首页 > 期刊论文知识库 > 蛋白质变性研究现状论文

蛋白质变性研究现状论文

发布时间:

蛋白质变性研究现状论文

随着分子生物学的飞速发展,最为世人瞩目的人类基因组计划即将提前完成。人类将向了解自己的生命奥秘这一目标迈进一大步。但是,由于基因是遗传信息的携带者,而生命活动的执行者却是蛋白质,即基因的表达产物。因此,即使得到人类全部基因序列,也只是解决了遗传信息库的问题。人类揭示整个生命活动的规律,就必须研究基因的物产——蛋白质。相对于基因组而言,后者称为蛋白质组。1 蛋白质组概述及其相关研究技术和方法鉴于基因组研究的局限性,1994年澳大利亚Macquaie 大学的Wilkins和Williams等在意大利的一次科学会议上首次提出了蛋白质组(Proteome)这个概念。定义为“蛋白质组指的是一个基因组所表达的蛋白质”,即“PROTEOME”是由蛋白质的”PROTE”和基因组的“OME”字母拼接而成[1].这个新术语很快得到了国际生物学界的认可。目前对蛋白质组的分析工作大两个方面。一方面,通过二维胶电泳等技术得到正常生理条件下的机体、组织或细胞的全部蛋白质的图谱,相关数据将作为待测机体、组织或细胞的二维参考图谱和数据库。另一方面是比较分析在变化了生理条件下蛋白质组所发生的变化。目前蛋白质组研究技术常用以下手段:(1)用于蛋白质分离技术方面的如双向凝胶电泳(2-DE)、双向“高效”柱层析等。(2)用于蛋白质鉴定的技术如质谱技术、凝胶图像分析、蛋白质和多肽的N端、C端测序及氨基酸组成分析等。(3)用于蛋白质相互作用及作用方式研究的双杂交系统。(4)用于分析大量数据的生物工程信息学等[2].。2 蛋白质组在医学研究中的现状和前景自蛋白质组概念提出以来,已发表相关论文及论著数篇。并于是1997年举行了第一届国际性的“蛋白质组学”会议。同年出版式了第一部蛋白质组学的专著。目前蛋白质组在医学方面的研究重点在于对人类疾病的发病机制、早期诊断及治疗,对致病微生物的致病机理、耐药性及发现新的抗生素为主。现将这两方面的进展情况综述如下。 人类疾病的蛋白质组研究 直肠癌 直肠癌的发生是因多个基因的突变,导致肿瘤抑制基因失能所致,但确切机制仍不清楚。为探讨其发病机制,Sanchez等对15例结肠癌和13例正常人的结肠上皮进行2-DE,每个多肽模式用Melanie I12-DE分析软件进行分析。据此建立了包括882和861个斑点的结肠癌及正常人结肠粘膜的标准胶图。结果发现在分子量为13kD和pI值为处的蛋白质仅出现在结肠癌的组织中。15例结肠癌患者中13/蛋白有13例(87%)。此外,发现13/蛋白不仅在中度、低度分化的结肠癌及有24年病史的溃疡性结肠炎过度表达,而且出现在7例分化程度不同的腺瘤的癌前病灶。但对照组则极少出现。这表明该蛋白的出现对检测早期直肠癌有很强提示。通过对该蛋白HPLC及测序等分析后,发现与钙粒蛋白B(calgranulin B)及钙卫蛋白(calprotectin)有很大关系[3]。 肝癌 醛糖还原酶(aldose reductase, )是醛酮还原酶超家族中的一个成员。它催化葡萄糖还原为山梨醇,通过减少内源或外源性代谢产物而起到解毒作用。Peter R等在用N-甲基-N-亚基脲诱导(N-methly-N-nitrosourea-induced)的小鼠肝癌中,用2-DE及氨基酸微型测序可分辩出一种肝癌诱导的醛糖还原酶样的蛋白质(35Kd/)。而在小鼠的晶状体中,则发现一种醛糖还原的同工酶,该酶与已知的小鼠醛糖还原酶有98%的同源性,而与肝癌诱导的醛糖还原酶样的蛋白质截然不同。这表明两种蛋白质是由相关的两条基因编码,在小鼠不同的器官中表达不同。肝癌诱导的醛糖还原酶蛋白质优先表达在肝癌及胎肝中,它们均受到纤维细胞生长因子的刺激,但随小鼠鼠器官的生理及病理环境而表现不同的形式。经免疫组化证实,肝癌诱导的醛糖还原酶样的蛋白质在成人肝脏中不表达,但在小鼠的肝癌 中又重新表达。同时发现该蛋白在癌前病变及肝癌中表达强烈,而在肝脏周围的正常组织不表达[4]。表明该蛋白可能与肝癌的发病有很大关系。 扩张型心肌病 扩张型心肌病是一种严重的可导致心衰的心脏病,大多数患者需行心脏移植术。目前其发病机理不明,推测可能为多种因素所致。1990年已有两组人员进行该病的蛋白质组分析。其后不久心肌的2-DE数据库建成,并进入国际互联网络。Knecht等采用2-DE取得了3300个心肌蛋白条带,通过氨基酸序列分析、Edman降解法及基质辅助的激光解吸离子化质谱(MALDI-MS)等分析了其中150条。经活检及术后病理证实,有12条为扩张性心肌病特有的蛋白。但具体资料尚在进一步分析之中[5]。Arnott D等对新福林诱导的肥大心肌细胞进行蛋白质组分析,同对照相比亦发现有8种蛋白质的表达水平发现了变化[6]。 膀胱癌 IFN-γ除抗病毒外,还有一项重要的功能即抗肿瘤作用。目前其抗肿瘤作用机制不明。有资料表明,IFN-γ可能通过在相关细胞中增强或抑制有关基因而发挥抗肿瘤作用。重组IFN-γ和IL-2已开始应用于膀胱癌的治疗中。为探明其作用机制,George等将四种分级程度不同的人膀胱癌新鲜活检标本,用50U/ml IFN-γ作用20个小时后,采用2-DE、微型序列分析、等电聚集、蛋白质印迹等方法,对标本进行蛋白质组分析。结果表明有五种蛋白质(色按酸-tRNA合成酶、IFN-γ诱导的r3,超氧化物歧化酶及两种分子量为和的未知蛋白)的表达量增加了75%,而醛糖还原酶表达量则下降。为研究IFN-γ对治疗膀胱癌的作用机制提供了一种方法[7]。此外,由于缺乏对膀胱鳞状细胞癌客观可靠的组织学分级标准,因而很其进行早期诊断。为此,Morten等对150例膀胱癌进行双盲法2-DE,并结合了蛋白质印迹法、微型序列分析及质谱等技术,建立了新鲜膀胱癌标本的2-DE数据库,且发现角蛋白10、14及银屑病相关的脂肪酸结合蛋白(psoriasis-associated fatty acid-binding protein,PA-FABP)等可以作为膀胱癌不同分化程度的标记物[8]。为早期诊断提供了一种新的手段。[ 本帖最后由 snow_white 于 2007-7-20 16:32 编辑 ]查看完整版本请点击这里:蛋白质组学研究〔综述〕05我也来说两句 查看全部回复 最新回复snow_white (2007-7-20 16:31:50) 其它 目前人的各种组织、器官、细胞乃至各种细胞器已被广泛研究。以期为疾病诊治及了解发病机制提供新的手段。在一项利用蛋白质组研究技术进行的酒精对人体毒性的研究中发现,乙醇 会改变血清蛋白糖基化作用,导致许多糖蛋白的糖基缺乏,如转铁蛋白[9]。Jagathpala等对免疫所致的不孕症的男性精子蛋白质进行蛋白质组分析,发现了导致不孕症的6种自体及异体抗 精子抗体[10]。在对肾癌的研究中,发现有4种蛋白质存在于正常肾组织而在肾癌细胞中缺失。其中两种分别是辅酶Q蛋白色素还原酶和线粒体乏醌氧化还原复合物I。这提示线粒体功能低下可能在肿瘤发生过程中起重要作用[11]。Ekkehard Brockstedt等利用2-DE、Edman微型序列法、MALDI-MS等对人BL60-2伯基特淋巴瘤细胞系进行了细胞凋亡机制的研究,结果发现RNA聚合酶转录因子3a(BTF3a)和/或BTF3b与抗IgM抗体介导(anti-IgM antibody-mediated)的细胞凋亡有很大关系[12]。 致病微生物的蛋白质组研究 近年来,WHO越来越重视感染性疾病对人类健康的影响。除结核、多重耐药链球菌感染及机会致病菌外,出现了一些新的感染因素如HIV、博氏疏螺旋体及埃博拉病毒等。因此这些致病微生物的蛋白质组分析,对于了解其毒性因子、抗原及疫苗的制备非常重要,此外对疾病的诊断、治疗和预防也同样重要。现已获得18种微生物的全部基因组序列,另有60余种的基因序列正在研究之中。这些工作的开展为蛋白质组的研究提供了有利条件。 检测博氏疏螺旋体与免疫有关的蛋白质 博氏疏螺旋体(Borrelia burgdorferi)是莱姆病的主要病因,表现为环形红斑及流感样症状,大约有50%的未治患者发展为神经系统及关节系统疾病。该螺旋体可分为3种类型: sensu stricto,, 。其诊断需依靠血清学检查,但存在敏感性及特异性变化的缺点。为获得更可靠的血清学检查,Peter等用2-DE从得到217个银染的蛋白斑点。从中国兔多克隆抗体鉴别出6个已知的讥原。将不同临床表现莱姆病患者的血浆用 2-DE图杂交。用抗IgM及抗IgG作为第二抗体,在10例有游走性红斑的患者血浆中,检测出60~80个抗原。同时发现在有关节炎的患者血浆中,包含有抗15种抗原的IgM抗体及抗76种不同抗原的IgG抗体。而晚期有神经系统症状的患者血浆中,则包含有抗33种抗原的IgM抗体及抗76种抗原的IgG抗体。上述3种类型患者的血浆中均包含有抗6种已知抗原的抗体,且被SDSPAGE杂交所证实。这些抗原均是潜在的具有特异性诊断的标志物。 弓形体抗原的检测 弓形体病是由鼠弓形体虫引起的寄生虫病。全球人口大约有30%是携带者,在欧洲是最常见的寄生虫病。如果妊娠者感染,该虫可通过胎盘引起胎儿的感染。且随着妊娠时间的增加,感染的机会也增加。大约50%母体的感染可引起新生儿先天性疾病。因此诊断及治疗越早越好。目前要依靠血清学及PCR,而单独采用血清学如用IgG,IgM,或IgA抗体对疾病活动期敏感性不够,尤其对于妊娠或有免疫抑制的患者。潜在感染常发生在有免疫抑制的患者中。对AIDS患者来说,鼠弓形体虫是最主要的致命性脑损伤的病因。因此,能否早期诊断对治疗来说尤为关键。Jungblut等将鼠弓形体虫RH株在人羊膜细胞系FL521中传代后,用2-DE得到300个银染的斑点。再将其与以下3种患者的血浆进行免疫杂交:(1)患有急性弓形体病的妊娠女性(n=11); (2)患急性弓形体病的非妊娠者(n=6)(3)有潜在感染的患者(n=9)。结果有9个斑点对各阶段的弓形体感染均反应,这9种斑点被用来当作弓形体感染的标记。其中7种标记可用作区别疾病的不同阶段。但对区别急性期与潜在期仍需联合应用多种抗原[4]。 白色念珠菌 芽管结构是白色念珠菌向菌丝体转变的早期阶段,该结构能增强白色念珠菌对宿主细胞的粘附力、穿透力及破坏性。目前通过蛋白质组分析方法如2-DE、质谱等已检测出在芽管结构所表达的一组特异蛋白如DNA结合蛋白等,为致病提高了一些参考指标[13]。Monkt等发现,在conA反应后的SDS-PAGE图中,在芽管结构的膜上,分子量为80kD复合糖处,出现很淡的考马斯亮蓝染色,而在孢子时则未出现。提示膜的整合、出现未与ConA结合的80kD复合糖可能与芽管结构的发生及生长有关。粘附素(adhesin)是白色念珠菌表面的组成部分,介导其与宿主的结合,是侵入宿主所需的重要蛋白,包含多种成分如白色念珠菌胞壁上的疏水蛋白等,通过增强菌株的粘附性而在其致病机制中发挥一定作用。但由于这些蛋白有很大同源性、多种糖基化作用及与胞壁或胞浆膜上其它成分形成共价结合,故提纯及分析很难。现通过等电聚集、2-DE及洗脱电泳等方法,可使这些蛋白得到很好的纯化、分离及分析[14]。抗真菌药通过改变真菌胞壁组分的生物合成和重组胞壁相关酶的结合位置而发挥作用。抗真菌药远少于抗细菌药就在于对真菌细胞壁蛋白分析了解太少。现在临床上用于抗真菌的药物多为咪唑类(咪康唑、酮康唑)及三唑类(氟康唑、伊曲康唑),但有很多患者出现耐药现象。在白色念珠菌中,目前发现至少有8种CDR家族的基因可产生耐药株的表现型。且有55种基因分别表达ABC及MFS蛋白(菌内药物输出泵)[]。但这些基因、蛋白与耐药之间的关系仍未清楚。应用2-DE、免疫检测蛋白质等技术,对这些蛋白在菌内的表达量进行分析,发现Cdrlp及CaMdrlp蛋白在耐咪唑类菌株中过量表达。在对咪唑类每感及去除CDR1基因的白色念珠菌株CA114中,提取并检测耐氟康唑突变子(FL3)的表达。