首页 > 期刊论文知识库 > 高铁地面沉降研究论文

高铁地面沉降研究论文

发布时间:

高铁地面沉降研究论文

国家铁路建设近些年发展的十分迅猛,动车、高铁的快速建设、运营,对国家的经济建设和人们的生活质量的提高影响巨大。关于城市轨道交通的论文题目有哪些呢?下面我给大家带来城市轨道交通的论文题目参考_铁道交通的论文如何选题,希望能帮助到大家!

城市轨道交通论文题目

1、公路建设项目后评价理论研究

2、基于集成神经网络的城市道路交通流量融合预测研究

3、综合交通运输系统理论分析

4、城市道路交通状态判别及拥挤扩散范围估计 方法 研究

5、基于CIC的轨道交通建设工程集成管理研究

6、城市轨道交通工程施工方风险认知研究

7、基于出行特征的交通工程设计研究

8、重大交通工程项目经济领域社会稳定风险评估方法研究

9、地下轨道交通工程抗震设防要求确定方法研究

10、基于多维矩阵WBS的城市轨道交通项目集成管理研究

11、轨道交通工程绿色施工与清洁生产研究

12、宁波轨道交通工程结构混凝土耐久性质量控制管理研究

13、天津地下交通工程混凝土墙耐久性研究

14、国内轨道交通驾驶室人机工程设计研究

15、基层质监机构的交通工程质量监督机制研究

16、交通工程施工安全防治和监管体系研究

17、珠机城际轨道交通工程线路选线规划设计研究

18、城市轨道交通工程建设项目招标采购管理研究

19、面向交通工程造价管理的服务集成与系统设计

20、重庆轨道交通工程测量管理信息系统开发与实施

21、连续长大下坡路段避险车道设置原则研究

22、在生态脆弱区交通工程建设的生态影响与生态恢复研究

23、交通仿真技术在道路交通工程中的应用研究

24、武汉城市轨道交通工程施工技术研究

25、交通工程生态环境影响评价的景观生态学方法研究

26、城市轨道交通安全保障系统设计

27、我国大城市交通拥挤对策及关键技术研究

28、公路可行性研究中的交通分析研究

29、大型市政工程施工期交通组织研究

30、基于GIS的城轨交通工程信息管理系统研究

31、重庆交通工程监理咨询公司发展战略研究

32、重庆交通工程监理咨询公司发展战略研究

33、城市轨道交通工程建设期间地面交通管理与组织方法研究

34、轨道交通工程日常安全管理系统设计与开发

35、国道G4改扩建工程施工交通组织方案优化与仿真研究

36、城市轨道交通工程项目造价控制研究

37、城市轨道交通工程建设期安全事故分析与研究

38、深圳市交通工程质量监督研究

39、交通工程技术人员职业压力的研究及其应对策略

40、轨道交通配套通信工程项目进度管理研究

41、天津市轨道交通工程风险管理研究

42、轨道交通工程主控模式下变电所综合监控的应用研究

43、甘肃圆峰交通工程有限公司供应商管理研究

44、城市交通智能感知与传感器 网络技术 研究

45、轨道交通工程资料管理系统的实现及其文本信息的数据挖掘研究

46、中铁二局城市轨道交通工程公司发展战略研究

47、交通工程质量监督管理信息系统的设计与实现

48、高速公路交通工程设施系统分析及评价研究

49、道路条件对公路交通安全的影响研究

50、基于AHP层次分析法的轨道交通工程全过程造价控制研究

铁道交通运营管理 毕业 论文题目

1、市域轨道交通规划设计关键指标和主要运输组织模式研究

2、蒙华铁路运输需求及运营管理模式研究

3、基于AFC和列车时刻表的城轨乘客时空扩展出行路径匹配

4、城轨市郊线快慢车停站方案优化研究

5、工程局铁路运输公司经济效益评价研究

6、多运营主体共存下铁路调度指挥模式研究

7、城轨实验室沙盘信号控制系统设计

8、基于节点理论的铁路冷链集散中心运作研究

9、ApacheShiro在铁路Wi-Fi运营管理系统中的应用与研究

10、京沪高速铁路GIS平台研究与实现

11、城市轨道交通运营管理综合评价模型研究

12、高等职业 教育 课程体系的构建研究

13、地铁停运紧急情况下公共交通接驳问题研究

14、城市轨道交通车辆段运营安全管理需求分析与系统开发

15、城市轨道交通站点接驳体系时空效率研究

16、网络化运营条件下城轨列车车底运用优化研究

17、我国高速铁路可持续的投融资模式研究

18、烟大铁路轮渡系统集成技术研究

19、城镇群城际轨道交通线网规划理论与应用研究

20、高速铁路行车安全机理及相关应用问题研究

21、铁路安全检查监测保障体系及其应用研究

22、智能铁路体系结构建模与分析技术的研究

23、基于利益相关者理论的综合交通枢纽价值规划研究

24、基于绿色换乘的高铁枢纽交通接驳规划理论研究

25、车辆动荷载作用下桥梁墩柱主动托换关键技术研究及应用

26、城市轨道交通网络运营安全风险评估理论与方法研究

27、基于时空视角的轨道交通与城市空间耦合发展研究

28、城市轨道交通网络列车运行计划一体化编制理论与方法研究

29、铁路隧道下穿既有路基沉降规律及控制标准研究

30、基于换乘的城市轨道交通网络流量分配建模及其实证研究

31、城市一体化客运轨道交通运输体系构建研究

32、铁路运营费用计算理论与方法研究

33、内陆中转型铁路枢纽集装箱海铁联合运输组织理论研究

34、基于旅客出行行为分析的道路客运班线优化研究

35、集疏运系统背景下运煤铁路基础设施规划与评价研究

36、城市轨道交通系统经济效益分析

37、交通枢纽城市高铁引线项目关键技术研究

38、城市轨道交通系统综合效益研究

39、高速铁路产业发展政策研究

40、地铁公共空间设计管理研究

41、日本第三部门发展的合理性问题研究

42、湖南城市轨道交通产业投资的产业关联效应研究

43、网络化运营下城市轨道交通列车车底运用优化方法研究

44、城市轨道交通乘客信息系统关键技术研究

45、编组站综合自动化系统控制技术及其扩展应用的研究

46、PPP/BOT项目的资本结构选择研究

47、高速铁路接收及运营管理相关问题研究

48、铁路运营经济效益指标及其关联分析研究

49、高速铁路列车开行方案与列车运行图协调优化理论与方法研究

50、我国城市轨道交通建设融资模式研究

铁道信号专业毕业论文题目

1、CTCS应答器信号与报文检测仪-控制主板软硬件设计

2、基于ACP方法的城市轨道交通枢纽应急疏散若干问题研究

3、全电子高压脉冲轨道电路接收器的硬件研究与设计

4、实时断轨检测系统中信号采集与通信子系统研究

5、基于模型的轨旁仿真子系统验证及代码自动生成

6、基于全相位FFT的铁道信号频率检测算法研究

7、基于机器视觉的嵌入式道岔缺口检测系统应用

8、铁路信号产品的电磁兼容分析与研究

9、铁路高职院校校内实训基地建设研究

10、铁道信号电子沙盘系统整体规划及设计

11、基于Web的高职院校考试系统的设计与实现

12、铁道信号沙盘模拟显示系统研究

13、联锁道岔电子控制模块的研制

14、基于ARM的故障监测诊断系统设计(前端采集和通信系统)

15、客运专线列控车载设备维修技术及标准化研究

16、驼峰三部位减速器出口速度计算方法研究

17、CTCS-2级列控系统应答器动态检测的研究

18、石家庄铁路运输学校招生信息管理系统的设计与实现

19、铁道信号基础设备智能网络监测器设计

20、基于光纤传感的铁道信号监测系统软件设计

21、铁道信号基础设备在线监测方法研究

22、有轨电车信号系统轨旁控制器三相交流转辙机控制模块的研究

23、基于故障树的京广高速铁路信号系统问题分析及对策

24、站内轨道电路分路不良计轴检查设备设计与实现

25、铁路综合视频监控系统的技术研究与工程建设

26、客运专线信号控制系统设计方案

27、铁路信号仿真实验室的硬件系统设计及其信号机程序测试

28、基于C语言的离线电弧电磁干扰检测系统数据采集及底层控制的实现研究

29、铁路综合演练系统的开发与实现

30、大功率LED铁路信号灯光源的研究

31、牵引供电系统不平衡牵引回流研究

32、CBTC系统中区域控制器和外部联锁功能接口的设计

33、城轨控制实验室仿真平台硬件接口研究

34、ATP安全错误检测码与运算方法的研究与设计

35、LED显示屏控制系统的设计及在铁路信号中的应用

36、客运专线列控系统临时限速服务器基于3-DES算法安全通信的研究与实现

37、基于动态故障树和蒙特卡洛仿真的列控系统风险分析研究

38、物联网环境下铁路控制安全传输研究与设计

39、轨道交通信号事故再现与分析平台研究与设计

40、铁路强电磁干扰对信号系统的影响

41、基于LTE的列车无线定位方法研究

42、列车定位 系统安全 性研究

43、基于CBTC系统的联锁逻辑研究

44、无线闭塞中心仿真软件设计与实现

45、职业技能教育的研究与实践

46、光纤铁路信号微机监测系统数据前端设计

47、LED大屏幕在铁路行车监控系统的应用研究

48、基于微机监测的故障信号研究与应用

49、语域视角下的人物介绍英译

50、基于嵌入式系统的高压不对称脉冲轨道信号发生器设计

城市轨道交通的论文题目参考相关 文章 :

★ 城市轨道交通运营管理论文范文(2)

★ 城市轨道交通运营管理论文范文

★ 关于城市轨道交通运营管理论文

★ 有关城市轨道交通运营管理论文

★ 关于轨道交通运营管理的论文(2)

★ 轨道交通运营管理论文范文(2)

★ 城市轨道交通运营发展管理论文

★ 城市轨道交通运营管理研究论文

★ 轨道交通管理论文(2)

★ 轨道交通项目管理论文(2)

同志啊,这种论文网上还是很多的,不用那么懒吧。相关论文很多,自己下载整理一下对你也有好处啊。以下仅供参考中国地质灾害 我国地质灾害可划分为10大类31种: 1、地震: 天然地震、诱发地震 2、岩土位移: 崩塌、滑坡、泥石流 3、地面变形: 地面塌陷、地面沉降、地裂缝 4、土地退化: 水土流失、沙漠化、盐碱(渍)化、冷浸田 5、海洋(岸)动力灾害:海面上升、海水入侵、海岸侵蚀、港口淤积 6、矿山与地下工程灾害:坑道突水、煤层自燃、瓦斯突出和爆炸、岩爆 7、特殊岩土灾害: 湿陷性黄土、膨胀土、淤泥质软土、冻土、红土 8、水土环境异常: 地方病 9、地下水变异: 地下水位升降、水质污染 10、河湖(水库)灾害: 淤积、塌岸、渗漏 (一)地震 1、分布发育概况 进入20世纪以来,在我国境内(包括台湾及临近海域)发生大于或等于8级的巨大地震共9次;发生大于或等于7级的地震约80次,其中1949~1990年发生了52次。 我国的构造地震分布非常广泛,除浙江、贵州两省外,其余各省都有6级以上地震发生。水库诱发地震自60年代以来,目前至少以在11个省的15座水库发生,其特点是与水库蓄水有明显关系。 地震在我国大陆地区具明显的西强东弱、西多东少的发育分布规律。如本世纪以来发生的9次大于或等于8级大地震,除2次8级发生于台湾临近海域外,其余均发生于西部省份。我国地震烈度Ⅶ度以上的地区主要分布于西部地区,东部地区除了台湾外,Ⅶ度以上地区的面积相时少得多。 地震在空间分布上表现了不均一性,往往呈带状分布。近100年发生的地震表明,地震基本上是围绕这26条活动断裂系发生的。我国地震活动的周期性和重复性呈现出成群分布,活跃高潮与低潮相互交替的活动格局。东部一个周期长约300年左右,西部为100~200年左右,台湾为几十年。 2、危害状况 地震灾害以突然、隐蔽为特点,一旦成灾,极易造成巨大的人员伤亡和重大的经济损失。1901~1980年间,我国地震共死亡61万人,其中死亡人数在千人以上的地震即达31次。1949年以来,地震就造成死亡万人,伤残万人,居群灾之首,同时地震还造成倒房600万间,直接经济损失数百亿元。我国的地震活动,不但频次高,强度大,而且城市受灾率高。据统计,全国Ⅶ度以上的高烈度区的面积达312万km2,全国70%百万以上人口的大城市位于烈度为Ⅶ度或高于Ⅶ度的高地震烈度区内,特别是一批重要的城市如北京、天津、西安、太原、兰州、呼和浩特、昆明、乌鲁木齐、银川、拉萨、汕头都位于基本烈度为Ⅷ度的高烈度地震区内。 地震不但可以直接摧毁城镇工程设施,给人民生命财产带来巨大损失,而且还可以引发滑坡、崩塌、火灾等其它灾害,加重了地震灾害的损失。 (二)崩塌、滑坡和泥石流 1、发育分布基本情况 全国共发育有特大型崩塌51处、滑坡140处、泥石流149处;较大型崩塌2984处以上、滑坡2212处以上。泥石流2277处以上。 从总体看,我国西部地区尤其是西南诸省区长期处于地壳上隆过程之中,地震活动频繁、地形切割剧烈、地质构造复杂、岩土体支离破碎,再加上西南地区降水量和强度较大、西北地区植被极不发育,因而崩滑流发育强烈,如云南、四川、贵州、陕西、甘肃、宁夏等省区;其它地区新构造运动一般相对较弱,其中华北、东北地区的降水量相对较小,中南、华东大部分地区植被发育较好,因此,这些地区的崩滑流发育强度一般不及西部地区。崩滑流灾害危害较大的省区有:四川、云南、陕西、宁夏、甘肃、贵州、湖北、辽宁、北京、河北、江西和福建等。 在地域上,可基本上划分为15个多发区,它们是:(1)横断山区、(2)黄土高原地区、(3)川北陕南地区、(4)川西北龙门山地区、(5)金沙江中下游地区、(6)川滇交界地区、(7)汉江安康~白河地区、(8)川东大巴山地区、(9)三峡地区ⅲ(10)黔西六盘水地区、(11)湘西地区、(12)赣西北地区、(13)赣东北上饶地区、(14)北京北郊怀柔-密云地区、(15)辽东岫岩-凤城地区。 2、主要危害 近十年来,全国由于崩滑流造成的人员死亡已近万人,平均每年达人。全国有 400 多个市、县、区、镇受到崩滑流的严重侵害, 其中频受滑坡、崩塌侵扰的市、镇60余座,频受泥石流侵拢的市、镇50余座。较为严重的有重庆、攀枝花、兰州、东川、安宁河谷等。全国几条山区干线铁路如宝成线、成昆线、宝兰线都受到了崩滑流的严重危害。

