有一篇六年级学生的小论文,谨供参考! 数学的色彩 清晨,鲜红的太阳露出半个笑脸,和谐的阳光洒满人间,我的心情真是好极了。突然接到爷爷的电话,叫我巧算九块五加九十九块五,我马上告诉爷爷:九加九十九,再加一,不就等于一百零九吗?爷爷说我的算法还不算巧,如果凑整减零头就好算得多。我马上打断爷爷的话,告诉他:10+100-1=109(元)。这时爷爷夸我,说我还算灵巧。这是早晨的数学题,我把数学定为红色。 上午,爸爸从银行交完电费回来,叫我计算电费。用电量是从1079-1279(度),每度电单价是元,我用心算整好200度,我把单价变为分数是38/100,列式:200×(38/100),先约分再乘,等于76元。爸爸说没错,和电脑算得一样。我很得意,这时已近中午,我把数学定为黄色。 下午,我和妹妹在家里切西瓜,把半个西瓜再均匀地切两刀,其中的两份就是2/3,我问妹妹这两份是整个西瓜的几分之几呢?妹妹开学才上一年级,当然不会算,我告诉她把西瓜整体看作1,第一分率是1/2,它的分率是2/3,相乘的结果就是这两份是整个西瓜的2/6,约分后就是1/3。这时我想爷爷曾说七色阳光为白色,那么,这个数学就定为白色吧。 夜晚在蓝色的星空下,我和妈妈在一起看电视,我怎么也弄不懂考古学家是怎样从腿骨的化石推算出大艾尔恐龙的身高呢?妈妈说这蓝色的数学等你长大了,本事大了自然就会了。 生活中的数学简直是太多了,真是绚丽多彩,它随时在你身边出现。我爱数学,我要学好数学。 望能帮您!
数学离不开生活,生活中处处有数学,它来源于生活又应用于生活。把数学教学与生活联系起来,使学生在不知不觉中感悟数学的真谛。下面是我为大家整理的小学 六年级数学 教学论文,希望对大家有所帮助! 小学六年级数学教学论文篇1:培养数学应用意识及实践 培养学生的数学应用意识和实践能力 《数学课程标准》指出:“数学教学,应从学生已有的知识 经验 出发,让学生亲身经历参与特定的教学活动,获得一些体验,并且通过自主探索,合作交流,将实际问题抽象成数学模型,并对此进行解释和应用。”基于此认识,我认为在新教材的教学中,应体现以下几点: 一、 源于生活,创设轻松愉快的学习情境 苏霍姆林斯基指出,教师在教学中如果不想方设法使学生产生情绪高昂和智力振奋的内心状态,而只是不动情感的脑力劳动,就会带来疲倦。因此,我们的教学应营造一种轻松愉快的情境,使学生乐此不疲地致力于学习内容。 数学离不开生活,生活中处处有数学。在教学中,以教材为蓝本,注重密切数学与现实生活的联系,创设轻松愉快的数学情境。 现实的学习情境,可以激发学生学习数学的兴趣,充分调动学生学习的积极性和主动性,诱导学生积极思维,使其产生内在学习动机,并主动参与教学活动。如教学“认位置”,以学生眼前的教室为情境,为学生提供了一个观察生活中人与人、人与物、物与物之间位置关系的场景,让学生在从指定观察到自由观察、换位观察的过程中不断加深对知识的认识和理解,使他们不光会表述物体间的位置关系,还能感受到物体间位置关系的相对性,从而使学习变成一种主动探索的过程。 心理学研究表明:比起现实情境来,幻想的情境更能激发学生丰富的情感,给他们带来深刻的内心体验。 儿童 最富于想象和幻想,儿童的世界最是千奇百怪、色彩斑澜。儿童感兴趣的“现实生活”,成人常常不可理喻,就像教材中的“小兔采蘑菇”、“青蛙跳伞”、“小蜜蜂采蜜”等,我们认为不合逻辑常理,孩子们却兴趣盎然。因此,我们需要保有一颗纯真的童心,善于从儿童的生活经验和心理特点出发,努力避免成人化的说教,这样,才能捕捉到一幅幅令他们心动的画面,设计出一个个可亲可近的情境。 例如教学“比一比”通过学生喜爱的卡通形象――蓝猫邀请大家参观客厅来导入新课,学生兴趣盎然;引导学生发现猫大哥客厅里的数学秘密,学生兴趣高涨。又如教学“统计”,借助媒体创设大象过生日的情境,并以此为线索展开学习活动,提高学生的学习兴趣。 二、 用于生活,培养学生的应用意识和实践能力 新课程强调人人学有价值的数学,人人学有用的数学。因此,数学学习必须加强与生活实际的联系,让学生感受到生活中处处有数学。 数学只有回到生活中,才会显示其价值和魅力,学生只有回到生活中运用数学,才能真实地显现其数学学习水平。 如在教学“比一比”时,通过找教室周围的物体的长短高矮的比较,使学生学会用数学的眼光观察周围事物。 如在学习“认位置”后,回家观察一下自己的卧室,并用上下、前后、左右描述一下卧室内物体的相对位置关系,然后说给爸爸妈妈听。观察一下自家房屋周围、村庄周围都有些什么,到学校后,和小伙伴交流。 又如在学习了“统计”后,问学生你准备统计什么?这一环节充分利用学生已有的生活经验,把所学的知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,从而使学生体会到学习数学的重要性,学而有用的喜悦感,数学与生活的联系得到了最好的体现。 使学生感受数学与生活的密切联系,能运用生活经验对有关的数字信息作出解释并初步学会用具体的数描述现实世界中的简单现象,是课程标准中规定的第一学段的教学目标之一。一年级的小孩子正如他们在课堂上所说的那样,“我把我的书包分类清理好了”、“我学会了数数,上次家里来了好多客人,我就知道摆多少双筷子了”、“我学了加减法,就可以帮助妈妈上街买菜,不会算错钱了”,也就像家长说的那样,“我的孩子回家把他的玩具和他书包里的书都分类收拾好了,真不错!”“我的孩子现在都会自己看钟去上学了”。可见,新教材在培养学生数感和应用意识,培养学生的自理能力和劳动意识,体现学习有价值的数学等方面取得了初步的成效。 总之,数学离不开生活,生活中处处有数学,它来源于生活又应用于生活。来于生活、归于生活的知识才是有价值的知识。把数学与生活联系起来,使学生在不知不觉中感悟数学的真谛。 小学六年级数学教学论文篇2:浅谈数学的创造性学习 什么是数? 开天辟地之初,人类就开始与数打交道。数即是数目的意思。正如《汉书·律历志上》云:“数者,一十百千万也。” 数进入数学体系就成为它的最基本概念之一,数的概念是随着人类的生产和生活实践的不断发展而逐渐形成的,并且永无止境地发展着。从古至今,以自然数为开端,接着是有理数与无理数、正数与负数、实数与虚数,直至复数,共同构成数的概念不断拓展的系列。每一次拓展都是一次创造思维的跃升。 什么是数学? 数学是研究现实世界的空间形式和数量关系的科学。古时候,人类在生产和生活实践中便获得了数的概念和一些简单几何形体的概念。自此开始,到16世纪,创立了包括算术、初等代数、初等几何和三角的初等数学。17世纪引入变量概念是数学发展史中的转折点,这使得运动和辩证法进入数学,开始研究变化中的量与量之间相互制约关系和图形间的相互变换。近年来,由于数学在自然科学和技术领域的广泛应用,又由于计算技术的迅猛发展,数学对人类认识自然和改造自然的重要作用也显示得更加清楚了。至今,现代数学已经形成了包括数理逻辑、数论、代数学、几何学、拓扑学、函数论、泛函分析、微分方程、概率论、数理统计、计算数学及边缘学科运筹学、控制论等在内的庞大体系。 与数的发展一样,数学发展史也是创造思维不断发展的历史。 数学是中小学生的主科。数学学习是中小学生增长学习能力和创造能力的广阔天地。 一.驴唇怎能对得上马嘴呢 阴错阳差的巧事,张冠李戴的误会,在大千世界,这等笑话,时有发生。可是,在数学课上,难道也会发生驴唇不对马嘴的事情吗? (一)平地起风雪 话题是从一道浅显的代数题引发的。这是一个发生在某中学初一新生的一节数学课上的小 故事 。快下课时,老师出了一道题:“若a为自然数,说出a以后的7个连续自然数。”一个小女孩举手抢答:“a,b,c,d,e,f,g。”话音刚落,便引起哄堂大笑,老师也愕然了。女孩觉察到,自己的答案,驴唇不对马嘴。出了笑话,落个满脸通红。 接着,一个男孩起来补正:“a+1,a+2,a+3,a+4,a+5,a+6,a+7。”尔后,下课铃响了。 事情平平常常。一个女孩答错了题,一个男孩纠正过来,全班同学都明白了正确答案。下课,大家就都散了。 那么,这件事是否到此就算了结了呢? 请思考10分钟,然后,发表你的见解。 单兵——我看是了结了。老师完成了教学任务,学生也完成了学习任务。 焦小敏——如果说没有了结,那就是老师还得 教育 同学们,不要把这事当成奚落那位小姑娘的笑柄。 张娟——还有,班上的同学也有义务鼓励那位小姑娘。 赵老师——直截了当地说,我认为没有了结。因为任何结果都有原因。小姑娘答成“a,b,c,d,e,f,g”这是她思维的结果。那么,她一定有个由此及彼的思维过程,其中深藏着错误的原因。老师与那个小姑娘的任务是找出原因,避免再错。如若不然,再遇类似问题,也许她又答成“甲、乙、丙、丁、戊、己、庚” 呢。 肖冬春——我同意这种看法。换句话说,知道男孩答案正确,并不等于找到自己的错误原因。 韩小彧——前面几位同学的发言,从不同的角度,各有各的道理。但是,又都有一个绝对化的框框束缚着。这就是姑娘的答案一无是处;小男孩的答案绝对正确,天衣无缝。这个框框正是上面5个发言的潜在的共同前提。当然,错误答案之正确部分及正确答案之不足部分,如果真有,我现在还未想出。 赫峰——她提出的问题,是一条崭新的思路,很有启发。我发现小姑娘的答案中有一个合理的因素,7个字母与题目要求的7个自然数合得上。 曹博——这么说来,错误答案中的合理因素,可不止这一个。题目要求“a以后”,按照英语字母表由b到g都在a以后。 姚树——题目要求“连续”,按英语字母表,从a到g是连续的,并没断开,也没跳跃。 祝越——7个符号都可以表示自然数。这一点。也是符合题目要求的。 李河——这么说来,“a以后”、“7个”、 “连续”、“自然数”4大要素都合乎题目要求,错在哪里呢? 讨论至此,真是平地起风云。看来已经结束的问题,却又引出一片新话题。况且本来被公认为绝对错误的答案,现在却找不到一点破绽了。 (二)罕见的对话 正像大家的看法一样,当堂听课的主任觉察到:这件事并未结束。 下课后主任与老师讨论,老师认为“a+1”到“a+7”是唯一正确的答案,全班已懂,教学任务已告完成。主任又去问学生。大家说那个小女孩在小学时,特别喜欢英语。主任领悟了:小学时只是在 英语学习 中才见到过a,题目似乎要求写出“a以后的7个”来,自然,a,b,c,d,e,f,g”在头脑中出现了,又在口中说出了。这正是心理学上所说的副定势起了作用。 尔后,主任将女孩找到办公室。先肯定她喜欢英语,大胆举手的优点,接着是双方一连串的对话。 “那题明白了吗?” “明白了。” “你的答案呢?” “全错了。” “一点对的地方也没有?” “没有。” “一丁点儿都没有?” “没有。” “真的吗?” “我没想过。”(唉!没有想过就坚定地认为自已全错了!) “现在想想看。” “想不出。” “b,c,d,e,f,g,不是在a以后吗?” “是”。 “字母不是说了7个吗?” “是”。 “7个字母,排列有序,为什么不跳着说呢。” “题目上说……” “你看,‘a以后’、‘7个’、‘连续’,都有了。这些字母又都能表示自然数。那么,哪有错的地方呢?” “咦,怎么没有错的地方了呢?” 最后,在主任启发下,发现了错误:对于这些字母,没有给出符合题意的数学含义。一句话,把英语字母转化为数学符号的任务,没有完成。 找出错误原因,就能纠正错误。简单说,将7个英语字母赋予符合题意的数学含意就是了。这样,找到了与众不同的答案:若a为自然数,令a'=a+1,b=a+2,c=a+3,d=a+4,e=a+5,f=a+6,g=a+7,则a',b,c,d,e,f,g”便是正确答案。 就是这样,正确与错误之间,只有一小撇之差。 还应指出,运用这种灵活变通的 思维方式 ,求解此题,正确答案是无穷尽的。即使是“甲、乙、丙、丁、戊、己、庚”,只要将其赋予符合题意的数学含义,也能成为正确答案。这么看来,把“a+1,a+2,a+3,a+4,a+5,a+6,a+7”看成唯一正确答案,失之于思维呆板,并且导致片面性和绝对化。 (三)深刻的启示 中小学生在数学学习中,错误常见,改错也常见。但是,这样的改错方式从未见过。 这样的改错方式给我们的启示是深刻的,是多方面的。 1.在变通性的动态思考中更深刻地掌握数学新原理 掌握数学概念和原理,运用相关概念、原理解答数学问题,从而获得系统的数学知识,提高思维能力,这是数学学习的基本任务。 用符号表示数是代数学的根本特点。在小学算术中只用阿拉伯数字表示固定的具体数目。而在中学代数中,就要用抽象符号表示多种多样的数学含义。用符号表示数的课题,是代数起始课的重点和难点。上面的题,正是为了使学生掌握这个代数原理而设计的。 两种改错方式对理解原理的作用是不同的。先看一般方式: a,b,c,d,e,f,g→a+1,a+2,a+3,a+4,a+5,a+6,a+7 再看变通方式: a,b,c,d,e,f,g→令a'=a+1,b=a+2,c=a+3,d=c+4,e=a+5,f=a+6,g=a+7→a',b,c,d,e,f,g 后者增加“令a'=a+1,……,g=a+7”的一步,同时也就增加了“a'~g”的新的答案形式,最后回到“a+1,……,a+7”的答案。中间增加两步推导,都运用了“符号表示数”的原理。这样,也就加深了对这一原理的理解。 总之,对比两种处理方式,后者更有利于数学知识的掌握和学习能力的提高。 2.创造思维能力在运用中得到增长 运用变通性方式改错,不仅有利于学习能力的提高,也有利于创造思维能力的增长。 变通性改错方式,加大了思维难度,是进行 发散思维 而获得的结果。当然,这也不是唯一的结果。更为重要的是:原来被认为解法唯一,现在变成无穷了。这就启发我们提出问题: (1)数学概念和数学原理统统都是永恒不变的吗?其表述方式是唯一的吗? (2)被认为只有一种解答 方法 的数学题是统统都不会有第2、第3种解决方法吗? 当我们对这两个问题得出“不见得”的结论时,那么对今后的数学学习产生的影响,也就在其中了。即不以固定方式掌握数学概念、原理和题目解法为满足,而还要运用创造思维的发散性、灵活性,对每一个数学课题予以审视,积极发掘可能蕴含着的新内容、新方法、新的推理和新的表达方式。 这样坚持下去,就会收到数学学习能力与创造思维能力同步超常增长的效果。 小学六年级数学教学论文篇3:小学数学活动课的开设原则 原则之一 小学数学活动课,必须以小学生的个性要素得到发展为宗旨,设计教学目标、教学内容与教学 方法。《课程方案》对小学阶段的教育提出了明确的培养目标,这个培养目标包括两方面内容:一方面是为体 现小学阶段性质和任务而设计的国家要求,也就是国家关于知识和能力的质量标准;另一方面是为体现小学生 身心发展规律的个性发展要求。落实到小学数学课,国家质量标准就是要求小学生具有初步的运算技能、逻辑 思维能力和空间观念,以及运用所学数学知识解决一些简单的实际问题的能力这四项,这个任务主要由小学数 学的学科课(或者叫必修课)来担当。至于发展小学生个性的要求,《课程方案》明确提出主要由活动课来担 当,其教学目标就是“增强兴趣,拓宽知识,增长才干,发展特长”。有人会提出,这个要求在学科课所包含 的实际活动中就能做到,或者开展课外活动就可以实现。我认为这是误解。诚然,小学数学学科课所包含的实 际活动,诸如观察、实验、练习等,也能培养学生某些个性要素,但它服务的目的不同,它只是为学科课的教 学目标而服务的一种教学手段,是学科课教学活动的一部分,没有具体教学时间的界限;而小学数学活动课应 是以发展学生个性要素为首要目标的课型,每节课教学时间与学科课的教学时间相配合。还有,活动课也不同 于课外活动:①活动课属于课程的范畴,课外活动则是“在教学大纲范围之外由学生自愿参加的各种教育活动 的总称”,它不属于课程的范畴;②活动课有一定的结构性,它有特定的教学目标、内容和活动方式,而且教 学内容的广度和深度随着年级的上升而具有层次性,而课外活动则没有这种有序的要求;③活动课的设计和实 施要具有一定的规范,那就是活动课必须有教学纲要和活动课指导书,并严格按此规范实施教学进程,而课外 活动则不具备这个要求。 原则之二 小学数学活动课,必须淡化选拔教育,做到“人人受益”。小学阶段的教育是义务教育的初级 阶段的教育,国家教委副主任柳斌同志指出:“义务教育是国民教育,普及教育,平等教育,应当强调其普及 性,淡化其选拔性。”这个要求不仅在小学阶段的教育活动中要落实,更要在各科的教学活动中落实。学科类 课程的教学活动做到人人受益,比较好操作,因为学科类课程所担负的国家关于知识和能力的各项规定,由统 一的大纲和教材所列举,由国家规范的教学、考查等计划予以落实和检查。而活动课是以培养个性特征为标志 的新课型,系统的操作硬件尚在建立之中,有一定的难处。但是,我们应当这样理解:小学数学活动课所说的 “人人受益”,不应当以分数、成绩的提高来理解,应当从学生的个性要素得到发展予以解释。从活动课参予 程度讲,不要像组织数学课外活动小组那样,只允许少数数学 爱好 者参加,而应要求每个学生都参加。从活动 课的课程设计讲,在学科课为每个学生打好共同基础的条件下,为发展学生的个性特长、 兴趣爱好 提供发展空 间;从活动课的教学效果讲,通过小学数学活动课,有的学生数学知识、能力和爱好都得到提高,这是受益。 通过小学数学活动课,有的学生数学知识和能力提高不甚明显,但是通过数学的橱窗对观察课外天地,观察实 际生活的兴趣产生了,这也是受益。更有甚者,通过小学数学活动课,虽然没有引起学习数学的兴趣,但这种 活动课教学尝试在学生记忆中留下思维印象,能成为今后处理问题的一种思维参考,这也应该说是受益。纵或 阻塞了他们对数学的爱好,但通过小学数学活动课促使他们去爱好 其它 学科,也同样属于受益之列。一言以蔽 之,小学数学活动课的受益,就是指小学生的个性要素,主要指兴趣和情感,通过数学的载体而得到发展。 原则之三 小学数学活动课,必须注意小学生身心发展的特点,充分保护“童心”。小学生的年龄阶段( 6~11、12岁), 在心理学上称为儿童期(或称学龄早期)。这一阶段,小学生不但身体发育进入了一个相对 平稳阶段,而且由于从一个备受家庭保护的幼儿变成必须独立完成学习任务、承担一定社会义务的小学生,这 就促使儿童心理特征产生质的飞跃,概括起来,就是产生了在幼儿期没有的“好奇、好动、好胜”的“童心” 。这三个“好”只有“好奇”“好动”充分得到发展,“好胜”的儿童价值特征才能得以建立。但是要注意, 要使“好奇”“好动”的心理状态健康成长,就必须从以下两个方面予以控制:①调控环境,促使小学生总是 保持向上振奋的心理状态。小学生向上振奋的心理状态的形成是立足于好奇感,而好奇感的永恒程度又依赖于 环境(包含教学环境)对小学生接受知识是否有一种愉快感。因此建立一种愉快接受教育的氛围是调控环境的 关键。小学数学活动课基于数学学科的抽象特点,愉快教育氛围的建立,特别要注意杜绝成人期望值的强加与 过量过高数学材料的灌输。就是说,不要设想通过小学数学活动课的教学,个个都成为数学神童;也不要认为 ,实施小学数学活动课教学,就是灌输小学数学之外使小学生难以接受的成人处理数学的材料。②树立模仿典 型,促使小学生形成稳固的知识、能力体系和健康的行为与习惯。小学生的“好动”,是建立在模仿基础上的 好动,通过模仿,一旦成为小学生稳定的心理成分,就左右小学生健康心理的形成。因此为了促使小学生形成 稳固的知识、能力体系和健康的行为习惯,我们的教学活动就应当提供学生认为有趣的、益于拓广知识的模仿 典型。小学数学活动课所提供的模仿典型,就是根据数学的特征以及小学生的知识、能力条件,通过游戏、观 察、拼图、制作、不完全归纳等思维及操作办法,让学生得到学科课内所没有的、又能激发学生求知兴趣的数 和形的一些结论(但是不要证明)。这些结论,要求学生都记住它是次要的,掌握得到的过程则是教会模仿的 本意。只有这样,“好动”的心理特点才可以说在数学活动课里得到健康地培育。 原则之四
