基于asp语言的测试项目学生信息管理系统的设计与实现基于的社区人口管理系统 基于的课程教学网站设计公司会议网站C#高校工资管理系统C#在线点歌系统《数据库原理》精品课程网站设计教师住房管理系统《计算机网络》学习网站的设计与实现《模式识别》精品课程网站的设计与实现asp个人博客asp网上书店微型计算机学习网站的设计与实现成绩分析系统的设计与实现宠物管理系统基于3G通信的视频医药系统设计基于web的图书馆图书信息查询系统离散数学网上教学系统企业进销存管理系统分析与设计人力资源管理信息系统学生作业管理系统社区论坛在线课题系统《数据库技术及应用》精品课程建设网站职业中介信息管理系统自来水收费管理系统会员制漫画店(连锁)管理系统基于CSCW的大学生就业平台基于WEB方式的视频监控系统设计与开发旅游网站健康网站的设计与实现新闻管理系统设计与实现工会信息发布系统的设计与开发模式识别与智能研究所网站互联网计费系统C#毕业生信息管理就业招聘系统体育用品在线商店系统网站群信息管理系统员工绩效考核系统学生档案信息管理C#基于技术的动态IT培训网站的设计与实现《软件测试技术》精品课程网站的建设与开发网上二手房交易系统设计与实现ASP131企业进销存管理系统ASP C语言教学系统+论文ASP(交友录)asp+SQLServer网上书店系统+论文ASP+sql精品在线试题库设计+论文ASP+SQL图书管理系统+论文
人工智能技术是当前信息技术应用发展的热点之一。与一般的信息处理技术相比,人工智能技术在求解策略和处理手段上具有独到之处。“人工智能初步”模块介绍了人工智能的基本概念和人工智能领域内容易为高中学生所理解和掌握的部分内容,是选修模块。 通过本模块的学习,学生应能描述人工智能的基本概念,会使用一种人工智能语言解决简单问题,把握其基本特点;能利用简易的专家系统外壳开发简单的专家系统;知道人工智能对人类学习、生活的影响;通过感受人工智能技术的丰富魅力,增强对信息技术发展前景的向往和对未来生活的追求。本模块的教学应强调让学生体验若干典型人工智能技术的应用;要根据高中学生的知识基础和本校实际情况开展教学;要发现有特长的学生并对他们进行有针对性的教学。本模块对采用的人工智能语言与专家系统工具不作具体要求,可以根据实际情况自主选择。本模块由3个主题组成。 (一)知识及其表达1.内容标准(1)能描述人工智能的概念与基本特点;知道人工智能技术随着计算机硬、软件技术的进步和应用需求而发展的事实和客观规律。(2)列举人工智能的主要应用领域;通过演示或实际操作,体验人工智能的若干典型应用,知道其发展现状。例1 符号运算: 通过网站 在线执行符号运算软件Mathematica,进行多项式乘、除以及因式分解等代数运算。例2 模式识别:声音识别、指纹识别、签名识别等识别技术的应用越来越广泛。例3 机器证明:这是我国科学家做出过重要贡献的人工智能应用领域之一。例4 智能代理:该技术在网上信息检索、个性化服务等方面有着广泛的用途。(3)掌握知识的概念;学会知识表达的基本方法。例1 用产生式规则表达简单的“动物识别”知识。例2 将上述“动物识别”的产生式规则用“与/或图”来表达。例3 采用框架表达“天气预报”知识。2.活动建议(1)就下列话题展开讨论:利用符号运算软件能解决中学课程中的哪些问题?具有哪些优点?(2)对产生式规则、与/或图、框架等常用的知识表示方法的特点、适用场合进行比较。(3)人工智能的基本思想已经在许多领域中得到了应用,“在家里寻找外星人”(SETI@home)项目就是利用人工智能的分布计算思想的一个成功案例。该项目由美国行星学会和美国加州大学伯克利分校于1999年5月开始实施,它利用特定屏幕保护程序调用全球上网的个人计算机的闲置能力,分析世界上最大的射电望远镜获得的数据,帮助科学家探索外星生物。教师先向学生简单解释分布计算的基本思想以及SETI@home项目的社会意义,学生登录 网站了解或亲自参与该项目。通过该活动使学生知道人工智能领域中分布式计算的概念,了解SETI@home项目的具体内容,感受现代信息技术服务于人类文明的价值。 (二)推理与专家系统1.内容标准(1)演示或使用简单的产生式专家系统软件,感受用专家系统解决问题的基本过程;了解专家系统的基本结构。例 通过网站 在线执行“PC产品顾问”(Desktop PC Product Advisor)专家系统,为准备添置的个人电脑规划合理的硬软件配置。(2)通过实例分析,知道专家系统正向、反向推理的基本原理;会描述一种常用的不精确推理的基本过程。(3)了解专家系统解释机制的基本概念及其在专家系统中的重要作用。例 执行专家系统,分别使用“Why”和“How”命令,了解其解释过程。(4)了解专家系统外壳的概念;学会使用一个简易的专家系统外壳,并能用它开发简单的专家系统。例 在专家系统的开发过程中,通常采用“原型化”策略。2.