长安大学地质工程与测绘学院

20世纪50年代以来,由于自然和人为因素的影响,西安市区出现了大量地裂缝,对城市规划与建设构成了严重制约;由于地质构造因素和人类开采地下资源,山西省从南向北的临汾、运城、太原、大同等几个盆地存在着较为严重的地面沉降和地裂缝。国土资源大调查项目从2005年开始,实施了汾渭盆地地面沉降地裂缝的调查、监测、评价及成因与减灾综合研究工作。通过从点到面的调查研究,基本查明了汾渭盆地地面沉降与地裂缝的发育现状;建立了地裂缝和地面沉降的监测网络,对汾渭盆地典型地区地裂缝地面沉降的成因机理进行了深入系统的研究,取得了一系列重要成果,为西安市地铁工程建设及大同—西安高速铁路工程的规划、设计及地裂缝和地面沉降灾害的防治工作提供了强有力的科技支撑,保证了项目的顺利实施和后期的安全高效运营。

一、开展地裂缝灾害致灾机理与防治措施研究,主动服务西安地铁建设与运营

目前,西安城区发现的地裂缝已达15条之多,延伸长度超过100千米,覆盖面积约250平方千米,其活动时间之长和规模之大,在国内外尚属罕见。这些地裂缝成为西安地铁建设中的重大关键技术难题。汾渭盆地地面沉降地裂缝调查与评价工作,通过一系列的大型物理模型试验、数值模拟计算和理论分析,合理确定了地铁设计使用期100年内地裂缝最大位错量,科学地确定了地裂缝地段地铁隧道结构纵向设防长度,为地铁隧道穿越地裂缝带的结构设计和预留空间提供了重要设计参数(图1);揭示了地裂缝作用下地铁隧道主要变形破坏模式,为西安地铁穿越地裂缝带结构设计提供了重要的科学依据;提出了地铁隧道结构“分段设变形缝、柔性接头连接及局部扩大断面”的适应地裂缝变形的结构防治措施,并已应用于西安地铁工程设计中,成功地解决了西安地铁防治地裂缝灾害的重大技术难题,为西安地铁建设提供了重要技术支撑。

图1 地铁隧道地裂缝致灾机理大型物理模型试验

二、深入研究地面沉降地裂缝发育特征,为大同—西安高速铁路工程建设提供科技支撑

大西高速铁路是连接山西大同和陕西西安的一条铁路快速通道,工程场址刚好贯穿项目的主要工作区——汾渭盆地。大西高铁线路沿线地裂缝和地面沉降均非常发育,为线路选线、结构设计和建成后的安全运营带来了极其严峻的挑战。面对这一问题,项目组通过地面调查、InSAR监测、综合勘探,查明了大西客运专线(大同—运城北段)沿线地裂缝和地面沉降的分布、发育特征,高铁沿线与线路相交或隐伏相交的地裂缝共有21条36处,其中在太原盆地内有8条14处,临汾盆地7条12处,运城盆地6条10处;分析了高铁沿线地裂缝地面沉降的成因,根据地裂缝的发育特征、影响因素,结合地裂缝的潜在活动性和易发性评价,划分了高铁沿线地裂缝的危险性等级,其中Ⅰ级2处,Ⅱ级7处,Ⅲ级13处,Ⅳ级14处;获取了大西高铁沿线大同、太原、祁县、平遥、临汾、运城以及介休七个区域2004~2008年间不同时间段的地面沉降形变信息,确定了沉降中心位置及平均沉降速率,给出了沿线地裂缝地面沉降未来活动速率范围值和可能最大活动量;在数值分析和大型物理模型试验基础上(图2),结合地面调查和勘探成果,分别给出了各条地裂缝的避让距离和设防宽度,并提出了采用桥梁、有渣轨道、限制地下水开采和地表防水等综合防治措施建议。上述成果为大西高速铁路的顺利实施提供了强有力的科技支撑。

图2 路堤模式通过地裂缝带致灾机理大型物理模型试验

京津铁路沿线地面沉降研究论文

轨道交通专业毕业论文参考文献

参考义献这是论文中很重要、也是存在问题较多的一部分.那么,轨道交通专业毕业论文参考文献有哪些呢?下面我为大家收集一些优秀的范例,大家不妨多加参考!

[1]艾里克.拉斯缕森,博萍与信息-博弃论概论[M].北京:北京大学出版社,.

[2]白慧明.铁路建设可持续发展面临的若干问题及建议[J]理论探讨,2011 (3) :16-18.

[3]白树强,全球竞争论[M]北京中国社会科学出版社2000.

[4]白云峰.髙速铁路对区域社会经济发展影响研究-以京津城际铁路为例[D].北京:北京交通大学,2010.

[5]包昌火,谢新洲.竞争战略与竞争优势[M]北京.华夏出版社,2002: 74.

[6]北京一上海高速铁路运输需求量顶测研究报告.北京:铁道部科学研究院,2000.

[7]陈建南,赖小平等,广东医药产业竞争力比较研究[J]世界科学技术-中药现代化2001,3 (3): 11-34.

[8]陈杰、史峰,提高广州地区铁路货运效率的分析与对策,《铁道运输与经济》,’ 44-45.

[9]陈牛生.我国铁路货运价格改革初探[J].综合运输,2005(11) :1-20.

[10]陈学武.城市客运交通方式结构预测的层次分析法[J].东南大学学报,1998,28(3) :23-26.

[11]戴玲玲.髙速铁路与其他运输方式竞争关系研究--以京沪线为例[D]:学位论文.北京:北京交通大学,2009.

[12]丁小玲.京沪高速铁路(徐沪段)绿色生态评价指标体系研究[D].成都:西南交通大学,2007.

[13]樊纲.比较优势也是竞争力[J].经济日报,2002.

[14]樊一江.交通运输规划与管理[D]:学位论文.陕西:长安大学,2009.

[15]范英书.优化运输组织扩大运输能力[J].铁道运输与经济,2006(6) :35-36.

[16]方琪根.高速铁路运营成本的作业成本法测算研究[J].铁道科学与工程学报,2006(10):134-136.

[17]费志刚.铁路、民航客运市场竞争焦点及对策探讨[J].铁路运输与经济,2003 (9):4"6.

[18]冯焕焕:区域运输通道内各种运输方式客运量分担率的研究仁[D],哈尔滨五业大学.2005:30 - 46.

[19]傅选义.高速铁路与资源节约[J].中国铁路,2010. 12

[20]高速铁路客货运量预测一我国高速铁路发展模式的研究分题报告之十[R].天津:铁道部第三勘测设计院,1995.

[21]龚深弟.国外高速铁路发展情况与趋势[J].高速铁路与铁道建筑,2003 (4): 1-13.

[22]郭大为.国外高速铁路建设与运营组织模式[J].国外铁路,2004 (8): 79-81.

[23]郭晶伟.基于效能价格的出租车合理比价研究[J].交通标准化,2009(2): 53-57.

[24]郭晶伟.基于效能价格的出租车合理比价研究[J].交通标准化,2009(2): 53-57.

[25]郭文军等.髙速铁路对交通运输实现可持续发展的重要意义[J].中国铁路,2000(4):56-59.

[26]国家体改委,中国人民大学等.中国国际竞争力发展报告(1996) [M].北京:中国人民大学出版社,1997.

[27]国家体改委,中国人民大学等.中国国际竞争力发展报告(1997) [M].北京:中国人民大学出版社,1998.

[1]安监管技装字[2003]37号、安全评价通则[S]

[2]安监管技装字[2003]79号、安全验收评价导则[S]

[3]北京市交通委员会、北京市城市轨道交通安全运营管理办法[S]、北京,2004

[4]广州市地下铁道总公司、广州地铁工程质童验收管理办法[S]、广州,2002

[5]刘铁民,钟茂华,等、地下工程安全评价[M]、北京:科学出版社,2005

[28]国建华.时代呼唤“绿色交通”--铁路与我国交通运输的可持续发展[J].铁道知识,2010(1):60-64.

[29]韩雪松.产品竞争力的综合评价[J].技术经济与管理研究,1998 (4): 30-31.

[30]郝艺.中国高速铁路与其他运输方式的.比价关系研究[D].北京:北京交通大学,2009.

1 邹胜勇.面向可持续发展的城市总体交通结构优化[J].交通运输系统工程与信息,2006,6(2):108.

2 David BAYLISS.世界范围的城市交通可达性现状(英文)[J].TRI杂志(交通版),2006(2):17-18.

3 樊颖玮.城市交通可持续发展问题的思考[J].交通与运输,2006(2):67.

4 全永棠,孙壮志.关于BRT与轨道交通的理性思考[J].交通运输系统工程与信息,2006,6(2):117.

5 孙章.城市轨道交通的世纪回眸[J].上海交通运输,2006(3):14.

6 P.Y.Loo,L.Y.Chow.可持续城市交通:理念,政策与方法(英文)[J].ASCE,2006(6):76-77.

[1]芮睿,王昊,杜春茂等、浅议轨道交通项目环境影响评价要点[J]、黑龙江交通科技,2013,33(4):156-157

[2]刘磊,孙智宏,周鹏等、提高轨道交通环境影响评价公众参与有效性的建议[J]、都市快轨交通,2014,27(2):30-34

[3]肖本江、景观影响调查在轨道交通项目竣工环境保护验收中的初步尝试[J]、铁道劳动安全卫生与环保,2007,34(3):111-115

[4]孙翠菊,陈侠,李晓娟等、城市轨道交通项目环境影响评价方法与指标体系研究[J]、城市建设理论研究(电子版),2013,(24)

[1]孙宁.我国城市轨道交通行业发展现状与对策[J].中国铁路,2008(4):51-55.

[2]欧阳洁,钟振远,罗竞哲.城市轨道交通发展现状及趋势[J].中国新技术新产品,2008,(12):32.

[3]李耀宗.关于我国城市轨道交通规划与规模的反思[J].都市快轨交通,2005,18(4):83-85.

[4]孟迎春.我国城市轨道交通规模研究[D].北京:北京交通大学,2009.

[5]杨京帅.城市轨道交通线网合理规模与布局方法研究[D].成都:西南交通大学,2003.

[1]谢凯旋,缑小涛,孙天轶.轨道交通站域建筑一体化设计---以杭州地铁一号线乔司站为例[J].建筑技艺,2015,10:112-115.

[2]杨佩云.对城市轨道交通公共室内空间设计的调查研究[J].设计,2015,21:111-113.

[3]李政,王操.城市轨道交通换乘空间的导向研究---以武汉轨道交通换乘站为例[J].长江大学学报(自科版),2016,10:56-60+4.

[4]王成芳,孙一民,张春阳,黄烨勍,李敏稚.基于“节点-场所”特性的轨道交通站点地区规划设计[J].规划师,2014,10:30-34.

[1]中国城市轨道交通网

[2]朱顺应、郭志勇.城市轨道交通规划与管理[U].东南大学出版社,2008

[3]赵惠祥、余世昌. 城市轨道交通系统的安全性与可靠性[J].城市轨道交通研究,

[4]张殿业、金键、杨京帅. 城市轨道交通安全研究体系[J].都市快轨交通,[5]施毓凤、杨晟、孙力彤.城市轨道交通的安全管理问题[J].城市轨道交通研究;

[6]《北京市城市轨道交通安全运营管理办法》.2009

[7]费安平.地铁运营安全管理.

[8]费安平、周世爽、吴静.城市轨道交通运输设备运用.西南交通大学出版社,2008

[9]费安平、顾炎.城市轨道交通行车组织.西南交通大学出版社,

[10] 韩荔.站务员行车组织教材.

[1] GB50157-2003,地铁设计规范[S].

[2] GB50090-99, 铁路线路设计规范[S].

[3] 许有全,高 亮.城市轨道交通用道岔有关问题的探讨[J].铁道标准设计,2003(5).

[4] 陈后军.城市轨道交通发展探讨[J].铁道标准设计,2003(8).

[1]杜建卿.新公共管理理论评析[J].现代商贸工业,2011,14.

[2]谢晓忠,李淑庆,冯绍海.城市土地利用与轨道交通建设关系研究[J].交通信息与安全,2010,05.

[3]陆锡明,陈必壮,王祥.基于轨道交通网络的大城市综合交通规划理念[J].城市交通,2010,04.

现状

据不完全统计,我国目前已有96个城市和地区发生了不同程度的地面沉降,其中约80%的地面沉降分布在东部地区。从南方的海口到东北的哈尔滨均出现了地面沉降现象,地面累计沉降量在460~2780mm之间,地面沉降速度为10~56mm/a。据长期监测和研究表明,地面沉降主要由不合理开采地下水所致,而地壳活动、地表动(静)荷载、工程建设、自然作用等其他因素造成的地面沉降只占总沉降量的5%~20%。目前,处于长江三角洲、华北平原、关中平原、淮北平原和松嫩平原大多数城市,地面沉降正在大面积的发生和发展之中。尤其是长江三角洲和华北平原地区地面沉降的发生发展速度令世界关注,造成的经济损失巨大。

(1)长江三角洲地区

长江三角洲是我国发生地面沉降现象最具典型意义的地区之一。其中,上海是我国发生地面沉降现象最早、影响最大、危害最深的城市,江苏的苏锡常与浙江的杭嘉湖及宁绍地区也相继产生了地面沉降灾害。20世纪90年代末,苏锡常、杭嘉湖及上海市累积沉降超200mm的范围已达该区面积的1/3,面积近1万km2,并在区域上有连成一片的趋势。以上海的市中心、江苏的苏锡常、浙江的嘉兴为代表的沉降中心区的最大累积沉降量分别已达,和。

1990年后苏锡常地区还发生了特有的地质灾害——地裂缝,目前已发现20余处地裂缝灾害,发育规模较大的地区已形成长数千米,宽数十米不等的地裂缝带,且均与过量开采地下水造成不均匀地面沉降有关。

长江三角洲地区的地面沉降主要是开发利用地下水引起的。20世纪70年代以前,城市地区的纺织业发达,但能源紧缺,故大量集中开采地下水用于纺织厂的空调降温,导致城市地区严重的地面沉降。20世纪80年代以来,随着改革开放城市周边地区乡镇企业的兴起,不仅其本身大量开采利用地下水,而且向地表河道不断排放污水,导致水资源极为丰富的三角洲水网地区地表水质量普遍下降,使整个区域成为水质型缺水地区,加剧了广大农村地区居民用水紧张,促使地下水开采量的急剧增加,产生了区域性地下水水位降落漏斗,故由此诱发的地面沉降目前已成为以城市为中心的区域性地质灾害。

