正不断地向世界各国敲响警钟,气候变暖已经严重影响到人类的生存和社会的可持续发展,它不仅是一个科学问题,而且是一个涵盖政治、经济、能源等方面的综合性问题,全球变暖的事实已经上升到国家安全的高度 全球变暖的温度预测 德国研究人员表示,未来全球气温可能会远远高于一些科学家此前所做的预测,如果新的计算机模型关于气候变化所做的预测是正确的话。 据路透社报道,政府间气候变化专门委员会(IPCC,由各国气象专家组成,研究全球气候趋势)此前预测,到本世纪末,随着二氧化碳的成倍增加,全球气温将升高至摄氏度。但德国美因兹马普化学研究所的迈因拉特·安德烈埃教授及其研究小组的最新测算方法却表明,全球气温上升的最高幅度可达到6摄氏度。 安德烈埃教授表示,这种新的方法是将悬浮微粒、温室气体和生物圈效应统一在一起,改变了以往关于气候变化的预测,即使之从人们可以容忍的程度发展到更迅速变化的危险境地。 安德烈埃教授将温室气体比作是导致全球变暖的加速器,悬浮微粒的存在则可以减缓气温的上升。悬浮微粒是空气中产生于燃烧、化学制品和烟尘之中的细小微粒。随着新的空气净化调节装置的使用,悬浮微粒的数量将会减少,因而其冷却功效也就随之变小。相反,全球气温却会随之上升。 悬浮微粒只能在大气中停留一周的时间,而温室气体则能停留大约50多年的时间。也就是说,悬浮微粒的冷却作用减少得快,而温室气体减少得慢。这样,在长期的竞赛中,温室气体最终必将战胜悬浮微粒,随之而来的就是灼热的高温天气。 然而,安德烈埃教授也同时承认,这种情况具有高度的科学不确定性,气候的变化也远远超出了经验和科学理解所能达到的范畴。如果他的计算是正确的,21世纪气候的变化就会超过政府间气候变化专门委员会的预测。 全球升温的后果 据新华社电美国世界观察研究所的研究人员近期警告说,全球气候升温将致全球农业减产,或许在下个世纪出现食品匮乏的局面。研究人员在分析联合国和美国国立科学院发布的信息以及世界稻米市场趋势后得出了这一看法。 世界观察研究认为,全球气候升温和地下水水位下降将成为全球粮食供应紧张的直接诱因,全球稻米价格上涨趋势体现了这一点。 美国政府发布的统计数字显示,即使是在去年全球粮食大丰收、小麦和玉米价格下降的情况下,稻米价格依然上涨了30%,达到每吨260美元。 美国国立科学院去年发表的一份研究报告显示,水稻生长季节气温异常上升将使收成减少。另外,全球许多地区出现地下水水位下降、水井枯竭问题,也将对粮食产量构成影响。 如何减缓全球变暖 科学家们提出了一个大胆的想法,要围绕地球建立一个由小微粒或太空飞船组成的人工太空环,遮蔽热带阳光,调节地球温度。 不过,一些反对者认为,这种想法肯定会有一些副作用,一个能够对太阳光进行有效散射的粒子带将会使我们的每个夜空都变成和满月时一样明亮;而且这一计划的预算将高得惊人,可能达到6万亿到200万亿美元,就连全球资金最为充足的科研机构美国航空航天局也无法承担,如果把散射粒子改为太空飞船的话,预算额可能会少一些,估计能降到5000亿美元左右。 地球诞生以来,大气温度曾经几度升降,太阳辐射、云层遮蔽和温室气体等各种因素都曾经或正在影响着我们的气候。如果给地球围上一个粒子或飞船组成的“腰带”的话,赤道上空就会出现一个阴影,要部署这些粒子,就必须使用一些专门的控制飞船,像牧羊犬一样照看粒子群。 过去的一个世纪,地球温度明显上升,未来一百年间这一趋势还会继续下去,很多研究都证实地球气温将在未来几个世纪里提高1到20华氏度,海平面明显上升,一些海滨城市将不复存在。