可以自己删减删减。 数学论文 一、数学技能的含义及作用 技能是顺利完成某种任务的一种动作或心智活动方式。它是一种接近自动化的、复杂而较为完善的动作系统,是通过有目的、有计划的练习而形成的。数学技能是顺利完成某种数学任务的动作或心智活动方式。它通常表现为完成某一数学任务时所必需的一系列动作的协调和活动方式的自动化。这种协调的动作和自动化的活动方式是在已有数学知识经验基础上经过反复练习而形成的。如学习有关乘数是两位数的乘法计算技能,就是在掌握其运算法则的基础上通过多次的实际计算而形成的。数学技能与数学知识和数学能力既有密切的联系,又有本质上的区别。它们的区别主要表现为:技能是对动作和动作方式的概括,它反映的是动作本身和活动方式的熟练程度;知识是对经验的概括,它反映的是人们对事物和事物之间相互联系的规律性的认识;能力是对保证活动顺利完成的某些稳定的心理特征的概括,它所体现的是学习者在数学学习活动中反映出来的个体特征。三者之间的联系,可以比较清楚地从数学技能的作用中反映出来。 数学技能在数学学习中的作用可概括为以下几个方面: 第一,数学技能的形成有助于数学知识的理解和掌握; 第二,数学技能的形成可以进一步巩固数学知识; 第三,数学技能的形成有助于数学问题的解决; 第四,数学技能的形成可以促进数学能力的发展; 第五,数学技能的形成有助于激发学生的学习兴趣; 第六,调动他们的学习积极性。 二、数学技能的分类 小学生的数学技能,按照其本身的性质和特点,可以分为操作技能(又叫做动作技能)和心智技能(也叫做智力技能)两种类型。 l.数学操作技能。操作技能是指实现数学任务活动方式的动作主要是通过外部机体运动或操作去完成的技能。它是一种由各个局部动作按照一定的程序连贯而成的外部操作活动方式。如学生在利用测量工具测量角的度数、测量物体的长度,用作图工具画几何图形等活动中所形成的技能就是这种外部操作技能。操作技能具有有别于心智技能的一些比较明显的特点:一是外显性,即操作技能是一种外显的活动方式;二是客观性,是指操作技能活动的对象是物质性的客体或肌肉;王是非简约性,就动作的结构而言,操作技能的每个动作都必须实施,不能省略和合并,是一种展开性的活动程序。如用圆规画圆,确定半径、确定圆心、圆规一脚绕圆心旋转一周等步骤,既不能省略也不能合并,必须详尽地展开才能完成的任务。 2.数学心智技能。数学心智技能是指顺利完成数学任务的心智活动方式。它是一种借助于内部言语进行的认知活动,包括感知、记忆、思维和想象等心理成分,并且以思维为其主要活动成分。如小学生在口算、笔算、解方程和解答应用题等活动中形成的技能更多地是一些数学心智技能。数学心智技能同样是经过后天的学习和训练而形成的,它不同于人的本能。另外,数学心智技能是一种合乎法则的心智活动方式,“所谓合乎法则的活动方式是指活动的动作构成要素及其次序应体现活动本身的客观法则的要求,而不是任意的”。这些特性,反映了数学心智技能和数学操作技能的共性。数学心智技能作为一种以思维为主要活动成分的认知活动方式,它也有着区别于数学操作技能的个性特征,这些特征主要反映在以下三个方面。 第一,动作对象的观念性。数学心智技能的直接对象不是具有物质形式的客体本身,而是这种客体在人们头脑里的主观映象。如20以内退位减法的口算,其心智活动的直接对象是“想加法算减法”或其他计算方法的观念,而非某种物质化的客体。 第二,动作实施过程的内隐性。数学心智技能的动作是借助内部言语完成的,其动作的执行是在头脑内部进行的,主体的变化具有很强的内隐性,很难从外部直接观测到。如口算,我们能够直接了解到的是通过学生的外部语言所反映出来的计算结果,学生计算时的内部心智活动动作是无法看到的。 第三,动作结构的简缩性。数学心智技能的动作不像操作活动那样必须把每一个动作都完整地做出来,也不像外部言语那样对每一个动作都完整地说出来,它的活动过程是一种高度压缩和简化的自动化过程。因此,数学心智技能中的动作成分是可以合并、省略和简化的。如20以内进位加法的口算,学生熟练以后计算时根本没有去意识“看大数”、“想凑数”、“分小数”、“凑十”等动作,整个计算过程被压缩成一种脱口而出的简略性过程。 三、数学技能的形成过程 1.数学操作技能的形成过程。 数学操作技能作为一种外显的操作活动方式,它的形成大致要经过以下四个基本阶段。 (1)动作的定向阶段。这是操作技能形成的起始阶段,主要是学习者在头脑里建立起完成某项数学任务的操作活动的定向映象。包括明确学习目标,激起学习动机,了解与数学技能有关的知识,知道技能的操作程序和动作要领以及活动的最后结果等内容。概括起来讲,这一阶段主要是了解“做什么”和“怎样做”两方面的内容。如画角,这一阶段主要是了解需画一个多少度的角(即知道做什么)和画角的步骤(即怎么做),以此给画角的操作活动作出具体的定向。动作定向的作用是在头脑里初步建立起操作的自我调节机制;通过对“做什么”和“怎么做”的了解而明确实施数学活动的程序与步骤,从而保证在操作中更好地掌握其动作的活动方式。 (2)动作的分解阶段。这是操作技能进入实际学习的最初阶段,其作法是把某项数学技能的全套动作分解成若干个单项动作,在老师的示范下学生依次模仿练习,从而掌握局部动作的活动方式。如用圆规按照给定的半径画圆,在这一阶段就可把整个操作程序分解成三个局部动作:①把圆规的两脚张开,按照给定的半径定好两脚间的距离;②把有针尖的一脚固定在一点上,确定出圆心;③将有铅笔尖的一脚绕圆心旋转一周,画出圆。通过对这三个具有连续性的局部动作的依次练习,即可掌握画圆的要领。学生在这一阶段学习的方式主要是模仿,一方面根据老师的示范进行模仿;另一方面也可以根据有关操作规则的文字描述进行模仿,如根据几何作图规则对各个动作活动方式的表述进行模仿。模仿不一定都是被动的和机械的,“模仿可以是有意的和无意的;可以是再造性的,也可以是创造性的。”②模仿是数学操作技能形成的一个不可缺少的条件。 (3)动作的整合阶段。在这一阶段,把前面所掌握的各个局部动作按照一定的顺序连接起来,使其形成一个连贯而协调的操作程序,并固定下来。如画圆,在这一阶段就可将三个步骤综合起来形成一体化的操作系统。这时由于局部动作之间尚处在衔接阶段,所以动作还难以维持稳定性和精确性,动作系统中的某些环节在衔接时甚至还会出现停顿现象。不过,总的来讲这一阶段动作之间的相互干扰逐步得到排除,操作过程中的多余动作也明显减少,已形成完整而有序的动作系统。 (4)动作的熟练阶段。这是操作技能形成的最后阶段,在这一阶段通过练习而形成的数学活动方式能适应各种变化情况,其操作表现出高度完善化的特点。动作之间相互干扰和不协调的现象完全消除,动作具有高度的正确性和稳定性,并且不管在什么条件下全套动作都能流畅地完成。如这时的画圆,不需要意志控制就能顺利地完成全套动作,并且能充分保证其正确性。上述分析表明,数学操作技能的形成要经过“定向→分解→整合→熟练”的发展过程。在这一过程中每一个发展阶段都有自己的任务:定向阶段的主要任务是掌握操作的结构系统和每一个步骤操作的要领;分解阶段的主要任务是对活动的操作系列进行分解,并逐一模仿练习;整合阶段的主要任务是在动作之间建立联系,使活动协调一体化;熟练阶段的任务则主要是使整个操作过程高度完善化和自动化。 2.数学心智技能的形成过程。 关于数学心智技能形成过程的研究,人们比较普遍地采用了原苏联心理学家加里培林的研究成果。加里培林认为,心智活动是一个从外部的物质活动到内部心智活动的转化过程,既内化的过程。据此,在这里我们把小学生数学心智技能的形成过程概括为以下四个阶段。 (1)活动的认知阶段。这是数学心智活动的认知准备阶段,主要是让学生了解并记住与活动任务有关的知识,明确活动的过程和结果,在头脑里形成活动本身及其结果的表象。如学习除数是小数的除法计算技能,在这一步就是让学生回忆并记住除法商不变性质和除数是整数的小数除法法则等知识,在此基础上明确计算的程序和每一步计算的具体方法,以此在头脑里形成除数是小数除法计算过程的表象。认知阶段实际上也是一种心智活动的定向阶段,通过这一阶段,学习者可以建立起进行数学心智活动的初步自我调节机制,为后面顺利进行认知活动提供内部控制条件。这一阶段的主要任务是在头脑里确定心智技能的活动程序,并让这种程序的动作结构在头脑里得到清晰的反映。 (2)示范模仿阶段。这是数学心智活动方式进入具体执行过程的开始,这一阶段学生把在头脑里已初步建立起来的活动程序计划以外显的操作方式付诸执行。不过,这种执行通常是在老师指导示范下进行的,老师的示范通常是采用语言指导和操作提示相结合的方式进行的,即在言语指导的同时呈现活动过程中的某些步骤。如计算乘数是两位数的乘法时,一方面根据运算法则指导运算步骤;另一方面在表述运算规定的同时重点示范用乘数十位上的数去乘被乘数所得的部分积的对位,以此让学生在老师的帮助、指导下顺利地掌握两位数乘多位数计算的活动方式。在这一阶段,学生活动的执行水平还比较低,通常停留在物质活动和物质化活动的水平上。“所谓物质活动是指动作的客体是实际事物,所谓物质化活动是指活动不是借助于实际事物本身,而是以它的代替物如模拟的教具、学具,乃至图画、图解、言语等进行的”。③如解答复合应用题,在这一步学生通常就是借助线段图进行分析题中数量关系的智力活动的。 (3)有意识的言语阶段。这一阶段的智力活动离开了活动的物质和物质化的客体而逐步转向头脑内部,学生通过自己的言语指导而进行智力活动,通常表现为一边操作一边口中念念有词。如两位数加两位数的笔算,在这一步学生往往是一边计算,口中一边念:相同数位对位,从个位加起,个位满十向十位进1。很明显,这时的计算过程是伴随着对法则运算规定的复述进行的。在这一阶段,学生出声的外部言语活动还会逐步向不出声的外部言语活动过渡,如两位数加两位数的笔算,在本阶段的后期学生往往是通过默想法则规定的运算步骤进行计算的。这一活动水平的出现,标志着学生的活动已开始向智力活动水平转化。 (4)无意识的内部言语阶段。这是数学心智技能形成的最后的一个阶段,在这一阶段学生的智力活动过程有了高度的压缩和简化,整个活动过程达到了完全自动化的水平,无需去注意活动的操作规则就能比较流畅地完成其操作程序。如用简便方法计算45+99×99+54,在这一阶段学生无需去回忆加法交换律和结合律、乘法分配律等运算定律,就能直接先合并45和54两个加数,然后利用乘法分配律进行计算,即原式=(45+54)+99×99=99×(1+99)=99×100=9900,整个计算过程完全是一种流畅的自动化演算过程。在这一阶段,学生的活动完全是根据自己的内部言语进行思考的,并且总是用非常简缩的形式进行思考的,活动的中间过程往往简约得连自己也察觉不到了,整个活动过程基本上是一种自动化的过程。 四、数学技能的学习方法 1.数学操作技能的学习方法。学习数学操作技能的基本方法是模仿练习法和程序练习法。前者是指学生在学习中根据老师的示范动作或教材中的示意图进行模仿练习,以掌握操作的基本要领,在头脑里形成操作过程的动作表象的一种学习方法。用工具度量角的大小、测量物体的长短、几何图形的作图、几何图形面积和体积计算公式推导过程中的图形转化等技能一般都可以通过模仿练习法去掌握。如推导平行四边形面积计算公式时,把平行四边形转化成长方形的操作技能就可模仿(人教版)教材插图(如图所示)的操作过程去练习和掌握。小学生的学习更多的是模仿老师的示范动作,所以老师的示范对小学生数学动作技能的形成尤为重要。教师要充分运用示范与讲解相结合、整体示范与分步示范相结合等措施,让学生准确无误地掌握操作要领,形成正确的动作表象。所谓程序练习法,就是运用程序教学的原理将所要学习的数学动作技能按活动程序分解成若干局部的动作先逐一练习,最后将这些局部的动作综合成整体形成程序化的活动过程。如用量角器量角的度数、用三角板画垂线和平行线、画长方形等技能的学习都可以采用这种方法。用这种方法学习数学动作技能,分解动作时注意突出重点,重点解决那些难以掌握的局部动作,这样可以有效地提高学习效率。 2.数学心智技能的学习方法。学生的心智技能主要是通过范例学习法和尝试学习法去获得的。范例学习法是指学习时按照课本提供的范例,将数学技能的思维操作程序一步一步地展现出来,然后根据这种程序逐步掌握技能的心智活动方式。整数、小数、分数的四则计算,课本几乎都提供了计算的范例,学习时只需要根据范例有序地进行计算即可掌握计算方法。如被除数和除数末尾都有0的除法的简便算法,课本安排了如下范例,学习时只需要明确范例所反映的计算程序和方法,并按照这种程序和方法进行计算即可掌握被除数和除数末尾都有0的除法简便计算的技能。尝试学习法是指在学习中主要由学生自己去尝试探索问题解决的方法和途径,并在不断修正错误的过程中找出解决问题的操作程序,进而获得数学技能。这是一种探究式的发现学习法,总结运算规律和性质并运用它们进行简便计算、解答复合应用题、求某些比较复杂的组合图形的面积或体积等技能都可以运用这种学习方法去掌握。这种方法较多地运用于题目本身具有较强探究性的变式问题解决的学习,如用简便方法计算1001÷,由于学生在前面已经掌握除法商不变性质,练习时就可通过将除数和被除数部乘以8使除数变成100的途径去实现计算的简便。尝试学习法虽然有利于培养学生的探索精神和解决问题的能力,但耗时太多,学习时最好是将它和范例学习法结合起来,两种学习方法互为补充,这样数学技能的学习就会更加富有成效
5555555