长江三角洲地区是我国开展地面沉降勘察、监测、研究最早的地区。自1961年以来,为进行上海市地面沉降调查,开始系统地建立区域地下水动态监测网,兴建或利用已有地面水准点进行市区地面沉降监测,逐步建立基岩标、分层标监测不同土层的变形特征。苏锡常和杭嘉湖平原地区地下水动态监测网始建于20世纪80年代初期,并随着各类水工环调查评价工作的展开,得到了不断补充。同时,在城市地区如嘉兴、常州、苏州等采用水准测量进行定期或不定期的地面沉降监测,并通过收集水利、城建、交通等部门根据各自目的在不同时间和不同地区进行的水准测量资料,以及开展实地踏勘来进一步进行地面沉降调查。

1999年以来中国地质调查局部署的长江三角洲地区(长江以南)地面沉降监测网络项目所做的调整和进一步建设,基本构成了本地区地面沉降监测网络的格局。

目前长江三角洲地区地下水动态监测网络已覆盖全区,由地面精密水准监测网以及地下不同深度的基岩标、分层标在部分重要城市及地面沉降严重地区构成的立体监测系统已经粗具雏形。随着新技术新方法的引进,GPS、自动化监测以及信息技术已经开始在该地区地面沉降监测中得到了应用。

(2)华北平原地区

华北平原包括北京、天津、河北、山东和河南等省(市)的平原区,面积14万km2。地面沉降发生在北京、天津、河北和山东等地。引起华北平原地面沉降的原因可分为自然因素及人为因素。自然因素中,包括构造活动、软弱土层的自重压密固结、海平面上升等;人为因素包括过量开采地下水、地下热水及油气资源和大规模工程建设等。据地震资料,本区由于构造活动引起的地面沉降速率仅为1~2mm/a。因此,就本区而言,人为因素尤其是深层地下水超量开采是导致地面沉降的主要原因。

华北平原地面沉降的产生和发展过程与地下水的开采过程基本保持同步或略为滞后。地面沉降量与地下水水位下降幅度呈正相关。其分布范围与地下水水位下降漏斗基本一致。

由于地下水开采,北京地区早在1935年就已经发生了地面沉降。当时其范围仅在西单到东单一带,1935~1952年,局部地面沉降量的最大值仅为58mm。20世纪50年代以后,随着北京地区地下水的开采不断增加,逐渐形成了以东郊工业区为中心的区域性地下水水位降落漏斗。到1983年5月,北京市东郊地面沉降区面积已达600km2,其中累计地面沉降量大于100mm的地区面积达190km2;沉降量大于200mm的地区面积约为42km2。从1966~1983年,北部的来广营地面沉降中心区沉降量约为277mm;南部的大郊亭地面沉降中心区沉降量累计约532mm。1987年以后,北京市地面沉降面积快速增加,扩展至1800多km2,其中沉降量大于200mm的地区达到350km2。

天津市开发利用地下水资源始于1923年,据历史水准点资料,伴随着地下水的开发,地面沉降相应发生。由于当时开采量少,年沉降量仅几个毫米。新中国成立后,随着工农业的发展,地下水开采量逐年增加,地面沉降越来越严重。1950~1957年沉降速率为7~,1958~1966年沉降速率为30~46mm/a,并逐步形成了沉降中心。1967~1985年沉降速率达80~100mm/a,沉降急剧发展。1986年后进入沉降治理阶段,大部分地区沉降明显减缓,市区沉降速率降低到10~15mm/a。

目前,宝坻城关以南的广大平原区均已不同程度地产生了地面沉降,面积达8800km2。其中,累计沉降量超过1000mm的面积达4080km2。该区南部及滨海地区地面沉降尤为明显,并与河北省的沉降区连成一片。在这一范围中,现已形成了市区、塘沽区、汉沽区、大港区及海河下游工业区等沉降中心(表)。

表 天津市地面沉降现状表

河北平原深层地下水水位下降漏斗形成于中东平原城市集中开采区和农业集中开采区,主要有冀枣衡漏斗、沧州漏斗、宁河唐海漏斗、廊坊漏斗、青县漏斗、霸州漏斗等。深层地下水水位下降漏斗面积共计为43915km2,随着深层地下水的进一步开采,地下水水位下降范围持续扩大,各漏斗范围也不断扩大,形成了覆盖整个平原中东部、天津市和冀东平原部分地区,面积为7万km2(地下水位0m线以下计)的巨型复合漏斗。

随着地下水开采量的增大、地下水水位的下降和地下水水位降落漏斗的形成,地层岩土力学平衡被破坏,河北平原逐渐形成了沧州、保定、衡水、任丘、南宫、霸州、大城、曲周、唐海9个主要地面沉降区。

截至1998年,河北平原地面沉降量大于200mm的面积达万km2,大于300mm的面积达万km2,大于500mm的面积达6430km2,大于1000mm的面积达755km2(表)。

山东省德州市地面沉降影响面积已达,累计沉降量为150~387mm,沉降中心的沉降量在300~387mm之间,年均沉降量在25~之间。济宁市自1989年至今已累计沉降,沉降量大于60mm的面积已近90km2,中心最大沉降速率每年达。

表 河北平原主要地面沉降区沉降面积统计

由于地下水的长期超量开采,华北平原现已成为世界上超采地下水最严重的地区之一,也是地下水水位降落漏斗面积最大,地面沉降面积最大、类型最复杂的地区之一,其中又以京津冀鲁地区最为突出。大面积的地面沉降给当地人民生命财产的安全造成了严重威胁,并成为制约当地经济可持续发展的重要因素。

地面沉降直接导致华北平原滨海低平原区地面标高资源损失,造成铁路路基下沉、风暴潮灾害加重。由于影响泄洪,致使地面长期积水、厂房被淹,经济损失严重。由于地面不均匀沉降,导致建筑物受损,大规模市政基础设施破坏;由于地面沉降,还引发了多处地面坍塌和地裂缝地质灾害,直接威胁人民生命财产的安全;并且随着使该地区经济的发展,灾害损失便愈大,制约了社会经济的可持续发展。同时,百余年的世界工业化进程导致全球气温上升,海平面的变化再叠加上地面沉降,时刻威胁着河口滨海地区包括华北平原低海拔地区人类的生存。

华北平原地面沉降调查监测的工作程度相对较低,除天津外,还没有专门的地面沉降监测网点及监测系统,没有全面系统的地面沉降研究成果。区域上的地面沉降数据,主要来自国家地震局布设的京津唐大地形变区域网,但其测量密度较小,测量频率低,在面积上远远不能控制华北平原地面沉降的范围。而且华北平原地面沉降调查与监测受条件所限与行政分割,缺乏统一的调查与监测技术标准,缺乏统一的规划,在时间和空间上的调查与监测布局不尽合理,得出的调查监测数据缺乏可比性,远不能满足国家防灾减灾的需要,因此开展华北平原地面沉降调查与监测具有重大的社会经济意义。

(3)关中平原地区

关中平原的地下水过量开采已引起大面积地面沉降,尤其是在西安市最为严重。西安市城郊区承压含水层为细砂,砂砾石层和粘土层不等厚互层,并有自西往东、由北往南含水层厚度逐渐减少,粘土层厚度逐渐增加的特征,这种结构在大量开采承压水,造成承压水位大幅度下降的情况下,有利于黏性土层中结合水的排出。

西安地下水开采初期,承压水位埋深仅25~35m。20世纪70~80年代,由于大量开采承压水,引起水位大幅度下降。到90年代初期,西安城区承压水开采井增至530余眼,年开采量达亿多m3,承压水位累计下降60~100m,降落漏斗面积为200km2。东南郊一带有大面积的承压水位降至含水层顶板之下,水位埋深降至90~130m。承压水位的大幅度下降,意味着孔隙水压力降低,黏性土层中的水向含水层释放,进而产生黏性土层释水压密,引发地面沉降。

西安市地面沉降现象发现于1959年。1972~1983年,西安城区地面最大累计沉降量为777mm,年平均沉降量在30~70mm之间的沉降中心有5处。截至1988年最大累计沉降量已达,沉降量为100mm的面积达200km2,沉降最超过500mm的面积达48km2。20世纪90年代,地面沉降范围又有所扩大,累计沉降量超过200mm的面积约150km2,东南郊一带累计沉降量超过600mm,超过1000mm的面积为42km2,沉降中心增加为7个,累计沉降量超过2000mm,最大累计沉降量达2600mm,沉降速度之快,前所未有。建于明代的西安钟楼现已下沉了395mm,具有1300余年历史的大雁塔也下沉了1198mm。

西安市地面沉降具有如下特征:①沉降量与承压水开采量密切相关;②地面沉降具有不均匀性和差异性。

西安地面沉降的危害主要足加剧了地裂缝的活动,造成地裂缝垂向活动量大大增加。由于市区内各个区域沉降发展不均衡,已经出现了11条明显的地裂缝,总长度达,并且还以每年垂直方向移动在5~30mm之间,水平方向移动在3~4mm之间的速度发展。东南郊一带地裂缝的垂向活动速率则为30~50mm/a。

地裂缝造成了附近建筑物地基不均匀沉降,形成建筑物开裂和地下管道错断,城市道路破坏。据不完全统计,1996年因地裂缝毁坏的建筑物有楼房170余栋,厂房、车间57座,民房近2000间,破坏道路74条,累计错断供水、供气管道40余次,另有数十口深井因井管上升而报废,危及多处文物古迹的安全,2004年末大雁塔向西北倾斜达1064mm。据统计,由于地裂缝造成的直接经济损失累计已达1亿元。

(4)淮北平原地区

淮北平原的阜阳市属于水资源紧缺城市。在20世纪80年代以前,城市饮用水是泉河的地表水。但在80年代以后,随着工业的发展和人口增长,泉河变成了排污沟,城市工业和生活用水不得不改用地下水。据勘查,阜阳城地下水,尤其是埋深250m左右的中深层地下水水质好、水量丰富。这使中深层地下水成为阜阳自来水厂、单位自备井和工业企业争先开采的对象,且取水量逐年增加。现在阜阳市建成区近40km2的范围内有200多m的深井200多眼,密度在5眼/km2以上。虽然中深层地下水允许开采量为每天万m3,但实际开采量已达每天14万m3,超过开采量1倍多。由此造成中深层地下水位持续下降,年平均降幅达,形成了1200km2的地下水水位降落漏斗。

由于上述情况,阜阳城区地面最大沉降量目前已达,居全国第五位,且仍以每年40~50mm速度继续下沉。由此,一系列环境地质问题发生了,如汛期公路桥梁和大型建筑都产生了不均匀沉降,排水管道断裂、深井报废等现象时有发生。位于沉降中心的作为调节颍河水流的阜阳闸,闸底板也已多处开裂,造成闸墩错位,影响了防洪能力。

(5)松嫩平原地区

松嫩平原除大规模开采地下水外,以大庆地区为主的油气开发已引发地面沉降。

松嫩平原的大庆油气开采区位于兴安岭-内蒙地槽褶皱区,小兴安岭-松嫩地块,松嫩拗(断)陷带的中西部断陷区,即松嫩盆地(平原)的中西部,地貌类型单一。总的地势是北高南低,一般地面标高在130m以上,自然坡降在‰左右。受地质构造的控制,自侏罗纪以来沉积了厚度约6000m的含油建造。发育有侏罗系、白垩系、第三系、第四系。白垩系为内陆湖盆沉积的泥岸岩、砂岩,厚度近3000m,是石油和地下热水的主要储存构造和开采层位,开采深度一般在1000~3000m之间。新近系砂岩和砂砾岩以及第四系冲积层,是大庆地区主要供水层位,地下水可开采量为亿m3/a,但现状开采量为亿m3/a,超采严重。其中用于采油工艺的地下水年开采量为亿m3,几乎占地下水开采总量的80%。地下水已形成巨大的降落漏斗,漏斗中心水位降深已达50m,漏斗面积5560km2,几近覆盖大庆市,并波及了与大庆相邻的周边县(市),每年都有许多水井因地下水开采量下降而产生抽气、掉泵现象,继而报废。据不完全统计,因多年采油和不合理开发地下水已使大庆市及其周边地区地下水位下降了16~19m。地下水位的大幅下降是诱发地面变形的主要原因,但由于目前尚未进行油气开发区地面沉降监测,具体沉降数据仍属空白。

存在的问题

由于地面沉降在各地发育过程不同、程度不同、造成的危害不同,各地采取的监测防治措施也不同,而大部分发生地面沉降的地区还没有采取监测防治措施。存在的普遍问题是缺乏区域统一规划及信息沟通,采用的主要仪器设备陈旧、技术落后,很不适应区域地面沉降的发展趋势和国内外监测技术不断更新的形势。

(1)长江三角洲

1)以往地面沉降监测网络是根据地面沉降最早发生于城市等局部地区这一状况进行布设的,未建立统一的地面沉降监测网络。随着地面沉降在整个区域上呈扩展之势,监测工作却未能及时跟上,其局限性日显突出。

2)因行政辖区限制,地面沉降监测网络缺乏区域统一规划,各地监测极不平衡。尤其在长江以北、杭州湾南岸地区(除宁波以外)监测工作是空白,地面沉降情况不明,很可能会走上出现严重灾害后再治理的老路,应引起有关部门的重视。

3)各地包括布网密度和频率等监测方法及标准目前仍然不统一。例如,上海市区一般按1∶5万、局部达到1∶1万精度布网,进行Ⅰ,Ⅱ等水准测量,其频率有每月3次、1次,也有每年4次、2次、1次的;江苏省仅在常州市布设了地面沉降监测Ⅱ等水准测线2条,每月监测1次;杭嘉湖现有的专门用于监测地面沉降的水准网络沿主要公路分布,近年来控制范围可达3500km2,每年监测1次,但受经费影响监测频率尚不能保证。除此之外,上海郊区主要是收集测绘部门、苏锡常三市主要是收集城建和水利等部门的不同时期Ⅲ,Ⅳ等水准测量资料进行地面沉降调查。因此,地面水准测量资料隶属于不同的部门,来源复杂,分布不均,数据参照系的一致性无法保障,且重合点偏少,可靠性差,测量时间不一,因而难以系统、全面、适时、可靠地掌握区域地面沉降的分布和发展规律。

4)基岩标、分层标除在上海市区比较健全,杭嘉湖地区有一座,苏锡常地区初步建成外,苏北几乎空白,故地面沉降的垂向分布及其成因研究显得薄弱,难以提出针对性控沉建议。

5)区域上虽已建立地下水动态监测网,但各地监测井分布疏密不均,精度不一,且近年来监测点屡遭破坏,个别含水层在相当一部分地区包括工作区周边地区缺乏控制性监测设施。

6)目前地面沉降监测采用的技术手段总体上比较落后,效率低、工期长的问题依然存在,难以适时、客观反映日益扩大的监测网的需要。虽然已经引进了一些新技术、新方法,但仍不够成熟、完善,在面上尚未铺开,且在实施过程中亦未有可执行的技术标准或规程。

7)差异性地面沉降所产生的地裂缝是本地区一种新的地质灾害,但现有监测网络密度明显不足。尚需进行加密布设,以便精确记录其发展变化过程,提高数据监测和分析质量。

(2)华北平原

华北平原的问题具体如表所示。

由于华北平原内的各省(市)受行政区划所限,分别在各自的区域内开展工作并提交有关地面沉降等值线图件,在合成有关图件后得出华北平原地面沉降等值线图,从图中可以看出各地由于监测标准和监测手段不同,提交的沉降等值线年份不一,很多地方的沉降量只是推测出来的,在同一个地方得出不同的地面沉降量,这显然不能完全反映现实,因此目前华北平原各地的地面沉降量只能作为参考。

(3)关中平原、淮北平原和松嫩平原

这三大平原均为河流冲洪积平原,地下水的过量开采和油气开采引起的地面沉降对生态环境和经济可持续发展造成了较为严重的影响,但到目前为止这些地区还都没有开展系统的地面沉降专项调查和监测工作。

表 华北平原地面沉降监测设施存在的问题

鉴于存在的上述问题,未来地面沉降监测网络需要在统一规划设计、统一技术标准、统一数据平台的基础上,建立空间上分布合理、技术上先进可行的地面沉降监测网络,在开展传统测量的基础上,应用先进的GPS,InSAR和LIDAR等技术进行监测并进行相互校正,得出精确的地面沉降量,为整个社会经济的可持续发展和城市建设规划提供可靠的地面沉降资料依据。

高铁沉降观测论文的参考文献

论文关键字:工程测量监理 论文摘要:在目前工程建设施工监理行业中,测量是一项非常重要而又必不可少的工作。为了提高施工质量,规范工栏的作业标准,急需制定一个符合工程施工实际并切实可行的测量监理工作规程。...