结果发现FL3对氟康唑的耐是去除CDR1的基因的白色念珠菌株CA114的500倍 ,是CA114的250倍。且CDR1 mRNA在FL3的量是Ca114的8倍[17]。同时,对敏感性及耐药株蛋白质的2-DE图分析发现,在耐中有25种蛋白质增加,有76种蛋白质减少。推测白色念株菌是通过改变染色体数目或染色体重组来调节基因的表达量,进而产生耐药性[18]。随着蛋白质组技术成熟完善,将对真菌壁及耐药基因分泌的各种蛋白组成分析带来重大突破,并对抗真菌的研制提供重要资料。虽然蛋白质组学还处在一个初期发展研段,但我们相信随着其不断地深入发展,蛋白质组(学)研究在提示诸如生长、发育和代谢调控等生命活动的规律上将会有所突破,对探讨重大疾病的机理、疾病诊断、疾病防治和新药开发将提供重要的理论基础。[ 本帖最后由 snow_white 于 2007-7-20 16:33 编辑 ]snow_white (2007-7-20 16:34:25)二、蛋白质组学的研究进展蛋白质组学强调的是针对蛋白质的一个整体思路。从整体的角度看,蛋白质组研究大致可分为两种类型:一种是针对细胞或组织的全部蛋白质,也就是着眼点是整个蛋白质组;而另一种是以与一个特定的生物学机制或机制相关的全部蛋白质为着眼点,在这里整体是局部性的。针对细胞蛋白质组的完整分析的工作已经比较全面地展开,不仅如大肠杆菌、酵母等低等模式生物的蛋白质组数据库在建立之中,高等生物如水稻和小鼠等的蛋白质研究也已开展,人类一些正常和病变细胞的蛋白质数据库也已在建立之中。与此同时,更多的蛋白质组研究工作则是将着眼点放在蛋白质组的变化或差异上,也就是通过对蛋白质组的比较分析。首先发现并去鉴定在不同生理条件下或不同外界条件下蛋白质组中有差异的蛋白质组分。限于篇幅,本文不对这方面的工作做进一步论述。本文接下来重点介绍近期发表的关于蛋白质组学的几个工作,从中可以看到蛋白质组学的思想方法在蛋白质整体(或局部整体)水平上是如何解决生理学的一些重要问题的。1999年11月《Nature》杂志发表了一篇用蛋白质组学方法研究蛋白质折叠的研究论文[10]。在这篇文章中,Houry等报道了在大肠杆菌胞质中的2500种新生多肽链种只有近300种以GroEL作为分子伴侣来帮助其折叠成正确构象。在以往的相关研究中,通常只是针对某个或某些特定的蛋白质,观察它(们)在折叠过程中是否需要诸如GroEL等分子伴侣的帮助。而在这个工作中,研究是从一个整体的思路出发,首先通过免疫共沉淀的方法获得所有与GroEL结合的肽链,再通过二维电泳和数据库比较等蛋白质研究的手段对这些肽链进行分析鉴定,从而实现了对大肠杆菌近2500条新生多肽链与分子伴侣GroEL的关系的全面分析。在这个工作中,研究者还通过对其中50种与GroEL作用的肽链的鉴定,进一步揭示了决定这些蛋白质能与GroEL相互作用的关键结构特征。应该说,这个工作很好地体现了蛋白质组学的思想方法和技术手段的运用。过去在细胞生物学领域还没有得到过一个主要亚细胞结构的完整的分子图。核孔复合体是一个巨大的跨核膜的八角形结构,是控制大分子在胞质和核质间运输的通道。多年来,很多方法被用来分析这一复合体的组成成分。虽然这些工作取得了很大的进展,但究竟在多大程度上反映了这一复合体的分子原貌仍然是一个未知数。最近通过使用蛋白质组学的手段,Rout等[11]鉴定了完整的酵母核孔复合体所有能检测到的多肽,并系统地对每种可能的蛋白质组分在细胞中定位,结合免疫电镜的方法将各组分在复合体内定位并定量,从而揭示了酵母核孔复合体的完整分子构造,并在此基础上揭示了其工作原理。这个工作可以说是蛋白质组学解决构造生物学问题的一个典范,为揭示其他巨大分子机器的"构造"和工作原理指出了一条新路[12]。通过分析一个蛋白质是否跟功能已知的蛋白质相互作用可得到揭示其功能的线索。因为经验告诉我们,如果两个蛋白质相互作用,那么它们一般参与相同或相关的细胞活动[13]。从近期国际上蛋白质组学研究的发展动向可以看出,揭示蛋白质之间的相互作用关系,建立相互作用关系的网络图,已成为揭示蛋白质组复杂体系与蛋白质功能模式的先导,业已成为蛋白质组学领域的研究热点。2000年初,《Science》登载了一篇应用蛋白质组学的大规模双杂交技术研究线虫生殖器发育的文章[14]。在这个工作中,Walhout等以线虫的生殖发育过程作为研究对象,从已知的27个与线虫发育的蛋白质出发,构造了一个大规模的酵母双杂交系统,得到了100多个相互作用的结果,初步建立了与线虫生殖发育相关的蛋白质相互作用图谱,从而为深入研究和揭示线虫发育的机制等提供了丰富的线索。这个工作不同于一般的应用酵母双杂交进行研究的地方在于,它出于对一个生物学问题的整体思考,尽可能地从所有已知的蛋白质而不只是个别的蛋白质为出发点。这一个工作为以前专注于信号转导过程中单个蛋白质作用的科学家们提供了一个新的思路,即将整个途径的相关蛋白质一起考虑。那么,能否通过酵母双杂交系统来分析一种细胞或特定组织的所有可能的蛋白质之间的相互作用呢?在今年初,《Nature》发表了一篇通过大规模双杂交技术研究酵母近6000个蛋白质之间相互作用的论文[15]。啤酒酵母基因组DNA的全序列业已测定,这为通过双杂交技术来鉴定酵母基因组编码的全部6000种左右的蛋白质间的可能相互作用提供了非常有利的条件。在这个工作中,研究人员采用了两种不同的策略对酵母的蛋白质间的相互作用作了全面分析。一是所谓的列阵筛选法(array screening)。在此方法中,6000株表达不同"猎物"蛋白的酵母单克隆分别加在微滴定板上,带有不同的"诱饵"蛋白的酵母株与前面6000株细胞一一接合形成二倍体细胞,"猎物"蛋白与"诱饵"蛋白的相互作用通过报道基因的表达而被鉴定。这篇文章中报道了192种不同的"诱饵"蛋白与近6000种"猎物"蛋白的相互作用的结果。另一种方法是文库筛选法。该方法与前一种方法的区别是,将表达6000种不同"猎物"蛋白的酵母细胞混在一起构成文库,再将这个文库分别与6000株表达不同"诱饵"蛋白的酵母细胞接合,再进一步筛选鉴定阳性克隆,即"诱饵"与"猎物"发生相互作用的克隆。根据这篇报告,上述两种策略得到了不同的结果,相比之下阵列筛选法更为有效,而文库筛选法的长处是通量大。这一工作的重要意义在于我们已经看到,在基因组序列被了解的基础上,可以利用大规模双杂交技术全面地,当然也是初步地,分析其物种或其细胞、组织的所有蛋白质之间的相互作用关系。相信类似的工作将很快针对其他物种开展,特别是基因组序列已被揭示的物种。由此可见,蛋白质组学已经开始从建立数据库走向解决生命科学的重大问题,成为研究生物学问题或机制的强有力手段。snow_white (2007-7-20 16:37:32)三、蛋白质组学研究进展与趋势曾 嵘 夏其昌(中国科学院上海生命科学研究院生物化学与细胞生物学研究所蛋白质组学研究分析中心 上海 200031)如果在五年前提到蛋白质组学(Proteomics),恐怕知之者甚少,而在略知一二者中,部分人还抱有怀疑态度。但是,2001年的Science杂志已把蛋白质组学列为六大研究热点之一,其“热度”仅次于干细胞研究,名列第二。蛋白质组学的受关注程度如今已令人刮目相看。1.蛋白质组学研究的研究意义和背景随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析(Serial analysis of gene expression, SAGE)等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA mRNA 蛋白质,存在三个层次的调控,即转录水平调控(Transcriptional control ),翻译水平调控(Translational control),翻译后水平调控(Post-translational control )。从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。实验也证明,组织中mRNA丰度与蛋白质丰度的相关性并不好,尤其对于低丰度蛋白质来说,相关性更差。更重要的是,蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等则几乎无法从mRNA水平来判断。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。传统的对单个蛋白质进行研究的方式已无法满足后基因组时代的要求。这是因为:(1) 生命现象的发生往往是多因素影响的,必然涉及到多个蛋白质。(2) 多个蛋白质的参与是交织成网络的,或平行发生,或呈级联因果。(3) 在执行生理功能时蛋白质的表现是多样的、动态的,并不象基因组那样基本固定不变。因此要对生命的复杂活动有全面和深入的认识,必然要在整体、动态、网络的水平上对蛋白质进行研究。因此在上世纪90年代中期,国际上产生了一门新兴学科-蛋白质组学(Proteomics),它是以细胞内全部蛋白质的存在及其活动方式为研究对象。可以说蛋白质组研究的开展不仅是生命科学研究进入后基因组时代的里程碑,也是后基因组时代生命科学研究的核心内容之一。虽然第一次提出蛋白质组概念是在1994年,但相关研究可以追溯到上世纪90年代中期甚至更早,尤其是80年代初,在基因组计划提出之前,就有人提出过类似的蛋白质组计划,当时称为Human Protein Index计划,旨在分析细胞内的所有蛋白质。但由于种种原因,这一计划被搁浅。90年代初期,各种技术已比较成熟,在这样的背景下,经过各国科学家的讨论,才提出蛋白质组这一概念。国际上蛋白质组研究进展十分迅速,不论基础理论还是技术方法,都在不断进步和完善。相当多种细胞的蛋白质组数据库已经建立,相应的国际互联网站也层出不穷。1996年,澳大利亚建立了世界上第一个蛋白质组研究中心:Australia Proteome Analysis Facility ( APAF )。丹麦、加拿大、日本也先后成立了蛋白质组研究中心。在美国,各大药厂和公司在巨大财力的支持下,也纷纷加入蛋白质组的研究阵容。去年在瑞士成立的GeneProt公司,是由以蛋白质组数据库“SWISSPROT” 著称的蛋白质组研究人员成立的,以应用蛋白质组技术开发新药物靶标为目的,建立了配备有上百台质谱仪的高通量技术平台。而当年提出Human Protein Index 的美国科学家Normsn G. Anderson也成立了类似的蛋白质组学公司,继续其多年未实现的梦想。2001年4月,在美国成立了国际人类蛋白质组研究组织(Human Proteome Organization, HUPO),随后欧洲、亚太地区都成立了区域性蛋白质组研究组织,试图通过合作的方式,融合各方面的力量,完成人类蛋白质组计划(Human Proteome Project)。snow_white (2007-7-20 16:37:49)2.蛋白质组学研究的策略和范围蛋白质组学一经出现,就有两种研究策略。一种可称为“竭泽法”,即采用高通量的蛋白质组研究技术分析生物体内尽可能多乃至接近所有的蛋白质,这种观点从大规模、系统性的角度来看待蛋白质组学,也更符合蛋白质组学的本质。但是,由于蛋白质表达随空间和时间不断变化,要分析生物体内所有的蛋白质是一个难以实现的目标。另一种策略可称为“功能法”,即研究不同时期细胞蛋白质组成的变化,如蛋白质在不同环境下的差异表达,以发现有差异的蛋白质种类为主要目标。这种观点更倾向于把蛋白质组学作为研究生命现象的手段和方法。早期蛋白质组学的研究范围主要是指蛋白质的表达模式(Expression profile), 随着学科的发展,蛋白质组学的研究范围也在不断完善和扩充。蛋白质翻译后修饰研究已成为蛋白质组研究中的重要部分和巨大挑战。蛋白质-蛋白质相互作用的研究也已被纳入蛋白质组学的研究范畴。而蛋白质高级结构的解析即传统的结构生物学,虽也有人试图将其纳入蛋白质组学研究范围,但目前仍独树一帜。