数学离不开生活,生活中处处有数学,它来源于生活又应用于生活。把数学教学与生活联系起来,使学生在不知不觉中感悟数学的真谛。下面是我为大家整理的小学 六年级数学 教学论文,希望对大家有所帮助! 小学六年级数学教学论文篇1:培养数学应用意识及实践 培养学生的数学应用意识和实践能力 《数学课程标准》指出:“数学教学,应从学生已有的知识 经验 出发,让学生亲身经历参与特定的教学活动,获得一些体验,并且通过自主探索,合作交流,将实际问题抽象成数学模型,并对此进行解释和应用。”基于此认识,我认为在新教材的教学中,应体现以下几点: 一、 源于生活,创设轻松愉快的学习情境 苏霍姆林斯基指出,教师在教学中如果不想方设法使学生产生情绪高昂和智力振奋的内心状态,而只是不动情感的脑力劳动,就会带来疲倦。因此,我们的教学应营造一种轻松愉快的情境,使学生乐此不疲地致力于学习内容。 数学离不开生活,生活中处处有数学。在教学中,以教材为蓝本,注重密切数学与现实生活的联系,创设轻松愉快的数学情境。 现实的学习情境,可以激发学生学习数学的兴趣,充分调动学生学习的积极性和主动性,诱导学生积极思维,使其产生内在学习动机,并主动参与教学活动。如教学“认位置”,以学生眼前的教室为情境,为学生提供了一个观察生活中人与人、人与物、物与物之间位置关系的场景,让学生在从指定观察到自由观察、换位观察的过程中不断加深对知识的认识和理解,使他们不光会表述物体间的位置关系,还能感受到物体间位置关系的相对性,从而使学习变成一种主动探索的过程。 心理学研究表明:比起现实情境来,幻想的情境更能激发学生丰富的情感,给他们带来深刻的内心体验。 儿童 最富于想象和幻想,儿童的世界最是千奇百怪、色彩斑澜。儿童感兴趣的“现实生活”,成人常常不可理喻,就像教材中的“小兔采蘑菇”、“青蛙跳伞”、“小蜜蜂采蜜”等,我们认为不合逻辑常理,孩子们却兴趣盎然。因此,我们需要保有一颗纯真的童心,善于从儿童的生活经验和心理特点出发,努力避免成人化的说教,这样,才能捕捉到一幅幅令他们心动的画面,设计出一个个可亲可近的情境。 例如教学“比一比”通过学生喜爱的卡通形象――蓝猫邀请大家参观客厅来导入新课,学生兴趣盎然;引导学生发现猫大哥客厅里的数学秘密,学生兴趣高涨。又如教学“统计”,借助媒体创设大象过生日的情境,并以此为线索展开学习活动,提高学生的学习兴趣。 二、 用于生活,培养学生的应用意识和实践能力 新课程强调人人学有价值的数学,人人学有用的数学。因此,数学学习必须加强与生活实际的联系,让学生感受到生活中处处有数学。 数学只有回到生活中,才会显示其价值和魅力,学生只有回到生活中运用数学,才能真实地显现其数学学习水平。 如在教学“比一比”时,通过找教室周围的物体的长短高矮的比较,使学生学会用数学的眼光观察周围事物。 如在学习“认位置”后,回家观察一下自己的卧室,并用上下、前后、左右描述一下卧室内物体的相对位置关系,然后说给爸爸妈妈听。观察一下自家房屋周围、村庄周围都有些什么,到学校后,和小伙伴交流。 又如在学习了“统计”后,问学生你准备统计什么?这一环节充分利用学生已有的生活经验,把所学的知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,从而使学生体会到学习数学的重要性,学而有用的喜悦感,数学与生活的联系得到了最好的体现。 使学生感受数学与生活的密切联系,能运用生活经验对有关的数字信息作出解释并初步学会用具体的数描述现实世界中的简单现象,是课程标准中规定的第一学段的教学目标之一。一年级的小孩子正如他们在课堂上所说的那样,“我把我的书包分类清理好了”、“我学会了数数,上次家里来了好多客人,我就知道摆多少双筷子了”、“我学了加减法,就可以帮助妈妈上街买菜,不会算错钱了”,也就像家长说的那样,“我的孩子回家把他的玩具和他书包里的书都分类收拾好了,真不错!”“我的孩子现在都会自己看钟去上学了”。可见,新教材在培养学生数感和应用意识,培养学生的自理能力和劳动意识,体现学习有价值的数学等方面取得了初步的成效。 总之,数学离不开生活,生活中处处有数学,它来源于生活又应用于生活。来于生活、归于生活的知识才是有价值的知识。把数学与生活联系起来,使学生在不知不觉中感悟数学的真谛。 小学六年级数学教学论文篇2:浅谈数学的创造性学习 什么是数? 开天辟地之初,人类就开始与数打交道。数即是数目的意思。正如《汉书·律历志上》云:“数者,一十百千万也。” 数进入数学体系就成为它的最基本概念之一,数的概念是随着人类的生产和生活实践的不断发展而逐渐形成的,并且永无止境地发展着。从古至今,以自然数为开端,接着是有理数与无理数、正数与负数、实数与虚数,直至复数,共同构成数的概念不断拓展的系列。每一次拓展都是一次创造思维的跃升。 什么是数学? 数学是研究现实世界的空间形式和数量关系的科学。古时候,人类在生产和生活实践中便获得了数的概念和一些简单几何形体的概念。自此开始,到16世纪,创立了包括算术、初等代数、初等几何和三角的初等数学。17世纪引入变量概念是数学发展史中的转折点,这使得运动和辩证法进入数学,开始研究变化中的量与量之间相互制约关系和图形间的相互变换。近年来,由于数学在自然科学和技术领域的广泛应用,又由于计算技术的迅猛发展,数学对人类认识自然和改造自然的重要作用也显示得更加清楚了。至今,现代数学已经形成了包括数理逻辑、数论、代数学、几何学、拓扑学、函数论、泛函分析、微分方程、概率论、数理统计、计算数学及边缘学科运筹学、控制论等在内的庞大体系。 与数的发展一样,数学发展史也是创造思维不断发展的历史。 数学是中小学生的主科。数学学习是中小学生增长学习能力和创造能力的广阔天地。 一.驴唇怎能对得上马嘴呢 阴错阳差的巧事,张冠李戴的误会,在大千世界,这等笑话,时有发生。可是,在数学课上,难道也会发生驴唇不对马嘴的事情吗? (一)平地起风雪 话题是从一道浅显的代数题引发的。这是一个发生在某中学初一新生的一节数学课上的小 故事 。快下课时,老师出了一道题:“若a为自然数,说出a以后的7个连续自然数。”一个小女孩举手抢答:“a,b,c,d,e,f,g。”话音刚落,便引起哄堂大笑,老师也愕然了。女孩觉察到,自己的答案,驴唇不对马嘴。出了笑话,落个满脸通红。 接着,一个男孩起来补正:“a+1,a+2,a+3,a+4,a+5,a+6,a+7。”尔后,下课铃响了。 事情平平常常。一个女孩答错了题,一个男孩纠正过来,全班同学都明白了正确答案。下课,大家就都散了。 那么,这件事是否到此就算了结了呢? 请思考10分钟,然后,发表你的见解。 单兵——我看是了结了。老师完成了教学任务,学生也完成了学习任务。 焦小敏——如果说没有了结,那就是老师还得 教育 同学们,不要把这事当成奚落那位小姑娘的笑柄。 张娟——还有,班上的同学也有义务鼓励那位小姑娘。 赵老师——直截了当地说,我认为没有了结。因为任何结果都有原因。小姑娘答成“a,b,c,d,e,f,g”这是她思维的结果。那么,她一定有个由此及彼的思维过程,其中深藏着错误的原因。老师与那个小姑娘的任务是找出原因,避免再错。如若不然,再遇类似问题,也许她又答成“甲、乙、丙、丁、戊、己、庚” 呢。 肖冬春——我同意这种看法。换句话说,知道男孩答案正确,并不等于找到自己的错误原因。 韩小彧——前面几位同学的发言,从不同的角度,各有各的道理。但是,又都有一个绝对化的框框束缚着。这就是姑娘的答案一无是处;小男孩的答案绝对正确,天衣无缝。这个框框正是上面5个发言的潜在的共同前提。当然,错误答案之正确部分及正确答案之不足部分,如果真有,我现在还未想出。 赫峰——她提出的问题,是一条崭新的思路,很有启发。我发现小姑娘的答案中有一个合理的因素,7个字母与题目要求的7个自然数合得上。 曹博——这么说来,错误答案中的合理因素,可不止这一个。题目要求“a以后”,按照英语字母表由b到g都在a以后。 姚树——题目要求“连续”,按英语字母表,从a到g是连续的,并没断开,也没跳跃。 祝越——7个符号都可以表示自然数。这一点。也是符合题目要求的。 李河——这么说来,“a以后”、“7个”、 “连续”、“自然数”4大要素都合乎题目要求,错在哪里呢? 讨论至此,真是平地起风云。看来已经结束的问题,却又引出一片新话题。况且本来被公认为绝对错误的答案,现在却找不到一点破绽了。 (二)罕见的对话 正像大家的看法一样,当堂听课的主任觉察到:这件事并未结束。 下课后主任与老师讨论,老师认为“a+1”到“a+7”是唯一正确的答案,全班已懂,教学任务已告完成。主任又去问学生。大家说那个小女孩在小学时,特别喜欢英语。主任领悟了:小学时只是在 英语学习 中才见到过a,题目似乎要求写出“a以后的7个”来,自然,a,b,c,d,e,f,g”在头脑中出现了,又在口中说出了。这正是心理学上所说的副定势起了作用。 尔后,主任将女孩找到办公室。先肯定她喜欢英语,大胆举手的优点,接着是双方一连串的对话。 “那题明白了吗?” “明白了。” “你的答案呢?” “全错了。” “一点对的地方也没有?” “没有。” “一丁点儿都没有?” “没有。” “真的吗?” “我没想过。”(唉!没有想过就坚定地认为自已全错了!) “现在想想看。” “想不出。” “b,c,d,e,f,g,不是在a以后吗?” “是”。 “字母不是说了7个吗?” “是”。 “7个字母,排列有序,为什么不跳着说呢。” “题目上说……” “你看,‘a以后’、‘7个’、‘连续’,都有了。这些字母又都能表示自然数。那么,哪有错的地方呢?” “咦,怎么没有错的地方了呢?” 最后,在主任启发下,发现了错误:对于这些字母,没有给出符合题意的数学含义。一句话,把英语字母转化为数学符号的任务,没有完成。 找出错误原因,就能纠正错误。简单说,将7个英语字母赋予符合题意的数学含意就是了。这样,找到了与众不同的答案:若a为自然数,令a'=a+1,b=a+2,c=a+3,d=a+4,e=a+5,f=a+6,g=a+7,则a',b,c,d,e,f,g”便是正确答案。 就是这样,正确与错误之间,只有一小撇之差。 还应指出,运用这种灵活变通的 思维方式 ,求解此题,正确答案是无穷尽的。即使是“甲、乙、丙、丁、戊、己、庚”,只要将其赋予符合题意的数学含义,也能成为正确答案。这么看来,把“a+1,a+2,a+3,a+4,a+5,a+6,a+7”看成唯一正确答案,失之于思维呆板,并且导致片面性和绝对化。 (三)深刻的启示 中小学生在数学学习中,错误常见,改错也常见。但是,这样的改错方式从未见过。 这样的改错方式给我们的启示是深刻的,是多方面的。 1.在变通性的动态思考中更深刻地掌握数学新原理 掌握数学概念和原理,运用相关概念、原理解答数学问题,从而获得系统的数学知识,提高思维能力,这是数学学习的基本任务。 用符号表示数是代数学的根本特点。在小学算术中只用阿拉伯数字表示固定的具体数目。而在中学代数中,就要用抽象符号表示多种多样的数学含义。用符号表示数的课题,是代数起始课的重点和难点。上面的题,正是为了使学生掌握这个代数原理而设计的。 两种改错方式对理解原理的作用是不同的。先看一般方式: a,b,c,d,e,f,g→a+1,a+2,a+3,a+4,a+5,a+6,a+7 再看变通方式: a,b,c,d,e,f,g→令a'=a+1,b=a+2,c=a+3,d=c+4,e=a+5,f=a+6,g=a+7→a',b,c,d,e,f,g 后者增加“令a'=a+1,……,g=a+7”的一步,同时也就增加了“a'~g”的新的答案形式,最后回到“a+1,……,a+7”的答案。中间增加两步推导,都运用了“符号表示数”的原理。这样,也就加深了对这一原理的理解。 总之,对比两种处理方式,后者更有利于数学知识的掌握和学习能力的提高。 2.创造思维能力在运用中得到增长 运用变通性方式改错,不仅有利于学习能力的提高,也有利于创造思维能力的增长。 变通性改错方式,加大了思维难度,是进行 发散思维 而获得的结果。当然,这也不是唯一的结果。更为重要的是:原来被认为解法唯一,现在变成无穷了。这就启发我们提出问题: (1)数学概念和数学原理统统都是永恒不变的吗?其表述方式是唯一的吗? (2)被认为只有一种解答 方法 的数学题是统统都不会有第2、第3种解决方法吗? 当我们对这两个问题得出“不见得”的结论时,那么对今后的数学学习产生的影响,也就在其中了。即不以固定方式掌握数学概念、原理和题目解法为满足,而还要运用创造思维的发散性、灵活性,对每一个数学课题予以审视,积极发掘可能蕴含着的新内容、新方法、新的推理和新的表达方式。 这样坚持下去,就会收到数学学习能力与创造思维能力同步超常增长的效果。 小学六年级数学教学论文篇3:小学数学活动课的开设原则 原则之一 小学数学活动课,必须以小学生的个性要素得到发展为宗旨,设计教学目标、教学内容与教学 方法。《课程方案》对小学阶段的教育提出了明确的培养目标,这个培养目标包括两方面内容:一方面是为体 现小学阶段性质和任务而设计的国家要求,也就是国家关于知识和能力的质量标准;另一方面是为体现小学生 身心发展规律的个性发展要求。落实到小学数学课,国家质量标准就是要求小学生具有初步的运算技能、逻辑 思维能力和空间观念,以及运用所学数学知识解决一些简单的实际问题的能力这四项,这个任务主要由小学数 学的学科课(或者叫必修课)来担当。至于发展小学生个性的要求,《课程方案》明确提出主要由活动课来担 当,其教学目标就是“增强兴趣,拓宽知识,增长才干,发展特长”。有人会提出,这个要求在学科课所包含 的实际活动中就能做到,或者开展课外活动就可以实现。我认为这是误解。诚然,小学数学学科课所包含的实 际活动,诸如观察、实验、练习等,也能培养学生某些个性要素,但它服务的目的不同,它只是为学科课的教 学目标而服务的一种教学手段,是学科课教学活动的一部分,没有具体教学时间的界限;而小学数学活动课应 是以发展学生个性要素为首要目标的课型,每节课教学时间与学科课的教学时间相配合。还有,活动课也不同 于课外活动:①活动课属于课程的范畴,课外活动则是“在教学大纲范围之外由学生自愿参加的各种教育活动 的总称”,它不属于课程的范畴;②活动课有一定的结构性,它有特定的教学目标、内容和活动方式,而且教 学内容的广度和深度随着年级的上升而具有层次性,而课外活动则没有这种有序的要求;③活动课的设计和实 施要具有一定的规范,那就是活动课必须有教学纲要和活动课指导书,并严格按此规范实施教学进程,而课外 活动则不具备这个要求。 原则之二 小学数学活动课,必须淡化选拔教育,做到“人人受益”。小学阶段的教育是义务教育的初级 阶段的教育,国家教委副主任柳斌同志指出:“义务教育是国民教育,普及教育,平等教育,应当强调其普及 性,淡化其选拔性。”这个要求不仅在小学阶段的教育活动中要落实,更要在各科的教学活动中落实。学科类 课程的教学活动做到人人受益,比较好操作,因为学科类课程所担负的国家关于知识和能力的各项规定,由统 一的大纲和教材所列举,由国家规范的教学、考查等计划予以落实和检查。而活动课是以培养个性特征为标志 的新课型,系统的操作硬件尚在建立之中,有一定的难处。但是,我们应当这样理解:小学数学活动课所说的 “人人受益”,不应当以分数、成绩的提高来理解,应当从学生的个性要素得到发展予以解释。从活动课参予 程度讲,不要像组织数学课外活动小组那样,只允许少数数学 爱好 者参加,而应要求每个学生都参加。从活动 课的课程设计讲,在学科课为每个学生打好共同基础的条件下,为发展学生的个性特长、 兴趣爱好 提供发展空 间;从活动课的教学效果讲,通过小学数学活动课,有的学生数学知识、能力和爱好都得到提高,这是受益。 通过小学数学活动课,有的学生数学知识和能力提高不甚明显,但是通过数学的橱窗对观察课外天地,观察实 际生活的兴趣产生了,这也是受益。更有甚者,通过小学数学活动课,虽然没有引起学习数学的兴趣,但这种 活动课教学尝试在学生记忆中留下思维印象,能成为今后处理问题的一种思维参考,这也应该说是受益。纵或 阻塞了他们对数学的爱好,但通过小学数学活动课促使他们去爱好 其它 学科,也同样属于受益之列。一言以蔽 之,小学数学活动课的受益,就是指小学生的个性要素,主要指兴趣和情感,通过数学的载体而得到发展。 原则之三 小学数学活动课,必须注意小学生身心发展的特点,充分保护“童心”。小学生的年龄阶段( 6~11、12岁), 在心理学上称为儿童期(或称学龄早期)。这一阶段,小学生不但身体发育进入了一个相对 平稳阶段,而且由于从一个备受家庭保护的幼儿变成必须独立完成学习任务、承担一定社会义务的小学生,这 就促使儿童心理特征产生质的飞跃,概括起来,就是产生了在幼儿期没有的“好奇、好动、好胜”的“童心” 。这三个“好”只有“好奇”“好动”充分得到发展,“好胜”的儿童价值特征才能得以建立。但是要注意, 要使“好奇”“好动”的心理状态健康成长,就必须从以下两个方面予以控制:①调控环境,促使小学生总是 保持向上振奋的心理状态。小学生向上振奋的心理状态的形成是立足于好奇感,而好奇感的永恒程度又依赖于 环境(包含教学环境)对小学生接受知识是否有一种愉快感。因此建立一种愉快接受教育的氛围是调控环境的 关键。小学数学活动课基于数学学科的抽象特点,愉快教育氛围的建立,特别要注意杜绝成人期望值的强加与 过量过高数学材料的灌输。就是说,不要设想通过小学数学活动课的教学,个个都成为数学神童;也不要认为 ,实施小学数学活动课教学,就是灌输小学数学之外使小学生难以接受的成人处理数学的材料。②树立模仿典 型,促使小学生形成稳固的知识、能力体系和健康的行为与习惯。小学生的“好动”,是建立在模仿基础上的 好动,通过模仿,一旦成为小学生稳定的心理成分,就左右小学生健康心理的形成。因此为了促使小学生形成 稳固的知识、能力体系和健康的行为习惯,我们的教学活动就应当提供学生认为有趣的、益于拓广知识的模仿 典型。小学数学活动课所提供的模仿典型,就是根据数学的特征以及小学生的知识、能力条件,通过游戏、观 察、拼图、制作、不完全归纳等思维及操作办法,让学生得到学科课内所没有的、又能激发学生求知兴趣的数 和形的一些结论(但是不要证明)。这些结论,要求学生都记住它是次要的,掌握得到的过程则是教会模仿的 本意。只有这样,“好动”的心理特点才可以说在数学活动课里得到健康地培育。 原则之四