随着信息化的高速发展,我国的测绘技术也已经从传统的人工测绘发展为数字化测绘,测绘技术取得了突飞猛进的发展,本文探讨了数字测绘技术的优点以及应用。 数字技术测绘技术应用 数字化测绘技术是伴随着计算机、网络技术的发展及测量仪器的智能化而兴起的一门新兴的测绘技术。数字中国、数字城市等概念的提出以及相关数字化工程的启动,特别是全球定位系统(GPS)、地理信息系统(GIS)、摄影测量与遥感(RS)以及数字化测绘和地面测量先进技术的发展,使工程测量的手段和方法产生了深刻的变化。工程测量的服务领域也相应进一步延伸,而且正朝着测量数据采集和处理的自动化、实时化和数字化方向发展。 一、数字化测绘技术的优点 1。它可以通过计算机的模拟,在屏幕上直观生动地(分层)反映出地形、地貌特征以及地籍要素,而且一目了然,基本上改变和弥补了传统产品线条、符号和数字、文字等综合包罗,非具一定专业知识才能读懂的缺陷。 2。数字化测绘产品在使用、维护和更新上具有方便快捷的特性,能够随时保持产品信息的现势性,可以随时补充修改,随时出新图提供使用。 3。根据不同用户的需要,可以对产品的各种要素进行数据再加工,得到不同用途的图件,而且还可以随意对图形进行拼接、缩放,用途更广泛。 4。利用数字化(地形、地籍)测绘成果,作为底图,可在计算机上进行各种规划与设计(如土地资源开发规划和城市道路网的设计等),可方便地进行许多方案的设计与比较,对各种要素的统计、汇总、叠加、分析也方便、准确。在计算机的帮助下,大大提高了测绘生产作业的自动化、科学化、规范化程度,数字化测绘产品的应用水平也将达到新的高度。除此以外,在其他方面还显示出很多优越性,但从以上几点足以可见数字化(地形、地籍)测绘很符合现代社会信息的要求,是现代测绘的发展方向。因而,以前以传统测绘为主的专业测绘单位,现在是以发展数字化测绘技术作为发展的目标与方向。 二、数字化测绘中作业模式的选择问题 数字化测绘设备是全站仪加电子手簿或电子平板,作业分为编码方法和无码方法。编码方法在记录测量数据时必须按碎部点的类型及相互间几何关系输入特征编码,作业员不仅要熟记编码,为正确输入编码,测站与棱镜间还需要较多有关测点的信息交流,因此作业速度慢。尤其当地形复杂、通视困难、对一个地物的测量是不连续的,甚至要经过几个测站的观测才能完成时,作业难度大,出错机会多。无码作业则不需输入任何编码,代之以绘制草图记录所测点位及相邻关系。测站与棱镜间联络较少,测站照准目标操作电子手簿驱动全站仪测取数据后,只需向棱镜处作业员报告碎部点号而已。具有平板测图知识的作业员随棱镜现场绘制草图,轻松且不易出错。测图工作实际上主要在棱镜处进行,测站观测速度很快,一台全站仪可观测2~3个棱镜,相当2~3个图板的平板测图。所以无码作业方法更容易为测量人员所接受。数字化测绘记录设备过去以电子手簿为主,但目前有关电子平板的介绍、报道较多。所谓内外业一体化的作业方法,即利用电子平板(便携机)在野外实现碎部点展绘成图被描绘成最先进的方法。但实际上若电子平板与全站仪联机则由于通视不一定好,加之数字化测图测程较远,绘图员在电子平板上编辑绘图很困难。若靠远距离观察辅之以镜站作业员的描述来绘图,则不仅对电子平板绘图员的技术、经验要求较高,且既慢又容易出错。就这一点而言,类似传统的平板测图的作业方法,不同之处仅在于不需展点、计算机编辑代替手工绘图而已。为解决这一问题,市场上推出了遥控电子平板。虽然采用遥控平板可使绘图员随棱镜现场绘图,但设备投资远高于电子手簿。野外作业速度也低于电子手簿加草图方法。实际上是付出高昂的代价以外业时间换取内业时间。若考虑到野外作业条件艰苦,作。。。。。。 文秘杂烩网

一、中国学术期刊网络出版总库:

1、高铁建设对粤港澳大湾区城市群空间经济关联的改变及影响分析[J]. 李彦,王鹏,梁经伟.  广东财经大学学报. 2018(03)

2、高速铁路、城市发展与区域经济发展不平等——来自中国的经验数据[J]. 鲁万波,贾婧.  华东经济管理. 2018(02)

3、高速铁路建设对长三角经济区城市化发展的影响研究[J]. 徐玉萍,唐青,付来美,陆宇.  华东交通大学学报. 2017(06)

4、高速铁路对中国城市可达性和区域经济的影响[J]. 刘莉文,张明.  国际城市规划. 2017(04)

5、中国“铁路外交”:历史演变与当前类型[J]. 钟准,杨曼玲.  国际关系研究. 2018(03)

6、交通基础设施的区域经济效应与影响机制研究——来自郑西高铁沿线的证据[J]. 刘志红,王利辉.  经济科学. 2017(02)

7、我国高铁“走出国门”的机遇与挑战[J]. 陈安娜.  商业时代. 2014(17)

8、加快铁路发展对节能减排的贡献与责任[J]. 陆东福.  铁道运输与经济. 2009(12)

二、中国图书全文数据库:

1、高铁经济学导论[M]. 中国铁道出版社 , 国家铁路局《高铁经济学导论》编写组, 2018

2、高速铁路概论[M]. 中国铁道出版社 , 佟立本, 2017

3、国外铁路改革[M]. 中国铁道出版社 , 罗庆中, 2013

参考资料来源:知网-中国高铁:新时代经济社会发展的重要引擎

知网-高铁对区域城市经济发展的影响研究

GPS在工程测量中的优化与应用探讨 摘要]鉴于GPS相对于全站仪等传统测量技术具有全天候、高精度、自动化、高效益等优势,本文通过对几个工程测量实例的实 施、对比及分析,就工程测量中如何对GPS技术进行优化与应用进行了探讨,并得出了相关结论。 [关键词]GPS静态定位动态定位工程测量 定位技术的特点和优势 全球定位系统具有性能好、精度高、应用广的特点,是迄今最好的 导航定位系统。随着全球定位系统的不断改进,硬、软件的不断完善,应 用领域正在不断地拓宽,目前已遍及国民经济各种部门,并开始逐步深 入人们的日常生活。经过近10年我国测绘等部门的使用表明,GPS以 全天候、高精度、自动化、高效益等显著特点,赢得广大测绘工作者的信 赖,并成功地应用于大地测量、工程测量、航空摄影测量、运载工具导航 和管制、地壳运动监测、工程变形监测、资源勘察、地球动力学等多种学 科。GPS卫星全球定位系统的全面建成和发展,必将给导航和测绘行业 带来深刻影响。 定位技术在实际测量工作中的对比分析 自2003年单位引进4套美国TRIMBLE(天宝)5700 GPS双频接收 机(静态定位精度5mm+×D)以来,笔者一直从事GPS的定位和 测量工作。分别完成了朝阳区温榆河河道改造工程控制测量、海淀区莲 西商务楼竣工控制测量、顺义残疾人培训中心控制和数字地形测量、燕 山石化控制和数字地形测量、大安山矿区控制和数字地形测量、天津塘 沽滨海旅游度假村控制和数字地形测量、天津地铁勘察定位、京沪高速 铁路勘察定位、沈大客运专线勘察定位、外交部职工住宅楼勘察定位等 大小数十项工程的控制和测量工作。在近几年来的工程测量中,通常都 是天宝3602DR全站仪(测量精度±2'',±(2mm+2ppm×D))和天宝 5700GPS联合进行,两者相互配合,取长补短,弥补对方的不足,从而更 有效发挥各种仪器的使用价值。全站仪测量具有精度高,速度快等优 势,但是受通视条件影响较大,遇有障碍物时需多次转点,使其优势得 不到充分发挥;而GPS测量对通视条件则没有要求,但由于测量数据都 是通过接收卫星信号得来,只有保证仪器能够接收到足够的卫星信号, 才能保证测量成果,因此,它对仪器周边的建筑、构筑物要求较高。全站 仪测量经过几十年的发展,现在各个方面已经是十分成熟,而GPS测量 在国内刚开始不久,好多技术都在试验阶段,各方面都有待完善。虽然 这两种测量技术广泛运用在日常生活中,但两者在实际工程测量中应 用时,在满足国家规范的同时两者之间相对测量精度能达到多少,特别 是GPS测量相对业已成熟的主流的全站仪测量之间的测量误差,笔者 多方查询,各方面文献均未作出相关报道。我们一直试图通过各种方法 和手段,对两种测量之间的关系进行一些研究,希望能对今后的测量工 作起到一个指导和借鉴作用。通过多年的工程实践和试验,笔者选取了 几个比较有代表性的工程实例,对GPS测量和全站仪测量在测量成果 精度上作了一些对比、总结和探讨。 GPS静态定位(四等)和全站仪定位工程对比 静态定位基本上都是用在测量控制上,故本研究分别是朝阳区温 榆河河道改造工程控制测量和海淀区莲西商务楼竣工控制测量的控制 测量数据进行比较,主要比较两种定位方面的坐标成果数据,具体测量 数据如表1、表2所示。通过以上工程实例,可以看出现在的GPS静态 定位(四等)和全站仪定位精度已经很接近,平面和高程误差都能控制 在10mm之内,测距相对误差在7万分之一以上,都能够满足3等以下 导线测量和3等以下水准测量的测量规范和生产要求,但是GPS静态 定位比全站仪定位更高速、高效,应用范围更广阔,经济效益更加明显。 在市场竞争激烈的今天,GPS测量已经成为工程测量的首选手段。 GPS动态测量(RTK)和全站仪测量 动态测量一般用在精度要求较低的测量工程。如地形测量、勘察定 位等方面,本研究选用天津塘沽滨海旅游度假村控制,沈大客运专线勘 察定位和数字地形测量和外交部职工住宅楼勘察定位成果进行比较, 相关测量数据及比较结果如表3、表4和表5所示。通过以上工程实例, 可以看出GPS动态测量(RTK)与全站仪的平面误差基本上在250mm之 内,高程误差在50mm之内。能够满足工程勘察初勘平面误差 m,高 程误差5cm,详勘平面误差,高程误差5cm的规范要求,同时还 能满足常规地形测量1∶500比例尺以上地形测量的工程测量规范要求。 GPS动态测量可以很好避免全站仪测量时繁琐复杂的分级控制过程, 能够很好克服测量点之间的通视问题,能减少一半的测量人员,从而节 约大量工作时间、大幅提高测量工作效率。 在工程测量中的优化经验与思路 通过对以上的测量数据对比和经验总结,我们对GPS测量定位技 术的性能、精度和使用条件有了更进一步的了解,这对我们后续的许多 工程施工提供了很好的依据,我们可以针对不同的工程技术要求,制定 不同的施测方案,在确保工程质量的同时,最大限度降低生产成本,使 单位的经济效益得到大幅提高。后来进行的大兴黄 村动车段勘察定位工程中,施工场地建筑密集,通 视条件极差,我们根据设计规定平面误差不超过1米、高程误差不超过 10cm的技术要求,利用RTK动态定位技术,有效克服了测量点之间通 视不畅的问题,测量人员也从两个测量组减少到一个组,五百多个钻孔 定位在三天时间就全部完成。同样的工作量如果要使用常规全站仪定 位,在如此困难的施测条件下,两个测量组估计七天才能完成。 团河行宫数字地形测量工程也是利用前面的理论成果,我们因地 制宜的制定出相应的施测方案。根据场地位于交通条件极不便利的郊 区且场地附近没有控制点的情况,利用GPS静态定位从6公里外把城 区的控制点引测过来,然后再用RTK动态技术进行数字地形测量,一 个测量组两天时间就完成了1平方多公里的地形测量。如果用全站仪 测量,仅控制测量一项就需一个测量组工作四~五天,加上地形测量至 少要花费一周的时间。利用以上的测量结论,沈大客运专线勘察定位、 外交部职工住宅楼勘察定位等工程都在较短时间内快速、高效地完成, 充分验证了上述经验总结的正确性。 3.结论 通过多年来对GPS定位技术的应用,可以总结出以下几点: (1)测量成果相对精度高,质量可靠。点位范围可以方便地控制在 米之内,并且点与点之间误差均为随机误差,不会产生累积误差。 (2)定位系统可以全天候作业,不受视线通视影响。 (3)可实时提供定位点的坐标及其点位精度,方便快捷,定位情况 一目了然。 (4)野外作业简单,效率高,自动化程度高,大大减小了劳动强度, 可节约大量的人力物力资源。 (5)作业过程中的一些注意事项: a.测量定位前应该做好作业地区的星历预报分析,明确测量的最 佳时段,通常卫星数量少于6颗时,不宜进行作业。因为卫星数量过少, 会对观测结果产生较大影响,测量成果精度不高不说,还会给内业解算 带来许多麻烦。 b.静态观测时,对于空旷、无干扰的地区,至少要连续观测30分钟 以上;对于城市建筑密集、干扰众多地区,最少要观测1个小时以上,才 能确保外业观测质量。 动态测量(RTK)时一定要在初始化完成后,在卫星fixed(固 定)情况下测量,如果在float(浮动)情况下测量,结果差别很大,少则几十 公分,多的有近十米。 (6)有待进一步研究之处: GPS实时静态定位在变形测量(位移、沉降)中的应用,它和全站仪 定位之间的关系。 不同的解算软件对GPS定位结果的影响。 参考文献 [1]中国有色金属工业协会主编《.工程测量规范》(GB50026-2007) [M].北京:中国计划出版社,2008. [2]北京市测绘设计研究院主编《.全球定位系统城市测量技术规 程》(CJJ73-97)[M].北京:中国建筑工业出版社,1997. [3]李天文.GPS原理及应用[M].北京:科学出版社,2003. [4]胡伍生,高成发.GPS测量原理及其应用[M].北京:人民交通出 版社,2002.

