在满足容限因子的条件下,有多种元素可以形成钙钛矿结构的化合物。通常,B位离子决定了钙钛矿型化合物的催化活性,A位离子是影响化合物结构和B位离子价态的重要因素。当A位离子或B位离子被不同价态的离子取代时,通过形成氧离子空穴或者形成混合价态来保持化合物的电中性。氧空穴的形成或B位离子价态的变化使得化合物具有更高的活性。贵金属和钙钛矿型化合物结合,不仅可以有效防止贵金属的烧结,同时也提高了钙钛矿型化合物的催化活性。关键词:催化剂工程;钙钛矿;汽车催化剂;贵金属;催化材料1 引言长期以来,以贵金属为主要活性组分的催化剂被认为是净化汽车尾气最有效的催化剂。但贵金属资源紧缺、价格昂贵,而且由于贵金属易高温烧结和挥发,使得贵金属催化剂在热稳定性方面不占优势。人们一直在寻找具有高净化效率的不含贵金属的催化剂。钙钛矿型氧化物具有较低的价格和灵活多变的组成,其催化性能在一定程度上可以进行调节,因而受到人们的关注。用这类化合物作为三效催化剂来取代传统的Pt/Rh基催化剂具有一定的优越性。由于其组成和结构的灵活多变性,钙钛矿型化合物被看成是固态化学、物理学、催化作用等基础领域的样板材料。钙钛矿是组成为CaTiO3的一种矿物,其英文名称Perovskite是地质学家Gustav Rose根据俄国地质学家Count Lev A leksevich von Perovski的名字命名的[1]。在20世纪70年代初,Libby[2,3]对含稀土和钴的钙钛矿型氧化物进行了系统研究,提出用钙钛矿结构的氧化物代替贵金属用于汽车尾气净化催化剂具有潜在的可能。而后Voorhoeve等[4,5]对稀土钙钛矿型催化剂进行了深入的研究。从早期的研究成果看,含稀土的钴酸盐和锰酸盐在完全氧化反应方面显示了极高的催化活性。本文对钙钛矿型复合氧化物催化剂研究状况进行简要回顾和展望。2 钙钛矿型氧化物的结构钙钛矿型化合物的化学式为ABO3,周期表中绝大部分元素都能组成稳定的钙钛矿结构。在通常情况下[6],A位是半径较大的碱金属、碱土金属和稀土金属离子,处于12个氧原子组成的十四面体的中央。B位是半径比较小的过渡金属离子,处于6个氧离子组成的八面体中央。在合成ABO3型氧化物时,各种离子的大小应满足一定的条件,否则晶格就变得不稳定,会发生畸变,或者形成其他结构[7]。Goldschmidt曾引入容限因子表达式:式中:rA、rB、rO分别代表A、B、O的离子半径。当
可参考《俄罗斯钙钛矿的复合性与埋藏状况》、《俄罗斯钙钛矿的结构表征及其催化效应》、《俄罗斯钙钛矿的生物学特性及其在化工转化中的吸引力》等文献,了解俄罗斯钙钛矿的相关信息。
一、研究背景
钙钛矿 (perovskite)是德国矿物学家古斯塔夫·罗斯(Gustav Rose)在1839年,于俄罗斯中部境内的乌拉尔山脉上发现钙钛矿岩石样本,决定以他心中伟大的地质学家Lev Perovski来命名这种矿石。该矿石是普通的金属有机化合物晶体,主要成分是钛酸钙(CaTiO3 )。后来人们所指的钙钛矿电池,并不是用他发现的这种矿石材料制成的,而是使用了与钙钛矿晶体结构相似的化合物。
钙钛矿晶体结构示意图
近年来关于钙钛矿的研究非常多,而且还经常发表于Nature、Science等顶刊中,作为新兴的明星材料,连石墨烯也要甘拜下风。
就在2021年10月20日 ,韩国浦项 科技 大学Min Gyu Kim、蔚山国立科学技术研究院Tae Joo Shin、Sang Il Seok教授课题组联合报道了通过将Cl键合的SnO2与含Cl的钙钛矿前驱体耦合,在SnO2电子传输层和卤化物钙钛矿吸光层之间形成夹层。该层间具有原子相干特性,增强了钙钛矿层的电荷提取和传输,减少了界面缺陷。 这项研究工作以题为“Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes”发表在顶级期刊Nature上。
仅隔一周,于2021年10月29日,喜讯再度传来,钙钛矿再次登上顶刊,让我们一起来看看!