目录一、摘要二、现代生物技术与健康1、现代生物技术中蛋白质与健康2、现代生物技术中糖类与健康3、现代生物技术中与健康4、现代生物技术中与健康三、总结四、后序五、鸣谢六、参考文献关键词:现代生物技术、蛋白质、糖类、脂肪、维生素、健康摘 要现代生物技术以其越来越重要的经济价值和科研价值而逐渐受到人们越来越多关注。据估计生物技术可以给人类创造数千亿美元的收入,但比这更重要的是现代生物技术挽救了数亿人的生命。最典型的例子就是青霉素的使用,因为青霉素的使用而使人类的平均年龄增加十几年。人类的生活条件也因生物技术的使用而大有改善。我国作为一个拥有十三亿人口大国,生物技术对保证国民的身体健康起着举足轻重的作用。那么现代生物技术与健康又有哪些连系呢?带着这些问题,我们小组对此进行了调查。希望通过我们的探究活动性报告,使您对现代生物技术与健康的关系有更深入的了解!现代生物技术与健康1、现代生物技术中蛋白质与健康(1)蛋白质的定义及概述蛋白质是一种复杂的有机化合物,旧称“朊”。组成蛋白质的基本单位是氨基酸,氨基酸通过脱水缩合形成肽链。蛋白质是由一条或多条多肽链组成的生物大分子,每一条多肽链二十~数百个氨基酸残基不等;各种氨基酸残基按一定的顺序排列,蛋白质的氨基酸序列是由对应基因所编码。除了遗传密码所编码的20种“标准”氨基酸,在蛋白质中,某些氨基酸残基还可以被翻译后修饰而发生化学结构的变化,从而对蛋白质进行激活或调控。多个蛋白质可以通过结合在一起形成稳定的蛋白质复合物,折叠或螺旋构成一定的空间结构,从而发挥某一特定功能。产生蛋白质的细胞器是核糖体。蛋白质(protein)是生命的物质基础,机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体质量的%,即一个60kg重的成年人其体内约有蛋白质。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸按不同比例组合而成的,并在体内不断进行代谢与更新。被食入的蛋白质在体内经过消化分解成氨基酸,吸收后在体内主要用于重新按一定比例组合成人体蛋白质,同时新的蛋白质又在不断代谢与分解,时刻处于动态平衡中。因此,食物蛋白质的质和量、各种氨基酸的比例,关系到人体蛋白质合成的量,尤其是青少年的生长发育、孕产妇的优生优育、老年人的健康长寿,都与膳食中蛋白质的量有着密切的关系。(2)蛋白质的生理功能1、构成蛋白质的身体。蛋白质是一切生命的物质基础,是肌体细胞的重要组成部分,是人体组织更新和修补的主要原料。人体的每个组织:毛发、皮肤、骨骼、内脏、大脑、血液、神经等都是由蛋白质组成,所以说饮食造就人本身。可见蛋白质对人的生长发育非常重要。2、修补人体组织。人的身体由百兆亿个细胞组成,它们处于永不停息的衰老、死亡、新生的新陈代谢过程中。例如年轻人的表皮28天更新一次,而胃黏膜两三天就要全部更新。所以一个人如果蛋白质的摄入、吸收、利用都很好,那么皮肤就是光泽而又有弹性的。反之,人则经常处于亚健康状态。组织受损后,若不能得到及时和高质量的修补,便会加速肌体衰退。3、维持肌体正常的新陈代谢和各种物质在体内的输送。载体蛋白对维持人体的正常生命活动是至关重要的。可以在体内运载各种物质。比如血红蛋白一输送氧、脂蛋白一输送脂肪、细胞膜上的受体和转运蛋白等。4、白蛋白:维持机体内的渗透压的平衡及体液平衡。5、维持体液的酸碱平衡。6、免疫细胞和免疫蛋白:有白蛋白、淋巴细胞、巨噬细胞、抗体(免疫球蛋白)、补体、干扰素等。七天更新一次。当蛋白质充足时,这个部队就很强,在需要时,数小时内可以增加100倍.7、构成人体必需的各种酶。我们身体有数千种酶,每一种只能催化一种生化反应。相应的酶充足,反应就会顺利、快捷的进行,我们就会精力充沛,不易生病。否则,反应就变慢或者被阻断。8、激素的主要原料。激素可以调节体内各器官的生理活动。如胰岛素是由51个氨基酸分子组合成,生长素是由191个氨基酸分子合成的。9、构成神经递质乙酰胆碱、五羟色氨等。维持神经系统的正常功能:味觉、视觉和记忆。10、胶原蛋白:占身体蛋白质的 ,生成结缔组织,构成身体骨骼。如骨骼、血管、韧带等,决定了皮肤的弹性,保护大脑(在大脑脑细胞中,很大一部分是胶原细胞,并且形成血脑屏障保护大脑)。11、提供生命活动的能量。(3)现代生物技术在蛋白质重点应用保持健康所需要的蛋白质含量因人而异。普通健康男性或女性每公斤体重大约需要克蛋白质。婴幼儿、青少年、怀孕期间的妇女、伤员和运动员通常每日可能需要摄入更多蛋白质。蛋白质缺乏:成年人:肌肉消瘦、肌体免疫力下降、贫血,严重者将产生水肿。未成年:成长发育停滞、贫血、智力发育差,视力差。蛋白质过量:蛋白质在体内不能贮存,多了肌体无法吸收,过量摄入蛋白质,将会因代谢障碍产生蛋白质中毒甚至死亡。面对这些问题营养师根据人体对不同蛋白质的需要量进行膳食调配以及人工添加或减少蛋白质的方法来保证人体内蛋白质含量的相对稳定。而生物学家则通过生物制药技术研发出一些新型的药品,这些药品不仅能促进人体对蛋白质的运输和吸收,而且还能预防由于外界环境或病毒引起的蛋白质变性。当然在临床医学上,这些变性因素也常被应用来消毒及灭菌。对防止蛋白质变性也是有效保存蛋白质制剂(如疫苗等)的必要条件。此外在蛋白质领域运用的现在生物技术还有X线衍射技术和磁共振技术等。它们的应用都能有效控制和制备蛋白质,促进人们的身体健康。2、现代生物技术中糖类与健康(1)糖的定义及概述糖是一类化学本质为多羟酮及其衍生物的有机化合物。在人体内糖的主要形成是葡萄糖及糖原。葡萄糖是糖在血液中的运输形式,在肌体糖代谢中占据主要地位;糖原是葡萄糖的多聚体,包括肝糖原、肌糖原和肾糖原等,是糖在体内的储存形式。葡萄糖和糖原都能在体内氧化提供能量。食物中的糖是机体中糖的主要来源,被人体摄入经消化成单糖吸收后,经血液运输到各组织细胞进行合成代谢和分解代谢。机体内糖的代谢途径主要有葡萄糖的无氧酵解、有氧氧化、磷酸戊糖途径、糖原合成与糖原分解、糖异生以及其他已糖代谢等。(2)糖的生理功能糖分是我们身体必不缺少的营养成分之一。人们摄入谷物、蔬菜等,经过消化系统转化为单糖(如葡萄糖等)进入血液,运送到全体细胞,作为能量的来源。血液中所含的葡萄糖,称为血糖。体内各组织细胞活动所需的能量大部分来自葡萄糖,所以血糖必须保持一定的水平才能维持体内各器官和组织的需要。正常人在清晨空腹血糖浓度为80~120毫克%。空腹血糖浓度超过130毫克%称为高血糖。如果血糖浓度超进160~180毫克%,就有一部分葡萄糖随尿排出,这就是糖尿。血糖浓度低于70毫克%称为低血糖。可见于饥饿时间过长,持续的剧烈体力活动,严重肝肾疾病,垂体前叶机能减退、肾上腺皮质机能减退等。低血糖时,脑组织首先对低血糖出现反应,表现为头晕、心悸、出冷汗以及饥饿感等。如果血糖持续下降到低于45毫克%,就可发生低血糖昏迷。如果从食物中摄取的糖一时消耗不了,则转化为糖原储存在肝脏和肌肉中,肝脏可储存70~120克,约张肝重的6~10%。细胞所能储存的肝糖是有限的。如果摄入的糖分过多,多于的糖即转变为脂肪。当食物消化完毕后,储存的肝糖即成为糖的正常来源,维持血糖的正常浓度。在剧烈运动时,或者长时间没有补充食物情况,肝糖也会消耗完,此时细胞将分解脂肪来供应能量。人类的大脑和神经细胞必需要糖来维持生存,必要时人体将分泌激素,把人体的某些部分(如肌肉、皮肤甚至脏器)摧毁,将其中的蛋白质转化为糖,以维持生存。(3)现代生物技术在糖类中的应用由于血糖高和血糖低对人体来说都是有害的。为此,有关科学家为了保证人体内糖类的正常供应,对低血糖人群提供含有浓缩糖的含片和糖果。开发出浓缩糖技术,保证他们维持血糖浓度恒定。而对高血糖患者,则用降血糖药物加以控制。在临床上静脉滴注葡萄糖过快,也会出现血糖升高的现象。所以对于血糖过高的病人点滴速度不应过快,而这些也都基于一定生物技术基础上。从而保证了人们身体的健康。3、现代生物技术脂质与健康(1)脂质的定义及概述脂质(lipids)是脂肪及类脂的总体,是一类不溶于水而易溶于有机溶液,并能为机体利用的有机化合物。脂肪是三脂肪酸甘油或称甘油三酯。脂肪的生理功能是储存能量及氧化供能。类脂包括固醇及其脂、磷脂及糖脂等,是细胞的膜结构重要部分。(2)脂质的生理功能及影响脂肪是人体重要的储能物质,当人们摄食过足时,人体会将多余的能力主要以脂肪形成储存下来。过去的日子中,在旧的封建思想的影响下,人们总以“肥头大耳”为富贵的象征,甚至到当今社会。但肥胖并不是富,更是一种负担。肥胖会带来许多疾病,威胁健康,甚至造成死亡。当人们身体肥胖,自然他们的血液中脂质的含量升高,随着血液的全身巡回,使他们和心力衰竭的正常体重者多1倍;冠心病多2-5倍;高血压多2-6倍;糖尿病多4倍;胆石病多4-6倍。这些疾病都是人类健康的主要杀手。像正处于成长期的人来说,肥胖不仅带来的是智力上的影响,更有心理上的一系列影响。所以在平常生活中,合理的饮食显得异常重要。有人喜欢大鱼大肉,时常酒足饭饱之后修身养性,静如止水,像这种生活习惯,终有一天会猝死在饭桌之上。胆固醇是由体内储有的脂肪转化而来的,而胆固醇又能合成乳汁、皮脂以及类固醇激素,保证人们内、外分系统的正常运转。胆固醇在人体内还参与血液中脂质的运输。但是,胆固醇过多压迫血管,使血液的径流量减少,导致脑供血不足、淤血等,严重的会导致人死亡。性激素则是一种与性别决定有关的激素,它能促进人和动物生殖器官的发育以及生殖细胞的形成。乱食性激素会使人生殖器官发育不完全,会内分泌失调,严重的还会变成“双性“人,大大减少其自身的寿命。(3)现代生物技术在脂质中应用面对这些现象,生物学家采用现代溶脂技术除去多余脂肪。通过一种溶解药物,舒缓血管,溶解多余胆固醇。面对因肥胖而造成心力衰竭的病人,科学家还采用强心剂等生物化学药物经行急救,这些都在一定程度上减缓了发病率,降低了死亡率,使人们的健康得以延续。4、现代生物技术中维生素与健康(1)、维生素的定义和概述维生素是近百年才被陆续发现的一组营养素,是维持人体正常功能的一类有机化合物。其共同特点:它们都不供应热量,也不是有机体的构造成分,但却是维持身体的正常生长和发育,繁殖等所必需的有机化合物,起着调节身体各种功能的作用,身体对它们的需要量很少,但供应不足时会出现各种代谢障碍和症状,称为维生素缺乏病。(2)、维生素的种类及应用V—A:缺乏维生素A会造成皮肤老化,维生素A是丘脑、脑垂体等内分泌腺体活动所需要的极为重要的营养成分。想要保持年轻靓丽,尽量多吃些维生素A高的动物性食物,如:肝、瘦肉、卵黄等。V—B2:维生素B2会促进脂肪的分解。V—B6: 与氨基酸及代谢关系,能促进氨基酸的吸收和蛋白质的合成为细胞的生长所需,对脂肪代谢都会有影响,与皮脂分泌紧密相关。V—L: 维生素L缺乏会影响结缔组织中中股原纤维的形成。V—E:公认有抗衰老作用,能促进皮肤血液的循环和肉芽组织的生长。谷维素:是从米粮油中提取出来的一种天然物质,其成分为以三萜(稀)醇类主体的阿魏酸酯的混合物,它对植物中枢功能有调节和激活作用。它能降低毛细血管脆性,提高人的皮肤血管循环机能,会使皮肤温度升高,四肢皮肤表面血流?增加,被称为“美容素”此外,谷维素还能降血脂,并含强有力的生长促进因子,有助于我们的亲少年成长。(3)现代生物技术在维生素中的应用。针对现在人体内维生素缺乏现象,有关药剂师及营养师在食品及保健品中添加适量维生素。同时生物学家也在这方面进行了许多研究,通过生物制药技术,将大量维生素合成在一个小药片内,制造出补充维生素的药片,这在一定程度上补充了现在爱吃肉类而不爱吃蔬菜的都市人群体内的维生素,使人体内维生素含量保持在一个平稳水平上,使人们身体更加健康。总结:“身体是革命的本钱”健康的身体是我们一切生活的基础,但一个人要做到健康,是十分不易的,这与我们日常的饮食习惯和生活习惯都息息相关。更重要的是我们是否爱护自己的身体,是否决心要要做一个身体健康的人。糖类、脂肪、蛋白质等都是构成我们身体的重要物质,像维生素,各种无机盐等这样的物质在人类体内的含量虽然相对较少,但其作用也是不忽视的。上述物质共同维持我们的生命活动,前面已经提到了各种维生素、无机盐及糖类、脂肪、蛋白质等对人身体的具体作用,例如在对身体的生长,身体器官的功能的影响都一一列出,同时也告诫了我们如果缺少了这些物质,将会有什么严重的后果。然而这些物质都来源于我们日常的食物中,所以合理膳食是相当重要的,这也是维持我们身体健康的惟一路径。随着科学技术的发展,生物科学家已经将着眼点放在人的身体营养健康上,科学家研发新的生物技术来改善人们的身体状况,减轻许多人身体上的痛苦和伤害。作为青年的我们,正处于身体发育的黄金阶段,所以我们更应要注意自己的饮食习惯,养成良好的生活习惯,这对我们以后的生活起着决定性的作用。后 序如今,好好学习生物技术是很有必要的事。生物技术给人类的生活带来了无数变革。而“人类基因组计划”“克隆技术”都是当今最热门的生物技术项目。而我们生活中的大多数药物都是通过生物技术得到的。很难想象如果没有生物技术我们的生活究竟会怎样。我想一定非常糟糕,甚至我们的寿命将会变短,越来越多的问题都直接威胁着人们的生命。而如果没有生物技术对人体内蛋白质、维生素等重要物质的研究与应用,我们将会对自己一无所知,更提不上身体健康这些话,所以现代生物技术保护了我们自身的健康。现代生物技术不容忽视。而对现代生物技术的开发,我们责无旁贷。鸣 谢通过此次探究活动,大家分工明确,都不辞辛苦的完成了各自的工作任务。在此感谢本小组各位成员,以及为我们提供资料的各出版社,还有我们的指导老师。在大家共同合作下,本次探究活动终于圆满结束。再次由衷致谢!参考文献:1、《生物必修1》人民教育出版社2、《生物化学》 第六版 人民卫生出版社主编: 周爱儒副主编:查锡良3、《登上健康快车》北京出版社主编:关春若4、《高中生物基础知识手册》第七次修改 北京教育出版社主编:薛金星这是我们小组写的,网上绝对跟这一样的。