地基差异沉降研究论文提纲

你好,本人也是学土木的,这篇文章为原创,在百度或谷歌等网站绝对找不到,供你参考、修改,实为抛砖引玉之作,希望你能满意。 不良地基的处理与加固方法[摘 要] 论述了在建造建筑物之前,针对不良地基土及异常地基土的处理方法及加固方案。[关键词]不良地基;异常地基;地基处理;施工工艺;基础刚度Abstract:This paper the treatment schemes and reinforcing means of badness and abnormality foundation before thebuilding words:badness foundation; abnormality foundation; foundation treatment; construction technique; stiffness 在现实工程中,经常会出现不良地基及异常地基的情况,如若对其处理不当将对建筑物造成不良影响。本文将对不良地基及异常地基情况的处理做一简要介绍,以便能更好地解决工程实际中地基出现的问题。1 不良地基的处理1·1 置换法1·1·1 换填法:就是将表层不良地基土挖除,然后回填有较好压密特性的土进行压实或夯实,形成良好的持力层,从而改变地基的承载力特性,提高抗变形和稳定能力。 施工要点:将要转换的土层挖尽、注意坑边稳定;保证填料的质量;填料应分层夯实。1·1·2 振冲置换法:利用专门的振冲机具,在高压水射流下边振边冲,在地基中成孔,再在孔中分批填入碎石或卵石等粗粒料形成桩体。该桩体与原地基土组成复合地基,达到提高地基承载力减小压缩性的目的。 施工注意事项:碎石桩的承载力和沉降量很大程度取决于原地基土对其的侧向约束作用,该约束作用越弱,碎石桩的作用效果越差,因而该方法用于强度很低的软粘土地基时必须慎重行事。1·1·3 夯(挤)置换法:利用沉管或夯锤的办法将管(锤)置入土中,使土体向侧边挤开,并在管内(或夯坑)放人碎石或砂等填料。该桩体与原地基土组成复合地基,由于挤、夯使土体侧向挤压,地面隆起,土体超静孔隙水压力提高,当超静孔隙水压力消散后土体强度也有相应的提高。 施工注意事项:当填料为透水性好的砂及碎石料时,是良好的竖向排水通道。1·2 预压法1·2·1 堆载预压法:在建造建筑物之前,用临时堆载(砂石料、土料、其他建筑材料、货物等)的方法对地基施加荷载,给予一定的预压期。使地基预先压缩完成大部分沉降并使地基承载力得到提高后,卸除荷载再建造建筑物。 施工工艺与要点:①预压荷载一般宜取等于或大于设计荷载;②大面积堆载可采用自卸汽车与推土机联合作业,对超软土地基的第一级堆载用轻型机械或人工作业;③堆载的顶面宽度应小于建筑物的底面宽度,底面应适当放大;⑤作用于地基上的荷载不得超过地基的极限荷载。1·2·2 降水法:降低地下水位可减少地基的孔隙水压力增加上覆土自重应力,使有效应力增加,从而使地基得到预压。这实际上是通过降低地下水位,靠地基土自重来实现预压目的。 施工要点:一般采用轻型井点、喷射井点或深井井点;当土层为饱和粘土、粉土、淤泥和淤泥质粘性土时,此时宜辅以电极相结合。1·3 压实与夯实法以配合堆载预压用于加速饱和粘性土地基的固结1·3·1 表层压实法:采用人工夯,低能夯实机械、碾压或振动碾压机械对比较疏松的表层土进行压实。也可对分层填筑土进行压实。当表层土含水量较高时或填筑土层含水量较高时可分层铺垫石灰、水泥进行压实,使土体得到加固。1·3·2 重锤夯实法:重锤夯实就是利用重锤自由下落所产生的较大夯击能来夯实浅层地基,使其表面形成一层较为均匀的硬壳层,获得一定厚度的持力层。 施工要点:施工前应试夯,确定有关技术参数,如夯锤的重量、底面直径及落距、最后下沉量及相应的夯击遍数和总下沉量;夯实前槽、坑底面的标高应高出设计标高;夯实时地基土的含水量应控制在最优含水量范围内;大面积夯时应按顺序;基底标高不同时应先深后浅;冬季施工时,对土已冻结时,应将冻土层挖去或通过烧热法将土层融解;结束后,应及时将夯松的表土清除或将浮土在接近1m的落距夯实至设计标高。 1·3·3 强夯:强夯是强力夯实的简称。将很重的锤从高处自由下落,对地基施加很高的冲击能,反复多次夯击地面,地基土中的颗粒结构发生调整,土体变为密实,从而能较大限度提高地基强度和降低压缩性。其施工工艺流程:①平整场地;②铺级配碎石垫层;③强夯置换设置碎石墩;④平整并填级配碎石垫层;⑤满夯一遍;⑥找平,并铺土工布;⑦回填风化石渣垫层,用振动碾碾压八遍。一般在大型强夯施土前,都应选择面积不大于400m2的场地进行典型试验,以便取得数据,指导设计与施工。1·4 挤密法1·4·1 振冲密实法:利用专门的振冲器械产生的重复水平振动和侧向挤压作用,使土体的结构逐步破坏,孔隙水压力迅速增大。由于结构破坏,土粒有可能向低势能位置转移,这样土体由松变密。1·4·2 施工工艺:①平整施工场地,布置桩位。②施工车就位,振冲器对准桩位。③启动振冲器,使之徐徐沉入土层,直至加固深度以上30~50cm,记录振冲器经过各深度的电流值和时间,提升振冲器至孔口。再重复以上步骤1~2次,使孔内泥浆变稀。④向孔内倒入一批填料,将振冲器沉入填料中进行振实并扩大桩径。重复这一步骤直至该深度电流达到规定的密实电流为止,并记录填料量。⑤将振冲器提出孔口,继续施工上节桩段,一直完成整个桩体振动施工,再将振冲器及机具移至另一桩位。⑥在制桩过程中,各段桩体均应符合密实电流、填料量和留振时间等三方面的要求,基本参数应通过现场制桩试验确定。⑦施工场地应预先开设排泥水沟系,将制桩过程中产生的泥水集中引入沉淀池,池底部厚泥浆可定期挖出送至预先安排的存放地点,沉淀池上部比较清的水可重复使用。⑧最后应挖去桩顶部1m厚的桩体或用碾压、强夯等方法压实、夯实,铺设并压实垫层。1·4·3 沉管砂石桩(碎石桩、灰土桩、OG桩、低标号桩等):利用沉管制桩机械在地基中锤击、振动沉管成孔或静压沉管成孔后,在管内投料,边投料边上提(振动)沉管形成密实桩体,与原地基组成复合地基。1·4·4 夯击碎石桩(块石墩):利用重锤夯击或者强夯方法将碎石(块石)夯入地基,在夯坑里逐步填人碎石(块石)反复夯击以形成碎石桩或块石墩。2 异常情况的地基处理2·1 松土坑(填土,墓穴,淤泥等)的处理2·1·1 将坑中松软虚土挖除,使坑底及槽帮四壁均见天然老土,然后采用与坑边的天然土压缩性相近的材料回填,回填材料及做法:①当地基为砂土时,用砂或砂石回填,回填每层厚度不大于20cm并应分层洒水夯实或用平板振捣器夯实。②当地基为较密实的干硬性粘土时,可用3∶7灰土分层夯实。③当地基为中密可塑粘土时,用1∶9灰土分层夯实回填。④当虚土挖除后,如遇地下水,则水下部分采用级配砂石回填,水上部分仍可用灰土夯实回填。2·1·2 当单独柱基下有虚土坑时,可按下述情况处理①如坑深度大于槽宽,或坑面积大于槽底面积的1/3时,宜将槽底全部落到坑底。②在粘性土中,两相邻单独柱基的槽底高差不得大于相邻柱基的净距,否则应将较浅的柱基槽底相应落深,使两柱基槽底标高取平。③在砂性土中,两相邻单独柱基的槽底高差不得大于净距的1/2,否则两柱基的槽底宜取平。④如坑底过深,可考虑加大基础底面积,或与相邻柱基础连在一起做成联合基础。2·2 局部范围内有硬土或旧结构物时的处理当基底下有局部过硬的土质或旧结构物(如旧基础,老灰土,化粪池,旧砖窑,压实的路面,大树根,大块石等)时,应全部挖除,再按上述方法回填或加深基础(应指出的是,不能认为在地基处理时,只须对松软的地基做处理。对过于坚实的地基如不做处理,也会引起建筑物产生较大的不均匀沉降)。2·3 设备管道的处理当上下水等设备管道在槽底以上穿过时,应在基础墙处管道上方留出大于房屋预估沉降量的空隙,以避免建筑物产生沉降时引起管道损坏,同时,应采取防止管道漏水的措施,以避免漏水浸湿地基而引起不均匀沉降。当管道基础穿过基础时,可将基础局部落深,使管道穿过基础墙,同时,管道上方应按上述原则留足够的空隙。[参考文献][1] 董爱飞. 常用地基处理技术综述[J]. 建筑, 2008, (03) . [2] 梁亚明,刘英华. 刚性桩复合地基在软土地基处理中的应用[J]. 科学之友(B版), 2008, (03) . [3] 王剑峰,赵竹莹. 浅谈CFG桩地基处理及工程实例[J]. 林业科技情报, 2008, (01) . [4] 曹冰. 复合地基技术在北良港淤泥吹填区地基处理中的应用研究[J]. 港口科技, 2008, (03) . [5] 钟毅. 砾料石灰土结构在软土地基处理中的应用研究[J]. 北方交通, 2008, (03) . [6] 刘震,郑忠钦. CCMG地基处理在上海长江大桥桥头路基施工中的应用[J]. 上海公路, 2008, (01) . [7] 王刚,玄力,张广范,张跃宇. CFG桩在地基处理中的应用实例[J]. 西部探矿工程, 2008, (05) . [8] 吴剑,周健,崔积弘,茅永德. 上海港罗泾港区地基处理的试验研究[J]. 工业建筑, 2007, (S1) . [9] 冯国栋. 浅谈地基不均匀沉降的原因及防治[J]. 科技创新导报, 2008, (08) . [10] 苑克伟,李国,王积鑫. 粉喷桩在箱涵地基处理中的应用[J]. 北方交通, 2008, (03) .