卤化铅钙钛矿(LHPs)显示出可调的带隙、高电荷载流子迁移率和明亮的窄带光致发光(PL),与传统的硅基和二元ⅱ-ⅵ族、ⅲ-ⅴ族和ⅳ-ⅵ族半导体材料相比,这些材料在光电应用方面具有优势。然而,为了成功的技术集成,LHPs必须克服其固有的多态性;暴露于极性溶剂、氧气、热和光时分解;陷阱态的存在;以及有毒重金属离子的相分离和浸出。例如,在CsPbI3伪立方“黑”相(α-、β-和γ-相)中发现了适合光伏和红光发光二极管(LED)的高光学吸收率和直接带隙,但是热力学因素促进了它们在环境条件下向非活性非钙钛矿“黄色”δ相的转化(图1A)。白光发光二极管的LHP材料将主要依赖于这种红色发射器的稳定性,理想的情况是结合在一个单一的宽带发光材料结构中。
LHP复合材料的形成可能为其中一些问题提供解决方案,但LHP的离子性质并不完全有利于复合材料的制造。引起的功能损失包括LHP聚集和分解、与所选基质的弱界面相互作用导致的差的机械稳定性以及高浓度陷阱态的形成。对金属有机框架(MOFs)的一个亚家族——沸石咪唑盐框架(ZIFs)的研究,使得人们能够在淬火后获得高温ZIF液体和微孔玻璃。ZIF玻璃在孔隙率、反应性、机械刚性和延展性以及光学响应方面具有独特的物理化学性质,并已被用作晶体MOFs的基质。综上所述,这些特性使ZIF玻璃成为应对LHP复合材料多重挑战的首选。
二、研究成果
卤化铅钙钛矿(LHP)半导体显示出优异的光电性能。然而,它们应用的障碍在于它们的多态性、对极性溶剂的不稳定性、相分离和对铅离子浸出的敏感性。近日, 昆士兰大学王连洲、侯经纬教授课题组报道了一系列通过液相烧结LHPs和金属有机框架玻璃制备的可扩展复合材料。玻璃充当LHPs的基质,通过界面相互作用有效稳定非平衡钙钛矿相。这些相互作用还钝化了LHP表面缺陷,并赋予其明亮的窄带光致发光特性,从而产生白光发光二极管。这种可加工的复合材料对水和有机溶剂的浸泡以及暴露在热、光、空气和环境湿度下表现出高稳定性。这些特性,加上它们的铅自隔离能力,可以实现LHP的突破性应用。相关研究工作以“Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses”为题发表在国际顶级期刊《Science》上。
三、图文速递
图1. 不同烧结温度下(CsPbI3)(agZIF-62)复合材料的制备
图2. 烧结过程中的结构和结合演变
作者描述了一种新的复合材料,通过液相烧结晶体LHP和ZIF玻璃基体制造,并表明用于形成高性能复合材料的工业粉末加工技术可以应用于化学上不同的LHP和ZIF玻璃。ZIF-62 { Zn[(Im)(BiM)]}(Im,咪唑盐;bIm,苯并咪唑酯)和CsPbI3首先被机械化学合成,并显示出预期的相变(图1A)。然后,将25 wt%的CsPbI3与ZIF-62玻璃[表示为agZIF-62,玻璃化转变温度(Tg)~ 304 混合,混合物称为(CsPbI3)(agZIF-62)(25/75)。同步辐射XRD表明,混合物中形成了非钙钛矿δ-CsPbI3相。混合物在不同温度(高达350 )下烧结,然后在流动氩(氩)下用液氮淬火(称为低温淬火)。所得复合材料称为(CsPbI3)(agZIF-62),显示出与亚稳态g-CsPbI3相一致的XRD特征,随着烧结温度的升高强度逐渐增加(图1B)。在烧结过程中观察到可忽略的重量损失。
图3.用300 烧结法制备的(CsPbI3)(agZIF62)复合材料的相分布
图4.复合材料的稳定性和光学性能
最后,由CsPbX3(X = Cl、Br和混合卤化物离子)和agZIF-62形成复合材料阵列,显示出具有窄PL峰的宽色域(图4、B和C)。对于所有的CsPbX3复合材料,它们的绝对光致发光强度比相应的纯CsPbX3样品高至少两个数量级,无论是在合成时还是经过相同的烧结处理后。这些特性,加上高加工性(图4D),使这些单片材料成为白光发光二极管的理想候选材料。
四、结论与展望
五、文献
文献链接:
文献原文:
您好,俄罗斯钙钛矿是一种稀有的矿物,它是由钙、钛、氧和氟组成的复合物。它具有独特的光学性质,可以用来制造高精度的光学元件,如激光器、激光器镜片和激光器棱镜。此外,它还可以用于制造高精度的电子元件,如晶体振荡器和晶体管。俄罗斯钙钛矿的另一个重要应用是制造高精度的激光切割机,它可以用来切割金属和其他材料。俄罗斯钙钛矿还可以用于制造高精度的激光焊接机,用于焊接金属和其他材料。此外,它还可以用于制造高精度的激光烧结机,用于烧结金属和其他材料。俄罗斯钙钛矿还可以用于制造高精度的激光拉伸机,用于拉伸金属和其他材料。此外,它还可以用于制造高精度的激光焊接机,用于焊接金属和其他材料。俄罗斯钙钛矿还可以用于制造高精度的激光烧结机,用于烧结金属和其他材料。俄罗斯钙钛矿还可以用于制造高精度的激光切割机,用于切割金属和其他材料。此外,它还可以用于制造高精度的激光焊接机,用于焊接金属和其他材料。俄罗斯钙钛矿还可以用于制造高精度的激光烧结机,用于烧结金属和其他材料。此外,它还可以用于制造高精度的激光拉伸机,用于拉伸金属和其他材料。
(a)偏振光探测器原理结构。(b)平行于和垂直于界面的光电导率。(c)光电导各向异性与激发功率。(d)零偏置下在405 nm处测量的角度分辨光电流与偏振角的关系。(e)一些已报道的偏振光探测器的实验偏振比。(f)本器件在不同温度下测量的角度相关的光电流。来源:中国科学出版社 基于各向异性半导体的偏振敏感光电探测器在天文学、遥感和偏振分复用等特殊应用中具有广泛的优势。对于偏振敏感光电探测器的活性层,最近的研究主要集中在二维(2D)有机-无机杂化钙钛矿,其中无机板和有机间隔层交替排列成平行层状结构。与无机二维材料相比,重要的是,杂化钙钛矿的可溶性使其以低成本获得大晶体成为可能,为将晶体面外各向异性纳入偏振敏感光检测提供了令人兴奋的机会。然而,由于材料结构的吸收各向异性的限制,这种器件的偏振灵敏度仍然很低。因此,迫切需要一种新的策略来设计具有大各向异性的二维杂化钙钛矿用于偏振敏感的光检测。 异质结构为解决这一挑战提供了线索。一方面,异质结构的构建可以提高复合材料的光学吸收和自由载流子密度。另一方面,异质结处的内建电场可以使光生电子-空穴对在空间上分离,显著降低了复合率,进一步提高了偏光敏感光电探测器的灵敏度。因此,构建各向异性二维杂化钙钛矿单晶异质结构可以实现高极化灵敏度的器件。 在北京《国家科学评论》上发表的一篇新的研究文章中,中国科学院福建物质结构研究所的科学家们创造了一种2D/3D异质结构晶体,将2D杂化钙钛矿与其3D对应物结合起来;并实现了超高性能的偏振敏感光检测。不同于以往的工作,基于异质结构晶体的器件故意利用二维钙钛矿的各向异性和异质结构的内置电场,允许首次展示不需要外部能量供应的基于钙钛矿异质结构的偏振敏感光电探测器。值得注意的是,该器件的极化灵敏度超过了所有报道的基于钙钛矿的器件;并且可以与传统的无机异质结构光电探测器竞争。进一步的研究表明,异质结处形成的内建电场可以有效地分离这些光致激子,降低它们的复合率,从而提高由此产生的偏振敏感光电探测器的性能。 “基于单晶2D/3D混合钙钛矿异质结构的自驱动偏振敏感光电探测器成功实现了高偏振灵敏度,该异质结构是通过一种精细的溶液方法生长的,”作者声称,“这项创新研究拓宽了可用于高性能偏振敏感光电探测器的材料选择,相应地,也拓宽了设计策略。”
全无机钙钛矿(CsPbX3,X=Cl,Br,I)纳米棒(NRs)不仅保留了其固有的优点,如高的光致发光量子产率和宽波长可调性,而且还具有优异的光物理性质,包括其极强的多光子吸收(MPA)。然而,CsPbX3-NRs的光谱动力学和MPA特性还没有得到充分的研究。
近期,来自深圳大学的研究者报道了CsPb()3,CsPbr3和CsPb()3NRs的飞秒光谱动力学特性,包括它们对热载流子冷却、双激子寿命和双激子结合能的影响。有趣的是,虽然这三种钙钛矿型NRs的直径和长度相似,但它们的非线性光学性质却有显著差异,其中CsPb()3的MPA截面最大。此外,还研究了CsPb()3和CsPbBr3-NRs的多光子激发受激发射。 这项工作表明CsPbX3(X=Cl,Br,I)NRs是 探索 其在不同光电器件中应用的理想候选材料 。相关论文题目以“Spectral Dynamics and Multiphoton Absorption Properties of All-Inorganic Perovskite Nanorods”发表在The Journal of Physical Chemistry Letters 期刊上。
论文链接:
此外,据报道,与立方晶体相比半导体可以强的一维量子限制作用,可以更有效地放大其多光子吸收(MPA)。据报道,使用CsPbBr3 NRs作为激发介质的激发,没有针对多光子激发的工作,与单光子激发相比,它在生物成像应用中可以提供更大的穿透深度和更高的空间分辨率。在研究多光子激发之前,必须先考虑钙钛矿的形状或/和组成对其MPA的影响。尽管以前的文献已经证明了具有立方和二维几何形状的不同钙钛矿型的MPA特性取得了显着进步,但仍缺乏对一维NR对应物的相关研究,必须加以解决。深入了解半导体中典型载流子动力学过程的起源,影响因素和寿命,包括辐射跃迁和非辐射跃迁,对于拓宽它们的相关应用至关重要。
图1。描述(a)CsPb()3NRs,(b)CsPbr3 NRs和(c)CsPb()3NRs原子分辨率的TEM图像。(d)CsPb()3NRs,(e)CsPbr3 NRs和(f)CsPb()3NRs的HR-TEM图像。
图2。(a)CsPb()3,(b)CsPbr3和(c)CsPb()3NRs在350 nm激发下的早期延时二维fs-TA光谱。(d)CsPb()3、(e)CsPbr3和(f) CsPb()3NRs的载体冷却工艺。通过对早期ps时间尺度上光谱演化数据提取的GSB进行拟合,得到了相应的冷却时间值。
图3。(a)CsPb()3,(b)CsPbr3和(c)CsPb()3NRs固体薄膜在400 nm激发下的泵浦强度依赖的PL光谱。插图显示了光致发光强度与泵浦强度和发射图像的关系图。(d)CsPb()3,(e)CsPbr3和(f)CsPb()3NRs固体薄膜在800nm激发下的光致发光谱。插图显示PL强度图与泵浦光强度和发射图像的对比。
(文:爱新觉罗星)
导读
背景
1839年,德国矿物学家古斯塔夫·罗斯(Gustav Rose)站在俄罗斯中部的乌拉尔山脉上,拾起一块以前从未被发现的矿物。
那时,他并没有听说过“晶体管”或“二极管”,也没想到电子器件会成为我们日常生活的一部分。更出乎他意料的是,他手中的这块被他以俄罗斯地质学家 Lev Perovski 的名字命名为“钙钛矿(perovskite)”的这块矿石,会成为彻底变革电子器件的关键因素之一。
钙钛矿如此重要的地位,离不开它特殊的结构。钙钛矿材料结构式一般为ABX3,其中A为有机阳离子, B为金属离子, X为卤素基团。该结构中, 金属B原子位于立方晶胞体心处, 卤素X原子位于立方体面心, 有机阳离子A位于立方体顶点位置。
钙钛矿结构稳定,有利于缺陷的扩散迁移,具备许多特殊的物理化学特性,例如电催化性、吸光性等。
过去十年,钙钛矿因为制造起来更便宜、更绿色,效率可与硅太阳能电池相媲美,逐渐成为硅太阳能电池的替代品。
然而,钙钛矿仍会表现出明显的性能损耗以及不稳定性。迄今为止,大多数的研究集中在消除这些损耗的方法,然而真正的物理原因仍然是未知的。
创新
近日,在一篇发表在《自然(Nature)》期刊上的论文中,来自剑桥大学化学工程与生物技术系以及卡文迪许实验室 Sam Stranks 博士的研究小组,以及日本冲绳科学技术大学院大学 Keshav Dani 教授的飞秒光谱学单位的研究人员们,找到了问题的根源。他们的发现,将使得提升钙钛矿的效率变得更容易,从而使它们离大规模量产更近。
技术
当光线照射钙钛矿太阳能电池时,或者当电流通过钙钛矿LED时,电子被激发,跳跃到更高的能态。带负电荷的电子留下了空白,也称为“空穴”,它带正电荷。受激发的电子与空穴都可以通过钙钛矿材料,因此可成为载流子。
但是,在钙钛矿中会产生一种称为“深阱”的特定类型缺陷,带电的载流子会陷入其中。这些被困的电子与空穴重新结合,它们的能量以热量形式丧失,而不是转化为有用电力或者光线,这样就会显著降低太阳能面板和LED的效率以及稳定性。
迄今为止,我们对于这些陷阱知道得很少,部分原因是,它们似乎与传统太阳能电池材料中的陷阱表现得大相径庭。
2015年,Stranks 博士的研究小组发表了一篇研究钙钛矿发光的《科学(Science)》期刊论文,这篇论文揭示了钙钛矿在吸收光线或者发射光线方面有多擅长。Stranks 博士表示:“我们发现,这种材料非常不均匀;相当大的区域是明亮且发光的,而其他的区域则非常黑暗。这些黑暗区域与太阳能电池或者LED中的能量损耗相关。但是,引起这种能量损耗的原因一直是个谜,特别是由于钙钛矿在其他方面非常耐缺陷。”
由于标准成像技术的限制,研究小组无法说明黑暗区域是由一个大的陷阱位引起的,还是由众多小的陷阱位引起的,从而难以确定它们为什么只是在特定区域形成。