有科学家指出,减少太阳光照射,地球温度就会降低,而一些地面或太空系统完全可以实现这一目的。不过,有科学家指出,人们目前还无法计算出地球到底能吸收多少阳光,又有多少阳光被反射回太空,而这正是实施上述计划的关键一步。 美国科学家的研究显示,古代农民的活动曾使世界避免进入新冰川期。这一结果说明,人类活动引起的全球气候变暖不是新现象,它可能持续了数千年。英国《观察家报》最近援引研究人员的话说,砍倒大树并开垦第一片田地的史前农民使地球大气中甲烷和二氧化碳等温室气体含量发生了很大变化,全球气温因此逐渐回升。美国弗吉尼亚大学教授威谦·拉迪曼说:“要不是早期农业活动带来的温室气体,目前地球气温很可能还是冰川时期的气温。”研究表明,如果没有人类干预,地球会比现在低2摄氏度,蔓延的冰盖和冰川会影响世界很多地区。人类排放的一些气体如二氧化碳、甲烷、氯氟烃等具有吸收红外线辐射的功能,这些气体被称为“温室气体”。它们在大气中大量存在,如同一个罩子,把地面上散发的热量阻挡。就像“暖房”一样,造成地表温度的上升。科学家把这种现象称为“温室效应”。有一种说法:认为温室效应是造成全球气候变暖的主要原因。这是科学家考察了近一百年来二氧化碳排放量的增加与气温上升相关性而提出的。认为控制温室气体的排放,可能会控制全球气候变暖,防止生态平衡破坏,农业变异,冰川融化等灾害发生。当然,根据现代环境科学研究,对温室效应和全球候气变暖的相关程度,还在进一步探索。但人们确实已经感受到全球气候变暖和异常,在这方面,科学家提出控制温室气体排放量也许是防患于未然吧。 全球气候变暖的原因有两方面:大量燃烧煤炭、天然气等产生大量温室气体;肆意砍伐原始森林,使得吸收二氧化碳的能力下降。大气层和地表这一系统就如同一个巨大的“玻璃温室”,使地表始终维持着一定的温度,产生了适于人类和其他生物生存的环境。在这一系统中,大气既能让太阳辐射透过而达到地面,同时又能阻止地面辐射的散失,我们把大气对地面的这种保护作用称为大气的温室效应。造成温室效应的气体称为“温室气体”,它们可以让太阳短波辐射自由通过,同时又能吸收地表发出的长波辐射。这些气体有二氧化碳、甲烷、氯氟化碳、臭氧、氮的氧化物和水蒸气等,其中最主要的是二氧化碳。近百年来全球的气候正在逐渐变暖,与之同时,大气中的温室气体的含量也在急剧地增加。许多科学家都认为,温室气体的大量排放所造成温室效应的加剧可能是全球变暖的基本原因。 排放温室气体的人类活动包括:所有的化石能源燃烧活动排放二氧化碳。在化石能源中,煤含碳量最高,石油次之,天然气较低;化石能源开采过程中的煤炭瓦斯、天然气泄漏排放二氧化碳和甲烷;水泥、石灰、化工等工业生产过程排放二氧化碳;水稻田、牛羊等反刍动物消化过程排放甲烷;土地利用变化减少对二氧化碳的吸收;废弃物排放甲烷和氧化亚氮。人类燃烧煤、油、天然气和树木,产生大量二氧化碳和甲烷进入大气层后使地球升温,使碳循环失衡,改变了地球生物圈的能量转换形式。自工业革命以来,大气中二氧化碳含量增加了25%,远远超过科学家可能勘测出来的过去16万年的全部历史纪录,而且目前尚无减缓的迹象。 导致全球变暖的主要原因是人类在近一个世纪以来大量使用矿物燃料(如煤、石油等),排放出大量的二氧化碳等多种温室气体。由于这些温室气体对来自太阳辐射的短波具有高度的透过性,而对地球反射出来的长波辐射具有高度的吸收性,也就是常说的“温室效应”,导致全球气候变暖。 世界上的森林主要分为寒带(北方)森林、温带森林和热带森林三类。据专家介绍,今天的森林生态系统,是大自然经过8000年的进化才逐渐形成的。今天,所有的原始森林都沦为伐木业大规模开采利用的目标。