活动建议(1)针对学生熟悉或感兴趣的一个分类问题,利用简易专家系统外壳开发一个简单的专家系统。例如,用于识别校园中植物的专家系统。(2)有人认为:“信息技术的应用已经经历了数值计算、数据处理、知识处理三个阶段,专家系统是知识处理阶段的典型代表。”在学习了专家系统的相关内容后,让学生从信息技术的应用对象、策略与方法等方面对上述三个阶段的特点进行比较。 (三)人工智能语言与问题求解1.内容标准(1)了解一种人工智能语言的基本数据结构和程序结构,掌握相关概念,知道人工智能语言的主要特征。例 浏览Prolog语言网站,考察它的实例程序。(2)初步学会使用该语言设计程序求解简单问题,并能够上机调试、执行相应的程序。例1 用匹配方法解决简单的查询问题。例2 用递归方法求解汉诺塔(Hanoi)问题。(3)了解状态空间的概念与方法,学会用该方法描述待求解的问题。例 “井字棋”问题。(4)通过简单博弈问题的分析,了解用盲目搜索技术进行状态空间搜索的基本过程,知道启发式搜索的基本思想及其优点。例 1996年,“深蓝”计算机向国际象棋世界冠军卡斯帕罗夫挑战失败。1997年,“深蓝”的后嗣替“父”报仇,以的总比分击败卡斯帕罗夫。事实上,“深蓝”序列计算机中存放了包括卡斯帕罗夫的所有比赛棋谱在内的近百年的棋谱历史记录,它的“智能”主要体现在对海量的实战棋谱所进行的启发式搜索上。2.活动建议(1)以小组为单位,对本模块教学中尚未涉及的人工智能应用问题展开调查,就它们的应用情况、工作过程、优点与局限性以及对人们生活和工作所产生的影响进行讨论与分析。(2)观看、阅读与人工智能相关的影视作品或文学作品,发挥自己的想象力,描述人工智能技术的应用前景,以班级网站或板报的方式展示和交流。顺祝你2015幸福快乐。
duda的那本模式分类专门有一章讲神经网络。然后就是Simon Haykin的那本神经网络与机器学习,应该是比较经典的。几乎所有的模式识别或者人工智能的书上都会有专门的一章讲神经网络。我觉得就是按照书上那种结构写就行了。先写BP,然后是径向基函数,然后是Hopfield等等。
计算机考研方向主要分类计算机科学与技术、软件工程、网络空间安全3类,但是相关学科考研方向还是比较宽泛,所以搞清楚专业方向,专业学科综合情况,才便于大家考研。我们整理分享“计算机专业研究生阶段有几大研究方向可以选择?”相关内容,一起来看看吧。1、计算机应用技术研究方向:计算机网络、实时计算机应用、CIMS、计算机图形学、并行计算、网络信息安全、数据库、情感计算、数据挖掘、分布式计算、知识工程、计算机视觉、自动推理、机器学习、草图理解、网络性能分析与协议设计、网络管理与安全、计算机图形学、信息可视化、基于GPU的高性能计算、复杂系统(应急、物流、海洋)领域工程、基于SOA的空间信息共享与业务协同、语义搜索引擎、自然语言处理、机器翻译、搜索引擎、空中交通信息系统与控制、民航信息与决策支持系统、智能交通系统理论与技术等。专业特点:计算机应用技术是针对社会与各种企事业单位的信息化需求,通过对计算机软硬件与网络技术的选择、应用和集成,对信息系统进行需求分析、规划和设计,提供与实施技术与解决方案,创建优化的信息系统,并对其运行实行有效的技术维护和管理的学科。培养这方面人才所涉及的知识面包括:数学与信息技术基础、程序设计基础、系统平台技术、计算机网络、信息管理与安全、人机交互、集成程序开发、系统架构与集成、Web与数字媒体技术、工程实施、职业操守等。培养目标是为企事业单位和政府机构提供首席信息官及承担信息化建设核心任务的人才,并提供为IT企业提供系统分析人才。科研状况:本专业是天津市第一个计算机类博士点,主要从事计算机技术在其它领域应用中核心技术问题研究及相关信息系统开发。近年来在计算机集成制造(CIMS)、计算机辅助教学、虚拟现实技术应用、计算机工业控制、电子商务等方向承担国家863项目及重大项目、国家自然科学基金十余项。承担省部级及横向科研课题近百项。为国家和天津市的信息化建设做出了重要贡献。近几年报考简况:本专业从80年代初开始招生,至今已为国家培养出硕士学位研究生300多名。近年来,报考人数和录取名额逐年同步增加。硕士期间主要课程及论文要求:主要课程:高等计算机网络、计算理论、排队论及在计算机中的应用、应用组合数学、软件体系结构、面向对象方法学、分布式计算机系统、并行计算、高级计算机图形学、高级人工智能、模式识别与理解、机器学习、密码学与信息安全、统一建模语言。论文要求:论文选题涉及计算机在各领域应用的理论研究、尖端技术开发、以及在国民经济各个领域的应用研究。论文应能全面反映本学科发展动态、具有科学性、先进性和一定的创新性。对于理论研究课题,要求达到较高的理论水平和创新;对于系统设计、系统开发及系统应用课题,要求指导理论正确,实现技术先进,设计新颖,所设计的系统应能付诸实现、具有实际应用价值并能够带来明显的社会经济效益。 