把循环小数化成分数的方法,可以用移动循环节的过程来推导,也可以用无限递缩等比数列的求和公式计 算得到。下面我们运用猜想验证的方法来推导。 (一)化纯循环小数为分数 大家都知道:一个有限小数可以化成分母是10、100、1000 ……的分数。那么,一个纯循环小数可以化成 分母是怎样的分数呢?我们先从简单的循环节是一位数字的纯循环小数开始。如:@①、@②……化成分数时 ,它们的分母可以写成几呢? 想一想:可能是10吗?不可能。因为1/10=〈@①,3/10=〉@②;可能是8吗?不可能。 因为1/ 8=〉@①,3/8=〉@②;那么,可能是几呢?因为1/10〈@①〈1/8,3/10〈@②〈3/8,所以分 母可能是9。 下面我们来验证一下自己的猜想:1/9=1÷9=……=@①;3/9=1/3=1÷3=……= @②。 计算结果说明我们的猜想是对的。那么,所有循环节是一位数字的纯循环小数都可以写成分母是9的分数吗 ?让我们根据自己的猜想, 把@③、@④化成分数后再验证一下。 @③=4/9 验证:4/9=4÷9=…… @④=6/9=2/3 验证:2/3=2÷3=…… 经过上面的猜想和验证,我们可以得出这样的结论:循环节是一位数字的纯循环小数化成分数时,用一个 循环节组成的数作分子,用9 作分母;然后,能约分的再约分。 循环节是两位数字的纯循环小数怎样化成分数呢?如:@⑤、@⑥……化成分数时,它们的分母又可以写 成多少呢? 想一想:可能是100吗?不可能。因为12/100=〈@⑤,13/100=〈@⑥。可能是98吗?不可能。 因为12/98≈〉@⑤,13/98≈〉@⑥;可能是多少呢?因为12/100〈@⑤〈12/98,13/100〈@⑥ 〈13/98,所以分母可能是99。是否正确,还需验证一下。 12/99=12÷99=……=@⑤; 13/99=13÷99=……=@⑥。 验证结果说明我们的猜想是正确的。那么,所有循环节是两位数字的纯循环小数都可以写成分母是99的分 数吗?让我们再运用猜想的方法,把@⑦、@⑧化成分数后,验算一下。 @⑦=15/99=5/33,验算:5/33=5÷33=…… @⑧=18/99=2/11,验算:2/11=2÷11=…… 经过这次猜想和验证,我们可以得出这样的结论:循环节是两位数字的纯循环小数化成分数时,用一个循 环节组成的数作分子,用99作分母;然后,能约分的再约分。 现在,你能推断出循环节是三位数字的纯循环小数化成分数的方法吗? 因为循环节是一位数字的纯循环小数化成分数时,用9作分母, 循环节是两位数字的纯循环小数化成分数 时,用99作分母,所以循环节是三位数字的纯循环小数化成分数时,我们猜想是用999作分母, 分子也是一个 循环节组成的数。让我们再来验证一下,如果这个猜想也是正确的,那么,我们就可以依次推下去了。 附图{图} 实验证明:我们的猜想是完全正确的。照此推下去,循环节是四位数字的纯循环小数化成分数时,就要用 9999作分母了。实践证明也是正确的。所以,纯循环小数化成分数的方法是: 用9、99、999……这样的数作分母,9 的个数与循环节的位数相同;用一个循环节所组成的数作分子;最 后能约分的要约分。 二、化混循环小数为分数 我们已经运用猜想验证的方法研究过怎样化纯循环小数为分数,再用这种方法研究一下怎样化混循环小数 为分数。 还是先从较简单的数入手,如: 附图{图} ……这样循环节只有一位数字的混循环小数化成分数时,分子、分母分别有什么特点呢? 这样想:一个混循环小数有循环部分,还有不循环部分,能否将它改写成一个纯循环小数与一个有限小数 的和,然后再化成分数呢?让我们试试看。 附图{图} 观察以上过程,你能看出循环节只有一位数字的混循环小数化成的分数有什么特点吗?很容易看出:它们 的分母都是由一个9与几个0组成的数。再仔细观察可以发现:0 的个数恰好与不循环部分的数字个数相同。它 们的分子有什么特点呢?不难看出:它们的分子都比不循环部分与第一个循环节所组成的数要小。到底小多少 呢?让我们算一算: (1)21-19=2 (2)543-489=54 (3)696-627=69 细心观察不难看出:分子恰好是一个比不循环部分与第一个循环节所组成的数少一个由不循环部分的数字 所组成的数。这个规律具有普遍性吗?让我们运用以上的规律把 附图{图} 化成分数,验证一下它的正确性。 附图{图} 验证:352/1125=352÷1125=…… 验证的结果是完全正确的。那么,循环节是两位数字的混循环小数化成的分数,分子、分母是否也有这样 的规律呢?分子是由一个比小数的不循环部分与第一个循环节所组成的数少一个不循环部分的数字所组成的数 ;分母是由9和0组成的数,0 的个数与不循环部分的数字个数相同,9的个数与一个循环节的数字个数相同。 让我们按照猜想的方法试把 附图{图} 化成分数,然后再验证一下。 附图{图} 实践证明,我们的猜想是正确的。那么,循环节是三位数、四位数……的混循环小数是否也能按照这样的 方法化分数呢?让我们把 附图{图} 化成分数后,再验证一下 附图{图} 验证的结果也是正确的,说明我们的猜想可能是正确的。这个方法也确实是正确的。当然,我们在运用猜 想验证的方法时,并不一定每次的猜想都是正确的。如果不正确,就需要根据具体情况进行修改,然后再验证 ,直至正确为止。 猜想验证的方法是人类探索未知的一种重要方法,很多科学规律的发现,都是先有猜想,而后被不断的验 证、再猜想、再验证才被认识。猜想验证也是一种重要的数学思想方法。我们应在向学生讲解具体知识的同时 ,也要求他们从小就学习运用这种思想方法大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
数学发展史 此书记录了世界初等数学的发展与变迁。可大体分为“数的出现”、“数字与符号的起源与发展”、“分数”、“代数与方程”、“几何”、“数论”与“名著录”七大项,跨度千万年。可让读者了解数学的光辉历史与发展。是将历史与数学结合出的趣味百科读物。数的出现一、数的概念出现 人对于“数”的概念是与身俱来的。从原始人开始,人就能分出一与二与三的区别,从而,就有了对数的认识。而为了表示数,原始人就创造并使用了一种古老却笨拙且不太实用的方法——结绳计数。通过在绳子上打结来表示所指物体的数量,而为了辨认数量,也就出现了数数这一重要的方法。这一方法如今看来十分笨拙,但却是人对数学的认识由零到一的关键一步。从这笨拙的一步人们也意识到:对数学的阐述必须要尽量得简洁清楚。这是一个从那时开始便影响至今的人类第一个数学方面的认识,这也是人类为了解数学而迈出的关键性一步。数字与符号的起源与发展一、数的出现 很快,人类就又迈出了一大步。随着文字的出现,最原始的数字就出现了。且更令人高兴的是,人们将自己的认识代入了设计之中,他们想到了“以一个大的代替多个小的”这种方法来设计,而在字符表示之中,就是“进位制”。在众多的数码之中,有古巴比仑的二十进制数码、古罗马字符,但一直流传至今的,世界通用的阿拉伯数字。它们告诉了我们:简洁的,就是最好的。 而现在,又出现了“二进制数”、“三进制数”等低位进制数,有时人们会认为它们有些过度的“简洁”,使数据会过多得长,而不便书写,且熟悉了十进制的阿拉伯数字后,改变进制的换算也十分麻烦。其实,人是高等动物 ,理解能力强,从古至今都以十为整,所以习惯了十进制。可是,不是所有的东西都有智商,而且不可能智商高到能明显区分1-10,却能通过明显相反的方式表达两个数码。于是,人类创造了“二进制数”,不过它们不便书写,只适用于计算机和某些智能机器。但不可否认的是,它又创造了一种新的数码表示方法。二、符号的出现 加减乘除〈+、-、×(·)、÷(∶)〉等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们。别看它们这么简单,直到17世纪中叶才全部形成。 法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法。这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“-”表示不足。1、加号(+)和减号(-) 加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始。到1514年,荷兰的赫克首次用“+”表示加法,用“-”表示减法。1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“-”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛采用。2、乘号(×、·) 乘号“×”,英国数学家奥屈特于1631年提出用“×”表示相乘。英国数学家奥特雷德于1631年出版的《数学之钥》中引入这种记法。据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的。另一乘号“·”是数学家赫锐奥特首创的。后来,莱布尼兹认为“×”容易与“X”相混淆,建议用“·”表示乘号,这样,“·”也得到了承认。3、除号(÷) 除法除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比.也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。瑞士的数学家拉哈的著作中正式把“÷”作为除号。符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广。除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”。 至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度。4、等号(=) 等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。分数一、分数的产生与定义 人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数。 一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。 分子,分母同时乘或除以一个相同的数〔0除外〕,分数的大小不变.这就是分数的基本性质.分数一般包括:真分数,假分数,带分数. 真分数小于1. 假分数大于1,或者等于1. 带分数大于1而又是最简分数.带分数是由一个整数和一个真分数组成的。 注意 :①分母和分子中不能有0,否则无意义。 ②分数中的分子或分母不能出现无理数(如2的平方根),否则就不是分数。 ③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数。(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)二、分数的历史与演变 分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。 在历史上,分数几乎与自然数一样古老。早在人类文化发明的初期,由于进行测量和均分的需要,引入并使用了分数。 在许多民族的古代文献中都有关于分数的记载和各种不同的分数制度。早在公元前2100多年,古代巴比伦人(现处伊拉克一带)就使用了分母是60的分数。 公元前1850年左右的埃及算学文献中,也开始使用分数。200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它.如果我们把它分成三等份,每份是3/7 米.像3/7 就是一种新的数,我们把它叫做分数. 为什么叫它分数呢?分数这个名称直观而生动地表示这种数的特征.例如,一只西瓜四个人平均分,不把它分成相等的四块行吗?从这个例子就可以看出,分数是度量和数学本身的需要——除法运算的需要而产生的. 最早使用分数的国家是中国.我国春秋时代(公元前770年~前476年)的《左传》中,规定了诸侯的都城大小:最大不可超过周文王国都的三分之一,中等的不可超过五分之一,小的不可超过九分之一。秦始皇时代的历法规定:一年的天数为三百六十五又四分之一。这说明:分数在我国很早就出现了,并且用于社会生产和生活。 《九章算术》是我国1800多年前的一本数学专著,其中第一章《方田》里就讲了分数四则算法. 在古代,中国使用分数比其他国家要早出一千多年.所以说中国有着悠久的历史,灿烂的文化 。几何一、公式1、平面图形正方形: S=a² C=4a三角形: S=ah/2 a=2S/h h=2S/a平行四边形:S=ah a=S/h h=S/a梯形: S=(a+b)h/2 h=2S/(a+b) a=2S/h-b b=2S/h-a圆形: S=∏r² C=2r∏=∏d r=d/2=C/∏/2r²=S/∏ d=C/∏半圆: S=∏r²/2 C=∏r+d= 顶点数+面数-块数=12、立体图形正方体: V=a³=S底·a S表=6a² S底=a² S侧=4a² 棱长和=12a长方体: V=abh=S底·h S表=2(ab+ac+bc) S侧=2(a+b)h 棱长和=4(a+b+h)圆柱: V=∏r²h S表=2∏r²+∏r²h=S底(h+2) S侧=∏r²h S底=∏r² 其它柱体:V=S底h锥体: V=V柱体/3球: V=4/3∏r³ S表=4∏r²顶点数+面数-棱数=2数论一、数论概述 人类从学会计数开始就一直和自然数打交道了,后来由于实践的需要,数的概念进一步扩充,自然数被叫做正整数,而把它们的相反数叫做负整数,介于正整数和负整数中间的中性数叫做0。它们合起来叫做整数。(现在,自然数的概念有了改变,包括正整数和0) 对于整数可以施行加、减、乘、除四种运算,叫做四则运算。其中加法、减法和乘法这三种运算,在整数范围内可以毫无阻碍地进行。也就是说,任意两个或两个以上的整数相加、相减、相乘的时候,它们的和、差、积仍然是一个整数。但整数之间的除法在整数范围内并不一定能够无阻碍地进行。 人们在对整数进行运算的应用和研究中,逐步熟悉了整数的特性。比如,整数可分为两大类—奇数和偶数(通常被称为单数、双数)等。利用整数的一些基本性质,可以进一步探索许多有趣和复杂的数学规律,正是这些特性的魅力,吸引了古往今来许多的数学家不断地研究和探索。 数论这门学科最初是从研究整数开始的,所以叫做整数论。后来整数论又进一步发展,就叫做数论了。确切的说,数论就是一门研究整数性质的学科。 二、数论的发展简况 自古以来,数学家对于整数性质的研究一直十分重视,但是直到十九世纪,这些研究成果还只是孤立地记载在各个时期的算术著作中,也就是说还没有形成完整统一的学科。 自我国古代,许多著名的数学著作中都关于数论内容的论述,比如求最大公约数、勾股数组、某些不定方程整数解的问题等等。在国外,古希腊时代的数学家对于数论中一个最基本的问题——整除性问题就有系统的研究,关于质数、和数、约数、倍数等一系列概念也已经被提出来应用了。后来的各个时代的数学家也都对整数性质的研究做出过重大的贡献,使数论的基本理论逐步得到完善。 在整数性质的研究中,人们发现质数是构成正整数的基本“材料”,要深入研究整数的性质就必须研究质数的性质。因此关于质数性质的有关问题,一直受到数学家的关注。 到了十八世纪末,历代数学家积累的关于整数性质零散的知识已经十分丰富了,把它们整理加工成为一门系统的学科的条件已经完全成熟了。德国数学家高斯集中前人的大成,写了一本书叫做《算术探讨》,1800年寄给了法国科学院,但是法国科学院拒绝了高斯的这部杰作,高斯只好在1801年自己发表了这部著作。这部书开始了现代数论的新纪元。 在《算术探讨》中,高斯把过去研究整数性质所用的符号标准化了,把当时现存的定理系统化并进行了推广,把要研究的问题和意志的方法进行了分类,还引进了新的方法。 由于近代计算机科学和应用数学的发展,数论得到了广泛的应用。比如在计算方法、代数编码、组合论等方面都广泛使用了初等数论范围内的许多研究成果;又文献报道,现在有些国家应用“孙子定理”来进行测距,用原根和指数来计算离散傅立叶变换等。此外,数论的许多比较深刻的研究成果也在近似分析、差集合、快速变换等方面得到了应用。特别是现在由于计算机的发展,用离散量的计算去逼近连续量而达到所要求的精度已成为可能。三、数论的分类初等数论 意指使用不超过高中程度的初等代数处理的数论问题,最主要的工具包括整数的整除性与同余。重要的结论包括中国剩余定理、费马小定理、二次互逆律等等。解析数论 借助微积分及复分析的技术来研究关于整数的问题,主要又可以分为积性数论与加性数论两类。积性数论藉由研究积性生成函数的性质来探讨质数分布的问题,其中质数定理与狄利克雷定理为这个领域中最著名的古典成果。加性数论则是研究整数的加法分解之可能性与表示的问题,华林问题是该领域最著名的课题。此外例如筛法、圆法等等都是属于这个范畴的重要议题。我国数学家陈景润在解决“哥德巴赫猜想”问题中使用的是解析数论中的筛法。 代数数论 是把整数的概念推广到代数整数的一个分支。关于代数整数的研究,主要的研究目标是为了更一般地解决不定方程的问题,而为了达到此目的,这个领域与代数几何之间的关联尤其紧密。建立了素整数、可除性等概念。 几何数论是由德国数学家、物理学家闵可夫斯基等人开创和奠基的。主要在于透过几何观点研究整数(在此即格子点)的分布情形。几何数论研究的基本对象是“空间格网”。在给定的直角坐标系上,坐标全是整数的点,叫做整点;全部整点构成的组就叫做空间格网。空间格网对几何学和结晶学有着重大的意义。最著名的定理为Minkowski 定理。由于几何数论涉及的问题比较复杂,必须具有相当的数学基础才能深入研究。 计算数论 借助电脑的算法帮助数论的问题,例如素数测试和因数分解等和密码学息息相关的话题。 超越数论 研究数的超越性,其中对于欧拉常数与特定的 Zeta 函数值之研究尤其令人感到兴趣。 组合数论 利用组合和机率的技巧,非构造性地证明某些无法用初等方式处理的复杂结论。这是由艾狄胥开创的思路。四、皇冠上的明珠 数论在数学中的地位是独特的,高斯曾经说过“数学是科学的皇后,数论是数学中的皇冠”。因此,数学家都喜欢把数论中一些悬而未决的疑难问题,叫做“皇冠上的明珠”,以鼓励人们去“摘取”。 简要列出几颗“明珠”:费尔马大定理、孪生素数问题、歌德巴赫猜想、角谷猜想、圆内整点问题、完全数问题…… 五、中国人的成绩 在我国近代,数论也是发展最早的数学分支之一。从二十世纪三十年代开始,在解析数论、刁藩都方程、一致分布等方面都有过重要的贡献,出现了华罗庚、闵嗣鹤、柯召等第一流的数论专家。其中华罗庚教授在三角和估值、堆砌素数论方面的研究是享有盛名的。1949年以后,数论的研究的得到了更大的发展。特别是在“筛法”和“歌德巴赫猜想”方面的研究,已取得世界领先的优秀成绩。 特别是陈景润在1966年证明“歌德巴赫猜想”的“一个大偶数可以表示为一个素数和一个不超过两个素数的乘积之和”以后,在国际数学引起了强烈的反响,盛赞陈景润的论文是解析数学的名作,是筛法的光辉顶点。至今,这仍是“歌德巴赫猜想”的最好结果。名著录《几何原本》 欧几里得 约公元前300年 《周髀算经》 作者不详 时间早于公元前一世纪 《九章算术》 作者不详 约公元一世纪 《孙子算经》 作者不详 南北朝时期 《几何学》 笛卡儿 1637年 《自然哲学之数学原理》 牛顿 1687年 《无穷分析引论》 欧拉 1748年 《微分学》 欧拉 1755年 《积分学》(共三卷) 欧拉 1768-1770年 《算术探究》 高斯 1801年 《堆垒素数论》 华罗庚 1940年左右 任意选一段吧!!!