你看下(微生物前沿)上的文献吧,

国内蛋白质结构预测研究现状论文

我不知道你们的论文是什么要求,但可以给你些建议:论文应先写摘要,再写正文。从目的、方法、结果、结论这几方面写。具体的可参考范文,以下为蛋白质的结构,希望对你有所帮助。蛋白质一级结构(primary structure) 是指多肽链的氨基酸残基的排列顺序,也是蛋白质最基本的结构。它是由基因上遗传密码的排列顺序所决定的,各种氨基酸按遗传密码的顺序通过肽键连接起来。每一种蛋白质分子都有自己特有的氨基酸的组成和排列顺序即一级结构,由这种氨基酸排列顺序决定它的特定的空间结构,也就是蛋白质的一级结构决定了蛋白质的二级三级等高级结构。胰岛素(Insulin)由51个氨基酸残基组成,分为A、B两条链。A链21个氨基酸残基,B链30个氨基酸残基。A、B两条链之间通过两个二硫键联结在一起,A链另有一个链内二硫键。 蛋白质二级结构(secondary structure)二级结构是指多肽链借助于氢键沿一维方向排列成具有周期性的结构的构象,是多肽链局部的空间结构(构象),主要有α-螺旋、β-折叠、β-转角等几种形式,它们是构成蛋白质高级结构的基本要素。 α-螺旋(α-helix)是蛋白质中最常见最典型含量最丰富的二级结构元件.在α螺旋中,每 个螺旋周期包含 个氨基酸残基,残基侧链伸向外侧,同一肽链上的每个残基的酰胺氢原子和位于它后面的第4个残基上的羰基氧原子之间形成氢键。这种氢键大致与螺旋轴平行。一条多肽链呈α-螺旋构象的推动力就是所有肽键上的酰胺氢和羰基氧之间形成的链内氢键。在水环境中,肽键上的酰胺氢和羰基氧既能形成内部(α-螺旋内)的氢键,也能与水分子形成氢键。如果后者发生,多肽链呈现类似变性蛋白质那样的伸展构象。疏水环境对于氢键的形成 没有影响,因此,更可能促进α-螺旋结构的形成。β-折叠(β-sheet)也是一种重复性的结构,可分为平行式和反平行式两种类型,它们是通过肽链间或肽段间的氢键维系。可以把它们想象为由折叠的条状纸片侧向并排而成,每条纸片可看成是一条肽链, 称为β折叠股或β股(β-strand),肽主链沿纸条形成锯齿状,处于最伸展的构象,氢键主要在股间而不是股内。α-碳原子位于折叠线上,由于其四面体性质,连续的酰氨平面排列成折叠形式。需要注意的是在折叠片上的侧链都垂直于折叠片的平面,并交替的从平面上下二侧伸出。平行折叠片比反平行折叠片更规则且一般是大结构而反平行折叠片可以少到仅由两个β股组成。β-转角(β-turn)是种简单的非重复性结构。在β-转角中第一个残基的C=O与第四个残基的N-H氢键键合形成一个紧密的环,使β-转角成为比较稳定的结构,多处在蛋白质分子的表面,在这里改变多肽链方向的阻力比较小。β-转角的特定构象在一定程度上取决与他的组成氨基酸,某些氨基酸如脯氨酸和甘氨酸经常存在其中,由于甘氨酸缺少侧链(只有一个H),在β-转角中能很好的调整其他残基的空间阻碍,因此使立体化学上最合适的氨基酸;而脯氨酸具有换装结构和固定的角,因此在一定程度上迫使β-转角形成,促使多台自身回折且这些回折有助于反平行β折叠片的形成。蛋白质三级结构(tertiary structure)三级结构主要针对球状蛋白质而言的是指整条多肽链由二级结构元件构建成的总三维结构,包括一级结构中相距远的肽段之间的几何相互关系,骨架和侧链在内的所有原子的空间排列。在球状蛋白质中,侧链基团的定位是根据它们的极性安排的。蛋白质特定的空间构象是由氢键、离子键、偶极与偶极间的相互作用、疏水作用等作用力维持的,疏水作用是主要的作用力。有些蛋白质还涉及到二硫键。如果蛋白质分子仅由一条多肽链组成,三级结构就是它的最高结构层次。蛋白质四级结构(quaternary structure)四级结构是指在亚基和亚基之间通过疏水作用等次级键结合成为有序排列的特定的空间结构。四级结构的蛋白质中每个球状蛋白质称为亚基,亚基通常由一条多肽链组成,有时含两条以上的多肽链,单独存在时一般没有生物活性。亚基有时也称为单体(monomer),仅由一个亚基组成的并因此无四级结构的蛋白质如核糖核酸酶称为单体蛋白质,由两个或两个以上亚基组成的蛋白质统称为寡聚蛋白质,多聚蛋白质或多亚基蛋白质。多聚蛋白质可以是由单一类型的亚基组成,称为同多聚蛋白质或由几种不同类型的亚基组成称为杂多聚蛋白质。对称的寡居蛋白质分子可视为由两个或多个不对称的相同结构成分组成,这种相同结构成分称为原聚体或原体(protomer)。在同多聚体中原体就是亚基,但在杂聚体中原体是由两种或多种不同的亚基组成。蛋白质的四级结构涉及亚基种类和数目以及各亚基或原聚体在整个分子中的空间排布,包括亚基间的接触位点(结构互补)和作用力(主要是非共价相互作用)。大多数寡聚蛋白质分子中亚基数目为偶数,尤以2和4为多;个别为奇数,如荧光素酶分子含3个亚基。亚基的种类一般是一种或两种,少数的多于两种。稳定四级结构的作用力与稳定三级结构的没有本质区别。亚基的二聚作用伴随着有利的相互作用包括范徳华力,氢键,离子键和疏水作用还有亚基间的二硫键。亚基缔合的驱动力主要是疏水作用,因亚基间紧密接触的界面存在极性相互作用和疏水作用,相互作用的表面具有极性基团和疏水基团的互补排列;而亚基缔合的专一性则由相互作用的表面上的极性基团之间的氢键和离子键提供。