就业方向:本专业培养的研究生具有坚实的计算机科学与技术的理论基础,全面掌握计算机应用领域的理论和工程方法,能很好地胜任高等院校、科研院所、大型企事业单位、高新技术产业等的教学、科研、系统设计、产品开发、应用系统集成等工作。2、计算机软件与理论研究方向:计算理论、算法理论; 软件工程、中间件、智能软件、计算环境;并行计算、网格计算、普及计算;密码学、信息安全、数据理论;图形图象算法、可视化方法;人工智能应用基础;理论计算机科学其他方向。专业特点:计算机软件与理论专业涉及计算机科学与技术的基本理论和方法,强调计算、算法、软件、设计等概念,主要的领域包括计算理论、算法与复杂性、程序设计语言、软件设计与理论、数据库系统、人工智能、操作系统与编译理论、信息安全理论与方法、图形学与可视化计算、以网络为中心的计算等。科研状况:计算机软件与理论专业是我院重点发展,进步较快的专业。近年来承担国家863、自然科学基金、,以及省部级项目多项。在网络信息安全、中间件技术、并行计算、网格计算、计算机图形学等方面取得了多项前沿性成果。 近几年报考简况:本专业从96年代初开始招生,至今已为国家培养出硕士学位研究生50多名。近年来,报考人数和录取名额逐年同步增加。硕士期间主要课程及论文要求:主要课程:计算理论、应用组合数学、软件体系结构、面向对象方法学、分布式计算机系统、并行计算、高级计算机图形学、高级人工智能、模式识别与理解、机器学习、密码学与信息安全、统一建模语言。 论文要求:论文选题涉及计算机软件的理论研究、尖端技术开发、以及在国民经济各个领域的应用研究。论文应能全面反映本学科发展动态、具有科学性、先进性和一定的创新性。对于理论研究课题,要求达到较高的理论水平和创新;对于系统设计、系统开发及系统应用课题,要求指导理论正确,实现技术先进,设计新颖,所设计的系统应能付诸实现、具有实际应用价值并能够带来明显的社会经济效益。就业方向:本专业培养的研究生具有坚实的计算机科学与技术的理论基础,全面掌握计算机软件的理论方法,以及软件工程、信息系统、并行计算、普及计算等等的软件系统开发技术,能很好地胜任高等院校、科研院所、大型企事业单位、高新技术产业等的教学、科研、系统设计、产品开发、应用系统集成等工作。 研究生考试有疑问、不知道如何总结考研考点内容、不清楚考研报名当地政策,点击底部咨询官网,免费领取复习资料:
是的 在万方上看看就知道了
Pattern Recognition期刊Q1区。期刊分区:SCI期刊分区共有两种,一类是JCR分区,也就是汤森路透分区,共有Q1、Q2、Q3和Q4四个区,前25%(含25%)期刊划分为Q1区,前25%~50% (含50%)为Q2区,前50%~75% (含75% )为Q3区,75%之后的为Q4区。
另一个分区是中科院分区,中科院分区也是有四个区,1区-4区,在称谓上与JCR分区不同,前5% 为该类1 区、6% ~ 20% 为2 区、21% ~50% 为3 区,其余的为4 区。
其实这两类分区最大的区别在于影响因子的区间标准不同,中科院分区中1区期刊比JCRQ1区期刊要少,质量上要更高,两种分区都是可以选择的。PATTERN RECOGNITION 期刊简介:模式识别是一个成熟而激动人心、发展迅速的领域,它支撑着计算机视觉、图像处理、文本和文档分析以及神经网络等相关领域的发展。它与机器学习非常相似,并且在生物特征学、生物信息学、多媒体数据分析和最近的数据科学等快速新兴领域也有应用。期刊模式识别是在大约50年前建立的,因为这个领域出现在计算机科学的早期。在过去的几年里,它有了很大的发展。该杂志接受在任何领域对模式识别的理论、方法和应用做出原创贡献的论文,前提是该工作的背景在模式识别文献中都有明确的解释和依据。主要关注的论文不属于模式识别领域,并且使用现有或众所周知的方法报告IT的常规应用程序的论文,应该指向其他地方。以上内容参考:期刊网——期刊简介
是人工智能领域公认的顶级水平。
TPAMI是计算机视觉和人工智能领域公认的顶级国际期刊,是中国计算机学会(CCF)推荐的A类期刊,也是中国人民大学核心期刊目录中的A+类期刊,影响因子。
2021年1月至今,高瓴人工智能学院已发表或被录用CCF A类期刊和会议论文76篇、CCF B类期刊和论文31篇。
TPAMI是目前计算机类别中影响因子最高(影响因子)的期刊之一,主要收录人工智能、模式识别、计算机视觉及机器学习领域的原创性科研成果。
上海科技大学信息学院智能视觉中心的最新研究成果“Neural Opacity Point Cloud”在人工智能领域顶级学术刊物IEEE TPAMI发表。
TPAMI是模式分析与机器智能IEEE汇刊,中国计算机学会和中国自动化学会等多个学会将其定位为:国际上极少数的顶级刊物,鼓励我国学者去突破。
EEE TPAMI是公认的人工智能、模式识别、图像处理和计算机视觉领域顶级国际期刊,该期刊影响因子(Impact Factor)和谷歌指数(H-Index)在计算机科学和工程技术两个大类学科里均列首位。