后来在2017年,Dani 教授在 OIST 的研究小组在《自然纳米技术(Nature Nanotechnology)》期刊上发表了一篇论文,在论文中他们制作了一个有关电子吸收光线后在半导体中如何表现的影片。Dani 教授表示:“在材料或者器件被照射光线之后,如果你可以观察到电荷是如何在其中移动的,那么你将从中学会很多。例如,你可以观察到电荷会落入陷阱。然而,因为电荷移动得非常快,以一千万亿分之一秒的时间尺度来衡量;并且穿越非常短的距离,以十亿分之一米的长度尺度来衡量;所以这些电荷难以进行可视化观测。”
在了解到 Dani 教授的工作之后,Stranks 博士伸出援手,看看他们是否可以一起合作应对这个问题,对钙钛矿中的黑暗区域进行可视化观测。
OIST 的团队首次对钙钛矿使用了一项称为“光激发电子显微镜(PEEM)”的技术。他们用紫外光探测材料,并用发射的电子形成一幅图像。
观察材料时,他们发现含有陷阱的黑暗区域,长度大约是10到100纳米,由较小的原子尺寸陷阱位聚集而成。这些陷阱簇在钙钛矿材料中分布不均,从而解释了 Stranks 较早的研究中观察到的非均匀发光。
有趣的是,当研究人员将陷阱位的图像覆盖到显示钙钛矿材料晶粒的图像上时,他们发现陷阱簇仅在特定的地方形成,即某些晶粒之间的边界上。
为了理解这种现象为什么只发生在特定晶粒的边界上,研究人员小组与剑桥大学材料科学与冶金系教授 Paul Midgley 的团队合作,他采用了一项称为“扫描电子衍射”的技术,创造出了钙钛矿晶体结构的详细图像。Midgley 教授的团队利用了位于金刚石光源同步加速器 ePSIC 设施中的电子显微镜装置,该设施拥有用于成像像钙钛矿这样的光束敏感材料的专用设备。
Stranks 研究小组的博士生、这项研究的共同领导作者 Tiarnan Doherty 表示:“因为这些材料是超级光束敏感的,你在这些长度尺度上用来探测局部晶体结构的一般技术,实际上会相当快地改变你正在观察的材料。取而代之的是,我们可以用非常低的照射剂量,从而防止损伤。”
“我们从 OIST 的工作中知道了陷阱簇的位置,并且我们在 ePSIC 围绕着同一块区域扫描,以观察局部结构。我们能够快速地查明晶体结构中陷阱位附近的意外变化。”
研究小组发现,陷阱簇只在材料中具有轻微扭曲结构的区域与具有原始结构的区域的结合处形成。
Stranks 博士表示:“在钙钛矿中,我们拥有这些规则的马赛克晶粒材料,这些晶粒大多数都是又好又崭新的,这是我们所希望的结构。但是,每隔一段时间,你就会得到一个稍微形变的晶粒,这个晶粒的化学成分是不均匀的。真正有意思的,也是一开始让我们困惑的,就是形变的晶粒并没有成为陷阱,而是这个晶粒遇到原始晶粒的地方;陷阱是在那个结合处形成的。”
通过对于陷阱本性的理解,OIST 的团队也采用了定制的 PEEM 仪器来可视化观测钙钛矿材料中载流子落入陷阱的动态过程。Dani 研究小组的博士生、这项研究的共同领导作者 Andrew Winchester 解释道:“这是可能的,因为 PEEM 的特征之一就是,可对超高速的过程进行成像,短至飞秒。我们发现,陷落的过程受到扩散到陷阱簇的载流子的控制。”
价值
这些发现代表了为了把钙钛矿带向太阳能市场所取得的一项重要突破。
Stranks 博士表示:“我们仍然无法准确地知道,为什么陷阱聚集在那里,但是我们现在知道它们确实在那里形成,并且只有那里。这非常令人振奋,因为这意味着我们现在可以知道如何有针对性地提升钙钛矿的性能。我们需要针对这些非均匀相,或者以某种方式去除这些结合处。”
Dani 教授表示:“载流子必须首先扩散到陷阱,这一事实也为改善这些器件提出了其他方案。也许,我们可以改变或者控制这些陷阱簇的排列,而无需改变它们的平均数,这样一来,载流子就不太可能到达这些缺陷部位。”
团队的研究集中在一种特殊的钙钛矿结构。科学家们也将研究这些陷阱簇是否在所有的钙钛矿材料中都是普遍存在的。
Stranks 博士表示:“器件性能的大部分进展都是经过反复试错的,然而目前为止,这一直是一个低效率的过程。迄今为止,这个过程还没有真正被‘理解特定原因以及系统性针对该原因’所驱动。它是这方面最重要的突破之一,将帮助我们采用基础科学来设计更高效的器件。”
关键字
参考资料
【1】Liu, ., Johnston, . and Snaith, . (2013) Efficient Planar Heterojunction Perovskite Solar Cells by vaPour Deposition. Nature, 501, 395-398.