数学小论文 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
“数学小论文”是让学生以 日记 的形式描述他们发现的数学问题及其解决,是学生数学学习经历的一种书面写作记录。下面是我整理的关于小学六年级的数学小论文,供大家参阅,希望对你的学习有帮助!
小学 六年级数学 小论文
“数学来源于生活,也服务于生活。”数学,经常从人们身边走过,生活中人们都离不开它,它为人们的生活作出了巨大的贡献。在我们的班级中经常要使用到数学,例如算单元平均分、统计校园电费……等等数不胜数,和我们的生活息息相关。
有一次,我和爸爸妈妈去购物,买过年吃的糖。超市里糖的花样可多了,有脆皮糖元一斤,牛皮糖元一斤,牛奶糖元一斤,酥酥糖元一斤,巧克力糖元一斤……但主要分为散称和包装。爸爸妈妈问我:“儿子,你希望买什么糖呢?”我望着玲琅满目的“糖果世界”,不知如何抉择是好,但我自幼喜好巧克力,所以我就选了巧克力糖。这时妈妈又给我出题了,他说:“那儿子,你说我们是买散称的呢,还是买包装的呢?”这我就摸不着头脑了,立即心算起来:散称的巧克力糖元一斤,包装的则一盒。散称的巧克力糖一包才10克,包装的巧克力糖一盒就有1000克呢!不过,单单看重量还不能决出胜负,就让我仔细算算——其实算这个并不难,直接用1000克=1千克 1千克=2斤 ÷2=(元) 元>元 所以散称比包装更划算!我高兴的把我得出的结果告诉妈妈,妈妈高兴的点了点头,夸我爱动脑筋,因此我也就成为了妈妈的"小会计"。
在生活中,各式各样的事情都能从一个普普通通毫不起眼的小事变成一个个生动的数学题。我们常做的应用题,就是在生活中取材,再稍加改编而成的题目。这不,我又在做数学题时发现了一道趣题:
大河上有一座东西向横跨江面的桥,人通过需要五分钟。桥中间有一个 亭子。亭子里有一个看守者,他每隔三分钟出来一次。看到有人通过,就叫 他回去,不准通过。有一个从东向西过桥的聪明人,想了一个巧妙的办法, 终于通过了大桥。
我初看这道题,一点头绪也没有,难不成坐船过去?这是不可能的。难道走了一会往回走?唉,这好像行得通……
我经过反复的计算,先想到了走到2分59秒的时候把头转回去,看守的人就会让我往回走,这样不就过去了吗?后来又想了一会,得出只要在走了2分30秒至2分59秒的时候往回走(最好不要到2分59秒的时候走,因为可能你还没转过头来,看守的人就发现了。),就可以成功过桥。
大家肯定都会说这么容易的题谁都会做,我拿出来吹嘘什么?不,这样子你就错了,我并没有在炫耀自己,我是在告诉大家数学在于联系生活思考,在于全心全意去领悟,而不是拿着别人的成果炫耀。
小学数学论文可以怎么写
数学小论文通过学生对生活中数学问题的观察和发现,引起学生的好奇心和求知欲,使学生体会到数学贴近他们的生活,从而对数学产生亲切感,激发起他们学习数学的热情和兴趣;通过引导学生对课堂中学习的数学知识进行实践运用,让学生感受到数学的实用性,提高数学学习的实效;通过探究趣味题和智慧题,开拓学生的视野,培养学生思维的灵活性和深刻性。现结合笔者的教学实际谈谈数学小论文的几种具体写法。
1.一道数学题的解答。主要是学生对某一道有挑战性的题目简便的或与众不同的解法(包括一题多解)。例如,书后的思考题,奥数题,教师或家长布置的智慧题,数学刊物上的挑战题,平时自己在做题时遇到的有一定难度的题目等。学生通过对这些问题的解决,不但发展了思维,而且体验到一种强烈的成就感,这对他以后数学的学习将是一个巨大的动力。
2.用数学的眼光去分析现实问题。主要指学生用数学的眼光去观察、计算、分析现实问题,获得一种理性的思考。比如,有学生写道:如果每人每天节约1克水,那全国13亿人口每天可以节约1300吨水,发出了“人人节约一滴水,沙漠也能变绿洲”的感慨!还有学生写道:如果每个去银行储蓄的人每次都能为“希望工程”捐1角钱的话,全国那么多储蓄点捐到的钱可以资助多少贫困学生实现上学的梦想呀!学生能从这些角度通过数学的计算去思考社会意义,它的价值就能远远超过数学研究本身。
3.生活中的数学问题。主要用来记录学生在生活中遇到的感兴趣并有亲身体验的有关数学的情境记录。写这种数学小论文的题材特别多,比如,有学生写到了人民币为什么只有1元、2元、5元而没有3元、4元、6元、7元、8元、9元的;再如,有学生写到了他家住的楼房每层有24级楼梯,那么他从1楼到5楼要爬多少级楼梯。这些都是生活中每天要经历的很平常的事,但学生一旦用数学的眼光来观察和思考这些看似平常的生活问题,就在数学和生活之间架起了一座桥梁,能够感受到生活中处处有数学。
4.课堂上的数学问题。主要指学生在课堂数学学习过程中自己的一些思考和发现。这对学生数学学习非常有帮助,比如,有个学生在学习画三角形的高时,发现书上介绍了锐角三角形和直角三角形的三条高,而钝角三角形只介绍了一条高。她在课后通过自己的思考和尝试,画出了钝角三角形的另外两条高,在得到老师的肯定后,欣喜万分,连忙写下了《我发现了钝角三角形的另外两条高》这篇数学小论文。
5.数学实践活动中遇到的问题。主要指学生通过自己亲自动手实践,在实践活动的过程中产生的疑惑、获得的启示和得到的结论等。比如,有个学生在教师还没有上实践活动课“可能性”之前,自己看书并根据书上的内容用红、蓝铅笔去摸,自己动手去探索并验证规律,事后写了一篇 心得体会 ,写出了她在动手实践过程中的想法和体会,让她觉得其乐无穷。
6.数学童话。主要指学生发挥丰富的 想象力 ,用童话的形式(其中包含着数学论述)来记录看到的数学世界。这是语文学科和数学学科一种很好的整合,那种独特的视角,生动的语言描述,让教师耳目一新。
5555555
怎样才能写好数学的小论文呢?下面是我收集整理的六年级数学论文500字以供大家学习。
六年级数学论文500字(一)
小学数学总复习不同于单元复习、学期复习,对学生来说,知识容量多、跨度大、时间长,所学的知识遗忘率高;对教师来说则感到时间紧、内容多,知识的综合性强,难以在短时间内取得明显的复习效果。下面我就多年六年级数学教学所得谈自己的几点看法:
一、系统分析
在六年级的数学复习阶段开始前,老师要首先明确数学教学的目的、教学任务、知识范围、顺序与结构,教学重点与难点,这些一定要让学生掌握。其次,要全面了解全班情况,知道每一位学生现在学到了什么程度,还需要加强哪些方面的知识;要针对学生的特点,明确应该用什么方法去引导学生,激发学生的学习兴趣,把学生的求知欲望调动起来,使学生养成一个良好的学习习惯,真正成为学习的主人。最后根据学生的实际情况和特点结合六年级知识特征制订出切实可行的复习计划。
二、抓好基础
在六年级的数学复习中,首先要抓好五个方面的基础知识运用:一是概念。要让学生真正理解每部分的知识点,把容易混淆的内容一一区别开来。比如:让学生判断等底等高的两个三角形的面积相等,能不能拼成一个平行四边形?不相交的两条直线叫做平行线吗?等等。二是开拓视野。在数学复习中,老师要注重开拓学生的视野,不断反馈教学。比如:a的3/5与b的1/4相等,比较a、b大小(a、b都不为零)。解答完这个题,再给学生出一道题:甲班的4/5同乙班的3/4的人数相等,那么,甲班同乙班人数谁多谁少?稍微这么一改,有的学生就无从下手了。教师应提示学生a、b可以是人也可以是物,那么甲班和乙班是班级的名称,它同a、b有何联系?这时候有的学生就明白了。三是公式推导。比如圆的面积、圆柱的体积、等计算公式的是怎么推导出来的,让学生进行回顾,亲自实践、亲自品尝。四是知识对比。整数、小数、分数的四则运算的意义,尤其是小数、分数的乘法意义,学生们容易混淆。要从整数乘法入手,看学生是不是写成几个数相加的形式,让学生动手动脑去探索,真正理解他们的意义。五是计算能力。很多学生到了六年级,连基本加减乘除计算都算错,更谈不上应用题了。老师普遍认为是学生太粗心、不认真。追根溯源,原因还是在老师。我们要培养学生养成一种良好的学习习惯。比如:首先要让学生观察式子,进行分析,看是否能用简便方法,其次结合四则混合运算进行计算。学会了做题方法,还要让学生反复练习,检查结果。在此基础上,教师不断地反馈教学,让学生把知识掌握了,应用更灵活,计算准确率就高了。
三、能力的培养
一要注意培养学生合理、灵活地应用简便方法进行计算的能力。在复习量的计量和几何初步知识时,注意培养学生的空间观念,巩固画图和测量的技能。二要培养一题多变的能力。重点是要抓住母题,使学生知道题目源于母题,万变不离其宗。通过改变条件、问题和情境,启发学生从不同的角度思考问题,寻找解决问题的途径,还必须注意对学生进行解题思维灵活性的培养,启发学生多思考,从而达到善于思考,逐步提高学生的应变及解题能力。三是是培养操作实践的能力。如:八宝粥公司请包装公司设计一个能装12罐八宝粥的盒子。[八宝粥罐子为圆柱形,底面直径6厘米,高13厘米]你准备怎样设计?(提示:包装盒一般可设计成长方体,要求需要多少硬纸板是求长方体的表面积,所以我们应该想办法知道长方体的长、宽、高,即先确定八宝粥罐子怎么摆)这时不急于让学生做,让学生找易拉罐摆放。通过亲身实践可以获得直接感受把题解出来。但有的同学做得不切合实际,确定的长、宽、高不适中。所以教师必须把学生做的几种方法都一一列出来让学生比较。通过比较学生们选用最省料的方法。
四、学困生转化工作
作为教师要善于分析学困生形成的原因,到底困在哪里?用什么手段解决?我认为除了要根据学生的实际情况备课外,还要根据记忆和遗忘的规律,重视信息反馈原理的运用,及时巩固当堂效果;要遵照循序渐进的原则,坚持科学训练,进行查漏补缺,提高学生的知识素质,在这方面应做到:细水长流逐一补,以新带旧分散补,突出对象个别补。在班里成立几个小组,每小组选择一个学习好的负责,成绩好的学生教成绩差的学生,这样成绩差的学生进步了,成绩好的成绩更好了,整个班掀起你追我赶的学习气氛,学生由被动的学习转变为主动的学习。
六年级数学论文500字(二)
我们生活中处处充满了数学知识,这些知识不但有趣而且在我们的生活中占有重要的地位。如果离开了这些看似简单的数字那我们的生活就无法像往常一样正常生活。可见数学在我们的生活中占有多么重要的地位。
举个例子,如:银行存款分:整存整取、零存整取、定期存款、活期、国债……这些存款形式各种各样,利率也有大有小,平时我们是这样计算利率的:本金×利率×时间=所得利息,然后还要从利息里扣除20%来上税(除国债外)之后剩下的80%的利息就是你自己应得的利息了。大家想一想如果没有这些百分数帮忙,恐怕银行就要宣布破产了。
再说科学家们发明的种种东西,气象学家测量的天气情况……这些多要经过各项认真的思考和精密的计算才能获得正确的答案。哪怕不小心写错一个小数点也就前工尽弃了。还有常在天空翱翔的宇航员们他们要操作上百个由数字组成的仪表,如果稍有不慎那么结果就是机毁人亡。可见数学在我们生活中是不可缺少,不可马虎的,否则会造成严重的后果 。
数学不光只有这些价值,我们生活中处处可以见到并用到它。如:农民用几何图形,为了使农场更美观更好管理;工程师使用比例尺,为了让人们更好的了解这件东西;商农使用的四则计算,是为了更简单、准确的计算出该商品价值;制作各类统计表,是为了更好的统计资料,使人一看一目了然;使用百分数,是为了更好的计算出商品打折后的价钱及××率;这些计算表面积而使用进一法,是为了使用最少的材料做出合格的商品;计算容积或体积而使用去尾法,是为了确保无误的让物品存放而不溢出;同一类单位换算,是为了方便我们的计算;使用代数代表运算定律和计算公式,是为了更方便地为研究和解决问题;再说一说球吧,把它切开使切开面积最大,那就要从球心o沿着直径切下,才能使切开面积最大,再细细想想我们有时切西瓜不就是这个道理吗?再看看各种数学知识还不都用在了生活中去了吗?