同时,该期刊影响因子和谷歌指数列所有计算机学会推荐A类(CCF A类)期刊首位,在计算机科学与人工智能领域具有权威影响力。
1、不要凭感觉选课程选课是门技术活,有的同学在完全不了解这门课的时候,简单通过课程的名称和学分去选择,这种方法是特别不可取的。对于选课,不能凭感觉,而是应该权衡好专业,绩点,兴趣这三个方面。2、关于选择教授因为国外大学每门课都会有不同的教授进行授课,每个教授的授课风格、内容、评分标准等都不同,所以对于留学生选课来说,教授是必须选课时要考虑的关键因素。选课之前,你可以对每个教授的背景做一个调查,了解他们的背景和研究兴趣是什么?他们的研究方向与和最想学习的专业的重合度如何?可以通过google scholar查看一下教授文章的引用率,通常情况下,引用率越高说明文章越有权威性。3、不要低估文史课的难度这类的课程对于新生难度还是很大的,一个是阅读量的压力,另一个就是背景知识的积累。所以建议大家尽量不要一开始就选太多和太难的课程,以免为自己带来沉重的功课负担,影响了自己的GPA。4、要尽早选课在美国公立大学,很多课程空位有限,而且比较热门的课或比较受欢迎教授的课通常会在开放选课很短的时间内被抢光,所以学生要拿出双十一秒抢的姿态来面对选课。据说很多老司机都是凌晨熬着夜不睡觉去选课,因为选晚了就会被放在“Waiting List”上,或者被迫去选别的你不是特别感兴趣的课。所以,学生在选课前一定要好功课——规划好自己的课表,瞄准你心仪的教授,并了解课程内容及难易度,然后尽早注册,该出手时果断出手!5、不要忽视上课时间/地点美国大学的同一课程通常会在一天当中的不同时间段开课,以满足同学的学习要求。所以学生在选课时需要注意一下选择上课的时间。
——同学,还在为绩点低而烦恼吗?
高分喷雾这不就来拯救你了!
作为资深的老学长,经过几年的大学生活,对获得大学课程高绩点还是有两把刷子的。在这里,我就拿出来分享给各位学弟学妹了。
大多数学科总成绩=平时成绩+期末卷面成绩
平时成绩在总成绩中占有一定比例,大多数学科的平时成绩还是比较好拿到的。
仔细阅读每个学科考试大纲或教学大纲中的平时成绩包含什么,尤其是在开学的第一课,大部分老师会有专门的PPT讲解,记住用手机记录。
⭐平时记得刷网课
网课再多也要刷,不要集中在期末刷。期末考试前一周的时间是用来复习的,不是刷网课的。而且,据我的英语老师所言,网课集中在期末刷的同学的平时分会比平时坚持刷网课的同学的平时分低一些。
实话说,有些课程的网课确实是没用,但是是学校规定,毕竟关乎自己的平时成绩。最后强调一下,刷网课,刷网课,刷网课!
⭐上课积极回答问题
积极回答老师问的问题,不仅可以提高听课效果,还可以增加老师对你的印象,自然会在平时成绩上照顾到你。
⭐认真对待平时测试
平时测试大多是在线上进行的,如果学的比较好,就自己认真写。平时测试也是对自己学习情况的一个评定。如果学的不好,更要认真对待。实在不会的题目,求助舍友、朋友。不要把平时成绩拉的太低。测试后一定要吃透不会的知识。
期末考试是大多数大学生的噩梦,但是,经过认真的复习和一些技巧,期末总成绩拿到九十以上也是很容易的。
⭐老师的话【重点】
期末考试来临,不少老师会在本学期最后一节的课堂上,划重点。
不少同学抓住这“最后一根稻草”,成功逆袭。
我的习惯是:在老师划重点时,用手机录下老师说的话。课下认真品味老师在划重点时的语气,更有利于从老师嘴里找到“重中之重”。
【附】如果你的老师没有划重点,可以去询问你的其他班级的同学,有的老师会故意不透漏,这就需要我们自己动嘴问。我当年的中国近代史纲要这一科目就是如此,辗转几个班级,终于得到了一张表格,每一章考什么题写得清清楚楚,最终九十分不在话下。
⭐详细的计划
计划在考试周前的复习周的每一天,要复习什么。
如果时间充裕,先完整复习一遍所有内容,再将老师划的重点完全复习一遍。
还有一个【重点】,就是你的平时作业,像大学化学,大学物理这些课程,平时作业里就有大部分原题。但像高等数学,学过的同学应该知道,原题也有,还是需要我们踏踏实实地学。
总之,想得高绩点,就要付出努力。
只是不能蛮干,要讲一些技巧罢了。
祝愿各位,高分通过期末考!
留学选课时要注意以下几点:
1、学会平衡学习兴趣与课程难度
兴趣固然重要,但是在选择课程的时候,我们也需要了解课程的难度、阅读作业与写作作业的数量,这个方面对于我们留学生来说,是需要占用很长时间的,因此在选择课程的时候,也要进行一个取舍,否则过高的课程难度或者过量的课程作业会吧学习的兴趣完全消磨掉,到时候就是折磨了。
2、借鉴其他人的选课经验与建议
3、按照自己的职业方向选择
在选课的时候,也可以根据自己的职业愿景来进行选择,学校的官网上,对于课程的大纲与教育目标以及职业方向都有所简介。
4、注意课程的授课地点
大学里面,每门课程获得高绩点的途径有哪些?