1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。

各类工程的勘察基本要求 房屋建筑和构筑物 房屋建筑和构筑物(以下简称建筑物)的岩土工程勘察,应在搜集建筑物上部荷载、功能特点、结构类型、基础形式、埋置深度和变形限制等方面资料的基础上进行。其主要工作内容应符合下列规定: 1 查明场地和地基的稳定性、地层结构、持力层和下卧层的工程特性、土的应力历史和地下水条件以及不良地质作用等; 2 提供满足设计、施工所需的岩土参数,确定地基承载力,预测地基变形性状; 3 提出地基基础、基坑支护、工程降水和地基处理设计与施工方案的建议; 4 提出对建筑物有影响的不良地质作用的防治方案建议; 5 对于抗震设防烈度等于或大于6 度的场地,进行场地与地基的地震效应评价。 建筑物的岩土工程勘察宜分阶段进行,可行性研究勘察应符合选择场址方案的要求;初步勘察应符合初步设计的要求;详细勘察应符合施工图设计的要求;场地条件复杂或有特殊要求的工程,宜进行施工勘察。 场地较小且无特殊要求的工程可合并勘察阶段。当建筑物平面布置已经确定,且场地或其附近已有岩土工程资料时,可根据实际情况,直接进行详细勘察。 可行性研究勘察,应对拟建场地的稳定性和适宜性做出评价,并应符合下列要求: 1 搜集区域地质、地形地貌、地震、矿产、当地的工程地质、岩土工程和建筑经验等资料; 2 在充分搜集和分析已有资料的基础上,通过踏勘了解场地的地层、构造、岩性、不良地质作用和地下水等工程地质条件; 3 当拟建场地工程地质条件复杂,已有资料不能满足要求时,应根据具体情况进行工程地质测绘和必要的勘探工作; 4 当有两个或两个以上拟选场地时,应进行比选分析。 初步勘察应对场地内拟建建筑地段的稳定性做出评价,并进行下列主要工作: 1 搜集拟建工程的有关文件、工程地质和岩土工程资料以及工程场地范围的地形图; 2 初步查明地质构造、地层结构、岩土工程特性、地下水埋藏条件; 3 查明场地不良地质作用的成因、分布、规模、发展趋势,并对场地的稳定性做出评价; 4 对抗震设防烈度等于或大于6 度的场地,应对场地和地基的地震效应做出初步评价; 5 季节性冻土地区,应调查场地土的标准冻结深度; 6 初步判定水和土对建筑材料的腐蚀性; 7 高层建筑初步勘察时,应对可能采取的地基基础类型、基坑开挖与支护、工程降水方案进行初步分析评价。 初步勘察的勘探工作应符合下列要求: 1 勘探线应垂直地貌单元、地质构造和地层界线布置; 2 每个地貌单元均应布置勘探点,在地貌单元交接部位和地层变化较大的地段,勘探点应予加密; 3 在地形平坦地区,可按网格布置勘探点; 4 对岩质地基,勘探线和勘探点的布置,勘探孔的深度,应根据地质构造、岩体特性、风化情况等,按地方标准或当地经验确定;对土质地基,应符合本节第条~第 条的规定。 初步勘察勘探线、勘探点间距可按表 确定,局部异常地段应予加密。 初步勘察勘探孔的深度可按表 确定。 当遇下列情形之一时,应适当增减勘探孔深度: 1 当勘探孔的地面标高与预计整平地面标高相差较大时,应按其差值调整勘探孔深度; 2 在预定深度内遇基岩时,除控制性勘探孔仍应钻入基岩适当深度外,其他勘探孔达到确认的基岩后即可终止钻进; 3 在预定深度内有厚度较大,且分布均匀的坚实土层(如碎石土、密实砂、老沉积土等)时,除控制性勘探孔应达到规定深度外,一般性勘探孔的深度可适当减小; 4 当预定深度内有软弱土层时,勘探孔深度应适当增加,部分控制性勘探孔应穿透软弱土层或达到预计控制深度; 5 对重型工业建筑应根据结构特点和荷载条件适当增加勘探孔深度。 初步勘察采取土试样和进行原位测试应符合下列要求: 1 采取土试样和进行原位测试的勘探点应结合地貌单元、地层结构和土的工程性质布置,其数量可占勘探点总数的1/4~1/2; 2 采取土试样的数量和孔内原位测试的竖向间距,应按地层特点和土的均匀程度确定;每层土均应采取土试样或进行原位测试,其数量不宜少于6 个。 初步勘察应进行下列水文地质工作: 1 调查含水层的埋藏条件,地下水类型、补给排泄条件,各层地下水位,调查其变化幅度,必要时应设置长期观测孔,监测水位变化; 2 当需绘制地下水等水位线图时,应根据地下水的埋藏条件和层位,统一量测地下水位; 3 当地下水可能浸湿基础时,应采取水试样进行腐蚀性评价。 详细勘察应按单体建筑物或建筑群提出详细的岩土工程资料和设计、施工所需的岩土参数;对建筑地基做出岩土工程评价,并对地基类型、基础形式、地基处理、基坑支护、工程降水和不良地质作用的防治等提出建议。主要应进行下列工作: 1 搜集附有坐标和地形的建筑总平面图,场区的地面整平标高,建筑物的性质、规模、荷载、结构特点、基础形式、埋置深度、地基允许变形等资料; 2 查明不良地质作用的类型、成因、分布范围、发展趋势和危害程度,提出整治方案的建议; 3 查明建筑范围内岩土层的类型、深度、分布、工程特性、分析和评价地基的稳定性、均匀性和承载力; 4 对需进行沉降计算的建筑物,提供地基变形计算参数,预测建筑物的变形特征; 5 查明埋藏的河道、沟浜、墓穴、防空洞、孤石等对工程不利的埋藏物; 6 查明地下水的埋藏条件,提供地下水位及其变化幅度; 7 在季节性冻土地区,提供场地土的标准冻结深度; 8 判定水和土对建筑材料的腐蚀性。 对抗震设防烈度等于或大于6 度的场地,勘察工作应按本规范第 节执行;当建筑物采用桩基础时,应按本规范第 节执行;当需进行基坑开挖、支护和降水设计时,应按本规范第 节执行。 工程需要时,详细勘察应论证地基土和地下水在建筑施工和使用期间可能产生的变化及其对工程和环境的影响,提出防治方案、防水设计水位和抗浮设计水位的建议。 详细勘察勘探点布置和勘探孔深度,应根据建筑物特性和岩土工程条件确定。对岩质地基,应根据地质构造、岩体特性、风化情况等,结合建筑物对地基的要求,按地方标准或当地经验确定;对土质地基,应符合本节第 条~第条的规定。 详细勘察勘探点的间距可按表 确定。 详细勘察的勘探点布置,应符合下列规定: 1 勘探点宜按建筑物周边线和角点布置,对无特殊要求的其他建筑物可按建筑物或建筑群的范围布置; 2 同一建筑范围内的主要受力层或有影响的下卧层起伏较大时,应加密勘探点,查明其变化; 3 重大设备基础应单独布置勘探点,重大的动力机器基础和高耸构筑物,勘探点不宜少于3 个; 4 勘探手段宜采用钻探与触探相配合,在复杂地质条件、湿陷性土、膨胀岩土、风化岩和残积土地区、宜布置适量探井。 详细勘察的单栋高层建筑勘探点的布置,应满足对地基均匀性评价的要求,且不应少于4 个;对密集的高层建筑群,勘探点可适当减少,但每栋建筑物至少应有1 个控制性勘探点。 详细勘察的勘探深度自基础底面算起,应符合下列规定: 1 勘探孔深度应能控制地基主要受力层,当基础底面宽度不大于5m 时,勘探孔的深度对条形基础不应小于基础底面宽度的3 倍,对单独柱基不应小于 倍,且不应小于5m;2 对高层建筑和需作变形计算的地基,控制性勘探孔的深度应超过地基变形计算深度;高层建筑的一般性勘探孔应达到基底下~ 倍的基础宽度,并深入稳定分布的地层; 3 对仅有地下室的建筑或高层建筑的裙房,当不能满足抗浮设计要求,需设置抗浮桩或锚杆时,勘探孔深度应满足抗拔承载力评价的要求; 4 当有大面积地面堆载或软弱下卧层时,应适当加深控制性勘探孔的深度; 5 在上述规定深度内当遇基岩或厚层碎石土等稳定地层时,勘探孔深度应根据情况进行调整。 详细勘察的勘探孔深度,除应符合 条的要求外,尚应符合下列规定: 1 地基变形计算深度,对中、低压缩性土可取附加压力等于上覆土层有效自重压力20%的深度;对于高压缩性土层可取附加压力等于上覆土层有效自重压力10%的深度; 2 建筑总平面内的裙房或仅有地下室部分(或当基底附加压力p0≤0 时)的控制性勘探孔的深度可适当减小,但应深入稳定分布地层,且根据荷载和土质条件不宜少于基底下~ 倍基础宽度; 3 当需进行地基整体稳定性验算时,控制性勘探孔深度应根据具体条件满足验算要求; 4 当需确定场地抗震类别而邻近无可靠的覆盖层厚度资料时,应布置波速测试孔,其深度应满足确定覆盖层厚度的要求; 5 大型设备基础勘探孔深度不宜小于基础底面宽度的2 倍; 6 当需进行地基处理时,勘探孔的深度应满足地基处理设计与施工要求;当采用桩基时,勘探孔的深度应满足本规范第 节的要求。 详细勘察采取土试样和进行原位测试应符合下列要求: 1 采取土试样和进行原位测试的勘探点数量,应根据地层结构、地基土的均匀性和设计要求确定,对地基基础设计等级为甲级的建筑物每栋不应少于3 个; 2 每个场地每一主要土层的原状土试样或原位测试数据不应少于6 件(组); 3 在地基主要受力层内,对厚度大于 的夹层或透镜体,应采取土试样或进行原位测试; 4 当土层性质不均匀时,应增加取土数量或原位测试工作量。 基坑或基槽开挖后,岩土条件与勘察资料不符或发现必须查明的异常情况时,应进行施工勘察;在工程施工或使用期间,当地基土、边坡体、地下水等发生未曾估计到的变化时,应进行监测,并对工程和环境的影响进行分析评价。 室内土工试验应符合本规范第11 章的规定,为基坑工程设计进行的土的抗剪强度试验,应满足本规范第 条的规定。 地基变形计算应按现行国家标准《建筑地基基础设计规范》(GB50007)或其他有关标准的规定执行。 地基承载力应结合地区经验按有关标准综合确定。有不良地质作用的场地,建在坡上或坡顶的建筑物,以及基础侧旁开挖的建筑物,应评价其稳定性。

浅谈几种特殊土地基的工程特性及地基处理论文

摘要:随着科学技术的进步和发展,建筑行业进入了一个新的时代。建筑工程施工过程中,首先要考虑的就是地基问题,只有确定地基土壤的种类,才能制定正确的施工方法,从而保证工程能够顺利进行。但对于比较特殊的地基土壤,就要使用特殊的方法。例如:湿陷性黄土、膨胀土、粘性红土等都是一些比较特殊的土壤,只有了解土壤的特性才能制定出相应的处理办法。

关键词:特殊土壤;工程特性;地基处理

在现代化的城市当中,人们需要各种各样的建筑,例如:居民楼、办公楼、标志性建筑等等。每—种建筑所需要的地基都是不—样的,这就需要特殊地基特殊处理。要想建筑工程,必须先打地基,要打地基,必须先了解地基的特陛。地基的特胜对于整介工笫酬毡兑是非常关踺的,只有地基扣碍牢固,才能保证工程的质量。本文就几种特殊地基土壤的特陛及处理办进行讨论。

1湿陷性黄土

工程特性

湿陷性黄土是一种特殊陛质的土,在一定的压力下,下沉稳定后,受水浸湿,土结构迅速破坏,并产生显著附加下沉,故在湿陷性黄土场地上进行建设,应根据建筑物的重要陛、地基受水浸湿可能洼的大小和在f~fJ期间对不均匀沉降限制的严格程度,采取以地基处理为主的综合陛措施,防止地基湿陷列建舅澎伊叫新猪。湿陷性黄土的颗粒组成。我国湿陷性黄土的颗粒主要为粉土颗粒,占总重量约50~700/0,而粉土颗粒中又以的粗粉土颗粒为多,占总重约,小于的粘土颗粒较少,占总重约1428%,大于 mm的细砂颗粒占总重在5%以内,基本上无大于025mm的中砂颗粒。黄土是干旱或半干旱气候条件下的沉积物,在生成初期,土中水分不断蒸发,土孔隙中的毛细作用,使水分逐渐集聚到较粗躬粥E的接触点处。同时,细粉粒、粘粒和—趔纠辞蒯趣廷也不同程度的集聚到粗颗粒的接触戋眵成胶结。湿陷性黄土的湿度和密度。湿陷眭黄土之所以在—定压力下受水时产生显著附加下沉,除上述在遇水时颗粒接触点处胶结物的软化作用外,还在于土的欠压密状态,干旱气候条件下,无论是风积或是坡积和洪积的.黄土层,其蒸发影响深度大于大气降水的影响深度,在其形成过程中,充分的压力和适宜的湿度往往不能同时具备,导致土层的压密欠佳。接近地表2。3米的土层,受大气降水的影响,一般具有适宜压密的湿度,但此时上覆土重很小,土层得不到充分的压密,便形成了低湿度、高孔隙率的湿陷性黄土。湿陷性黄土在天然状态下保持低湿和高孔隙率是其产生湿陷的充分条件。我国湿陷性黄土分布地区大部分年平均降雨量约在250~500mm,而蒸发量却远远超过降雨量,因而湿陷性黄土的天然湿度—般在塑限含水量左右,或更低—些。

处理办法

利用灰土、素土回填。这是—种比饺常用的方法,利用灰土和素土回填就是把地基底部的湿陷性土层全部挖出,或者挖到设计的深度,之后利用灰土、素土在开挖的地方回填,并且逐步的夯实基础,同时,施工人员要根据不同的回填土采用不同的处理参数,这样的处理力{去得到了广泛的使用,并且已经取得了较好的效果。通常垫层的厚度是1~3米。这种方法最大的好处就是可以消除垫层范围内的湿陷性,’在施工的时候也比较方便。但施工人员应注意的是:—定要严格控制回填土的质量,对于灰土、素土层的最优含水量与最大干密度进行掌控,否则的话,就没有办法达到预期的处理多兜果了。122预湿陛方法。在叠显陷性黄土当中,有—种叫做自重湿陷性黄土的地基土。当建筑]:程遇到自重湿陷性黄土的时候,就可以采用预湿胜的方法解决。所谓的预湿阻功怯,就是越龟筑沲工以前,对自重湿陷性黄土进行先行的浸湿处理,使自重湿陷性黄土因为自重的作用发生人为的湿陷,之后施工人员就可以等湿陷壳1分以后,再进行基础的施工。在现实的应用当中,这科叻法可以消除地-F劭眯以外黄土的自重湿陷性,但是表面数米以内的湿陷性黄土因为压力不够,仍然具有一定的湿陷性,需要进行二次处理。这种方法的应用只有在I遇到自重湿陷性黄土的时候才可以使用,否则会影响整个工程的进度。

2膨胀土

工程特性

膨胀土指的是具有较大的吸水后显著膨胀、失水后显著收缩特陡的高液限粘土。膨胀土粘粒成份主要由强亲水陆矿物质组成,并且具有显著.胀缩眭的粘陛土。该土具有吸水膨胀、失水收缩并往复变形的性质,对建澈旧锐刎翻出的破坏作用不可低估,并且构成的破坏是不易修复的。为了保证瑶豺铷筑物在较长时间内基础的稳定和安全的目的,必须解决因膨胀土而造成的一系列工程问题。含水量。膨胀土之所以具有很高的膨胀潜力,与它的含水量有密不可分的关系。当膨胀土的含水量不变的时候,就不会雨叶搁职的变化。建筑施工的时候,建造在含水量夕R筻的粘土上的建筑物不会受到由膨胀引起的破坏。_旦粘土的含水量改变,立刻就会产生垂直和水平两个方向的体积膨胀,含水量只需要百分之一到百分之二的变化,就足够引起有害的膨胀。在许多地区,膨胀土对于-人f门的危害是比较巨大的,建造在膨胀土上的地板,在雨季到来的时候,土壤中的含水量增加所引起的地板开裂、翘起现象屡见不鲜,由此可见,膨胀土不但特殊,而且还具有较强的危害性。

处理办法

换土回填。因为膨胀土具有含水量变化的特陛,所以,施工人员可以采用换土回填的力谌进行处理。主要是采用灰土进行置换,施工人员要根据施工区域的地质情况来确定置换的参数。除了采用灰土置换以外,施工人员还可以采用砂石垫层的处理方法,要注意的是,砂石的厚度应该大于300mm,而且宽度应该大于地基底部的宽度。

利用化学方法。施人员可以利用化学的方法改良土壤,也就是说利用拌合实惠的方法改良膨胀土层,或者是用石灰砂桩和石灰浆压注对膨胀土进行干预,消除膨胀土形变。

挖除法。这种方法比饺简单,就是对厚度较小的膨胀土层进行挖除,从而消除膨胀土的影响。

3 黏性红土

3;1工程特陛

红粘土主要是呈现棕红色、褐黄色,覆盖于碳酸盆岩系的岩层上,液限较高的塑出砧性土,此类粘土为原生红粘土。而液限较低的则可称之为次生红粘土。红粘土的产生和分布主要是因为地质历史气候因素的影响,在气候影响下碳酸盆母岩的上层产生风化而形成。红粘土的工程特征是:塑性高、空隙比大、天然饱和度为90%以上,使得红粘土构成一相体系;土质指标变化幅度大。

处理力法

在天然地基上施工的时候,应将地基做浅埋处理。目的是考虑到利用具备较高承载力的表面坚硬或者硬塑性土质作为持力层。基底以下保持原有较厚的硬质土层,使其附加的应力相对较小,以此使得下卧层满足设计变形要求;基础底部土层厚度变化较大的时候,应保持相对较厚的可压缩层,减少相邻点之间的沉降差异。

结束语

地基的好坏决定着—个工程的好坏,因此,对于地基一定要严谨的对待。上述的几种土壤都是比较特殊的土壤,在施工的时候,尤其要注意处理力法。虽然上述的处理办法得到了广泛的使用,但是具体的措施讶≥匣要在实际睛况中才能确定。上述三种特殊的土壤对于建筑工程的影响是比较大的,所以,还是应该多探索—些更加实用并且简单的处理办法。

参考文献

[1]王银梅湿陷性黄土地基处理新途径的探讨Ⅱl中国地质灾害与防治学报,2008(4).