其实,只要我们用心去发现,用心去思考,那么你一定能学好数学的,因为数学就在我们身边。
六年级数学论文500字(三)
数学知识就像大海一样浩瀚,需要人们不断地创新,不断地探索。数学知识是必需掌握的,但是良好的学习习惯是必不可少的。好习惯影响我们的学习,习惯是必要的,也许你会知道影响我们一生的好习惯。
一、 认真审题的习惯
读题时候的认真是很重要的,审题不清或没有弄清题意往往会导致错误的结果,或者浪费时间,特别是在考试中,浪费了时间很可能做不完题目,导致丢分。记得上次考试时,有一道题是这样的:小丽和爸爸、妈妈去长城,单程票价成人每人元,儿童半价。问题是:往返交通费要用多少元?可以就是这样简单的一道题,我们班有很多学生都失分了,他们是这样解答的:×2+÷2,只看条件这道题并没有问题,但是就是因为他们在读题的时候不认真,没有看清问题,而造成这样的失误。卷子发下来时,他们看到错号,不用老师再讲解,就会解答了。这就是他们在读题的时候不认真,没有注意问题里面的"往返"两个字,因而也现了大部分的丢分。
二、提高解题效率
这一点是很多学生的通病,我们班就有很多这样的例子。比如,你做着做着,突然觉得很厌倦,于是这里看看,那里看看,也许看到一个题目,很长很长,顿时就不想做了,于是今天又要"奋战"到很晚了。久而久之就成了习惯,那就很难摆脱了。我们班有这样一个同学,他平时是个很聪明的学生,回答问题总是说得很有道理。是我们大家公认的"聪明小子",可是他有一个很大的缺点,就是做题效率太低,就是像上面所说的做着做着就不想做了,经常被老师留下来比别人多"奋战"一段时间,才能完成任务。
三、清晰的草稿
在打草稿的时候,很多同学的字写得总是很大,并且很不整洁,这就导致计算和后期检验的问题,本人"受益匪浅"啊!所以我在打草稿的时候总是像平常做作业一样,在演算本上写得工工整整的。然后检验,在检验无误之后,再把它们"搬"到作业或试卷上。这样我的正确率就会提高很多。
这些只是我在学习数学时的一些简单的看法,但是这些习惯却让我在学习中总是比别人略胜一畴。当然这些习惯的养成并不是一朝一夕的,而习惯的培养却要从点一滴做起。只要平时注意有效学习,才能逐步形成使自己终身受益的良好习惯。
【容易忽略的答案】大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
一、基础知识部分26分 1、读拼音写汉字。(2分)tuǒ yuán hūn yōng jīng è pái huái ( ) ( ) ( ) ( )2、组词。(4分)踱( ) 砌( ) 催( ) 榆( ) 渡( ) 彻( ) 摧( ) 愉( )3、划掉不正确的读音。(2分)不(bú bù)行 不(bú bù )三不(bú bù)四 不(bú bù) 信4、下列各组词语搭配都有一个错误用“—”划出,并在括号内改正 。( 2分) (1)探望病人 精力旺盛 纠正错误 仰望大海 ( ) (2)生活简朴 意志坚定 态度严格 推卸责任( )5、先将下列成语补充完整,再按要求分类。(4分) 弄虚作( ) 欣欣向( ) 废( )忘食 好逸( )劳国( )民安 ( )学多才 ( )将仇报 顾此失( )表示赞扬的词语有 表示指责的词语有 6、修改病句。(在原句上修改)(3分)(1)听说下周要举行“野炊”活动,不约而同地欢呼起来。(2)校园里静悄悄的,只听到同学们琅琅的读书声。(3)在学校举行的古诗文创作比赛中,张雷没有得到名次,心情十分繁重。7、按要求写句子。( 6分)(1)将“小溪哗哗地流着。”改为:比喻句: 拟人句: ( 2 )照样子,把句子补写具体。教室里可真安静啊。教室里可真安静啊,连一根针落在地上都能听见。今年的圣诞庆祝活动可真热闹啊, 。(3):在括号里填上合适的关联词。( )我们善于思考问题,( )一定能使自己聪明起来。( )你从事什么职业,( )离不开与别人的合作。( )骆驼是沙漠里最重要的交通工具,( )人们称骆驼为“沙漠之舟”。 8、调整句子顺序。(在括号里标出序号)(3分)( )寒季没有白天,只有黑夜,常有美丽的“南极之光”出现。( )南极在地球的最南面,是世界上最冷的大陆,一年只有寒暖两季。( )还有人把南极叫做“海豹王国”,那里各种各样的海豹,约有三千二百头。( )而暖季没有黑夜,整天太阳高照。( )不过企鹅的数量更多,约有一亿只,它是南极的象征哩!得分 二、积累与运用 17分1、苏格拉底的弟子们听了老师的话,悟出了一个道理: 。2、《冬夜读书示子聿》是 代诗人 的作品。《观书有感》的作者是 朝的 。这两首诗中都有为后人传诵的千古名句,它们分别是 ; 。 3、把句子补充完整。知彼知己, 。 吾生也有涯, 。羌笛何须怨杨柳, 。 明月别枝惊鹊, 。莫愁前路无知己, 。4、《西江月夜行黄沙道中》是一首 。“ ”是词牌名,“ ”是题目。这首词写的是 的美好景象,表达了词人 的思想感情。5、有的人总是在事后为自己痛失良机而后悔不已,你能写一句有关机遇的名言吗?得分 三、阅读分析部分。 (27分)(一)祝福永远是美好的 记得当年每一位姐姐结婚,我都很难过。说实在的,我舍不得她们出嫁,可是,一旦她们披上了嫁衣,我便装出一副“喜气洋洋”的样子,并祝福她们:“ ”。我奶奶早已年逾八十,明知道她不可能长生不老,可是,我在她每年生日里都祝福她老人家“ ”。几位朋友合伙开了一间咖啡屋,明知道做生意会有亏本的可能,但在开张那天我还是真诚地祝福他们:“祝你们生意兴隆!”我明白自己的话不是灵丹妙药,但每次去医院探望病人总忘不了对病人说一句:“ ”。我明白人生不会万事如意,但每年春节去拜年,我们都把一声“万事如意”送给我的亲戚朋友们。祝福永远是美好。当然,我道一声“祝你幸福”,别人未必就能幸福;我道一声“祝你健康”,别人未必就能健康;我道一声“祝你成功”,别人未必就能成功。毕竟,祝福并不能改变现实中的什么,但总可以令这世界变得更温馨吧?我觉得别人永远需要我的祝福,给别人一份祝福,便等于给别人一个希望。生活是离不开祝福的。我祝福别人,别人也祝福我。每年的节日和生日,我都收到无数的祝福,那些祝福来自一封封书信,来自一张张贺卡,来自一个个电话,来自一份份礼物。感谢朋友们的祝福给我的生活抹上了一层缤纷的色彩。我想,假如没有祝福,多彩的节日就会变得( ),热闹的生日就会变得( )。我愿把无尽的祝福献给我的朋友们和所有需要祝福的人,同时,我也需要你们的祝福!只要天在、地在、人在,祝福便永在!1、在文中的括号内填上恰当的词语。2分2、在文中的横线处,根据文意填上恰当的祝福语。3分3、写出下列词语的近义词。4分喜气洋洋( ) 长生不老( ) 真诚( ) 温馨( )4、“我道一声祝你幸福,别人未必就能幸福”这句话的意思是 2分5、 为什么说“我觉得别人永远需要我的祝福”呢?结合文章内容,谈谈你的理解。2分6、 春节将近,当你遇到自己的老师时,你会怎样祝福自己的老师呢?2分(二)老师的用意春秋时代有个琴师叫俞伯牙,拜成连先生为师。他苦学了三年,创(做、作)了一部乐曲,名叫《高山流水》。他非常高兴地把这部乐曲演奏给老师听。老师听完以后,笑笑说:“有个老师比我高明得多。明天,我带你去(访、仿)问他,你一定会有收获”。第二天清早,成连先生带着俞伯牙划船来到一个岛上,并告诉他说:“老师就在岛上,你自己去找吧。十天以后,我再来接你。”成连先生走后,俞伯牙怎么也找不到那位高明〔 〕琴师。他累〔 〕气喘吁吁,心情烦(躁、燥)〔 〕坐在海滩上。前面是一望无际〔 〕大海,身后是高耸入云的山峰。那惊涛骇浪拍击岩石发出〔 〕“哗哗”声,那扣人心弦的阵阵松涛声,使俞伯牙激动〔 〕欢呼起来。他忽然明白了老师的用意,立刻面对大海弹起琴来。十天后,成连先生真的来了。当俞伯牙把修改过的乐曲再弹给他听时,老师连连夸(奖、讲)说:“好,好,好极了!”1、划去文中括号内用得不正确的字。2分2、在第三小节的方括号内填上“的”、“得”、“地”,注意正确哟!3分3、联系上下文理解下列词语。2分高耸入云: 扣人心弦: 4、成连先生所说的“老师”是谁?俞伯牙找到那位高明的老师了吗?老师的用意是什么?3分5、《高山流水》是我国古代的一部名曲,除了它,你还听过哪些名曲?(至少写两首)2分得分 四 、作文(30分) 题目:想起这件事,我就 要求:1、把题目补充完整,横线上可填“高兴”、“后悔”“苦恼”……2、写出自己的真情实感
《小学生数学报》第10周挑战自我答案 一.填空题1.(1)□ 28÷2=14(组)第28个图形是第14组的最后一个。(2)■ 28÷3=9(组)……1(个)第28个图形是第10组的第一个。(3)▽ 28÷4=7(组)第28个图形是第7组的最后一个。(4)□ 28÷6=4(组)……4(个)第28个图形是第5组的第四个。2. 小青 小敏 小凤3. 10 马 22 34 46 或 11 蛇 23 35 474. 四 一(从9月1日到9月20日一共20天,从星期六到星期五7天为一组, 20÷7=2(组)……6(天)这个月的20日是第3组的第六天,是星期四;从9月1日到10月1日一共31天,从星期六到星期五7天为一组, 31÷7=4(组)……3(天)10月1日是第5组的第三天,是星期一)5. 2 ( 2012÷4=503(组)2012是第503组的最后一个) 1006(503×2=1006) 二.选择题 (此题有难度。该题中小数部分的2、1不重复出现,4、8、3为一组重复出现。37﹣2=35(个) 35÷3=11(组)……2(个),每组有1个4,余下的两个数中有1个4,4的个数为11×1﹢1=12(个)) (这个月共31天,从星期六到星期五7天为一组,31÷7=4(组)……3(天)余下的三天分别是第5组的第1、2、3天,即星期六、星期日、星期一,因此这个月上课的天数为:5×4﹢1=21(天)) (此题有难度。从第一个小朋友开始传,第1次传给第2个小朋友,第2次传给第3个小朋友,第3次传给第4个小朋友……第8次传给第1个小朋友;第9次传给第2个小朋友(此时开始重复)。 33÷8=4(组)……1(次),从第2个小朋友到第1个小朋友8个一组,第33次是第五组的第1个,即传给第2个小朋友) 三.解答题1. 30÷8=3(组)……6(个) 答:第30个字是数。 40÷8=5(组) 答:第40个字是报。2. (此题难度非常大。灯笼的列规律为:白、黄、黄、黄、红、白、黄、黄、黄、红、白、……,即“一白三黄一红”) 1﹢3﹢1=5(盏)49÷5=9(组)……4(盏)答:第49盏灯是黄色。 70÷5=14(组)白灯:14×1=14(盏)黄灯:14×3=42(盏)答:从第1盏到第70盏灯中,白灯有14盏,黄灯有42盏。3. 1×5﹢2×2=9(集) 80÷9=8(组)……8(集)答:最后一集将在星期日播出。
这个假期我很开心,不仅是玩得开心,而且是有了一份很大的收获,这个收获可不是过年收的压岁钱,而是交到了一个好朋友,想知道是谁吗?其实就是我们发得《小学生数学报》啊! 没有想到吧!《数学报》里可不仅仅只有数学题,还有许多有趣的小故事呢!我特别喜欢看里面的小故事,不仅好玩有趣,还能学到很多数学知识,像名师大讲坛里会讲到课本里没有教过的解题方法,它开阔了我们做题的新思路。比如,我遇到这样一道题:“沿一条大道,每隔3米栽一棵树,从头到尾一共栽了301棵,这条大道共长多少米?“这时我想到了有一期中讲到的“扳手指数空数”的方法,马上想到301棵树中间的间隔就是301-1=300(个),300×3=900(米)。我很快就解开了这道题。 我以前不喜欢画线段图来解题,可是看了《数学报》后我发现画线段图真的是解题的好方法,我也喜欢上了用这个方法来做题。如果现在有地同学还在为做不对数学题而困扰的话,我建议你就去读读这个报吧,一定很有帮助的。 报纸上还有一些同学自己写得文章,我觉得他们写得非常好,像半斤八两,韩信切糕啊,好多小故事呢!原来从古到今,数学知识就和我们的生活关系这样的密切啊! 《数学报》是一个非常好的朋友,我真喜欢它!
六年级数学期末综合练习卷 班别:姓名:学号:评分: 一、 填空:(12分) 1、 千克=( )克 40分=( )时 2、2的倒数是( ),( )和互为倒数. 3、16米的 是( )米,50比40多( )%,250的20%是( ). 4、 =( ):40=( )% =( )折=( )(小数) 5、根据乘法算式:,请写出两道除法算式 ( )÷( )=( ) ( )÷( )=( ) 6、:化简为最简单的整数比是( ),比值是( ) 7、圆的半径是2米,它的直径是( )米,周长是( )米,面积是( )平方米. 8、光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是3cm,圆环面积是( ) 9、我国长征运载火箭进行了70次发射,其中只有7次成功,发射的成功率是( )% 10、陈老师买了一套总价为60万元的住房,要缴纳的住房契税,契税要缴纳( )元. 二、判断下面各题,对的在括号里画“√”,错的画“×”(5分) 1、如果A:B=4:5,那么A=3,B=5 ( ) 2、大牛和小牛的头数比是4:5,表示大牛比小牛少 ( ) 3、圆的半径扩大3倍,它的周长扩大3倍,它的面积扩大 6倍( ) 4、某商品打“八五折”出售,就是降价85%出售 ( ) 5、一瓶纯牛奶,亮亮第一次喝了 ,然后在瓶里兑满水,又接着喝去 .亮亮第一次喝的纯奶多.( ) 三、选择正确的答案,把答案的序号填在括号里 (5分) 1、要统计东莞人民公园各种树木所占百分比情况,你会选用( ) A、条形统计图 B、折线统计图 C、 扇形统计图 2、下面的算式中结果最大的是( ) A、 B、 C、 3、儿童的负重最好不要超过体重的 ,如果长期 背负过重物体,会导致腰痛及背痛,严重的甚至 会妨碍骨骼生长,王明的书包( ) A、超重 B 、不超重 C、 没法确定 4、下面百分率可能大于100%的是( ) A、成活率 B 、发芽率 C、 出勤率 D、 增长率 5、从学校走到公园,小红用8分钟,小赵用10分钟,小红和小赵的速度的最简比是( ) A、8:10 B 、 10:8 C、 D、 5:4 四、计算(32分) 1、直接写出得数(6分) ×8= = 1-40%= 52= 2、解方程(8分) 3、 计算下面各题,能简算的必须简算.(18分) 五、实践操作(12分) 1、(1)请在右图的括号里用 数对表示出三角形各个顶点 的位置(2分) (2)请你画出三角形向右平 移4个单位后的图形.(3分) 2、用圆规画一个半径是2cm 的圆,并用字母标出它的圆 心、半径和直径.(3分) 3、画出下面图形的所有对称轴.(2分) 4、下面是六年级一班学生喜欢的电视节目统计图.(2分) (1)喜欢《走进科学》的同学人数占 全班人数的( )%. (2)喜欢《焦点访谈》的人数相当于喜欢 《大风车》人数的( )%,如果全班有 60人,那么,喜欢《大风车》的有( )人. 六、解决问题(34分) (一)看清题目再作答(6分) 1、儿童体内的水分约占体重的 ,小明体内有28千克的水分,小明的体重是多少千克?(先写出切合题意的关系式,再列方程, 关系式:______________________________________________________ _____________________________ 只列方程,______________________________________ 、有一箱香皂,卖去24块,正好是全箱的 .这箱香皂有多少块?线段图:只列综合算式,不用计算: ——————————————— (二)只列式,不计算(4分) 1、 张大爷养了200只鹅,鹅的只数是鸭的 .养了多少只鸭? 2、张大爷养了200只鹅,鹅的只数比鸭少 .养了多少只鸭? (三)解答下列各题(24分) 1、一个篮球的价钱是120元,一个排球的价钱是一个篮球的价钱的 ,一个足球的价钱是一个排球价钱的 ,一个足球多少钱? 2、 这件衣服比原来降价了百分之几? 3、青年旅行社在元旦期间推出优惠活动,原价2800元的“黄山游”现在打八五折,比原价便宜了多少钱? 4、调制蜂蜜水,用蜂蜜和水按1:9调制而成,如果调制500毫 升蜂蜜水,需要蜂蜜和水各多少毫升? 5、张叔叔把2000元的稿费存入银行,存期为2年,年利率为,到期支取时,张叔叔要缴纳税后多少元的利息税?最后张叔叔能拿到多少钱? 6、一种自行车轮胎的外直径是70cm,李老师骑自行车从家到图书馆用了10分钟,如果车轮每分钟转200周,李老师从家到图书馆的路程是多少m?