嘿嘿,作为大一上年级第一,大一下绩点前三的双非一本学姐前来回答一波。大学每科的最终成绩是由:期末考试+平时成绩构成。下面我将从期末考试、心态调整、平时成绩三方面作答。纯干货!!!坚持看下去,对你很有帮助。
一、期末考试
首先,你要清楚大一课程的分类:
1.通识课程:高数、马哲、大学英语、中国历史与文化、思想道德修养与法律基础、体育课、物理、化学等。专业不同,会有一些不同。
2.专业课:根据不同专业,大一上学期所开的专业课程为1到2门。
然后,我们就可以开始对症下药啦
1. 对于高数、物理、化学、英语等基础学科而言,相信通过了高考考核的你一定心理有底了吧。没错,就是听课和刷题。不过不要慌,你只用买一本辅导书,再把课本上的题目做会,期末90+,绩点满级没问题。辅导书建议考研基础版。此类基础课刷题好处多多,心态部分我会讲到。
2. 对于马克思主义原理、思想道德修养与法律基础等课程,期末一般就是让你交一个小论文上去,而且会给你半个月到一个月的时间来准备。所以,我的建议是,平时上课摸鱼,期末论文好好准备。去找论文得分较高的学长或者网上自己学习查资料,最后找其他老师或学长学姐指点指点,就OK啦。这种课一般很难拉高分,保持中上水平就好。
3. 专业课:专业课作为你新接触到的领域,实在需要好好下功夫。我的建议是,上课认真听讲,课后一定要当天总结课上内容,不然很容易忘。不懂的地方先查资料,如果一两个小时都没头绪,那就问问问,问老师问同学。大学的老师其实很好相处,只要你问,他一般都会耐心解答。
来自百度
二、心态调整
为什么会有人觉得大学奖学金难拿?为什么有那么多人担心期末挂科?原因很简单:环境+心态。
到了大学,你会惊讶于空余时间之多。每天上课时间最多8小时(一周不会超过两天),最少2小时,周末双休。于是,你的选择变得尤为重要。有人利用这时间看课刷题,于是绩点奖学金随便拿。有人利用它睡觉打游戏,结果也是可想而知。在这其中,心态的调节最为重要。当周围人都在刷手机打游戏,你却在学习。这过程中,你会感到孤独、茫然、甚至不被理解。于是,我来告诉你怎么破此困境。
1. 去图书馆学习,而不是寝室里。在图书馆学习的大环境下,你的孤独感不会那么强,反而有种并肩作战的感觉。当然,你在寝室学,一定程度上也会影响到你室友的休息,这样也不好。
2. 懂得延迟满足,注重长久效益。大一绩点第一是什么体验?你可以收获一等奖学金1000+,你的科任老师全都认识你,老师下学期做项目也会找你,同学做项目也会邀请你,至于什么人际关系的就不用我多说了,只要没原则上毛病,有的是人想认识你。相比之下,你那每天的短视频、游戏还重要吗,你还需要化妆什么的来吸引他人注意吗,完全没必要。
三、平时成绩
专业课和物理这些比较难学的课,我的建议是:上课万万不能睡觉。你上课一小时学到的东西,比你课下自己琢磨3小时的都管用。并且,上课坐前三排,让老师记住你那认真听讲的脸和名字,平时分满分没跑了。
英语课:如果你的老师教的很好,不用我说,你也会好好听。如果老师很水,那你就找个后排的位置,自己背单词刷题,准备四六级、托雅考试,记住老师平时分的评判标准(第一节课会讲),挣够平时分就好。
思政课:不要逃课。找个后排位子发呆都可以。同英语课一样。
在投稿系统里找找,可能是以附件形式直接上传在系统里了。或者直接联系一下编辑∞
模式识别的大作业真经典,经久不变
duda的那本模式分类专门有一章讲神经网络。然后就是Simon Haykin的那本神经网络与机器学习,应该是比较经典的。几乎所有的模式识别或者人工智能的书上都会有专门的一章讲神经网络。我觉得就是按照书上那种结构写就行了。先写BP,然后是径向基函数,然后是Hopfield等等。
嗯~12级的合影
有必要上这儿来吗,去图书馆的数据库,这样类型的文章多得不得了啊
山东省大学生电子设计竞赛09年或是08年有个题目是《声音引导系统》,是利用凌阳公司的61板实现的声音控制,其中包括语音识别部分,你参考一下吧。有问题直接Hi我,我也算是略知一二吧,也拿过不少省奖。
多媒体图像压缩技术姓名:Vencent Lee摘要:多媒体数据压缩技术是现代网络发展的关键性技术之一。由于图像和声音信号中存在各种各样的冗余,为数据压缩提供了可能。数据压缩技术有无损压和有损压缩两大类,这些压缩技术又各有不同的标准。一、多媒体数据压缩技术仙农(C.E.Shannon)在创立信息论时,提出把数据看作是信息和冗余度的组合。早期的数据压缩之所以成为信息论的一部分是因为它涉及冗余度问题。而数据之所以能够被压缩是因为其中存在各种各样的冗余;其中有时间冗余性、空间冗余性、信息熵冗余、先验知识冗余、其它冗余等。时间冗余是语音和序列图像中常见的冗余,运动图像中前后两帧间就存在很强的相关性,利用帧间运动补兴就可以将图像数据的速率大大压缩。语音也是这样。