在热带地区,许多现在已荡然无存的森林就是在过去的50年被砍伐一空的。仅1960年至1990年,就有超过亿公顷的热带森林被吞噬,占世界热带森林总面积的20%;还有数百万公顷的热带森林在砍伐、农田开垦和矿产开采中退化。 而且,全球的非法砍伐和非法木材产品交易还在继续加剧,尤其是在拥有热带森林的发展中国家和政府执法不力的俄罗斯等国。而国际市场对廉价木产品的需求,又进一步恶化了这一状况。 政府间气候变化问题小组根据气候模型预测,到2100年为止,全球气温估计将上升大约摄氏度(华氏度)。根据这一预测,全球气温将出现过去10,000年中从未有过的巨大变化,从而给全球环境带来潜在的重大影响。

已解决问题 收藏 转载到QQ空间 适合地理论文1000字温室气体对大气的影响及对策 5 [ 标签:温室 气体,论文,温室 ] 就这样、轻狂 回答:1 人气:1 解决时间:2009-12-18 21:17 检举 满意答案 温室气体指的是大气中能吸收地面反射的太阳辐射,并重新发射辐射的一些气体,如水蒸气、二氧化碳、大部分制冷剂等。它们的作用是使地球表面变得更暖,类似于温室截留太阳辐射,并加热温室内空气的作用。这种温室气体使地球变得更温暖的影响称为“温室效应”。水汽(H2O)、二氧化碳(CO2)、氧化亚氮 (N2O)、甲烷(CH4)和臭氧(O3)是地球大气中主要的温室气体。 众所周知,花房具有让阳光进入、阻止热量外逸的功能, 人们称之为"温室(花房)效应"。在地球大气中,存在一 些微量气体,如二氧化碳、一氧化碳、水蒸气、甲烷、氟利 昂等,它们也有类似于花房的功能,即让太阳短波辐射自由 通过,同时强烈吸收地面和空气放出的长波辐射(红外线), 从而造成近地层增温。我们称这些微量气体为温室气体,称 它们的增温作用为温室效应。应该指出,大气中少量温室气体的存在和恰到好处的温室效应,对人类是有益的。要是没有温室气体,近地层平均气温要比现在下降33℃,地球会变成一个寒冷的星球。但是,近几十年来由于人口增加、工业发展、城市增多、森林砍伐等原因,大气中二氧化碳、甲烷、氟利昂等温室气体显著增加,导致天气频繁发生,对社会和经济发展产生严重的影响。对此各国政府和人民十分关注,许多国家颁布了"环境保护法"。只有加强环境的综合治理,才能逐步减少大气中温室气体的含量,使气候走上正常变化的轨道。与二氧化碳相比,其他温室气体的温室效应更高,一个甲烷分子的温室效应是一个二氧化碳分子的21倍,氧化亚氮为206倍,氟氯碳化物则为数千倍到一万多倍,不过由於二氧化碳含量远大於其他气体,因此它的温室效应仍是最大。温室气体的另一个特性是它们在大气中的生命期相当长,二氧化碳为50~200年,甲烷12~17年,氧化亚氮为120年,CFC-12为102年。这些气体一旦进入大气,几乎无法回收,只有靠自然的过程让它们逐渐消失。由於它们的长生命期,温室气体的影响是长久的而且是全球性的。即使人类立刻停止排放所有的人造温室气体,从工业革命之后累积下来的温室气体仍将继续影响地球的气候。温室气体的增加,加强了温室效应,是造成全球变暖的主要原因,已成为世界各国家的共识,也是一种全球性的污染,京都议定书正是为了采取措施减少温室气体排放,由联合国发起,世界各国达成的协议。目前国际上对待全球气候变暖的战略对策有二: ——适应战略,即将对未来全球气候变暖作好准备,以尽量减少由于全球气候变暖可能带未的不利后果,并充分利用可能带来的有利影响; ——限制战略,既控制或停止大气中温室气体浓度的增长,以防止由此引起的全球气候额外变暖。 还行吧