小学 六年级数学 的教学在小学教学中占着很重要的地位,作为数学 教育 工作者,我们有义务激发学生对于数学学习的热情和兴趣,开发学生的思维,增强学生的自信心,从而从本质上提高学生的学习成绩。本文是我为大家整理的六年级数学教学论文,欢迎阅读! 六年级数学教学论文篇一:浅谈小学六年级数学趣味教学法的应用 【摘要】 小学数学的教学在小学教学中占着很重要的地位,然而很多学生因为数学的计算以及逻辑关系的复杂而学不好数学,甚至不喜欢学习数学. 作为数学教育工作者,我们有义务激发学生对于数学学习的热情和兴趣,开发学生的思维,增强学生的自信心,从而从本质上提高学生的学习成绩. 因此,小学数学趣味教学有着深刻且重要的意义. 本文将针对小学六年级数学教学中的趣味教学提出几点意见,目的在于让学生们体会到数学的奥妙,并且积极主动地参与到数学的学习中来,开拓学生的思维和能力,让学生有着本质上的进步. 【关键词】 小学数学;趣味教学;研究 目前,对于许多小学六年级的学生来说,学好数学并不是一件容易的事情,数学中的计算难度、枯燥的题目以及应用题中的逻辑复杂程度都是导致他们学不好数学的重要原因,这些学生也因此对学习数学失去了信心和兴趣. 教师们应该对于这种现象有警觉性,不能放任孩子们的不自信和倦怠情绪,应该通过自己的实践 经验 以及对班里学生的了解程度,找出教学中的不足,在教学方式上进行整改和完善,让学生体会到数学这门学科的魅力,从而开拓学生对数学的学习兴趣和能力,争取在学习成绩上让学生达到质的飞跃. 一、题目上的趣味 小学数学的题目常常以一些假设的场景为基调,不能引起学生的共鸣,甚至有些题不符合常理,这样在做题的时候学生容易觉得单调、枯燥、乏味. 对于这种情况,老师完全可以对题目进行一个趣味性的改动,或者直接出一些和学生日常生活息息相关的题目,这样的教学方式主要可以提高学生的兴趣,让学生更加专注于题目,潜意识里可以提高学生对学习数学产生好感. 案例分析:笔者在进行小学数学人教版六年级下册“统计”的教学时,书上有一道例题:根据A,B两个公司去年下半年的月薪情况统计图,你能得出什么结果?这类的题目对于小学六年级的学生而言,完全没有熟悉的感觉,做起题来也没有那么高的热情,不如直接换成与学生息息相关的题目:统计本班学生中喜欢打 羽毛球 、打 乒乓球 、踢 足球 、打 篮球 以及喜欢其他体育活动的人数,并画出扇形图. 首先,这样的题目与学生们有关,可以提高学生的关注度和积极性,还可以帮助学生们理解题目内容;其次,这道题要求“统计”的过程,可以让学生们学会统计和整理资料;另外,统计的过程中可以调动全班的积极性,让全班同学都有参与感,消除做题做错的恐惧感. 首先,在老师的带领下,对全班同学通过举手和画“正”字的方式,对喜欢打羽毛球、打乒乓球、踢足球等体育项目的人数进行统计,接着算出百分比,通过所算百分比画出扇形图,进而通过扇形图的呈现作出一个结果的分析. 这样的教学方式,让学生们更加积极地投入其中,增强了每个人的参与感,除了原题的分析结果之外,还增加了调查统计的过程,让学生学到更多的知识;另外,增强了学生的解题兴趣,减少了对数学学习的陌生感和恐惧感. 二、课堂上的趣味 传统的数学教学模式经常是“遇题――讲解――列式计算”的过程,这样的教学模式容易引起学生的倦怠情绪,因此,教学模式需要趣味化,从多方面引起学生的积极性,并且提高学生的学习能力. 教师可以在课堂上丰富教学形式和教学内容,从而达到数学教学的趣味性,提高学生的兴趣和积极性的同时,让学生在快乐中学到知识. 达到课堂趣味化的 方法 有很多种,比如开展活动、布置特殊任务,等等,让学生在做游戏的时候轻松完成了学习任务,调动了学生的积极性和参与感的同时,培养了学生学习数学的自信心. 案例分析:笔者在进行小学数学人教版六年级上册“分数的乘法”的教学时,在课堂上开展了相关的活动. 在课前,笔者事先做好了几个带有分数和运算符号的标牌供学生们系在头上,课堂上,随机挑选五名学生站上讲台,由老师出题,如:■ × 2 = ? ■ + ■ = ? ■ × 8 = ? ■ - ■ = ?……在规定的时间内,让学生在标牌中自行寻找合适的标牌系在头上,组成一个等式,让台下的学生判断正误. 这样的教学过程可以高效地提高学生的兴趣以及积极性,更能通过这样的课堂活动让全班学生全程参与进来;另外,还可以进一步考验台上五名学生的快速反应能力和团队合作能力. 由于课堂活动的开展,让学生们对学习数学报以乐观愉悦的心态,缓解了学生学习数学的不自信的心理,也为以后数学教学的开展做了一个很好的铺垫. 另外,通过这样的活动,可以让学生们开始对自己的计算速度引起重视,这一点对于理论知识的学习和运用有着深刻的促进作用. 再者,对于活动过程中参与活动的学生们,可以通过在与同学的合作找出正确的等式构成并完成游戏的过程中,培养自己的团队合作能力和集体荣誉感,提升学生之间配合的默契程度,让学生体会到团队的重要性,这为以后学生们的学习和工作的开展起着很重要的作用. 除此之外,教师应该注意的是,在本课的教学中,虽然是以分数的乘法为主要内容,但也不能忽略对以前所学的分数的加减法知识的复习,出题时要包含全面,不仅包括分数的乘法,让学生对所学的新知识有所训练,也要包括加法和减法,让学生对以前所学习的知识进行巩固复习;另外,可以在标牌中写一些假分数和带分数以提高学生的反应能力,比如1■,■,… 三、总 结 目前对于小学生的教育是以“快乐教学”为主旨,然而,很多小学生却十分头疼数学的学习,计算的难度以及 逻辑思维 的复杂度让学生没有自信,甚至害怕学习数学,这与“快乐教学”的宗旨完全背道相驰. 因此,作为小学数学教育工作者的我们,有责任和义务对我们目前的教学模式进行改善,通过趣味教学让学生对数学学习保持兴趣和积极性,让学生体会到数学的魅力,也让学生真正地喜欢上数学. 【参考文献】 [1]王秋丽.试论小学数学趣味化教学[J].教育教学论坛,2014(2). [2]龚卫民.构建小学数学趣味课堂的有效方法[J].新课程(小学),2012(4). [3]高冰.小学数学趣味教学略谈[J].小学生(教学实践),2012(7). 六年级数学教学论文篇二:如何在数学教学中进行德育渗透 新的课程标准把德育教育放在十分重要的地位。新课程的培养目标指导我们,要使学生具有爱国主义、集体主义精神,热爱社会主义,继承社会主义民主法制意识,遵守国家法律和社会公德;逐步形成正确的世界观,人生观,价值观;具有社会主义责任感,努力为人民服务,要使学生成为有理想、有道德、有 文化 、有纪律的一代新人。这充分说明了德育教育在整个教育教学中的重要地位,作为基础学科的数学肯定也必须重视德育教育。那么怎样才能在数学教育教学中更好的渗透德育教育呢,我认为有下面的一些方法。 一,充分发挥教师在教学中体现的人格魅力。 德育过程既是说理、训练的过程,也是情感陶冶和潜移默化的过程。教师自身的形象和教师体现出来的一种精神对学生的影响是巨大的,也是直接的。教师的板书设计、语言的表达、教师的仪表等都可以无形中给学生美的感染,从而陶冶学生的情操 。比如,为了上好一堂数学课,老师做了大量的准备,采取了灵活多样的教学手段,这样学生不仅学得很愉快,而且在心里还会产生一种对教师的敬佩之情,并从老师身上体会到一种责任感,这样对以后的学习工作都有巨大的推动作用。 二,充分利用教材挖掘德育素材。 在小学数学教材中,大部分思想教育内容并不占明显的地位,这就需要教师认真钻研教材,充分发掘教材中潜在的德育因素,把德育教育贯穿于对知识的分析中。例如在教学多位数的读法的时候,可以列出我国改革开放以来的一些数据让学生进行练习,这样一方面学生掌握了知识,另一发面也从中体会到我们国家取得的辉煌成就。在教学时分秒时可以对学生进行珍惜时间的教育。在教学圆周率时,可以介绍圆周率是我国的一位伟大的数学家和天文学家祖冲之计算出来的,他是世界上第一个把圆周率的值的计算精确到小数点后6位小数的人。并讲述了祖冲之在追求数学道路上的感人 故事 ,这样既可以学生的民族自豪感,自尊心和自信心,从而转化为为祖国建设事业而刻苦学习的责任感和自觉性,另一方面也可以学生培养不畏艰难,艰苦奋斗,刻苦钻研的献身精神。可以说是一举多得。这样的例子在数学中还很多,只要教师充分挖掘教材,是可以找到德育教育的素材的。 三,在教学过程中进行德育渗透。 教师在教学过程中,可以采取灵活多样的 教学方法 潜移默化的对学生进行德育教育,比如研究性学习,合作性学习等。在数学中,有很多规律和定律如果光靠老师口头传授是起不到作用了,这时候就可以引导学生进行讨论,共同思考, 总结 。这样不断可以培养学生的各种能力,而且还可以培养他们团结合作的能力等。拿教学方法来说,我们可以采取小组合作学习法,这种学习法共享一个观念:学生们一起学习,既要为别人的学习负责,又要为自己的学习负责,学生在既有利于自己又有利于他人前提下进行学习。在这种情景中,学生会意识到个人目标与小组目标之间是相互依赖关系,只有在小组其他成员都成功的前提下,自己才能取得成功。还可以从小让他们养成严肃看待他人学习成绩的习惯。 四,利用数学活动和其他形式进行德育教育。 德育渗透不能只局限在课堂上,应与课外学习有机结合,我们可以适当开展一些数学活动课和数学主题活动。例如,四年级学过简单的数据整理后,我们可以让学生回家后调查自己家庭每天使用垃圾袋的数量,然后通过计算一个班家庭一个星期,一个月,一年使用垃圾袋的数量,然后结合垃圾袋对环境造成的影响,这样学生既可以掌握有关数学知识,又对他们进行了环保教育。另外要根据学生的 爱好 开展各种活动,比如知识竞赛,讲一讲数学家小故事等,相信这样一定会起到多重作用的。 在数学教学中渗透德育教育也要注意它的策略性,一定不要喧宾夺主,要提高渗透的自觉性,把握渗透的可行性,注重渗透的反复性。我相信只要在教学中,结合学生思想实际和知识的接受能力,点点滴滴,有机渗透,耳濡目染,潜移默化,以达到德育、智育的双重教育目的。 六年级数学教学论文篇三:加强训练提高数学能力 “没有训练就没有能力”,这是跟随马芯兰老师在数学教学改革实践中的深刻体会。我们所说的训练,是 指师生在课堂上的双边活动。这种活动要求教师在课前做到两点:一是深钻全套教材,将每一课的训练内容, 都置于知识整体结构之中;二是全面深入地了解班级中每一位学生的知识水平,在此基础上,结合教学的进度 设计出训练的内容。所以训练课具有以下几个特点: 一、要有新的突破 训练是以知识中最原始的基本概念为魂,以知识的内在联系为线,对学生已有的知识进行多方位、多角度 的再现。在知识再现的过程中,对学生要有更新、更高的要求,使他们对旧知识有新的认识和理解。这个“新 ”,蕴含着学生的一种新的学习能力。 二、要抓准关键 在训练的过程中,教师的作用是给学生以恰到好处的“提示”。这一“提示”,绝非是将新知识、新内容 指点给学生,也绝非讲授;而是启发学生的思维,引导他们积极主动地朝着教师提示的方向去探索、去发现、 去认识、去提高。 三、要设计精当 在课堂上,教师应有意识地设计问题的情境,为学生提供更多的探索、发现的机会,有充分思考、探索、 研究的时间,使他们都能积极思维、充分发挥他们的智慧和创造性。 四、要调动全体学生的积极性 在训练的过程中,教师要促使不同层次的学生,提出不同的思考方法和见解,要了解学生存在的问题、各 自不同的思路,以及有哪些闪光的东西或较深的理解,教师从中得到准确的反馈,从而确定下一步训练的内容 和方法。 五、要创造和谐的课堂氛围 在训练的过程中,教师要注意为学生创造更多思考、争论的机会,充分发挥他们的内在潜力,促使他们不 断地产生创造的欲望。学生在不断探索发现的过程中,既有成功的喜悦,也有若干次错误或不完善的思考。教 师则努力使他们在活跃的思维中,智慧的火花不断闪现,学习的积极性不断增长,数学能力随之逐步提高。 下面仅就一节课来具体阐述。 应用题训练 一、教学内容:“求和、求剩余”的加减应用题(一年级第二学期 北京市实验教材) 二、课型:训练(系统整理、发散型) 三、教学目的: 1.加深理解“和”的概念,掌握有关加、减法应用题的数量关系,并能以“和”的概念为核心,从整体高 度寻求解题的方法。
“数学小论文”是让学生以 日记 的形式描述他们发现的数学问题及其解决,是学生数学学习经历的一种书面写作记录。下面是我整理的关于小学六年级的数学小论文,供大家参阅,希望对你的学习有帮助!
小学 六年级数学 小论文
“数学来源于生活,也服务于生活。”数学,经常从人们身边走过,生活中人们都离不开它,它为人们的生活作出了巨大的贡献。在我们的班级中经常要使用到数学,例如算单元平均分、统计校园电费……等等数不胜数,和我们的生活息息相关。
有一次,我和爸爸妈妈去购物,买过年吃的糖。超市里糖的花样可多了,有脆皮糖元一斤,牛皮糖元一斤,牛奶糖元一斤,酥酥糖元一斤,巧克力糖元一斤……但主要分为散称和包装。爸爸妈妈问我:“儿子,你希望买什么糖呢?”我望着玲琅满目的“糖果世界”,不知如何抉择是好,但我自幼喜好巧克力,所以我就选了巧克力糖。这时妈妈又给我出题了,他说:“那儿子,你说我们是买散称的呢,还是买包装的呢?”这我就摸不着头脑了,立即心算起来:散称的巧克力糖元一斤,包装的则一盒。散称的巧克力糖一包才10克,包装的巧克力糖一盒就有1000克呢!不过,单单看重量还不能决出胜负,就让我仔细算算——其实算这个并不难,直接用1000克=1千克 1千克=2斤 ÷2=(元) 元>元 所以散称比包装更划算!我高兴的把我得出的结果告诉妈妈,妈妈高兴的点了点头,夸我爱动脑筋,因此我也就成为了妈妈的"小会计"。
在生活中,各式各样的事情都能从一个普普通通毫不起眼的小事变成一个个生动的数学题。我们常做的应用题,就是在生活中取材,再稍加改编而成的题目。这不,我又在做数学题时发现了一道趣题:
大河上有一座东西向横跨江面的桥,人通过需要五分钟。桥中间有一个 亭子。亭子里有一个看守者,他每隔三分钟出来一次。看到有人通过,就叫 他回去,不准通过。有一个从东向西过桥的聪明人,想了一个巧妙的办法, 终于通过了大桥。
我初看这道题,一点头绪也没有,难不成坐船过去?这是不可能的。难道走了一会往回走?唉,这好像行得通……
我经过反复的计算,先想到了走到2分59秒的时候把头转回去,看守的人就会让我往回走,这样不就过去了吗?后来又想了一会,得出只要在走了2分30秒至2分59秒的时候往回走(最好不要到2分59秒的时候走,因为可能你还没转过头来,看守的人就发现了。),就可以成功过桥。
大家肯定都会说这么容易的题谁都会做,我拿出来吹嘘什么?不,这样子你就错了,我并没有在炫耀自己,我是在告诉大家数学在于联系生活思考,在于全心全意去领悟,而不是拿着别人的成果炫耀。
小学数学论文可以怎么写
数学小论文通过学生对生活中数学问题的观察和发现,引起学生的好奇心和求知欲,使学生体会到数学贴近他们的生活,从而对数学产生亲切感,激发起他们学习数学的热情和兴趣;通过引导学生对课堂中学习的数学知识进行实践运用,让学生感受到数学的实用性,提高数学学习的实效;通过探究趣味题和智慧题,开拓学生的视野,培养学生思维的灵活性和深刻性。现结合笔者的教学实际谈谈数学小论文的几种具体写法。
1.一道数学题的解答。主要是学生对某一道有挑战性的题目简便的或与众不同的解法(包括一题多解)。例如,书后的思考题,奥数题,教师或家长布置的智慧题,数学刊物上的挑战题,平时自己在做题时遇到的有一定难度的题目等。学生通过对这些问题的解决,不但发展了思维,而且体验到一种强烈的成就感,这对他以后数学的学习将是一个巨大的动力。
2.用数学的眼光去分析现实问题。主要指学生用数学的眼光去观察、计算、分析现实问题,获得一种理性的思考。比如,有学生写道:如果每人每天节约1克水,那全国13亿人口每天可以节约1300吨水,发出了“人人节约一滴水,沙漠也能变绿洲”的感慨!还有学生写道:如果每个去银行储蓄的人每次都能为“希望工程”捐1角钱的话,全国那么多储蓄点捐到的钱可以资助多少贫困学生实现上学的梦想呀!学生能从这些角度通过数学的计算去思考社会意义,它的价值就能远远超过数学研究本身。
3.生活中的数学问题。主要用来记录学生在生活中遇到的感兴趣并有亲身体验的有关数学的情境记录。写这种数学小论文的题材特别多,比如,有学生写到了人民币为什么只有1元、2元、5元而没有3元、4元、6元、7元、8元、9元的;再如,有学生写到了他家住的楼房每层有24级楼梯,那么他从1楼到5楼要爬多少级楼梯。这些都是生活中每天要经历的很平常的事,但学生一旦用数学的眼光来观察和思考这些看似平常的生活问题,就在数学和生活之间架起了一座桥梁,能够感受到生活中处处有数学。
4.课堂上的数学问题。主要指学生在课堂数学学习过程中自己的一些思考和发现。这对学生数学学习非常有帮助,比如,有个学生在学习画三角形的高时,发现书上介绍了锐角三角形和直角三角形的三条高,而钝角三角形只介绍了一条高。她在课后通过自己的思考和尝试,画出了钝角三角形的另外两条高,在得到老师的肯定后,欣喜万分,连忙写下了《我发现了钝角三角形的另外两条高》这篇数学小论文。
5.数学实践活动中遇到的问题。主要指学生通过自己亲自动手实践,在实践活动的过程中产生的疑惑、获得的启示和得到的结论等。比如,有个学生在教师还没有上实践活动课“可能性”之前,自己看书并根据书上的内容用红、蓝铅笔去摸,自己动手去探索并验证规律,事后写了一篇 心得体会 ,写出了她在动手实践过程中的想法和体会,让她觉得其乐无穷。
6.数学童话。主要指学生发挥丰富的 想象力 ,用童话的形式(其中包含着数学论述)来记录看到的数学世界。这是语文学科和数学学科一种很好的整合,那种独特的视角,生动的语言描述,让教师耳目一新。