尤其是浊音段,在相当长的时间内(几到几十毫秒)语音信号都表现出很强的周期性,可以利用线性预测的方法得到较高的压缩比。空间冗余是用来表示图像数据中存在的某种空间上的规则性,如大面积的均匀背景中就有很大的空间冗余性。信息熵冗余是指在信源的符号表示过程中由于未遵循信息论意义下最优编码而造成的冗余性,这种冗余性可以通过熵编码来进行压缩,经常使用的如Huff-man编码。先验知识冗余是指数据的理解与先验知识有相当大的关系,如当收信方知道一个单词的前几个字母为administrato时,立刻就可以猜到最后一个字母为r,那么在这种情况下,最后一个字母就不带任何信息量了,这就是一种先验知识冗余。其它冗余是指那些主观无法感受到的信息等带来的冗余。通常数据压缩技术可分为无损压缩(又叫冗余压缩)和有损压缩(又叫熵压缩)两大类。无损压缩就是把数据中的冗余去掉或减少,但这些冗余量是可以重新插入到数据中的,因而不会产生失真。该方法一般用于文本数据的压缩,它可以保证完全地恢复原始数据;其缺点是压缩比小(其压缩比一般为2:1至5:1)。有损压缩是对熵进行压缩,因而存在一定程度的失真;它主要用于对声音、图像、动态视频等数据进行压缩,压缩比较高(其压缩比一般高达20:1以上。最新被称为“E—igen—ID”的压缩技术可将基因数据压缩1.5亿倍)。对于多媒体图像采用的有损压缩的标准有静态图像压缩标准(JPEG标准,即‘JointPhotographicExpertGroup’标准)和动态图像压缩标准(MPEG标准,即‘MovingPictureExpertGroup’标准)。JPEG利用了人眼的心理和生理特征及其局限性来对彩色的、单色的和多灰度连续色调的、静态图像的、数字图像的压缩,因此它非常适合不太复杂的以及一般来源于真实景物的图像。它定义了两种基本的压缩算法:一种是基于有失真的压缩算法,另一种是基于空间线性预测技术(DPCM)无失真的压缩算法。为了满足各种需要,它制定了四种工作模式:无失真压缩、基于DCT的顺序工作方式、累进工作方式和分层工作方式。MPEG用于活动影像的压缩。MPEG标准具体包三部分内容:(1)MPEG视频、(2)MPEG音频、(3)MP系统(视频和音频的同步)。MPEG视频是标准的核心分,它采用了帧内和帧间相结合的压缩方法,以离散余变换(DCT)和运动补偿两项技术为基础,在图像质量基不变的情况下,MPEG可把图像压缩至1/100或更MPEG音频压缩算法则是根据人耳屏蔽滤波功能。利用音响心理学的基本原理,即“某些频率的音响在重放其频率的音频时听不到”这样一个特性,将那些人耳完全不到或基本上听到的多余音频信号压缩掉,最后使音频号的压缩比达到8:1或更高,音质逼真,与CD唱片可媲美。按照MPEG标准,MPEG数据流包含系统层和压层数据。系统层含有定时信号,图像和声音的同步、多分配等信息。压缩层包含经压缩后的实际的图像和声数据,该数据流将视频、音频信号复合及同步后,其数据输率为1.5MB/s。其中压缩图像数据传输率为1.2M压缩声音传输率为0.2MB/s。MPEG标准的发展经历了MPEG—I,MPEG一2、MPEG一4、MPEG-7、MPEG一21等不同层次。在MPEG的不同标准中,每—个标准都是建立在前面的标准之上的,并与前面的标准向后的兼容。目前在图像压缩中,应用得较多的是MPEG一4标准,MPEG-是在MPEG-2基础上作了很大的扩充,主要目标是多媒体应用。在MPEG一2标准中,我们的观念是单幅图像,而且包含了一幅图像的全部元素。在MPEG一4标准下,我们的观念变为多图像元素,其中的每—个多图像元素都是独立编码处理的。该标准包含了为接收器所用的指令,告诉接收器如何构成最终的图像。上图既表示了MPEG一4解码器的概念,又比较清楚地描绘了每个部件的用途。这里不是使用单一的视频或音频解码器,而是使用若干个解码器,其中的每一个解码器只接收某个特定的图像(或声音)元素,并完成解码操作。每个解码缓冲器只接收属于它自己的灵敏据流,并转送给解码器。复合存储器完成图像元素的存储,并将它们送到显示器的恰当位置。音频的情况也是这样,但显然不同点是要求同时提供所有的元素。数据上的时间标记保证这些元素在时间上能正确同步。MPEG一4标准对自然元素(实物图像)和合成元素进行区分和规定,计算机生成的动画是合成元素的一个例子。比如,一幅完整的图像可以包含一幅实际的背景图,并在前面有一幅动画或者有另外一幅自然图像。这样的每一幅图像都可以作最佳压缩,并互相独立地传送到接收器,接收器知道如何把这些元素组合在一起。在MPEG一2标准中,图像被看作一个整体来压缩;而在MPEG一4标准下,对图像中的每一个元素进行优化压缩。静止的背景不必压缩到以后的I帧之中去,否则会使带宽的使用变得很紧张。而如果这个背景图像静止10秒钟,就只要传送一次(假设我们不必担心有人在该时间内切人此频道),需要不断传送的仅是前台的比较小的图像元素。