给你两个网站吧,里面有些范文

谁一个、、论文不才交么……生物信息在生物学研究中的作用。生物信息是指生物体中包含的全部信息,如基因组信息、蛋白质、核酸、糖类等生物大分子的结构等。生物信息对生物体的生存、繁殖都起着重要作用。生物信息包含的范围很广,除遗传物质、神经电冲动和激素之外,生物体发出的声音、气味、颜色以及生物的行为本身都含有信息,都对生物的个体和群体产生影响,和生物的生存与进化密不可分。生物信息的特点是消耗极少的能量和物质即可产生极大的生物效应。生物信息一般可分为遗传信息、神经和感觉信息及化学信息。虽然遗传信息和神经感觉信息的载体都属于化学物质,但通常所指的化学信息是除以上两类物质以外的化学物质所携带和传递的信息。高等生物的激素及昆虫外激素都属于这一类。遗传信息是指生物为复制与自己相同的东西、由亲代传递给子代、或各细胞每次分裂时由细胞传递给细胞的信息, 即碱基对的排列顺序(或指DNA分子的脱氧核苷酸的排列顺序) 。遗传信息以密码形式存储在DNA分子上,通过DNA的复制传递给子代。在后代生长发育过程中,遗传信息自DNA转录给RNA,后翻译成特异的蛋白质,以执行各种生命功能。从历史上看,首先是由(1866)的研究形成了概念,即相应于生物各种性状的因素(现在称为基因)中包含着相应的信息(以后等人(1941)所开创了遗传生物化学的研究,描绘出这样一个轮廓:基因和决定生物结构与功能的蛋白质之间具有一对一的对应关系。 关于基因的化学本质方面,根据等(1944)进行的转化实验,以及和(1952)用大肠杆菌噬菌体的DNA进行的性状表达实验,已阐明DNA是遗传信息的载体。附着DNA结构研究的进展,现在已经确立了这样的概念,即基因所具有的信息可将DNA的碱基排列进行符号化。信息在表达时,DNA的碱基排列首先被转录成RNA的碱基排列,然后再根据这种排列合成蛋白质。有的病毒的遗传信息的载体不是DNA,而是RNA。遗传信息不仅有相应于蛋白质的基因信息,也包括对信息解读所必需的信息、控制信息表达所必需的信息,以及生物为了复制与自己相同结构所必需的一切信息。神经和感觉信息靠电脉冲和神经递质携带和传递。神经系统接受内外环境中的信息,进行加工处理,调节和控制机体各部分功能。生物靠神经系统电脉冲和神经递质携带和传递。神经系统的功能是接收、传递内外环境中的信息,加以处理、分析,从而控制和调节机体各部功能,对环境作出适当的反应。因此,神经信息对于有机体的生存以及正常生活起着至关重要的作用。化学信息是除上述两类物质外由化学介质传递的信息。生物体的各种功能能够有条不紊地进行,对环境能及时做出反应,是由于生物体内存在着通过各种各样的化学信息分子进行传递的信息系统。生物信息在生物研究中有重要作用,然而,原始的生物信息资源挖掘出来后,生命科学工作者面临着严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?生物信息学产业的高级阶段体现于此,人类从此进入了以生物信息学为中心的后基因组时代。结合生物信息学的新药创新工程即是这一阶段的典型应用。因此,生物信息学便是生物信息在生物研究中重要应用。 生物信息学是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。生物信息学研究对象是生物信息。其研究重点主要体现在基因组学和蛋白学两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。 具体而言,生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。从生物信息学研究的具体内容上看,生物信息学应包括这3个主要部分:(1)新算法和统计学方法研究;(2)各类数据的分析和解释;(3)研制有效利用和管理数据新工具。 生物信息学作为基因组研究的有力武器,被广泛地用来加快新基因的寻找过程,以达到将“有用”新基因抢先注册专利的目的。在这场世界范围内的竞争中,中国科学家以及科研资金投向的决策部门如何结合我国科研水平的现状、优势领域等客观情况将有限的投资投入以求获得最大可能的科学研究以及商业回报,是一个无法回避的新课题。 生物信息学的主要研究方向: 基因组学 - 蛋白质组学 - 系统生物学 - 比较基因组学,随着包括人类基因组计划在内的生物基因组测序工程的里程碑式的进展,由此产生的包括生物体生老病死的生物数据以前所未有的速度递增,目前已达到每14个月翻一番的速度。同时随着互联网的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。然而这些仅仅是原始生物信息的获取,是生物信息学产业发展的初组阶段,这一阶段的生物信息学企业大都以出售生物数据库为生。以人类基因组测序而闻名的塞莱拉公司即是这一阶段的成功代表。 综上所述,对生物信息的研究对生物学的蓬勃发展具有重要作用。

鱼肉胶原蛋白研究现状论文

1、鱼胶原蛋白肽的来历鱼胶原蛋白肽是取自于深海鳕鱼,所以它才有如此的名字。你们是不是觉得疑惑,以前不是大部分都是从其他陆地动物上汲取成分吗?怎么现在变成用鱼类了。那是因为以前常见取之于牛、猪等动物,经常多发疾病,传染病较多,为了保障胶原蛋白汲取的安全性,因此这种方式基本淘汰了。目前大部分采用了深海的鳕鱼进行胶原蛋白的汲取,因为深海的鳕鱼污染程度低,且鳕鱼的量很大,所以成本相对会低一点。所以现在鳕鱼汲取的胶原蛋白是我们大家最为认可的产品。2、效果鱼胶原蛋白肽是补充人体变美的重要物质。老师,我要变美。那我们就需要补充肌肤所需的水分和养分,那我们可以补充胶原蛋白,人们总是羡慕出生的小孩子,满满的胶原蛋白,水嫩嫩光滑的肌肤。鱼胶原蛋白肽它就拥有补充你皮肤失去的水分,并且锁住你皮肤的水分,防止水分流失。减少肌肤的细纹,美白淡化脸上的斑纹,还能让你的身材变得更加的光滑,靓丽。以上这些就是小编对鱼胶原蛋白肽的一点小采访,我这些采访内容希望对你们的选择有一点帮助,爱自己,爱生活,更爱美丽。

吃鱼也是可以补充胶原蛋白的,鱼身上可谓有百宝,鱼眼可以明目,鱼肉含有大量DHA,利于大脑的发育。鱼皮中含有胶原蛋白。将鱼清蒸或者红烧,皮味俱佳,冷冻后的鱼冻子,口感滑嫩,里面的胶原蛋白都可以被我们的身体吸收。

1、豆类食品

豆类食品中含有丰富的胶原蛋白,同时还含有大量的钙,磷,镁等微量元素,而且豆类食品脂肪含量很低,很适合高血压,高血脂,肥胖患者食用。

2、猪脚

猪脚是胶原蛋白含量最高的食物之一,一直受到爱美人士的追捧。猪脚除了含有丰富的胶原蛋白,还含有多种复合氨基酸和微量元素,除了美容养颜还有强身健脾的功效。

3、银耳

银耳和燕窝都是滋补佳品,因为银耳价格低廉又被称为穷人的燕窝。银耳除了富含胶原蛋白,还含有多种蛋白质和氨基酸,同时银耳中还含有一种重要的物质,银耳多糖。

银耳多糖是一种活性物质,对心脑血管有软化作用,可以预防心脑血管硬化等疾病,同时银耳还有健脾的功效,对女性的雀斑,黄褐斑也有淡化的作用,因此空闲时间不妨熬一盏银耳莲子羹,既可以美容养颜又可以强身健体。

4、鱼肉

鱼肉中的蛋白分子非常接近人体自身产生的蛋白,因此很容易被人体吸收利用。鱼肉中除了含有大量的胶原蛋白,还含有多种氨基酸和微量元素,此外鱼肉还有降血压,降血脂的功效,是高血压、高血脂病人的首选食物。

5、鱼皮

鱼身体百分之80的胶原蛋白存在于鱼皮当中,鱼皮属于低脂肪,低热量,高蛋白饮食,而且鱼皮的烹调方法多变,口感鲜美,是补充胶原蛋白的不二之选。

6、牛蹄筋

牛蹄筋属于牛身上的结缔组织,富含胶原蛋白。牛蹄筋脂肪含量很低,而且不含胆固醇,是美容健身人士的首选食材,同时牛蹄筋还有强身健骨,补肾养气的功效。

7、海参

海参在各类山珍海味中位尊“八珍”,海参含有蛋白质,氨基酸,维生素等超过50种营养物质,同时还含有多种活性物质以及胶原蛋白,是珍贵的药材和滋补佳品。

多吃鱼有助于人体提高记忆力,鱼肉中富含DHA和卵磷脂,可以为大脑提供营养物质,补脑健脑,提高记忆力和工作效率。鱼含有丰富的蛋白质,硫胺素,核黄素,尼克酸,维生素D,钙元素,铁元素,磷元素,且低脂肪,可以提供丰富的营养给人体,增强人体的体质,提高机体免疫力,有利于人体的健康。吃鱼可以补充胶原蛋白,减少皮肤的皱纹,延缓皮肤的衰老。