【2】Tiarnan A. S. Doherty, Andrew J. Winchester, Stuart Macpherson, Duncan N. Johnstone, Vivek Pareek, Elizabeth M. Tennyson, Sofiia Kosar, Felix U. Kosasih, Miguel Anaya, Mojtaba Abdi-Jalebi, Zahra Andaji-Garmaroudi, E Laine Wong, Julien Madéo, Yu-Hsien Chiang, Ji-Sang Park, Young-Kwang Jung, Christopher E. Petoukhoff, Giorgio Divitini, Michael K. L. Man, Caterina Ducati, Aron Walsh, Paul A. Midgley, Keshav M. Dani, Samuel D. Stranks. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites . Nature, 2020; 580 (7803): 360 DOI:
【3】
化学化工环境1. 喜树发根培养及培养基中次生代谢产物的研究2. 虾下脚料制备多功能叶面肥的研究3. 缩合型有机硅电子灌封材料交联体系研究4. 棉籽蛋白接枝丙烯酸高吸水性树脂合成与性能研究5. 酶法双甘酯的制备6. 硅酸锆的提纯毕业论文7. 腐植酸钾/凹凸棒/聚丙烯酸复合吸水树脂的合成及性能研究8. 羟基磷灰石的制备及对4-硝基苯酚吸附性能的研究9. 铝合金阳极氧化及封闭处理10. 贝氏体白口耐磨铸铁磨球的研究11. 80KW等离子喷涂设备的调试与工艺试验12. 2800NM3/h高温旋风除尘器开发设计13. 玻纤增强材料注塑成型工艺特点的研究14. 年处理30万吨铜选矿厂设计15. 年处理60万吨铁选厂毕业设计16. 广东省韶关市大宝山铜铁矿井下开采设计17. 日处理1750吨铅锌选矿厂设计18. 6000t/a聚氯乙烯乙炔工段初步工艺设计19. 年产50万吨焦炉鼓冷工段工艺设计20. 年产25万吨合成氨铜洗工段工艺设计21. PX装置异构化单元反应器进行自动控制系统设计22. PX装置异构化单元脱庚烷塔自动控制系统设计23. 金属纳米催化剂的制备及其对环己烷氧化性能的影响24. 高温高压条件下浆态鼓泡床气液传质特性的研究25. 新型纳米电子材料的特性、发展及应用26. 发达国家安全生产监督管理体制的研究27. 工伤保险与事故预防28. 氯气生产与储存过程中危险性分析及其预防29. 无公害农产品的发展与检测30. 环氧乙烷工业设计31. 年产 21000吨 乙醇 水精 馏装置 工艺设计32. 年产26000吨乙醇精馏装置设计33. 高层大厦首层至屋面消防给水工程设计34. 某市航空发动机组试车车间噪声控制设计35. 一株源于厌氧除磷反应器NL菌的鉴定及活性研究36. 一株新的短程反硝化聚磷菌的鉴定及活性研究37. 广州地区酸雨特征及其与气象条件的关系38. 超声协同硝酸提取城市污泥重金属的研究39. 脱氨剂和铁碳法处理稀土废水氨氮的研究40. 稀土 超磁致 伸缩 材料 扬声器 研制41. 纳米氧化铋的发展42. 海泡石TiO2光敏催化剂的制备及其研究43. 超磁致伸缩复合材料的制备44. 钙钛矿型无铅压电陶瓷的制备和性能研究毕业论文45. APCVD法在硅基板上制备硅化钛纳米线46. 浅层地热能在热水系统中的利用初探及其工程设计47. 输配管网的软件开发
有个范文网,应该可以吧,不行的话,去论文网看看!如果是大学毕业论文,好像免费的很少,大多需要money!
说到科学家,大多数人的印象里是西装笔挺、学术气息浓厚的中年或或是老年人士。
但你绝对想不到,在他们之中,还有些许90后的身影!其中有一位年轻漂亮的90后,她打破了人们对科学家的年龄印象,更是义无反顾地拒绝了外国的优渥条件和百万年薪的高薪诱惑,选择回国投身祖国的科研事业。
因为外表惹来的炙手流量和关注,她又保持着科研学者该有的敬业,回应道:“对一位科研工作者来说,其成功在于做了什么研究,对研究领域有什么样的贡献,给国家带来什么样的进步”。
她就是刘明侦,剑桥硕士,牛津博士,现任电子科技大学材料与能源副院长,在世界级科研刊物《Nature》上发表论文的最年轻中国女学者,90后美女科学家。
少年志在千里,辉煌求学履历
任何一个年少就做下辉煌成绩的人,都早早做好了奋斗的准备和规划。刘明侦也不例外。
1990年五月,刘明侦出生在山城重庆。自小成绩优异的她在高中时默默立下了目标,那时年幼青涩的她,默默在一本英语词汇书的扉页上写下了自己的目标:“努力奋斗上剑桥!”