[2]钟赣斌,特殊黄土地基的处理与加固技术m中国高新技术企业,2009(24).

[3]史宏民,湿陷性黄土工程性质及其地基处理方法简述口l山西水利,2010(2).

地下水引起沉降研究现状论文

现状

据不完全统计,我国目前已有96个城市和地区发生了不同程度的地面沉降,其中约80%的地面沉降分布在东部地区。从南方的海口到东北的哈尔滨均出现了地面沉降现象,地面累计沉降量在460~2780mm之间,地面沉降速度为10~56mm/a。据长期监测和研究表明,地面沉降主要由不合理开采地下水所致,而地壳活动、地表动(静)荷载、工程建设、自然作用等其他因素造成的地面沉降只占总沉降量的5%~20%。目前,处于长江三角洲、华北平原、关中平原、淮北平原和松嫩平原大多数城市,地面沉降正在大面积的发生和发展之中。尤其是长江三角洲和华北平原地区地面沉降的发生发展速度令世界关注,造成的经济损失巨大。

(1)长江三角洲地区

长江三角洲是我国发生地面沉降现象最具典型意义的地区之一。其中,上海是我国发生地面沉降现象最早、影响最大、危害最深的城市,江苏的苏锡常与浙江的杭嘉湖及宁绍地区也相继产生了地面沉降灾害。20世纪90年代末,苏锡常、杭嘉湖及上海市累积沉降超200mm的范围已达该区面积的1/3,面积近1万km2,并在区域上有连成一片的趋势。以上海的市中心、江苏的苏锡常、浙江的嘉兴为代表的沉降中心区的最大累积沉降量分别已达,和。

1990年后苏锡常地区还发生了特有的地质灾害——地裂缝,目前已发现20余处地裂缝灾害,发育规模较大的地区已形成长数千米,宽数十米不等的地裂缝带,且均与过量开采地下水造成不均匀地面沉降有关。

长江三角洲地区的地面沉降主要是开发利用地下水引起的。20世纪70年代以前,城市地区的纺织业发达,但能源紧缺,故大量集中开采地下水用于纺织厂的空调降温,导致城市地区严重的地面沉降。20世纪80年代以来,随着改革开放城市周边地区乡镇企业的兴起,不仅其本身大量开采利用地下水,而且向地表河道不断排放污水,导致水资源极为丰富的三角洲水网地区地表水质量普遍下降,使整个区域成为水质型缺水地区,加剧了广大农村地区居民用水紧张,促使地下水开采量的急剧增加,产生了区域性地下水水位降落漏斗,故由此诱发的地面沉降目前已成为以城市为中心的区域性地质灾害。

长江三角洲地区是我国开展地面沉降勘察、监测、研究最早的地区。自1961年以来,为进行上海市地面沉降调查,开始系统地建立区域地下水动态监测网,兴建或利用已有地面水准点进行市区地面沉降监测,逐步建立基岩标、分层标监测不同土层的变形特征。苏锡常和杭嘉湖平原地区地下水动态监测网始建于20世纪80年代初期,并随着各类水工环调查评价工作的展开,得到了不断补充。同时,在城市地区如嘉兴、常州、苏州等采用水准测量进行定期或不定期的地面沉降监测,并通过收集水利、城建、交通等部门根据各自目的在不同时间和不同地区进行的水准测量资料,以及开展实地踏勘来进一步进行地面沉降调查。

1999年以来中国地质调查局部署的长江三角洲地区(长江以南)地面沉降监测网络项目所做的调整和进一步建设,基本构成了本地区地面沉降监测网络的格局。

目前长江三角洲地区地下水动态监测网络已覆盖全区,由地面精密水准监测网以及地下不同深度的基岩标、分层标在部分重要城市及地面沉降严重地区构成的立体监测系统已经粗具雏形。随着新技术新方法的引进,GPS、自动化监测以及信息技术已经开始在该地区地面沉降监测中得到了应用。

(2)华北平原地区

华北平原包括北京、天津、河北、山东和河南等省(市)的平原区,面积14万km2。地面沉降发生在北京、天津、河北和山东等地。引起华北平原地面沉降的原因可分为自然因素及人为因素。自然因素中,包括构造活动、软弱土层的自重压密固结、海平面上升等;人为因素包括过量开采地下水、地下热水及油气资源和大规模工程建设等。据地震资料,本区由于构造活动引起的地面沉降速率仅为1~2mm/a。因此,就本区而言,人为因素尤其是深层地下水超量开采是导致地面沉降的主要原因。

华北平原地面沉降的产生和发展过程与地下水的开采过程基本保持同步或略为滞后。地面沉降量与地下水水位下降幅度呈正相关。其分布范围与地下水水位下降漏斗基本一致。

由于地下水开采,北京地区早在1935年就已经发生了地面沉降。当时其范围仅在西单到东单一带,1935~1952年,局部地面沉降量的最大值仅为58mm。20世纪50年代以后,随着北京地区地下水的开采不断增加,逐渐形成了以东郊工业区为中心的区域性地下水水位降落漏斗。到1983年5月,北京市东郊地面沉降区面积已达600km2,其中累计地面沉降量大于100mm的地区面积达190km2;沉降量大于200mm的地区面积约为42km2。从1966~1983年,北部的来广营地面沉降中心区沉降量约为277mm;南部的大郊亭地面沉降中心区沉降量累计约532mm。1987年以后,北京市地面沉降面积快速增加,扩展至1800多km2,其中沉降量大于200mm的地区达到350km2。

天津市开发利用地下水资源始于1923年,据历史水准点资料,伴随着地下水的开发,地面沉降相应发生。由于当时开采量少,年沉降量仅几个毫米。新中国成立后,随着工农业的发展,地下水开采量逐年增加,地面沉降越来越严重。1950~1957年沉降速率为7~,1958~1966年沉降速率为30~46mm/a,并逐步形成了沉降中心。1967~1985年沉降速率达80~100mm/a,沉降急剧发展。1986年后进入沉降治理阶段,大部分地区沉降明显减缓,市区沉降速率降低到10~15mm/a。

目前,宝坻城关以南的广大平原区均已不同程度地产生了地面沉降,面积达8800km2。其中,累计沉降量超过1000mm的面积达4080km2。该区南部及滨海地区地面沉降尤为明显,并与河北省的沉降区连成一片。在这一范围中,现已形成了市区、塘沽区、汉沽区、大港区及海河下游工业区等沉降中心(表)。

表 天津市地面沉降现状表

河北平原深层地下水水位下降漏斗形成于中东平原城市集中开采区和农业集中开采区,主要有冀枣衡漏斗、沧州漏斗、宁河唐海漏斗、廊坊漏斗、青县漏斗、霸州漏斗等。深层地下水水位下降漏斗面积共计为43915km2,随着深层地下水的进一步开采,地下水水位下降范围持续扩大,各漏斗范围也不断扩大,形成了覆盖整个平原中东部、天津市和冀东平原部分地区,面积为7万km2(地下水位0m线以下计)的巨型复合漏斗。

随着地下水开采量的增大、地下水水位的下降和地下水水位降落漏斗的形成,地层岩土力学平衡被破坏,河北平原逐渐形成了沧州、保定、衡水、任丘、南宫、霸州、大城、曲周、唐海9个主要地面沉降区。

截至1998年,河北平原地面沉降量大于200mm的面积达万km2,大于300mm的面积达万km2,大于500mm的面积达6430km2,大于1000mm的面积达755km2(表)。

山东省德州市地面沉降影响面积已达,累计沉降量为150~387mm,沉降中心的沉降量在300~387mm之间,年均沉降量在25~之间。济宁市自1989年至今已累计沉降,沉降量大于60mm的面积已近90km2,中心最大沉降速率每年达。

表 河北平原主要地面沉降区沉降面积统计

由于地下水的长期超量开采,华北平原现已成为世界上超采地下水最严重的地区之一,也是地下水水位降落漏斗面积最大,地面沉降面积最大、类型最复杂的地区之一,其中又以京津冀鲁地区最为突出。大面积的地面沉降给当地人民生命财产的安全造成了严重威胁,并成为制约当地经济可持续发展的重要因素。

地面沉降直接导致华北平原滨海低平原区地面标高资源损失,造成铁路路基下沉、风暴潮灾害加重。由于影响泄洪,致使地面长期积水、厂房被淹,经济损失严重。由于地面不均匀沉降,导致建筑物受损,大规模市政基础设施破坏;由于地面沉降,还引发了多处地面坍塌和地裂缝地质灾害,直接威胁人民生命财产的安全;并且随着使该地区经济的发展,灾害损失便愈大,制约了社会经济的可持续发展。同时,百余年的世界工业化进程导致全球气温上升,海平面的变化再叠加上地面沉降,时刻威胁着河口滨海地区包括华北平原低海拔地区人类的生存。

华北平原地面沉降调查监测的工作程度相对较低,除天津外,还没有专门的地面沉降监测网点及监测系统,没有全面系统的地面沉降研究成果。区域上的地面沉降数据,主要来自国家地震局布设的京津唐大地形变区域网,但其测量密度较小,测量频率低,在面积上远远不能控制华北平原地面沉降的范围。而且华北平原地面沉降调查与监测受条件所限与行政分割,缺乏统一的调查与监测技术标准,缺乏统一的规划,在时间和空间上的调查与监测布局不尽合理,得出的调查监测数据缺乏可比性,远不能满足国家防灾减灾的需要,因此开展华北平原地面沉降调查与监测具有重大的社会经济意义。

(3)关中平原地区

关中平原的地下水过量开采已引起大面积地面沉降,尤其是在西安市最为严重。西安市城郊区承压含水层为细砂,砂砾石层和粘土层不等厚互层,并有自西往东、由北往南含水层厚度逐渐减少,粘土层厚度逐渐增加的特征,这种结构在大量开采承压水,造成承压水位大幅度下降的情况下,有利于黏性土层中结合水的排出。

西安地下水开采初期,承压水位埋深仅25~35m。20世纪70~80年代,由于大量开采承压水,引起水位大幅度下降。到90年代初期,西安城区承压水开采井增至530余眼,年开采量达亿多m3,承压水位累计下降60~100m,降落漏斗面积为200km2。东南郊一带有大面积的承压水位降至含水层顶板之下,水位埋深降至90~130m。承压水位的大幅度下降,意味着孔隙水压力降低,黏性土层中的水向含水层释放,进而产生黏性土层释水压密,引发地面沉降。

西安市地面沉降现象发现于1959年。1972~1983年,西安城区地面最大累计沉降量为777mm,年平均沉降量在30~70mm之间的沉降中心有5处。截至1988年最大累计沉降量已达,沉降量为100mm的面积达200km2,沉降最超过500mm的面积达48km2。20世纪90年代,地面沉降范围又有所扩大,累计沉降量超过200mm的面积约150km2,东南郊一带累计沉降量超过600mm,超过1000mm的面积为42km2,沉降中心增加为7个,累计沉降量超过2000mm,最大累计沉降量达2600mm,沉降速度之快,前所未有。建于明代的西安钟楼现已下沉了395mm,具有1300余年历史的大雁塔也下沉了1198mm。

西安市地面沉降具有如下特征:①沉降量与承压水开采量密切相关;②地面沉降具有不均匀性和差异性。

西安地面沉降的危害主要足加剧了地裂缝的活动,造成地裂缝垂向活动量大大增加。由于市区内各个区域沉降发展不均衡,已经出现了11条明显的地裂缝,总长度达,并且还以每年垂直方向移动在5~30mm之间,水平方向移动在3~4mm之间的速度发展。东南郊一带地裂缝的垂向活动速率则为30~50mm/a。

地裂缝造成了附近建筑物地基不均匀沉降,形成建筑物开裂和地下管道错断,城市道路破坏。据不完全统计,1996年因地裂缝毁坏的建筑物有楼房170余栋,厂房、车间57座,民房近2000间,破坏道路74条,累计错断供水、供气管道40余次,另有数十口深井因井管上升而报废,危及多处文物古迹的安全,2004年末大雁塔向西北倾斜达1064mm。据统计,由于地裂缝造成的直接经济损失累计已达1亿元。

(4)淮北平原地区

淮北平原的阜阳市属于水资源紧缺城市。在20世纪80年代以前,城市饮用水是泉河的地表水。但在80年代以后,随着工业的发展和人口增长,泉河变成了排污沟,城市工业和生活用水不得不改用地下水。据勘查,阜阳城地下水,尤其是埋深250m左右的中深层地下水水质好、水量丰富。这使中深层地下水成为阜阳自来水厂、单位自备井和工业企业争先开采的对象,且取水量逐年增加。现在阜阳市建成区近40km2的范围内有200多m的深井200多眼,密度在5眼/km2以上。虽然中深层地下水允许开采量为每天万m3,但实际开采量已达每天14万m3,超过开采量1倍多。由此造成中深层地下水位持续下降,年平均降幅达,形成了1200km2的地下水水位降落漏斗。

由于上述情况,阜阳城区地面最大沉降量目前已达,居全国第五位,且仍以每年40~50mm速度继续下沉。由此,一系列环境地质问题发生了,如汛期公路桥梁和大型建筑都产生了不均匀沉降,排水管道断裂、深井报废等现象时有发生。位于沉降中心的作为调节颍河水流的阜阳闸,闸底板也已多处开裂,造成闸墩错位,影响了防洪能力。