研究蛋白质的论文

你看下(微生物前沿)上的文献吧,

蛋白质是保证机体健康最重要的营养素,它是维持和修复机体以及细胞生长所必需的,它不仅影响机体组织如肌肉的生长,还参与激素的产生、免疫功能的维持、其它营养物质和氧的转运以及血红蛋白的生成、血液凝结等多方面。蛋白质的蛋白质食物来源可分为植物性蛋白质和动物性蛋白质两大类。虽然动物蛋白质和植物蛋白质的营养价值都是人体所必需的,但随着现代生活水平的提高,人们日常摄入动物蛋白质含量越来越多,植物蛋白质的摄入量却越来越少。营养学研究发现,食用过多的动物蛋白质有害于肾脏健康。植物蛋白质中,豆类、谷物含有丰富的蛋白质,特别是大豆含蛋白质高达36%~40%,氨基酸组成也比较合理,在体内的利用率较高,是植物蛋白质中非常好的蛋白质来源。麦弗逊植物蛋白粉天然的植物原料,优质可靠。

随着分子生物学的飞速发展,最为世人瞩目的人类基因组计划即将提前完成。人类将向了解自己的生命奥秘这一目标迈进一大步。但是,由于基因是遗传信息的携带者,而生命活动的执行者却是蛋白质,即基因的表达产物。因此,即使得到人类全部基因序列,也只是解决了遗传信息库的问题。人类揭示整个生命活动的规律,就必须研究基因的物产——蛋白质。相对于基因组而言,后者称为蛋白质组。1 蛋白质组概述及其相关研究技术和方法鉴于基因组研究的局限性,1994年澳大利亚Macquaie 大学的Wilkins和Williams等在意大利的一次科学会议上首次提出了蛋白质组(Proteome)这个概念。定义为“蛋白质组指的是一个基因组所表达的蛋白质”,即“PROTEOME”是由蛋白质的”PROTE”和基因组的“OME”字母拼接而成[1].这个新术语很快得到了国际生物学界的认可。目前对蛋白质组的分析工作大两个方面。一方面,通过二维胶电泳等技术得到正常生理条件下的机体、组织或细胞的全部蛋白质的图谱,相关数据将作为待测机体、组织或细胞的二维参考图谱和数据库。另一方面是比较分析在变化了生理条件下蛋白质组所发生的变化。目前蛋白质组研究技术常用以下手段:(1)用于蛋白质分离技术方面的如双向凝胶电泳(2-DE)、双向“高效”柱层析等。(2)用于蛋白质鉴定的技术如质谱技术、凝胶图像分析、蛋白质和多肽的N端、C端测序及氨基酸组成分析等。(3)用于蛋白质相互作用及作用方式研究的双杂交系统。(4)用于分析大量数据的生物工程信息学等[2].。2 蛋白质组在医学研究中的现状和前景自蛋白质组概念提出以来,已发表相关论文及论著数篇。并于是1997年举行了第一届国际性的“蛋白质组学”会议。同年出版式了第一部蛋白质组学的专著。目前蛋白质组在医学方面的研究重点在于对人类疾病的发病机制、早期诊断及治疗,对致病微生物的致病机理、耐药性及发现新的抗生素为主。现将这两方面的进展情况综述如下。 人类疾病的蛋白质组研究 直肠癌 直肠癌的发生是因多个基因的突变,导致肿瘤抑制基因失能所致,但确切机制仍不清楚。为探讨其发病机制,Sanchez等对15例结肠癌和13例正常人的结肠上皮进行2-DE,每个多肽模式用Melanie I12-DE分析软件进行分析。据此建立了包括882和861个斑点的结肠癌及正常人结肠粘膜的标准胶图。结果发现在分子量为13kD和pI值为处的蛋白质仅出现在结肠癌的组织中。15例结肠癌患者中13/蛋白有13例(87%)。此外,发现13/蛋白不仅在中度、低度分化的结肠癌及有24年病史的溃疡性结肠炎过度表达,而且出现在7例分化程度不同的腺瘤的癌前病灶。但对照组则极少出现。这表明该蛋白的出现对检测早期直肠癌有很强提示。通过对该蛋白HPLC及测序等分析后,发现与钙粒蛋白B(calgranulin B)及钙卫蛋白(calprotectin)有很大关系[3]。 肝癌 醛糖还原酶(aldose reductase, )是醛酮还原酶超家族中的一个成员。它催化葡萄糖还原为山梨醇,通过减少内源或外源性代谢产物而起到解毒作用。Peter R等在用N-甲基-N-亚基脲诱导(N-methly-N-nitrosourea-induced)的小鼠肝癌中,用2-DE及氨基酸微型测序可分辩出一种肝癌诱导的醛糖还原酶样的蛋白质(35Kd/)。而在小鼠的晶状体中,则发现一种醛糖还原的同工酶,该酶与已知的小鼠醛糖还原酶有98%的同源性,而与肝癌诱导的醛糖还原酶样的蛋白质截然不同。这表明两种蛋白质是由相关的两条基因编码,在小鼠不同的器官中表达不同。肝癌诱导的醛糖还原酶蛋白质优先表达在肝癌及胎肝中,它们均受到纤维细胞生长因子的刺激,但随小鼠鼠器官的生理及病理环境而表现不同的形式。经免疫组化证实,肝癌诱导的醛糖还原酶样的蛋白质在成人肝脏中不表达,但在小鼠的肝癌 中又重新表达。同时发现该蛋白在癌前病变及肝癌中表达强烈,而在肝脏周围的正常组织不表达[4]。表明该蛋白可能与肝癌的发病有很大关系。 扩张型心肌病 扩张型心肌病是一种严重的可导致心衰的心脏病,大多数患者需行心脏移植术。目前其发病机理不明,推测可能为多种因素所致。1990年已有两组人员进行该病的蛋白质组分析。其后不久心肌的2-DE数据库建成,并进入国际互联网络。Knecht等采用2-DE取得了3300个心肌蛋白条带,通过氨基酸序列分析、Edman降解法及基质辅助的激光解吸离子化质谱(MALDI-MS)等分析了其中150条。经活检及术后病理证实,有12条为扩张性心肌病特有的蛋白。但具体资料尚在进一步分析之中[5]。Arnott D等对新福林诱导的肥大心肌细胞进行蛋白质组分析,同对照相比亦发现有8种蛋白质的表达水平发现了变化[6]。 膀胱癌 IFN-γ除抗病毒外,还有一项重要的功能即抗肿瘤作用。目前其抗肿瘤作用机制不明。有资料表明,IFN-γ可能通过在相关细胞中增强或抑制有关基因而发挥抗肿瘤作用。重组IFN-γ和IL-2已开始应用于膀胱癌的治疗中。为探明其作用机制,George等将四种分级程度不同的人膀胱癌新鲜活检标本,用50U/ml IFN-γ作用20个小时后,采用2-DE、微型序列分析、等电聚集、蛋白质印迹等方法,对标本进行蛋白质组分析。结果表明有五种蛋白质(色按酸-tRNA合成酶、IFN-γ诱导的r3,超氧化物歧化酶及两种分子量为和的未知蛋白)的表达量增加了75%,而醛糖还原酶表达量则下降。为研究IFN-γ对治疗膀胱癌的作用机制提供了一种方法[7]。此外,由于缺乏对膀胱鳞状细胞癌客观可靠的组织学分级标准,因而很其进行早期诊断。为此,Morten等对150例膀胱癌进行双盲法2-DE,并结合了蛋白质印迹法、微型序列分析及质谱等技术,建立了新鲜膀胱癌标本的2-DE数据库,且发现角蛋白10、14及银屑病相关的脂肪酸结合蛋白(psoriasis-associated fatty acid-binding protein,PA-FABP)等可以作为膀胱癌不同分化程度的标记物[8]。为早期诊断提供了一种新的手段。[ 本帖最后由 snow_white 于 2007-7-20 16:32 编辑 ]查看完整版本请点击这里:蛋白质组学研究〔综述〕05我也来说两句 查看全部回复 最新回复snow_white (2007-7-20 16:31:50) 其它 目前人的各种组织、器官、细胞乃至各种细胞器已被广泛研究。以期为疾病诊治及了解发病机制提供新的手段。在一项利用蛋白质组研究技术进行的酒精对人体毒性的研究中发现,乙醇 会改变血清蛋白糖基化作用,导致许多糖蛋白的糖基缺乏,如转铁蛋白[9]。Jagathpala等对免疫所致的不孕症的男性精子蛋白质进行蛋白质组分析,发现了导致不孕症的6种自体及异体抗 精子抗体[10]。在对肾癌的研究中,发现有4种蛋白质存在于正常肾组织而在肾癌细胞中缺失。其中两种分别是辅酶Q蛋白色素还原酶和线粒体乏醌氧化还原复合物I。这提示线粒体功能低下可能在肿瘤发生过程中起重要作用[11]。Ekkehard Brockstedt等利用2-DE、Edman微型序列法、MALDI-MS等对人BL60-2伯基特淋巴瘤细胞系进行了细胞凋亡机制的研究,结果发现RNA聚合酶转录因子3a(BTF3a)和/或BTF3b与抗IgM抗体介导(anti-IgM antibody-mediated)的细胞凋亡有很大关系[12]。 致病微生物的蛋白质组研究 近年来,WHO越来越重视感染性疾病对人类健康的影响。除结核、多重耐药链球菌感染及机会致病菌外,出现了一些新的感染因素如HIV、博氏疏螺旋体及埃博拉病毒等。因此这些致病微生物的蛋白质组分析,对于了解其毒性因子、抗原及疫苗的制备非常重要,此外对疾病的诊断、治疗和预防也同样重要。现已获得18种微生物的全部基因组序列,另有60余种的基因序列正在研究之中。这些工作的开展为蛋白质组的研究提供了有利条件。 检测博氏疏螺旋体与免疫有关的蛋白质 博氏疏螺旋体(Borrelia burgdorferi)是莱姆病的主要病因,表现为环形红斑及流感样症状,大约有50%的未治患者发展为神经系统及关节系统疾病。该螺旋体可分为3种类型: sensu stricto,, 。其诊断需依靠血清学检查,但存在敏感性及特异性变化的缺点。为获得更可靠的血清学检查,Peter等用2-DE从得到217个银染的蛋白斑点。从中国兔多克隆抗体鉴别出6个已知的讥原。将不同临床表现莱姆病患者的血浆用 2-DE图杂交。用抗IgM及抗IgG作为第二抗体,在10例有游走性红斑的患者血浆中,检测出60~80个抗原。同时发现在有关节炎的患者血浆中,包含有抗15种抗原的IgM抗体及抗76种不同抗原的IgG抗体。而晚期有神经系统症状的患者血浆中,则包含有抗33种抗原的IgM抗体及抗76种抗原的IgG抗体。上述3种类型患者的血浆中均包含有抗6种已知抗原的抗体,且被SDSPAGE杂交所证实。这些抗原均是潜在的具有特异性诊断的标志物。 弓形体抗原的检测 弓形体病是由鼠弓形体虫引起的寄生虫病。全球人口大约有30%是携带者,在欧洲是最常见的寄生虫病。如果妊娠者感染,该虫可通过胎盘引起胎儿的感染。且随着妊娠时间的增加,感染的机会也增加。大约50%母体的感染可引起新生儿先天性疾病。因此诊断及治疗越早越好。目前要依靠血清学及PCR,而单独采用血清学如用IgG,IgM,或IgA抗体对疾病活动期敏感性不够,尤其对于妊娠或有免疫抑制的患者。潜在感染常发生在有免疫抑制的患者中。对AIDS患者来说,鼠弓形体虫是最主要的致命性脑损伤的病因。因此,能否早期诊断对治疗来说尤为关键。Jungblut等将鼠弓形体虫RH株在人羊膜细胞系FL521中传代后,用2-DE得到300个银染的斑点。再将其与以下3种患者的血浆进行免疫杂交:(1)患有急性弓形体病的妊娠女性(n=11); (2)患急性弓形体病的非妊娠者(n=6)(3)有潜在感染的患者(n=9)。结果有9个斑点对各阶段的弓形体感染均反应,这9种斑点被用来当作弓形体感染的标记。其中7种标记可用作区别疾病的不同阶段。但对区别急性期与潜在期仍需联合应用多种抗原[4]。 白色念珠菌 芽管结构是白色念珠菌向菌丝体转变的早期阶段,该结构能增强白色念珠菌对宿主细胞的粘附力、穿透力及破坏性。目前通过蛋白质组分析方法如2-DE、质谱等已检测出在芽管结构所表达的一组特异蛋白如DNA结合蛋白等,为致病提高了一些参考指标[13]。Monkt等发现,在conA反应后的SDS-PAGE图中,在芽管结构的膜上,分子量为80kD复合糖处,出现很淡的考马斯亮蓝染色,而在孢子时则未出现。提示膜的整合、出现未与ConA结合的80kD复合糖可能与芽管结构的发生及生长有关。粘附素(adhesin)是白色念珠菌表面的组成部分,介导其与宿主的结合,是侵入宿主所需的重要蛋白,包含多种成分如白色念珠菌胞壁上的疏水蛋白等,通过增强菌株的粘附性而在其致病机制中发挥一定作用。但由于这些蛋白有很大同源性、多种糖基化作用及与胞壁或胞浆膜上其它成分形成共价结合,故提纯及分析很难。现通过等电聚集、2-DE及洗脱电泳等方法,可使这些蛋白得到很好的纯化、分离及分析[14]。抗真菌药通过改变真菌胞壁组分的生物合成和重组胞壁相关酶的结合位置而发挥作用。抗真菌药远少于抗细菌药就在于对真菌细胞壁蛋白分析了解太少。现在临床上用于抗真菌的药物多为咪唑类(咪康唑、酮康唑)及三唑类(氟康唑、伊曲康唑),但有很多患者出现耐药现象。在白色念珠菌中,目前发现至少有8种CDR家族的基因可产生耐药株的表现型。且有55种基因分别表达ABC及MFS蛋白(菌内药物输出泵)[]。