她的努力没有辜负她。为了向剑桥大学这个年幼的目标发起进攻,18岁那年,刘明侦成为了那届学生中的名人,她进入了英国布里斯托大学学习。
靠着自己的不懈努力,她成功在三年后以全专业第一名的成绩傲视旁人,成功毕业,然后进入了曾经的理想,后来的一个停留站——剑桥大学攻读硕士学位。
22岁,在剑桥大学进修了光能发电技术的刘明侦硕士毕业于这里,转而到英国另一所知名大学,牛津大学攻读博士学位。
也是在这期间,她成功在世界级科研刊物《Nature》上发表论文,成为了在这本世界一流科研刊物上发表论文的最年轻中国女学者。
她的学术论文,在谷歌上的目前引用量已经超过了2700次,是钙钛矿太阳电池领域里引用次数最高的三篇论文之一。
24岁,刘明侦从牛津大学拿到博士学位,当初一个人来到英国打拼,闯进英国学术界奋斗的小姑娘已经拿出了足够骄傲的成绩和那些看不起她中国人身份的人叫板。
努力得到回报是一件美妙的事。哪怕是英国的学制本就更短,在这个年龄取得如此巨大的成就,她都足以被称一声传奇。
留下与回国的抉择,归国后的不懈努力
从18岁到24岁,6年留学生活让她逐渐适应并喜欢上这个海岛国家,她自己也坦言说道:“这是一段奇妙的旅程,对一个国家由厌恶到接受,再到欣赏,这样的转变正是留学生涯的魅力所在。”
正是如此,她才在面对回国与否的抉择时开始犹豫。由于刘明侦在光能发电领域上做下的出色成绩和独到的贡献,外国并不缺少想要留下这位年轻学者的机构和大学。
她曾经就读过、年幼时梦想过的剑桥大学就向她开出了百万年薪挽留她回到剑桥,将所学的光能发电技术应用于英国的工业技术行业上。
相比之下,入选电子科技大学“百人计划”并被聘请为教授,就显得没那么优渥和光辉。
纵然如此,乡愁和国人身份的骄傲让刘明侦不再犹豫做下抉择。她要回国。
2015年,刘明侦正式成为电子科技大学百人计划入选者,签订协议进入电子科技大学微电子与固体电子学院工作。她带着一身所学和积累下来的各项成果回国,担任电子科技大学的博士生导师。
回国后,刘明侦投身科研事业,马不停蹄地牵头成立了“应用化学研究中心”,帮助并推动电子科技大学化学学科成功进入ESI前1%。
ESI是基本科学指标数据库(Essential Science Indicators)的简称,是衡量科学研究绩效、跟踪科学发展趋势的权威分析评价工具。对于一所大学来说,这是一项极其出色的教学科研成就。
“感谢遇到了好的时代”
2018年,最后一批90后也离开了孩子的范畴,在这个一代被批评不如一代的环境下,90后就像曾经美国那批痴迷披头士和摇滚,与《了不起的盖茨比》感同身受的那批人一样,被称作“垮掉的一代”。
90后,也曾被称为垮掉的一代
但就是这样,刘明侦也代表众多被人误解的90后孩子们走出了崭新的、让人仰视的辉煌。告诉世人90后也有自己的成就与光芒。
她的人生是一路高歌猛进,一步步走出同龄人,直到遥遥领先身旁众人。对此,无数网友、路人惊叹她的成就,也惊叹她是一名年轻漂亮的女性。
对此,刘明侦一概无视,她自己老气横秋地笑着说:“我都这把年纪了,被说就说吧”,但同时,她也诚恳谦虚的把自己的成就归功于时代,“感谢自己遇上了好的时代”。
这确实好的时代,国家强盛,海晏河清,但个人的努力才是一切辉煌成功的根本。刘明侦的光辉履历的背后是她一个小姑娘的不懈努力,日以夜继的奋斗。
她有过低谷,一度怀疑自己选择这个科研领域是不是错误的,离开或许才是及时止损,但她还是选择了坚持,不顾一切的坚持。
在谈到自己的努力时,刘明侦很是怀念的笑了,自己打趣说自己“为了抢时间,着迷了般,每天在实验室里十几个小时,饿了会将道具当鸡蛋吃,到了嘴边才知道那不是鸡蛋。”可以说很有古人墨汁蘸馒头的风范了。
也正是这些不为人知的、独自一人的默默努力,换来了她人前的不菲成就和光环缠身。
就在2019年,她传奇的经历让她被评选为2018年度十大女性新闻人物。这个地地道道的重庆姑娘,用自己的一身光芒成为了无数人的目标和楷模。
她怀着一腔赤诚回国,拒绝了国外的百万年薪,又用沉默的行动,回答外界的吹捧和询问。她是不打折扣的“90后美女科学家”,也是电子科技大学里私下爱好时尚的教授,更是严苛督促学生一周一万字作业的冷面导师,是值得学习和尊重的一个模范,用自己的人生经历诠释着传奇。