温室效应(西班牙语 Efecto Invernadero)是指透射阳光的密闭空间由于与外界缺乏热交换而形成的保温效应,就是太阳短波辐射可以透过大气射入地面,而地面增暖后放出的长短辐射却被大气中的二氧化碳等物质所吸收,从而产生大气变暖的效应。大气中的二氧化碳就像一层厚厚的玻璃,使地球变成了一个大暖房。据估计,如果没有大气,地表平均温度就会下降到——23℃,而实际地表平均温度为15℃,这就是说温室效应使地表温度提高38℃。除二氧化碳以外,对产生温室效应有重要作用的气体还有甲烷、臭氧、氯氟烃以及水气等。随着人口的急剧增加,工业的迅速发展,排入大气中的二氧化碳相应增多;又由于森林被大量砍伐,大气中应被森林吸收的二氧化碳没有被吸收,由于二氧化碳逐渐增加,温室效应也不断增强。据分析,在过去二百年中,二氧化碳浓度增加25%,地球平均气温上升℃。估计到下个世纪中叶,地球表面平均温度将上升——℃,而在中高纬度地区温度上升更多。空气中含有二氧化碳,而且在过去很长一段时期中,含量基本上保持恒定。这是由于大气中的二氧化碳始终处于“边增长、边消耗” 的动态平衡状态。大气中的二氧化碳有80%来自人和动、植物的呼吸,20%来自燃料的燃烧。散布在大气中的二氧化碳有75%被海洋、湖泊、河流等地面的水及空中降水吸收溶解于水中。还有5%的二氧化碳通过植物光合作用,转化为有机物质贮藏起来。这就是多年来二氧化碳占空气成分(体积分数)始终保持不变的原因。但是近几十年来,由于人口急剧增加,工业迅猛发展,呼吸产生的二氧化碳及煤炭、石油、天然气燃烧产生的二氧化碳,远远超过了过去的水平。而另一方面,由于对森林乱砍乱伐,大量农田建成城市和工厂,破坏了植被,减少了将二氧化碳转化为有机物的条件。再加上地表水域逐渐缩小,降水量大大降低,减少了吸收溶解二氧化碳的条件,破坏了二氧化碳生成与转化的动态平衡,就使大气中的二氧化碳含量逐年增加。空气中二氧化碳含量的增长,就使地球气温发生了改变。在空气中,氮和氧所占的比例是最高的,它们都可以透过可见光与红外辐射。但是二氧化碳就不行,它不能透过红外辐射。所以二氧化碳可以防止地表热量辐射到太空中,具有调节地球气温的功能。如果没有二氧化碳,地球的年平均气温会比目前降低20 ℃。但是,二氧化碳含量过高,就会使地球仿佛捂在一口锅里,温度逐渐升高,就形成“温室效应”。 形成温室效应的气体,除二氧化碳外,还有其他气体。其中二氧化碳约占75%、氯氟代烷约占15%~20%,此外还有甲烷、一氧化氮等30多种。如果二氧化碳含量比现在增加一倍,全球气温将升高3 ℃~5 ℃,两极地区可能升高10 ℃,气候将明显变暖。气温升高,将导致某些地区雨量增加,某些地区出现干旱,飓风力量增强,出现频率也将提高,自然灾害加剧。更令人担忧的是,由于气温升高,将使两极地区冰川融化,海平面升高,许多沿海城市、岛屿或低洼地区将面临海水上涨的威胁,甚至被海水吞没。20世纪60年代末,非洲下撒哈拉牧区曾发生持续6年的干旱。由于缺少粮食和牧草,牲畜被宰杀,饥饿致死者超过150万人。这是“温室效应” 给人类带来灾害的典型事例。因此,必须有效地控制二氧化碳含量增加,控制人口增长,科学使用燃料,加强植树造林,绿化大地,防止温室效应给全球带来的巨大灾难。科学家预测,今后大气中二氧化碳每增加1倍,全球平均气温将上升~℃,而两极地区的气温升幅要比平均值高3倍左右。因此,气温升高不可避免地使极地冰层部分融解,引起海平面上升。海平面上升对人类社会的影响是十分严重的。