但这些基因、蛋白与耐药之间的关系仍未清楚。应用2-DE、免疫检测蛋白质等技术,对这些蛋白在菌内的表达量进行分析,发现Cdrlp及CaMdrlp蛋白在耐咪唑类菌株中过量表达。在对咪唑类每感及去除CDR1基因的白色念珠菌株CA114中,提取并检测耐氟康唑突变子(FL3)的表达。结果发现FL3对氟康唑的耐是去除CDR1的基因的白色念珠菌株CA114的500倍 ,是CA114的250倍。且CDR1 mRNA在FL3的量是Ca114的8倍[17]。同时,对敏感性及耐药株蛋白质的2-DE图分析发现,在耐中有25种蛋白质增加,有76种蛋白质减少。推测白色念株菌是通过改变染色体数目或染色体重组来调节基因的表达量,进而产生耐药性[18]。随着蛋白质组技术成熟完善,将对真菌壁及耐药基因分泌的各种蛋白组成分析带来重大突破,并对抗真菌的研制提供重要资料。虽然蛋白质组学还处在一个初期发展研段,但我们相信随着其不断地深入发展,蛋白质组(学)研究在提示诸如生长、发育和代谢调控等生命活动的规律上将会有所突破,对探讨重大疾病的机理、疾病诊断、疾病防治和新药开发将提供重要的理论基础。[ 本帖最后由 snow_white 于 2007-7-20 16:33 编辑 ]snow_white (2007-7-20 16:34:25)二、蛋白质组学的研究进展蛋白质组学强调的是针对蛋白质的一个整体思路。从整体的角度看,蛋白质组研究大致可分为两种类型:一种是针对细胞或组织的全部蛋白质,也就是着眼点是整个蛋白质组;而另一种是以与一个特定的生物学机制或机制相关的全部蛋白质为着眼点,在这里整体是局部性的。针对细胞蛋白质组的完整分析的工作已经比较全面地展开,不仅如大肠杆菌、酵母等低等模式生物的蛋白质组数据库在建立之中,高等生物如水稻和小鼠等的蛋白质研究也已开展,人类一些正常和病变细胞的蛋白质数据库也已在建立之中。与此同时,更多的蛋白质组研究工作则是将着眼点放在蛋白质组的变化或差异上,也就是通过对蛋白质组的比较分析。首先发现并去鉴定在不同生理条件下或不同外界条件下蛋白质组中有差异的蛋白质组分。限于篇幅,本文不对这方面的工作做进一步论述。本文接下来重点介绍近期发表的关于蛋白质组学的几个工作,从中可以看到蛋白质组学的思想方法在蛋白质整体(或局部整体)水平上是如何解决生理学的一些重要问题的。1999年11月《Nature》杂志发表了一篇用蛋白质组学方法研究蛋白质折叠的研究论文[10]。在这篇文章中,Houry等报道了在大肠杆菌胞质中的2500种新生多肽链种只有近300种以GroEL作为分子伴侣来帮助其折叠成正确构象。在以往的相关研究中,通常只是针对某个或某些特定的蛋白质,观察它(们)在折叠过程中是否需要诸如GroEL等分子伴侣的帮助。而在这个工作中,研究是从一个整体的思路出发,首先通过免疫共沉淀的方法获得所有与GroEL结合的肽链,再通过二维电泳和数据库比较等蛋白质研究的手段对这些肽链进行分析鉴定,从而实现了对大肠杆菌近2500条新生多肽链与分子伴侣GroEL的关系的全面分析。在这个工作中,研究者还通过对其中50种与GroEL作用的肽链的鉴定,进一步揭示了决定这些蛋白质能与GroEL相互作用的关键结构特征。应该说,这个工作很好地体现了蛋白质组学的思想方法和技术手段的运用。过去在细胞生物学领域还没有得到过一个主要亚细胞结构的完整的分子图。核孔复合体是一个巨大的跨核膜的八角形结构,是控制大分子在胞质和核质间运输的通道。多年来,很多方法被用来分析这一复合体的组成成分。虽然这些工作取得了很大的进展,但究竟在多大程度上反映了这一复合体的分子原貌仍然是一个未知数。最近通过使用蛋白质组学的手段,Rout等[11]鉴定了完整的酵母核孔复合体所有能检测到的多肽,并系统地对每种可能的蛋白质组分在细胞中定位,结合免疫电镜的方法将各组分在复合体内定位并定量,从而揭示了酵母核孔复合体的完整分子构造,并在此基础上揭示了其工作原理。这个工作可以说是蛋白质组学解决构造生物学问题的一个典范,为揭示其他巨大分子机器的"构造"和工作原理指出了一条新路[12]。通过分析一个蛋白质是否跟功能已知的蛋白质相互作用可得到揭示其功能的线索。因为经验告诉我们,如果两个蛋白质相互作用,那么它们一般参与相同或相关的细胞活动[13]。从近期国际上蛋白质组学研究的发展动向可以看出,揭示蛋白质之间的相互作用关系,建立相互作用关系的网络图,已成为揭示蛋白质组复杂体系与蛋白质功能模式的先导,业已成为蛋白质组学领域的研究热点。2000年初,《Science》登载了一篇应用蛋白质组学的大规模双杂交技术研究线虫生殖器发育的文章[14]。在这个工作中,Walhout等以线虫的生殖发育过程作为研究对象,从已知的27个与线虫发育的蛋白质出发,构造了一个大规模的酵母双杂交系统,得到了100多个相互作用的结果,初步建立了与线虫生殖发育相关的蛋白质相互作用图谱,从而为深入研究和揭示线虫发育的机制等提供了丰富的线索。这个工作不同于一般的应用酵母双杂交进行研究的地方在于,它出于对一个生物学问题的整体思考,尽可能地从所有已知的蛋白质而不只是个别的蛋白质为出发点。这一个工作为以前专注于信号转导过程中单个蛋白质作用的科学家们提供了一个新的思路,即将整个途径的相关蛋白质一起考虑。那么,能否通过酵母双杂交系统来分析一种细胞或特定组织的所有可能的蛋白质之间的相互作用呢?在今年初,《Nature》发表了一篇通过大规模双杂交技术研究酵母近6000个蛋白质之间相互作用的论文[15]。啤酒酵母基因组DNA的全序列业已测定,这为通过双杂交技术来鉴定酵母基因组编码的全部6000种左右的蛋白质间的可能相互作用提供了非常有利的条件。在这个工作中,研究人员采用了两种不同的策略对酵母的蛋白质间的相互作用作了全面分析。一是所谓的列阵筛选法(array screening)。在此方法中,6000株表达不同"猎物"蛋白的酵母单克隆分别加在微滴定板上,带有不同的"诱饵"蛋白的酵母株与前面6000株细胞一一接合形成二倍体细胞,"猎物"蛋白与"诱饵"蛋白的相互作用通过报道基因的表达而被鉴定。这篇文章中报道了192种不同的"诱饵"蛋白与近6000种"猎物"蛋白的相互作用的结果。另一种方法是文库筛选法。该方法与前一种方法的区别是,将表达6000种不同"猎物"蛋白的酵母细胞混在一起构成文库,再将这个文库分别与6000株表达不同"诱饵"蛋白的酵母细胞接合,再进一步筛选鉴定阳性克隆,即"诱饵"与"猎物"发生相互作用的克隆。根据这篇报告,上述两种策略得到了不同的结果,相比之下阵列筛选法更为有效,而文库筛选法的长处是通量大。这一工作的重要意义在于我们已经看到,在基因组序列被了解的基础上,可以利用大规模双杂交技术全面地,当然也是初步地,分析其物种或其细胞、组织的所有蛋白质之间的相互作用关系。相信类似的工作将很快针对其他物种开展,特别是基因组序列已被揭示的物种。由此可见,蛋白质组学已经开始从建立数据库走向解决生命科学的重大问题,成为研究生物学问题或机制的强有力手段。snow_white (2007-7-20 16:37:32)三、蛋白质组学研究进展与趋势曾 嵘 夏其昌(中国科学院上海生命科学研究院生物化学与细胞生物学研究所蛋白质组学研究分析中心 上海 200031)如果在五年前提到蛋白质组学(Proteomics),恐怕知之者甚少,而在略知一二者中,部分人还抱有怀疑态度。但是,2001年的Science杂志已把蛋白质组学列为六大研究热点之一,其“热度”仅次于干细胞研究,名列第二。蛋白质组学的受关注程度如今已令人刮目相看。1.蛋白质组学研究的研究意义和背景随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析(Serial analysis of gene expression, SAGE)等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA mRNA 蛋白质,存在三个层次的调控,即转录水平调控(Transcriptional control ),翻译水平调控(Translational control),翻译后水平调控(Post-translational control )。从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。实验也证明,组织中mRNA丰度与蛋白质丰度的相关性并不好,尤其对于低丰度蛋白质来说,相关性更差。更重要的是,蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等则几乎无法从mRNA水平来判断。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生命过程。传统的对单个蛋白质进行研究的方式已无法满足后基因组时代的要求。这是因为:(1) 生命现象的发生往往是多因素影响的,必然涉及到多个蛋白质。(2) 多个蛋白质的参与是交织成网络的,或平行发生,或呈级联因果。(3) 在执行生理功能时蛋白质的表现是多样的、动态的,并不象基因组那样基本固定不变。因此要对生命的复杂活动有全面和深入的认识,必然要在整体、动态、网络的水平上对蛋白质进行研究。因此在上世纪90年代中期,国际上产生了一门新兴学科-蛋白质组学(Proteomics),它是以细胞内全部蛋白质的存在及其活动方式为研究对象。可以说蛋白质组研究的开展不仅是生命科学研究进入后基因组时代的里程碑,也是后基因组时代生命科学研究的核心内容之一。虽然第一次提出蛋白质组概念是在1994年,但相关研究可以追溯到上世纪90年代中期甚至更早,尤其是80年代初,在基因组计划提出之前,就有人提出过类似的蛋白质组计划,当时称为Human Protein Index计划,旨在分析细胞内的所有蛋白质。但由于种种原因,这一计划被搁浅。90年代初期,各种技术已比较成熟,在这样的背景下,经过各国科学家的讨论,才提出蛋白质组这一概念。国际上蛋白质组研究进展十分迅速,不论基础理论还是技术方法,都在不断进步和完善。相当多种细胞的蛋白质组数据库已经建立,相应的国际互联网站也层出不穷。1996年,澳大利亚建立了世界上第一个蛋白质组研究中心:Australia Proteome Analysis Facility ( APAF )。丹麦、加拿大、日本也先后成立了蛋白质组研究中心。在美国,各大药厂和公司在巨大财力的支持下,也纷纷加入蛋白质组的研究阵容。去年在瑞士成立的GeneProt公司,是由以蛋白质组数据库“SWISSPROT” 著称的蛋白质组研究人员成立的,以应用蛋白质组技术开发新药物靶标为目的,建立了配备有上百台质谱仪的高通量技术平台。而当年提出Human Protein Index 的美国科学家Normsn G. Anderson也成立了类似的蛋白质组学公司,继续其多年未实现的梦想。2001年4月,在美国成立了国际人类蛋白质组研究组织(Human Proteome Organization, HUPO),随后欧洲、亚太地区都成立了区域性蛋白质组研究组织,试图通过合作的方式,融合各方面的力量,完成人类蛋白质组计划(Human Proteome Project)。snow_white (2007-7-20 16:37:49)2.蛋白质组学研究的策略和范围蛋白质组学一经出现,就有两种研究策略。一种可称为“竭泽法”,即采用高通量的蛋白质组研究技术分析生物体内尽可能多乃至接近所有的蛋白质,这种观点从大规模、系统性的角度来看待蛋白质组学,也更符合蛋白质组学的本质。但是,由于蛋白质表达随空间和时间不断变化,要分析生物体内所有的蛋白质是一个难以实现的目标。另一种策略可称为“功能法”,即研究不同时期细胞蛋白质组成的变化,如蛋白质在不同环境下的差异表达,以发现有差异的蛋白质种类为主要目标。这种观点更倾向于把蛋白质组学作为研究生命现象的手段和方法。早期蛋白质组学的研究范围主要是指蛋白质的表达模式(Expression profile), 随着学科的发展,蛋白质组学的研究范围也在不断完善和扩充。蛋白质翻译后修饰研究已成为蛋白质组研究中的重要部分和巨大挑战。蛋白质-蛋白质相互作用的研究也已被纳入蛋白质组学的研究范畴。而蛋白质高级结构的解析即传统的结构生物学,虽也有人试图将其纳入蛋白质组学研究范围,但目前仍独树一帜。