数学离不开生活,生活中处处有数学,它来源于生活又应用于生活。把数学教学与生活联系起来,使学生在不知不觉中感悟数学的真谛。下面是我为大家整理的小学 六年级数学 教学论文,希望对大家有所帮助! 小学六年级数学教学论文篇1:培养数学应用意识及实践 培养学生的数学应用意识和实践能力 《数学课程标准》指出:“数学教学,应从学生已有的知识 经验 出发,让学生亲身经历参与特定的教学活动,获得一些体验,并且通过自主探索,合作交流,将实际问题抽象成数学模型,并对此进行解释和应用。”基于此认识,我认为在新教材的教学中,应体现以下几点: 一、 源于生活,创设轻松愉快的学习情境 苏霍姆林斯基指出,教师在教学中如果不想方设法使学生产生情绪高昂和智力振奋的内心状态,而只是不动情感的脑力劳动,就会带来疲倦。因此,我们的教学应营造一种轻松愉快的情境,使学生乐此不疲地致力于学习内容。 数学离不开生活,生活中处处有数学。在教学中,以教材为蓝本,注重密切数学与现实生活的联系,创设轻松愉快的数学情境。 现实的学习情境,可以激发学生学习数学的兴趣,充分调动学生学习的积极性和主动性,诱导学生积极思维,使其产生内在学习动机,并主动参与教学活动。如教学“认位置”,以学生眼前的教室为情境,为学生提供了一个观察生活中人与人、人与物、物与物之间位置关系的场景,让学生在从指定观察到自由观察、换位观察的过程中不断加深对知识的认识和理解,使他们不光会表述物体间的位置关系,还能感受到物体间位置关系的相对性,从而使学习变成一种主动探索的过程。 心理学研究表明:比起现实情境来,幻想的情境更能激发学生丰富的情感,给他们带来深刻的内心体验。 儿童 最富于想象和幻想,儿童的世界最是千奇百怪、色彩斑澜。儿童感兴趣的“现实生活”,成人常常不可理喻,就像教材中的“小兔采蘑菇”、“青蛙跳伞”、“小蜜蜂采蜜”等,我们认为不合逻辑常理,孩子们却兴趣盎然。因此,我们需要保有一颗纯真的童心,善于从儿童的生活经验和心理特点出发,努力避免成人化的说教,这样,才能捕捉到一幅幅令他们心动的画面,设计出一个个可亲可近的情境。 例如教学“比一比”通过学生喜爱的卡通形象――蓝猫邀请大家参观客厅来导入新课,学生兴趣盎然;引导学生发现猫大哥客厅里的数学秘密,学生兴趣高涨。又如教学“统计”,借助媒体创设大象过生日的情境,并以此为线索展开学习活动,提高学生的学习兴趣。 二、 用于生活,培养学生的应用意识和实践能力 新课程强调人人学有价值的数学,人人学有用的数学。因此,数学学习必须加强与生活实际的联系,让学生感受到生活中处处有数学。 数学只有回到生活中,才会显示其价值和魅力,学生只有回到生活中运用数学,才能真实地显现其数学学习水平。 如在教学“比一比”时,通过找教室周围的物体的长短高矮的比较,使学生学会用数学的眼光观察周围事物。 如在学习“认位置”后,回家观察一下自己的卧室,并用上下、前后、左右描述一下卧室内物体的相对位置关系,然后说给爸爸妈妈听。观察一下自家房屋周围、村庄周围都有些什么,到学校后,和小伙伴交流。 又如在学习了“统计”后,问学生你准备统计什么?这一环节充分利用学生已有的生活经验,把所学的知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,从而使学生体会到学习数学的重要性,学而有用的喜悦感,数学与生活的联系得到了最好的体现。 使学生感受数学与生活的密切联系,能运用生活经验对有关的数字信息作出解释并初步学会用具体的数描述现实世界中的简单现象,是课程标准中规定的第一学段的教学目标之一。一年级的小孩子正如他们在课堂上所说的那样,“我把我的书包分类清理好了”、“我学会了数数,上次家里来了好多客人,我就知道摆多少双筷子了”、“我学了加减法,就可以帮助妈妈上街买菜,不会算错钱了”,也就像家长说的那样,“我的孩子回家把他的玩具和他书包里的书都分类收拾好了,真不错!”“我的孩子现在都会自己看钟去上学了”。可见,新教材在培养学生数感和应用意识,培养学生的自理能力和劳动意识,体现学习有价值的数学等方面取得了初步的成效。 总之,数学离不开生活,生活中处处有数学,它来源于生活又应用于生活。来于生活、归于生活的知识才是有价值的知识。把数学与生活联系起来,使学生在不知不觉中感悟数学的真谛。 小学六年级数学教学论文篇2:浅谈数学的创造性学习 什么是数? 开天辟地之初,人类就开始与数打交道。数即是数目的意思。正如《汉书·律历志上》云:“数者,一十百千万也。” 数进入数学体系就成为它的最基本概念之一,数的概念是随着人类的生产和生活实践的不断发展而逐渐形成的,并且永无止境地发展着。从古至今,以自然数为开端,接着是有理数与无理数、正数与负数、实数与虚数,直至复数,共同构成数的概念不断拓展的系列。每一次拓展都是一次创造思维的跃升。 什么是数学? 数学是研究现实世界的空间形式和数量关系的科学。古时候,人类在生产和生活实践中便获得了数的概念和一些简单几何形体的概念。自此开始,到16世纪,创立了包括算术、初等代数、初等几何和三角的初等数学。17世纪引入变量概念是数学发展史中的转折点,这使得运动和辩证法进入数学,开始研究变化中的量与量之间相互制约关系和图形间的相互变换。近年来,由于数学在自然科学和技术领域的广泛应用,又由于计算技术的迅猛发展,数学对人类认识自然和改造自然的重要作用也显示得更加清楚了。至今,现代数学已经形成了包括数理逻辑、数论、代数学、几何学、拓扑学、函数论、泛函分析、微分方程、概率论、数理统计、计算数学及边缘学科运筹学、控制论等在内的庞大体系。 与数的发展一样,数学发展史也是创造思维不断发展的历史。 数学是中小学生的主科。数学学习是中小学生增长学习能力和创造能力的广阔天地。 一.驴唇怎能对得上马嘴呢 阴错阳差的巧事,张冠李戴的误会,在大千世界,这等笑话,时有发生。可是,在数学课上,难道也会发生驴唇不对马嘴的事情吗? (一)平地起风雪 话题是从一道浅显的代数题引发的。这是一个发生在某中学初一新生的一节数学课上的小 故事 。快下课时,老师出了一道题:“若a为自然数,说出a以后的7个连续自然数。”一个小女孩举手抢答:“a,b,c,d,e,f,g。”话音刚落,便引起哄堂大笑,老师也愕然了。女孩觉察到,自己的答案,驴唇不对马嘴。出了笑话,落个满脸通红。 接着,一个男孩起来补正:“a+1,a+2,a+3,a+4,a+5,a+6,a+7。”尔后,下课铃响了。 事情平平常常。一个女孩答错了题,一个男孩纠正过来,全班同学都明白了正确答案。下课,大家就都散了。 那么,这件事是否到此就算了结了呢? 请思考10分钟,然后,发表你的见解。 单兵——我看是了结了。老师完成了教学任务,学生也完成了学习任务。 焦小敏——如果说没有了结,那就是老师还得 教育 同学们,不要把这事当成奚落那位小姑娘的笑柄。 张娟——还有,班上的同学也有义务鼓励那位小姑娘。 赵老师——直截了当地说,我认为没有了结。因为任何结果都有原因。小姑娘答成“a,b,c,d,e,f,g”这是她思维的结果。那么,她一定有个由此及彼的思维过程,其中深藏着错误的原因。老师与那个小姑娘的任务是找出原因,避免再错。如若不然,再遇类似问题,也许她又答成“甲、乙、丙、丁、戊、己、庚” 呢。 肖冬春——我同意这种看法。换句话说,知道男孩答案正确,并不等于找到自己的错误原因。 韩小彧——前面几位同学的发言,从不同的角度,各有各的道理。但是,又都有一个绝对化的框框束缚着。这就是姑娘的答案一无是处;小男孩的答案绝对正确,天衣无缝。这个框框正是上面5个发言的潜在的共同前提。当然,错误答案之正确部分及正确答案之不足部分,如果真有,我现在还未想出。 赫峰——她提出的问题,是一条崭新的思路,很有启发。我发现小姑娘的答案中有一个合理的因素,7个字母与题目要求的7个自然数合得上。 曹博——这么说来,错误答案中的合理因素,可不止这一个。题目要求“a以后”,按照英语字母表由b到g都在a以后。 姚树——题目要求“连续”,按英语字母表,从a到g是连续的,并没断开,也没跳跃。 祝越——7个符号都可以表示自然数。这一点。也是符合题目要求的。 李河——这么说来,“a以后”、“7个”、 “连续”、“自然数”4大要素都合乎题目要求,错在哪里呢? 讨论至此,真是平地起风云。看来已经结束的问题,却又引出一片新话题。况且本来被公认为绝对错误的答案,现在却找不到一点破绽了。 (二)罕见的对话 正像大家的看法一样,当堂听课的主任觉察到:这件事并未结束。 下课后主任与老师讨论,老师认为“a+1”到“a+7”是唯一正确的答案,全班已懂,教学任务已告完成。主任又去问学生。大家说那个小女孩在小学时,特别喜欢英语。主任领悟了:小学时只是在 英语学习 中才见到过a,题目似乎要求写出“a以后的7个”来,自然,a,b,c,d,e,f,g”在头脑中出现了,又在口中说出了。这正是心理学上所说的副定势起了作用。 尔后,主任将女孩找到办公室。先肯定她喜欢英语,大胆举手的优点,接着是双方一连串的对话。 “那题明白了吗?” “明白了。” “你的答案呢?” “全错了。” “一点对的地方也没有?” “没有。” “一丁点儿都没有?” “没有。” “真的吗?” “我没想过。”(唉!没有想过就坚定地认为自已全错了!) “现在想想看。” “想不出。” “b,c,d,e,f,g,不是在a以后吗?” “是”。 “字母不是说了7个吗?” “是”。 “7个字母,排列有序,为什么不跳着说呢。” “题目上说……” “你看,‘a以后’、‘7个’、‘连续’,都有了。这些字母又都能表示自然数。那么,哪有错的地方呢?” “咦,怎么没有错的地方了呢?” 最后,在主任启发下,发现了错误:对于这些字母,没有给出符合题意的数学含义。一句话,把英语字母转化为数学符号的任务,没有完成。 找出错误原因,就能纠正错误。简单说,将7个英语字母赋予符合题意的数学含意就是了。这样,找到了与众不同的答案:若a为自然数,令a'=a+1,b=a+2,c=a+3,d=a+4,e=a+5,f=a+6,g=a+7,则a',b,c,d,e,f,g”便是正确答案。 就是这样,正确与错误之间,只有一小撇之差。 还应指出,运用这种灵活变通的 思维方式 ,求解此题,正确答案是无穷尽的。即使是“甲、乙、丙、丁、戊、己、庚”,只要将其赋予符合题意的数学含义,也能成为正确答案。这么看来,把“a+1,a+2,a+3,a+4,a+5,a+6,a+7”看成唯一正确答案,失之于思维呆板,并且导致片面性和绝对化。 (三)深刻的启示 中小学生在数学学习中,错误常见,改错也常见。但是,这样的改错方式从未见过。 这样的改错方式给我们的启示是深刻的,是多方面的。 1.在变通性的动态思考中更深刻地掌握数学新原理 掌握数学概念和原理,运用相关概念、原理解答数学问题,从而获得系统的数学知识,提高思维能力,这是数学学习的基本任务。 用符号表示数是代数学的根本特点。在小学算术中只用阿拉伯数字表示固定的具体数目。而在中学代数中,就要用抽象符号表示多种多样的数学含义。用符号表示数的课题,是代数起始课的重点和难点。上面的题,正是为了使学生掌握这个代数原理而设计的。 两种改错方式对理解原理的作用是不同的。先看一般方式: a,b,c,d,e,f,g→a+1,a+2,a+3,a+4,a+5,a+6,a+7 再看变通方式: a,b,c,d,e,f,g→令a'=a+1,b=a+2,c=a+3,d=c+4,e=a+5,f=a+6,g=a+7→a',b,c,d,e,f,g 后者增加“令a'=a+1,……,g=a+7”的一步,同时也就增加了“a'~g”的新的答案形式,最后回到“a+1,……,a+7”的答案。中间增加两步推导,都运用了“符号表示数”的原理。这样,也就加深了对这一原理的理解。 总之,对比两种处理方式,后者更有利于数学知识的掌握和学习能力的提高。 2.创造思维能力在运用中得到增长 运用变通性方式改错,不仅有利于学习能力的提高,也有利于创造思维能力的增长。 变通性改错方式,加大了思维难度,是进行 发散思维 而获得的结果。当然,这也不是唯一的结果。更为重要的是:原来被认为解法唯一,现在变成无穷了。这就启发我们提出问题: (1)数学概念和数学原理统统都是永恒不变的吗?其表述方式是唯一的吗? (2)被认为只有一种解答 方法 的数学题是统统都不会有第2、第3种解决方法吗? 当我们对这两个问题得出“不见得”的结论时,那么对今后的数学学习产生的影响,也就在其中了。即不以固定方式掌握数学概念、原理和题目解法为满足,而还要运用创造思维的发散性、灵活性,对每一个数学课题予以审视,积极发掘可能蕴含着的新内容、新方法、新的推理和新的表达方式。 这样坚持下去,就会收到数学学习能力与创造思维能力同步超常增长的效果。 小学六年级数学教学论文篇3:小学数学活动课的开设原则 原则之一 小学数学活动课,必须以小学生的个性要素得到发展为宗旨,设计教学目标、教学内容与教学 方法。《课程方案》对小学阶段的教育提出了明确的培养目标,这个培养目标包括两方面内容:一方面是为体 现小学阶段性质和任务而设计的国家要求,也就是国家关于知识和能力的质量标准;另一方面是为体现小学生 身心发展规律的个性发展要求。落实到小学数学课,国家质量标准就是要求小学生具有初步的运算技能、逻辑 思维能力和空间观念,以及运用所学数学知识解决一些简单的实际问题的能力这四项,这个任务主要由小学数 学的学科课(或者叫必修课)来担当。至于发展小学生个性的要求,《课程方案》明确提出主要由活动课来担 当,其教学目标就是“增强兴趣,拓宽知识,增长才干,发展特长”。有人会提出,这个要求在学科课所包含 的实际活动中就能做到,或者开展课外活动就可以实现。我认为这是误解。诚然,小学数学学科课所包含的实 际活动,诸如观察、实验、练习等,也能培养学生某些个性要素,但它服务的目的不同,它只是为学科课的教 学目标而服务的一种教学手段,是学科课教学活动的一部分,没有具体教学时间的界限;而小学数学活动课应 是以发展学生个性要素为首要目标的课型,每节课教学时间与学科课的教学时间相配合。还有,活动课也不同 于课外活动:①活动课属于课程的范畴,课外活动则是“在教学大纲范围之外由学生自愿参加的各种教育活动 的总称”,它不属于课程的范畴;②活动课有一定的结构性,它有特定的教学目标、内容和活动方式,而且教 学内容的广度和深度随着年级的上升而具有层次性,而课外活动则没有这种有序的要求;③活动课的设计和实 施要具有一定的规范,那就是活动课必须有教学纲要和活动课指导书,并严格按此规范实施教学进程,而课外 活动则不具备这个要求。 原则之二 小学数学活动课,必须淡化选拔教育,做到“人人受益”。小学阶段的教育是义务教育的初级 阶段的教育,国家教委副主任柳斌同志指出:“义务教育是国民教育,普及教育,平等教育,应当强调其普及 性,淡化其选拔性。”这个要求不仅在小学阶段的教育活动中要落实,更要在各科的教学活动中落实。学科类 课程的教学活动做到人人受益,比较好操作,因为学科类课程所担负的国家关于知识和能力的各项规定,由统 一的大纲和教材所列举,由国家规范的教学、考查等计划予以落实和检查。而活动课是以培养个性特征为标志 的新课型,系统的操作硬件尚在建立之中,有一定的难处。但是,我们应当这样理解:小学数学活动课所说的 “人人受益”,不应当以分数、成绩的提高来理解,应当从学生的个性要素得到发展予以解释。从活动课参予 程度讲,不要像组织数学课外活动小组那样,只允许少数数学 爱好 者参加,而应要求每个学生都参加。从活动 课的课程设计讲,在学科课为每个学生打好共同基础的条件下,为发展学生的个性特长、 兴趣爱好 提供发展空 间;从活动课的教学效果讲,通过小学数学活动课,有的学生数学知识、能力和爱好都得到提高,这是受益。 通过小学数学活动课,有的学生数学知识和能力提高不甚明显,但是通过数学的橱窗对观察课外天地,观察实 际生活的兴趣产生了,这也是受益。更有甚者,通过小学数学活动课,虽然没有引起学习数学的兴趣,但这种 活动课教学尝试在学生记忆中留下思维印象,能成为今后处理问题的一种思维参考,这也应该说是受益。纵或 阻塞了他们对数学的爱好,但通过小学数学活动课促使他们去爱好 其它 学科,也同样属于受益之列。一言以蔽 之,小学数学活动课的受益,就是指小学生的个性要素,主要指兴趣和情感,通过数学的载体而得到发展。 原则之三 小学数学活动课,必须注意小学生身心发展的特点,充分保护“童心”。小学生的年龄阶段( 6~11、12岁), 在心理学上称为儿童期(或称学龄早期)。这一阶段,小学生不但身体发育进入了一个相对 平稳阶段,而且由于从一个备受家庭保护的幼儿变成必须独立完成学习任务、承担一定社会义务的小学生,这 就促使儿童心理特征产生质的飞跃,概括起来,就是产生了在幼儿期没有的“好奇、好动、好胜”的“童心” 。这三个“好”只有“好奇”“好动”充分得到发展,“好胜”的儿童价值特征才能得以建立。但是要注意, 要使“好奇”“好动”的心理状态健康成长,就必须从以下两个方面予以控制:①调控环境,促使小学生总是 保持向上振奋的心理状态。小学生向上振奋的心理状态的形成是立足于好奇感,而好奇感的永恒程度又依赖于 环境(包含教学环境)对小学生接受知识是否有一种愉快感。因此建立一种愉快接受教育的氛围是调控环境的 关键。小学数学活动课基于数学学科的抽象特点,愉快教育氛围的建立,特别要注意杜绝成人期望值的强加与 过量过高数学材料的灌输。就是说,不要设想通过小学数学活动课的教学,个个都成为数学神童;也不要认为 ,实施小学数学活动课教学,就是灌输小学数学之外使小学生难以接受的成人处理数学的材料。②树立模仿典 型,促使小学生形成稳固的知识、能力体系和健康的行为与习惯。小学生的“好动”,是建立在模仿基础上的 好动,通过模仿,一旦成为小学生稳定的心理成分,就左右小学生健康心理的形成。因此为了促使小学生形成 稳固的知识、能力体系和健康的行为习惯,我们的教学活动就应当提供学生认为有趣的、益于拓广知识的模仿 典型。小学数学活动课所提供的模仿典型,就是根据数学的特征以及小学生的知识、能力条件,通过游戏、观 察、拼图、制作、不完全归纳等思维及操作办法,让学生得到学科课内所没有的、又能激发学生求知兴趣的数 和形的一些结论(但是不要证明)。这些结论,要求学生都记住它是次要的,掌握得到的过程则是教会模仿的 本意。只有这样,“好动”的心理特点才可以说在数学活动课里得到健康地培育。 原则之四