(5)松嫩平原地区

松嫩平原除大规模开采地下水外,以大庆地区为主的油气开发已引发地面沉降。

松嫩平原的大庆油气开采区位于兴安岭-内蒙地槽褶皱区,小兴安岭-松嫩地块,松嫩拗(断)陷带的中西部断陷区,即松嫩盆地(平原)的中西部,地貌类型单一。总的地势是北高南低,一般地面标高在130m以上,自然坡降在‰左右。受地质构造的控制,自侏罗纪以来沉积了厚度约6000m的含油建造。发育有侏罗系、白垩系、第三系、第四系。白垩系为内陆湖盆沉积的泥岸岩、砂岩,厚度近3000m,是石油和地下热水的主要储存构造和开采层位,开采深度一般在1000~3000m之间。新近系砂岩和砂砾岩以及第四系冲积层,是大庆地区主要供水层位,地下水可开采量为亿m3/a,但现状开采量为亿m3/a,超采严重。其中用于采油工艺的地下水年开采量为亿m3,几乎占地下水开采总量的80%。地下水已形成巨大的降落漏斗,漏斗中心水位降深已达50m,漏斗面积5560km2,几近覆盖大庆市,并波及了与大庆相邻的周边县(市),每年都有许多水井因地下水开采量下降而产生抽气、掉泵现象,继而报废。据不完全统计,因多年采油和不合理开发地下水已使大庆市及其周边地区地下水位下降了16~19m。地下水位的大幅下降是诱发地面变形的主要原因,但由于目前尚未进行油气开发区地面沉降监测,具体沉降数据仍属空白。

存在的问题

由于地面沉降在各地发育过程不同、程度不同、造成的危害不同,各地采取的监测防治措施也不同,而大部分发生地面沉降的地区还没有采取监测防治措施。存在的普遍问题是缺乏区域统一规划及信息沟通,采用的主要仪器设备陈旧、技术落后,很不适应区域地面沉降的发展趋势和国内外监测技术不断更新的形势。

(1)长江三角洲

1)以往地面沉降监测网络是根据地面沉降最早发生于城市等局部地区这一状况进行布设的,未建立统一的地面沉降监测网络。随着地面沉降在整个区域上呈扩展之势,监测工作却未能及时跟上,其局限性日显突出。

2)因行政辖区限制,地面沉降监测网络缺乏区域统一规划,各地监测极不平衡。尤其在长江以北、杭州湾南岸地区(除宁波以外)监测工作是空白,地面沉降情况不明,很可能会走上出现严重灾害后再治理的老路,应引起有关部门的重视。

3)各地包括布网密度和频率等监测方法及标准目前仍然不统一。例如,上海市区一般按1∶5万、局部达到1∶1万精度布网,进行Ⅰ,Ⅱ等水准测量,其频率有每月3次、1次,也有每年4次、2次、1次的;江苏省仅在常州市布设了地面沉降监测Ⅱ等水准测线2条,每月监测1次;杭嘉湖现有的专门用于监测地面沉降的水准网络沿主要公路分布,近年来控制范围可达3500km2,每年监测1次,但受经费影响监测频率尚不能保证。除此之外,上海郊区主要是收集测绘部门、苏锡常三市主要是收集城建和水利等部门的不同时期Ⅲ,Ⅳ等水准测量资料进行地面沉降调查。因此,地面水准测量资料隶属于不同的部门,来源复杂,分布不均,数据参照系的一致性无法保障,且重合点偏少,可靠性差,测量时间不一,因而难以系统、全面、适时、可靠地掌握区域地面沉降的分布和发展规律。

4)基岩标、分层标除在上海市区比较健全,杭嘉湖地区有一座,苏锡常地区初步建成外,苏北几乎空白,故地面沉降的垂向分布及其成因研究显得薄弱,难以提出针对性控沉建议。

5)区域上虽已建立地下水动态监测网,但各地监测井分布疏密不均,精度不一,且近年来监测点屡遭破坏,个别含水层在相当一部分地区包括工作区周边地区缺乏控制性监测设施。

6)目前地面沉降监测采用的技术手段总体上比较落后,效率低、工期长的问题依然存在,难以适时、客观反映日益扩大的监测网的需要。虽然已经引进了一些新技术、新方法,但仍不够成熟、完善,在面上尚未铺开,且在实施过程中亦未有可执行的技术标准或规程。

7)差异性地面沉降所产生的地裂缝是本地区一种新的地质灾害,但现有监测网络密度明显不足。尚需进行加密布设,以便精确记录其发展变化过程,提高数据监测和分析质量。

(2)华北平原

华北平原的问题具体如表所示。

由于华北平原内的各省(市)受行政区划所限,分别在各自的区域内开展工作并提交有关地面沉降等值线图件,在合成有关图件后得出华北平原地面沉降等值线图,从图中可以看出各地由于监测标准和监测手段不同,提交的沉降等值线年份不一,很多地方的沉降量只是推测出来的,在同一个地方得出不同的地面沉降量,这显然不能完全反映现实,因此目前华北平原各地的地面沉降量只能作为参考。

(3)关中平原、淮北平原和松嫩平原

这三大平原均为河流冲洪积平原,地下水的过量开采和油气开采引起的地面沉降对生态环境和经济可持续发展造成了较为严重的影响,但到目前为止这些地区还都没有开展系统的地面沉降专项调查和监测工作。

表 华北平原地面沉降监测设施存在的问题

鉴于存在的上述问题,未来地面沉降监测网络需要在统一规划设计、统一技术标准、统一数据平台的基础上,建立空间上分布合理、技术上先进可行的地面沉降监测网络,在开展传统测量的基础上,应用先进的GPS,InSAR和LIDAR等技术进行监测并进行相互校正,得出精确的地面沉降量,为整个社会经济的可持续发展和城市建设规划提供可靠的地面沉降资料依据。

地面沉降现象最早开始于1921年的上海和1923年的天津,之后两市地面沉降不断发展,到20世纪60年代已十分严重,1965年上海市区水准点最大累计沉降量达2630mm,天津市平均沉降速率达30~46mm[38,39]。大量测量和研究工作证实,大量开采地下水是两市发生地面沉降的主要原因。到20世纪70年代,长江三角洲主要城市和天津市平原区、河北平原东部相继发生地面沉降。20世纪80年代,随着地下水开发利用量大幅度增加,地面沉降范围不断扩展,区域上连片发展。到20世纪90年代初,上海、天津、北京、江苏、浙江等16个省份地面沉降面积约为48700Km2,到2003年达到93855Km2,形成了长江三角洲、华北平原及汾渭断陷盆地等地面沉降灾害严重区[40]。

区域上,地面沉降主要发生在地下水开采程度较高的地区。目前主要形成了5片区(带):①下辽河平原的沈阳-营口地面沉降区,1999年地下水开采程度;②黄淮海平原北部的天津-沧州-衡水-德州-滨州-东营-潍坊地面沉降区,1999年地下水开采程度~;③黄淮海平原南部的徐州-滨州-东营-潍坊地面沉降区,1999年地下水开采程度;④长江三角洲的嘉兴-上海-苏州-无锡-常州-镇江-南通地面沉降区,1999年地下水开采程度~;⑤汾渭河谷平原的太原-侯马-运城-西安地面沉降带,1999年地下水开采程度~[37]。

论地下工程引起的地质问题及防治措施论文

摘要:随着城市建设的大力发展,地下工程建设越来越多,由此引发的各类工程地质问题也逐渐显现出来,根据城市地下工程的特点,对地下工程开挖引起的工程地质问题进行了分析并提出了预防措施。

关键词:地下工程;工程地质问题;预防

城市地下工程具有现场环境条件复杂、施工难度大、技术要求高、工期长、对环境影响控制要求高等特点,是一项相当复杂的高风险性系统工程。但是,地下工程建设一般都在市区内,在其施工过程中常常会引起周围地层的位移、变形、沉降与塌陷等环境地质效应,对周围地面建筑物及基础、地下早期人防和其他构筑物、公共地下管线和各种地下设施以及城市道路的路基、路面等都可能构成不同程度的危害,已经出现并且孕育诸多工程地质问题。

1地下工程开挖引起的工程地质问题

地面沉降

地层初始应力状态的改变引起的地表沉降:地下工程开挖是在存在初始应力场的地层中进行的,开挖引起地层初始应力状态的改变,即二次应力场,它是由地层初始应力场与开挖引起的附加应力场的叠加应力场,对应二次应力场开挖的位移场仅是由开挖引起的附加应力场。地表沉降的主要机理是由开挖面的应力释放,附加应力等引起地层的弹塑性变形。引起初始地应力状态改变的主要原因有:

(1)地下工程开挖引起的附加应力;

(2)地下工程施工对地层的扰动和地层损;

(3)地下水渗流引起的地下水位的变化。

土体的固结沉降:地下工程施工引起的地表沉降与时间有关。土体内部含水渗出,体积逐渐减少,这一现象成为土的“固结”。随着土体的固结,土体的压缩变形和强度逐渐增长。因此,土的固结所产生的沉降是城市地下工程施工中最值得注意的问题之一。根据地下工程施工的特点总结固结沉降的主要原因有:

(1)地下水位下降引起的固结沉降;

(2)土体空隙水压力变化,引起土体的固结沉降;

(3)土体扰动后,重新固结后产生沉降;

(4)土体的次固结和流变。

洞室围岩失稳

地下开挖后,洞壁围岩由于失去了原有的岩体的支持而向洞内产生松胀变形,如果变形超过了围岩所能承受的能力,围岩就会被破坏。围岩的变形破坏程度常取决于围岩的应力状态、岩体结构和洞室的断面形状等。洞室开挖使地下原来的应力状态被破坏,围岩应力重分布,产生变形位移。

均质岩土体中应力未达到或未超过其强度以前,在开挖过程中的变形,以弹性变形为主,变形速度快,变量小,瞬时完成,一般不易察觉;当应力达到或超过岩土体强度时,塑性变形十分明显,发生压碎、拉裂或剪破。当岩体强度主要由结构面控制时,与上述情况基本一样,但当结构面组合构成围岩不稳定条件时,岩体除了弹性变形外,塑性变形也比较明显,它表现为围岩分离体(岩块)的相互错动,围岩松动时围岩稳定性降低,为进一步松动创造了条件。

斜坡破坏

斜坡破坏主要发生在山区城市,除直接经济损失外,还可能造成人员伤亡,其原因主要是:由于自然地质作用和工程地质作用引发的,而工程地质作用造成的斜坡破坏较自然地质作用频率大。当然决非任何斜坡破坏都能称为地质灾害,但斜坡破坏确属重大的地质灾害类型之一。

斜坡破坏主要形式为滑坡,其影响因素主要有岩性、构造、地形、地震、降雨及人类活动等。其中,许多山体滑坡现象是由地下工程活动引发的,即主要是由于地下工程的开挖或采掘影响到了上部的山体,使岩体开裂,地面倾斜,并在一定条件的配合下,导致山体失稳形成滑坡。在隧道建设中,滑坡现象主要发生在浅埋、偏压及进出口等地段,其危害常常比较严重。为评价斜坡岩土的稳定性,预防斜坡破坏导致的地质灾害,认识引起斜坡破坏的内在原因与外部条件,掌握其运动发展规律显得非常重要,尤其是当前在城市这个人类经济活动的密集区,斜坡破坏造成的经济损失和人员伤亡都是巨大的`,都是由于工程活动不合理造成的。 地下水污染

在城市环境地质中地下水的不良作用主要表现为地下水的侵蚀。地下水的不良作用和地下水污染主要由人为引起。随着经济持续稳定发展,人类活动加剧,对地下水的污染越来越严重,主要表现为:多数城市垃圾随意堆放;工业废水和废液不经处理或初步处理后任意排放。首先污染地表水,经地表水补给地下水或渗入地下水,再污染地下水,使地下水具有侵蚀性,对城市的建筑物基础及地下工程不断侵蚀破坏。

2防治措施

开展详尽的工程地质勘察

工程地质勘察资料是地下工程施工的重要依据,通过详细的工程地质勘察,为设计施工提供需要的参数和指标,确定合理的开挖方案、开挖步骤,如果地下工程建设所涉及勘察资料不详细、不准确,势必给支护工程带来事故隐患。

做好开挖方案的优化选择

地下工程的开挖方法很多,以基坑工程为例,有分层全开挖、中心岛式开挖等等。开挖顺序不同,引起的位移不同,中心岛法的开挖顺序就比从一个方向按顺序向另一个方向的开挖方法,对基底隆起和桩后地面沉降有一定程度地减少。因此,基坑开挖时应做好开挖方案的优化选择。

实行科学的降水设计

水是影响基坑工程稳定的重要因素之一,从实际统计资料来看,约有70%的基坑事故与地下水有关,因此,地下工程建设中应特别注意地下水的影响。地下工程建设绝大多数都需要进行人工降低地下水。要降低地下水位,就要合理地选择降水方法,在此基础上进行人工降水的方案设计,以及进行降水方案的水位预测,通过预测进行降水方案的优化,从而达到最佳的降水方案。

做好现场监测,开展信息化施工技术

地下工程是土体与围护结构体相互共同作用的一个动态变化的复杂系统,仅依靠理论分析和经验估计是难以把握在复杂的开挖和降雨等条件下支护结构与土体的变形破坏,也难以完成可靠而经济的开挖设计。通过施工时对整个工程进行系统的监测,可以了解变化的态势,利用监测信息的反馈分析,就能较好地预测系统的变化趋势。当出现险情预兆时,可做出预警,及时采取措施,保证施工和环境的安全;当安全储备过大时,可及时修改设计,削减围护措施。

积极采用新技术、新方法

工程实践证明,采用基坑内降水、坑内侧土体加固(化学灌浆、石灰桩加固等)、及时支撑并预加轴力、增加挡墙的入土深度、墙外地层中筑帷幕、坑内降水坑外注水、分步开挖、逆作法施工、信息反馈施工法的采用等,对改善基坑变形、提高其稳定性有重要意义。计算机技术方法应广泛地应用到地下工程建设中,如进行数据分析与计算、计算机制图、计算机辅助深基坑设计、信息施工与管理等领域具有十分广阔的前景。

结语

地下空间资源正越来越多被开发利用于各种领域,如地下轨道交通工程、地下街、地下室、地下车库等各类地下工程,已经成为现代城市功能转入地下的重要载体。但是,地下工程建设一般都在市区内,在其施工过程中常常会引起周围地层的位移、变形、沉降与塌陷等环境地质效应,对周围地面建筑物及基础、地下早期人防和其他构筑物、公共地下管线和各种地下设施以及城市道路的路基、路面等都可能构成不同程度的危害。因此,研究城市地下建设工程引起的地质问题及其防治措施具有相当重要的现实意义。

  • 索引序列
  • 高铁地面沉降研究论文
  • 京津铁路沿线地面沉降研究论文
  • 高铁沉降观测论文的参考文献
  • 地基差异沉降研究论文提纲
  • 地下水引起沉降研究现状论文
  • 返回顶部