对有些节目类型,这样做会节省大量的带宽。MPEG一4标准对音频的处理也是相同的。例如,有一位独唱演员,伴随有电子合成器,在MPEG一2标准下,我们必须先把独唱和合成器作混合,然后再对合成的音频信号进行压缩与传送。在MPEG一4标准下,我们可以对独唱作单独压缩,然后再传送乐器数字接口的声轨信号,就可以使接收器重建伴音。当然,接收器必须能支持MIDI放音。与传送合成的信号相比,分别传送独唱信号和MIDI数据要节省大量的带宽。其它的节目类型同样可以作类似的规定。MPEG一7标准又叫多媒体内容描述接口标准。图像可以用色彩、纹理、形状、运动等参数来描述,MPEG一7标准是依靠众多的参数对图像与声音实现分类,并对它们的数据库实现查询。二、多媒体数据压缩技术的实现方法目前多媒体压缩技术的实现方法已有近百种,其中基于信源理论编码的压缩方法、离散余弦变换(DCT)和小波分解技术压缩算法的研究更具有代表性。小波技术突破了传统压缩方法的局限性,引入了局部和全局相关去冗余的新思想,具有较大的潜力,因此近几年来吸引了众多的研究者。在小波压缩技术中,一幅图像可以被分解为若干个叫做“小片”的区域;在每个小片中,图像经滤波后被分解成若干个低频与高频分量。低频分量可以用不同的分辨率进行量化,即图像的低频部分需要许多的二进制位,以改善图像重构时的信噪比。低频元素采用精细量化,高频分量可以量化得比较粗糙,因为你不太容易看到变化区域的噪声与误差。此外,碎片技术已经作为一种压缩方法被提出,这种技术依靠实际图形的重复特性。用碎片技术压缩图像时需要占用大量的计算机资源,但可以获得很好的结果。借助于从DNA序列研究中发展出来的模式识别技术,能减少通过WAN链路的流量,最多时的压缩比率能达到90%,从而为网络传送图像和声音提供更大的压缩比,减轻风络负荷,更好地实现网络信息传播。三、压缩原理由于图像数据之间存在着一定的冗余,所以使得数据的压缩成为可能。信息论的创始人Shannon提出把数据看作是信息和冗余度(redundancy)的组合。所谓冗余度,是由于一副图像的各像素之间存在着很大的相关性,可利用一些编码的方法删去它们,从而达到减少冗余压缩数据的目的。为了去掉数据中的冗余,常常要考虑信号源的统计特性,或建立信号源的统计模型。图像的冗余包括以下几种:(1) 空间冗余:像素点之间的相关性。(2) 时间冗余:活动图像的两个连续帧之间的冗余。(3) 信息熵冗余:单位信息量大于其熵。(4) 结构冗余:图像的区域上存在非常强的纹理结构。(5) 知识冗余:有固定的结构,如人的头像。(6) 视觉冗余:某些图像的失真是人眼不易觉察的。对数字图像进行压缩通常利用两个基本原理:(1) 数字图像的相关性。在图像的同一行相邻像素之间、活动图像的相邻帧的对应像素之间往往存在很强的相关性,去除或减少这些相关性,也就去除或减少图像信息中的冗余度,即实现了对数字图像的压缩。(2) 人的视觉心理特征。人的视觉对于边缘急剧变化不敏感(视觉掩盖效应),对颜色分辨力弱,利用这些特征可以在相应部分适当降低编码精度,而使人从视觉上并不感觉到图像质量的下降,从而达到对数字图像压缩的目的。编码压缩方法有许多种,从不同的角度出发有不同的分类方法,比如从信息论角度出发可分 为两大类:(1)冗余度压缩方法,也称无损压缩,信息保持编码或熵编码。具体讲就是解码图像和压缩 编码前的图像严格相同,没有失真,从数学上讲是一种可逆运算。(2)信息量压缩方法,也称有损压缩,失真度编码或熵压缩编码。也就是讲解码图像和原始图像是有差别的,允许有一定的失真。应用在多媒体中的图像压缩编码方法,从压缩编码算法原理上可以分类为:(1)无损压缩编码种类 •哈夫曼编码 •算术编码 •行程编码 •Lempel zev编码(2)有损压缩编码种类 •预测编码:DPCM,运动补偿 •频率域方法:正文变换编码(如DCT),子带编码 •空间域方法:统计分块编码 •模型方法:分形编码,模型基编码 •基于重要性:滤波,子采样,比特分配,矢量量化(3)混合编码 •JBIG,H261,JPEG,MPEG等技术标准衡量一个压缩编码方法优劣的重要指标(1)压缩比要高,有几倍、几十倍,也有几百乃至几千倍;(2)压缩与解压缩要快,算法要简单,硬件实现容易;(3)解压缩的图像质量要好。四、JPEG图像压缩算法1..JPEG压缩过程JPEG压缩分四个步骤实现:1.颜色模式转换及采样;变换;3.量化;4.编码。2.1.颜色模式转换及采样RGB色彩系统是我们最常用的表示颜色的方式。JPEG采用的是YCbCr色彩系统。想要用JPEG基本压缩法处理全彩色图像,得先把RGB颜色模式图像数据,转换为YCbCr颜色模式的数据。Y代表亮度,Cb和Cr则代表色度、饱和度。通过下列计算公式可完成数据转换。