如果海平面升高1 m,直接受影响的土地约5×106 km2,人口约10亿,耕地约占世界耕地总量的1/3。如果考虑到特大风暴潮和盐水侵入,沿海海拔5 m以下地区都将受到影响,这些地区的人口和粮食产量约占世界的1/2。一部分沿海城市可能要迁入内地,大部分沿海平原将发生盐渍化或沼泽化,不适于粮食生产。同时,对江河中下游地带也将造成灾害。当海水入侵后,会造成江水水位抬高,泥沙淤积加速,洪水威胁加剧,使江河下游的环境急剧恶化。温室效应和全球气候变暖已经引起了世界各国的普遍关注,目前正在推进制订国际气候变化公约,减少二氧化碳的排放已经成为大势所趋。科学家预测,如果我现在开始有节制的对树木进行采伐,到2050年,全球暖化会降低5%。特点温室有两个特点:温度较室外高,不散热。 生活中我们可以见到的玻璃育花房和蔬菜大棚就是典型的温室。使用玻璃或透明塑料薄膜来做温室,是让太阳光能够直接照射进温室,加热室内空气,而玻璃或透明塑料薄膜又可以不让室内的热空气向外散发,使室内的温度保持高于外界的状态,以提供有利于植物快速生长的条件。后果1) 地球上的病虫害增加;2) 海平面上升;3) 气候反常,海洋风暴增多;4) 土地干旱,沙漠化面积增大。科学家预测:如果地球表面温度的升高按现在的速度继续发展,到2050年全球温度将上升2-4摄氏度,南北极地冰山将大幅度融化,导致海平面大大上升,一些岛屿国家和沿海城市将淹于水中,其中包括几个著名的国际大城市:纽约,上海,东京和悉尼。温室效应可使史前致命病毒威胁人类美国科学家近日发出警告,由于全球气温上升令北极冰层溶化,被冰封十几万年的史前致命病毒可能会重见天日,导致全球陷入疫症恐慌,人类生命受到严重威胁。纽约锡拉丘兹大学的科学家在最新一期《科学家杂志》中指出,早前他们发现一种植物病毒TOMV,由于该病毒在大气中广泛扩散,推断在北极冰层也有其踪迹。于是研究员从格陵兰抽取 4块年龄由 500至14万年的冰块,结果在冰层中发现TOMV病毒。研究员指该病毒表层被坚固的蛋白质包围,因此可在逆境生存。这项新发现令研究员相信,一系列的流行性感冒、小儿麻痹症和天花等疫症病毒可能藏在冰块深处,目前人类对这些原始病毒没有抵抗能力,当全球气温上升令冰层溶化时,这些埋藏在冰层千年或更长的病毒便可能会复活,形成疫症。科学家表示,虽然他们不知道这些病毒的生存希望,或者其再次适应地面环境的机会,但肯定不能抹煞病毒卷土重来的可能性。由来温室效应主要是由于现代化工业社会过多燃烧煤炭、石油和天然气,这些燃料燃烧后放出大量的二氧化碳气体进入大气造成的。二氧化碳气体具有吸热和隔热的功能。它在大气中增多的结果是形成一种无形的玻璃罩,使太阳辐射到地球上的热量无法向外层空间发散,其结果是地球表面变热起来。因此,二氧化碳也被称为温室气体。人类活动和大自然还排放其他温室气体,它们是:氯氟烃(CFC〕、甲烷、低空臭氧、和氮氧化物气体、地球上可以吸收大量二氧化碳的是海洋中的浮游生物和陆地上的森林,尤其是热带雨林。为减少大气中过多的二氧化碳,一方面需要人们尽量节约用电(因为发电烧煤〕,少开汽车。另一方面保护好森林和海洋,比如不乱砍滥伐森林,不让海洋受到污染以保护浮游生物的生存。我们还可以通过植树造林,减少使用一次性方便木筷,节约纸张(造纸用木材〕,不践踏草坪等等行动来保护绿色植物,使它们多吸收二氧化碳来帮助减缓温室效应。

  • 索引序列
  • 基于温度的论文研究现状
  • 关于温度测量的国内研究现状论文
  • 温度控制技术行业研究现状论文
  • 国内外温湿度监测研究现状论文
  • 国外温室研究现状论文
  • 返回顶部