植物蛋白质提取及其性质研究论文

1、从植物体中提取全氨基酸粉的方法 2、从茶叶中综合提取茶多糖、茶多酚、茶氨酸、咖啡碱的方法 3、一种离子交换法提取赖氨酸的方法 4、一种从动物脑提取磷脂酰丝氨酸的方法 5、从茶叶中提取茶氨酸的方法 6、一种从葫芦巴中提取4-羟基异亮氨酸制品的新方法 7、从发酵液中提取L-赖氨酸的方法 8、从生产胱氨酸的回收母液中分离提取L-酪氨酸、胱氨酸的方法 9、从大蒜中提取蒜氨酸的方法 10、大蒜中提取蒜氨酸的方法 11、从鲜蒜中提取蒜氨酸生产工艺 12、一种从胡芦巴种子中提取4-羟基-异亮氨酸及胡芦巴胶等多种副产品的方法 13、一种沉淀法提取精氨酸的工艺 14、一种提取L-胱氨酸工艺 15、水解角蛋白质高收率提取胱氨酸、酪氨酸和苯丙氨酸方法 16、复合氨基酸提取方法 17、一种含有多种氨基酸的木耳提取液及其应用 18、一种富含4-羟基-异亮氨酸的天然氨基酸混合物提取方法 19、动植物氨基酸制取工艺 20、纯天然动植物混合型氨基酸的制取方法及用途 21、一种茶氨酸的提取工艺 22、L-苯丙氨酸的连续离子交换提取工艺 23、从生产胱氨酸的回收母液中分离提取L-酪氨酸、胱氨酸的方法 24、L-酷氨酸和L-胱氨酸同时分离提取的新方法 25、L-苯丙氨酸的膜技术提取方法 26、一种提升南瓜子中瓜氨酸及抗增生因子活性物质含量并将其提取的方法 27、一种富含4-羟基-异亮氨酸的天然氨基酸混合物提取方法 28、一种从脱胚乳的胡芦巴种子粉中提取4-羟基-异亮氨酸提取物及三种副产品的方... 29、氨基酸的提纯方法

蛋白质是保证机体健康最重要的营养素,它是维持和修复机体以及细胞生长所必需的,它不仅影响机体组织如肌肉的生长,还参与激素的产生、免疫功能的维持、其它营养物质和氧的转运以及血红蛋白的生成、血液凝结等多方面。蛋白质的蛋白质食物来源可分为植物性蛋白质和动物性蛋白质两大类。虽然动物蛋白质和植物蛋白质的营养价值都是人体所必需的,但随着现代生活水平的提高,人们日常摄入动物蛋白质含量越来越多,植物蛋白质的摄入量却越来越少。营养学研究发现,食用过多的动物蛋白质有害于肾脏健康。植物蛋白质中,豆类、谷物含有丰富的蛋白质,特别是大豆含蛋白质高达36%~40%,氨基酸组成也比较合理,在体内的利用率较高,是植物蛋白质中非常好的蛋白质来源。麦弗逊植物蛋白粉天然的植物原料,优质可靠。

植物蛋白质的提取方法基本上有这几种:盐析法、有机溶剂法和等电点法。

1、盐析法

原理:盐析法是指在药物溶液中加入大量的无机盐,使某些高分子物质的溶解度降低沉淀析出,而与其他成分分离的方法。盐析法主要用于蛋白质的分离纯化。常作盐析的无机盐有硫酸钠、硫酸镁、硫酸铵等。

2、有机溶剂法

原理:机溶剂引起蛋白质沉淀的主要原因是加入有机溶剂使水溶液的介电常数降低,因而增加了两个相反电荷基团之间的吸引力,促进了蛋白质分子的聚集和沉淀。有机溶剂引起蛋白质沉淀的另一种解释认为与盐析相似,有机溶剂与蛋白质争夺水化水,致使蛋白质脱除水化膜,而易于聚集形成沉淀  。

3、等电点法

原理:在等电点时,蛋白质分子以两性离子形式存在,其分子净电荷为零(即正负电荷相等),此时蛋白质分子颗粒在溶液中因没有相同电荷的相互排斥,分子相互之间的作用力减弱,其颗粒极易碰撞、凝聚而产生沉淀,所以蛋白质在等电点时,其溶解度最小,最易形成沉淀物。

等电点时的许多物理性质如黏度、膨胀性、渗透压等都变小,从而有利于悬浮液的过滤。

使用植物蛋白提取试剂 P1258 Plant total protein extraction kit (cat # P1258)50次提取 280元 100次提取480元描述:植物蛋白提取试剂适用于多种植物根,茎,叶及果实等的新鲜或冻存组织。植物组织成分复杂,含有较多酚类物质、多糖、色素、次生代谢物质等,致使植物蛋白质的分离提取变得困难和复杂。本试剂采用优化的试剂和程序,快速有效提取多种植物中的可溶性和疏水性蛋白成分,有效去除植物组织所含的多酚、多糖、醌、色素、脂质、次生代谢物质等干扰蛋白质研究的成分,使提取的蛋白质处于最佳的活性状态和检测状态,适应于酶学活性测定,单向及双向蛋白电泳,Western Blot和免疫共沉淀分析等蛋白质研究实验。组成和规格:无色透明的提取试剂50 ml或100 ml。贮存: 4°C,密封避光1年。 用途: 提取多种植物组织和细胞的可溶性和疏水性蛋白。如苹果、花生、土豆、烟叶、菠菜、梅花等。操作步骤:1. 组织匀浆,必须充分匀浆,此步骤非常关键:(1) 冻存组织匀浆:预先将研钵置于-20°C ~-70°C冰箱内冷冻。取液氮冻存的植物组织,放入冰冻的研钵内研磨至粉末状,注意使组织一直处于冰冻状态,如组织颜色加深或变黑通常表明组织已融化。将研磨好的组织转移到EP 管中,按每200 mg植物组织加500 �8�6l的比例加提取试剂,混匀后冰上放置20分钟,其间可数次颠倒混匀,以便蛋白溶解。(2) 新鲜组织匀浆:取新鲜组织放入研钵中,按每200 mg植物组织加500 �8�6l的比例加提取试剂,充分研磨使匀浆液中看不到大的块状或片状组织,保证组织研磨破碎。转移至离心管内,冰上放置20分钟。2. 离心:12000 g离心15分钟,弃去沉淀。蛋白在上清中。取上清转移至新管。3. 如果进行酶学测定,直接使用。如进行SDS-PAGE和Western Blot,将上清直接与2 x SDS sample/loading buffer (#B1007)混合后上样。或-70°C冻存。蛋白定量建议用BCA方法进蛋白定量(普利莱公司的BCA蛋白定量试剂盒#P1511)。通常上清内植物色素已基本去除,如有少量残留亦不影响蛋白定量及电泳实验。如进行双向电泳或欲彻底清除色素等杂质可进行以下内骤: 1. 取上清液加入5倍体积的甲醇(或者丙酮)混匀,-20°C至少1小时沉淀蛋白质。2. 12000 g离心15分钟沉淀蛋白。3. 弃去上清。自然干燥蛋白沉淀,依据试验将沉淀溶于相应的缓冲液。如进行Western Blot 亦可用提取试剂溶解。常见问题及解决方法:1. 提取的蛋白量少:1) 组织蛋白含量较少,如水果等,可增加组织量;2) 组织匀浆不充分,如纤维较多的组织,破碎较困难,应适当延长匀浆时间;3) 组织过老或水分丢失致使其干燥,故尽量选用新鲜较嫩的组织;4) 甲醇或丙酮沉淀后蛋白溶解不充分,应延长溶解时间或使用较强的蛋白溶解剂。2. 蛋白质量不佳:1)提取的蛋白有多酚或色素等杂质残留,可重复用丙酮或甲醇沉淀;2) 蛋白质降解,操作各步骤均应在冰上进行;加入蛋白酶抑制剂。 用最后的提取物通过计算就可以知道含量了

  • 索引序列
  • 蛋白质变性研究现状论文
  • 国内蛋白质结构预测研究现状论文
  • 鱼肉胶原蛋白研究现状论文
  • 研究蛋白质的论文
  • 植物蛋白质提取及其性质研究论文
  • 返回顶部