Y=+128人类的眼晴对低频的数据比对高频的数据具有更高的敏感度,事实上,人类的眼睛对亮度的改变也比对色彩的改变要敏感得多,也就是说Y成份的数据是比较重要的。既然Cb成份和Cr成份的数据比较相对不重要,就可以只取部分数据来处理。以增加压缩的比例。JPEG通常有两种采样方式:YUV411和YUV422,它们所代表的意义是Y、Cb和Cr三个成份的资料取样比例。2.变换DCT变换的全称是离散余弦变换(Discrete Cosine Transform),是指将一组光强数据转换成频率数据,以便得知强度变化的情形。若对高频的数据做些修饰,再转回原来形式的数据时,显然与原始数据有些差异,但是人类的眼睛却是不容易辨认出来。压缩时,将原始图像数据分成8*8数据单元矩阵,例如亮度值的第一个矩阵内容如下:JPEG将整个亮度矩阵与色度Cb矩阵,饱和度Cr矩阵,视为一个基本单元称作MCU。每个MCU所包含的矩阵数量不得超过10个。例如,行和列采样的比例皆为4:2:2,则每个MCU将包含四个亮度矩阵,一个色度矩阵及一个饱和度矩阵。当图像数据分成一个8*8矩阵后,还必须将每个数值减去128,然后一一代入DCT变换公式中,即可达到DCT变换的目的。图像数据值必须减去128,是因为DCT转换公式所接受的数字范围是在-128到+127之间。DCT变换公式:x,y代表图像数据矩阵内某个数值的坐标位置f(x,y)代表图像数据矩阵内的数个数值u,v代表DCT变换后矩阵内某个数值的坐标位置F(u,v)代表DCT变换后矩阵内的某个数值u=0 且 v=0 c(u)c(v)=1/>0 或 v>0 c(u)c(v)=1经过DCT变换后的矩阵数据自然数为频率系数,这些系数以F(0,0)的值最大,称为DC,其余的63个频率系数则多半是一些接近于0的正负浮点数,一概称之为AC。3.3、量化图像数据转换为频率系数后,还得接受一项量化程序,才能进入编码阶段。量化阶段需要两个8*8矩阵数据,一个是专门处理亮度的频率系数,另一个则是针对色度的频率系数,将频率系数除以量化矩阵的值,取得与商数最近的整数,即完成量化。当频率系数经过量化后,将频率系数由浮点数转变为整数,这才便于执行最后的编码。不过,经过量化阶段后,所有数据只保留整数近似值,也就再度损失了一些数据内容,JPEG提供的量化表如下:2.4、编码Huffman编码无专利权问题,成为JPEG最常用的编码方式,Huffman编码通常是以完整的MCU来进行的。编码时,每个矩阵数据的DC值与63个AC值,将分别使用不同的Huffman编码表,而亮度与色度也需要不同的Huffman编码表,所以一共需要四个编码表,才能顺利地完成JPEG编码工作。DC编码DC是彩采用差值脉冲编码调制的差值编码法,也就是在同一个图像分量中取得每个DC值与前一个DC值的差值来编码。DC采用差值脉冲编码的主要原因是由于在连续色调的图像中,其差值多半比原值小,对差值进行编码所需的位数,会比对原值进行编码所需的位数少许多。例如差值为5,它的二进制表示值为101,如果差值为-5,则先改为正整数5,再将其二进制转换成1的补码即可。所谓1的补码,就是将每个Bit若值为0,便改成1;Bit为1,则变成0。差值5应保留的位数为3,下表即列出差值所应保留的Bit数与差值内容的对照。在差值前端另外加入一些差值的霍夫曼码值,例如亮度差值为5(101)的位数为3,则霍夫曼码值应该是100,两者连接在一起即为100101。下列两份表格分别是亮度和色度DC差值的编码表。根据这两份表格内容,即可为DC差值加上霍夫曼码值,完成DC的编码工作。AC编码AC编码方式与DC略有不同,在AC编码之前,首先得将63个AC值按Zig-zag排序,即按照下图箭头所指示的顺序串联起来。63个AC值排列好的,将AC系数转换成中间符号,中间符号表示为RRRR/SSSS,RRRR是指第非零的AC之前,其值为0的AC个数,SSSS是指AC值所需的位数,AC系数的范围与SSSS的对应关系与DC差值Bits数与差值内容对照表相似。如果连续为0的AC个数大于15,则用15/0来表示连续的16个0,15/0称为ZRL(Zero Rum Length),而(0/0)称为EOB(Enel of Block)用来表示其后所剩余的AC系数皆等于0,以中间符号值作为索引值,从相应的AC编码表中找出适当的霍夫曼码值,再与AC值相连即可。例如某一组亮度的中间符为5/3,AC值为4,首先以5/3为索引值,从亮度AC的Huffman编码表中找到1111111110011110霍夫曼码值,于是加上原来100(4)即是用来取[5,4]的Huffman编码1111111110011110100,[5,4]表示AC值为4的前面有5个零。由于亮度AC,色度AC霍夫曼编码表比较长,在此省略去,有兴趣者可参阅相关书籍。实现上述四个步骤,即完成一幅图像的JPEG压缩。
原创论文,包通过,包修改。