化学化工环境1.喜树发根培养及培养基中次生代谢产物的研究2.虾下脚料制备多功能叶面肥的研究3.缩合型有机硅电子灌封材料交联体系研究4.棉籽蛋白接枝丙烯酸高吸水性树脂合成与性能研究5.酶法双甘酯的制备6.硅酸锆的提纯毕业论文7.腐植酸钾/凹凸棒/聚丙烯酸复合吸水树脂的合成及性能研究8.羟基磷灰石的制备及对4-硝基苯酚吸附性能的研究9.铝合金阳极氧化及封闭处理10.贝氏体白口耐磨铸铁磨球的研究等离子喷涂设备的调试与工艺试验高温旋风除尘器开发设计13.玻纤增强材料注塑成型工艺特点的研究14.年处理30万吨铜选矿厂设计15.年处理60万吨铁选厂毕业设计16.广东省韶关市大宝山铜铁矿井下开采设计17.日处理1750吨铅锌选矿厂设计聚氯乙烯乙炔工段初步工艺设计19.年产50万吨焦炉鼓冷工段工艺设计20.年产25万吨合成氨铜洗工段工艺设计装置异构化单元反应器进行自动控制系统设计装置异构化单元脱庚烷塔自动控制系统设计23.金属纳米催化剂的制备及其对环己烷氧化性能的影响24.高温高压条件下浆态鼓泡床气液传质特性的研究25.新型纳米电子材料的特性、发展及应用26.发达国家安全生产监督管理体制的研究27.工伤保险与事故预防28.氯气生产与储存过程中危险性分析及其预防29.无公害农产品的发展与检测30.环氧乙烷工业设计31.年产21000吨乙醇水精馏装置工艺设计32.年产26000吨乙醇精馏装置设计33.高层大厦首层至屋面消防给水工程设计34.某市航空发动机组试车车间噪声控制设计35.一株源于厌氧除磷反应器NL菌的鉴定及活性研究36.一株新的短程反硝化聚磷菌的鉴定及活性研究37.广州地区酸雨特征及其与气象条件的关系38.超声协同硝酸提取城市污泥重金属的研究39.脱氨剂和铁碳法处理稀土废水氨氮的研究40.稀土超磁致伸缩材料扬声器研制41.纳米氧化铋的发展42.海泡石TiO2光敏催化剂的制备及其研究43.超磁致伸缩复合材料的制备44.钙钛矿型无铅压电陶瓷的制备和性能研究毕业论文法在硅基板上制备硅化钛纳米线46.浅层地热能在热水系统中的利用初探及其工程设计47.输配管网的软件开发
1)优点 钙钛矿最大的优点就是效率高。因为钙钛矿材料吸光性能远强于晶硅,能量转换过程损耗低,在室内或者弱光的条件下依旧可以实现高能量转换,所以近十年的时间钙钛矿电池转换效率飞速增长,完胜铜铟镓硒等薄膜电池。 第二个优点是成本低。低成本主要体现在原材料和加工两个环节,原材料储量丰富,且电池加工过程的环境和能耗均较晶硅低。其他优点还包括由于其可以制成彩色和半透明薄膜,可以实现不同的彩色效果,因此可以应用到BIPV上,应用更多样。 2)缺点 钙钛矿最大的缺点耐用性差。由于钙钛矿属于离子晶体材料,所以比晶硅脆弱且稳定性差,有易氧化和不耐高温等缺点,寿命短和衰减率高是其一直没有进入工业化的重要原因,因为需要额外支付其他成本提高其稳定性和耐用性。 其次是涂覆技术不成熟导致制造困难。因为涂覆技术不成熟,钙钛矿层没法均匀涂抹在设备表面,对器件性能有明显负面影响,需要提升喷涂工艺。 第三,虽然实验效率高,但实际转化效率可能低。因为普遍使用TCO(透明导电氧化物)薄膜收集电流,而此类材料的一些物理性质会造成光损失,且随着面积的增大愈发明显,这导致钙钛矿组件的效率会明显低于单体电池。 最后还有因为原材料元素含铅等有毒金属物而导致不环保。
近年来,新兴起的有机无机杂化钙钛矿太阳能电池突飞猛进,在短短十年里其光电转化效率从迅速发展到目前的认证效率,被视为最具有应用潜力的新型高效率太阳能电池之一。虽然钙钛矿太阳能电池具有很高的光电转换效率已与多晶硅薄膜电池相媲美,但是电池的长期稳定性仍是阻碍其商业化的一大挑战。钙钛矿表面和晶界存在大量的缺陷,界面钝化来提高钙钛矿太阳能电池的稳定性是非常重要且有效的策略。二维钙钛矿材料是有机胺层与无机层交替的层状钙钛矿,具有体积较大的有机铵阳离子,与传统的三维钙钛矿材料相比对于环境的稳定性较好,并且结构灵活可调,在三维钙钛矿表面修饰二维钙钛矿层钝化缺陷,在提高钙钛矿太阳能电池效率的同时又保证了稳定性,另外,合适的钝化剂分子也能够非常有效地钝化缺陷。本文总结了钙钛矿太阳能电池的不稳定因素,归纳了钙钛矿太阳能电池界面钝化方面的研究进展,指出了二维钙钛矿材料发展的巨大潜力以及寻找合适钝化剂分子的原则,期望能够为获得高性能的钙钛矿太阳能电池进而实现商业化提供有益的指导。
离子晶体 原子晶体
1、氧化镁(化学式:MgO)是镁的氧化物,一种离子化合物。常温下为一种白色固体。氧化镁以方镁石形式存在于自然界中,是冶镁的原料。 2、氧化镁有高度耐火绝缘性能。经1000℃以上高温灼烧可转变为晶体,升至1500 - 2000°C则成死烧氧化镁(也就是所说的镁砂)或烧结氧化镁。
氧化镁属工业无机盐一般化学品,其晶型结构有片状、球状、花瓣状、棒状、针状。
氧化镁中离子电荷数大于氯化钠,离子间距离小于氯化钠,所以离子键强于氯化钠,沸点高. 学了晶格能就只要说一句:氧化镁的晶体的晶格能大于氯化钠晶体.