首页 > 期刊论文知识库 > 富勒烯研究新进展论文

富勒烯研究新进展论文

发布时间:

富勒烯研究新进展论文

富勒烯是一种新发现的工业材质, 它的特性: 1.硬度比钻石还硬 2.轫度(延展性)比钢强100倍 3.它能导电,导电性比铜强,重量只有铜的六分之一 4.它的成分是碳,所以可从废弃物中提炼可想像我们的未来生活中将有“无金属电线”“富勒烯(非金属)钢筋的建筑物” “富勒烯防弹背心”“富勒烯汽车壳”...◎构想中的“东京湾金字塔城”亦将富勒烯列为主要建材,纳米巴克管(富勒烯)分子可无限延伸(巴克管长度越长,其原子数越多,所以巴克管的原子数不一定是C60),且巴克管分子是碳原子自动组合而成。 C60本身的对称性决定了C60自身有非线性光学性质。作为一种新的化合物,研究其电、磁、光等应用是非常重要的,实际上C60就是因为掺杂碱金属在一定条件下具有超导电性,其电荷转移复合物有铁磁性而引起人们极大兴趣和关注。1991年北京大学化学系和物理系在国内首次获得了K3C60和Rb3C60超导体,超导转变温度为18K和28K,其超导相达75%,达到了当时国际先进水平。1993年他们成功制备了K3C60外延超导膜,其Tc=21K,Jc=5×10A / cm。1994年后有关C60超导研究,国内外都处于更深入的艰难阶段。C60的磁学研究实际上从其超导性开始的。C60家族分子是三维π电子离域的化合物,有良好的非线性光学效应。北京大学测定了C60、C70的非线性光学系数,并利用飞秒技术研究了C60的光克尔效应,证实了C60的非线性效应起源于的π电子,并研究了C60电荷转移复合物的非线性性质。在研究C60甲苯溶液的光限制效应时,他们首先发现了反饱和吸收过程的饱和现象,并给出了理论解释。中科院化学研究所在对C60进行化学修饰后进行PVK掺杂,发现了一全新的光导体体系,此体系暗导小,放电迅速,且完全具有重要的潜在应用价值。另外,他们还发现了一类新的光限幅材料,此材料在线性透过率高达80%的条件下,其限幅幅值为300mJ/cm,具有潜在实用价值。 润滑剂和研磨剂C60具有特殊的圆球形状,是所有分子中最圆的分子;另外,C60的结构使其具有特殊的稳定性。在分子水平上,单个C60分子是异常坚硬的,这使得C60可能成为高级润滑剂的核心材料。C60分子一出世,就有人提议用它来作“分子滚珠”,制成润滑剂。将C60完全氟化得到的C60F60是一种超级耐高温材料,这种白色粉末状物质是比C60更好的优良润滑剂,可广泛应用于高技术领域。另外,C60分子的特殊形状和极强的抵抗外界压力的能力使其有希望转化成为一类新的超高硬度的研磨材料。一种有希望的方法是将C60直接转化为金刚石,这可通过在室温下加高压来实现。1992年初,法国格雷诺布尔(Grenoble)低温研究中心的雷古埃罗等人在英国《自然》杂志上报道,通过在室温下对C60分子施以压强达200亿帕的快速非静压,可将其瞬间转化为大量人工钻石晶体。雷古埃罗等已为这种由C60快速有效生产金刚石的方法申请了专利,这使得C60可作为一种研磨材料而具有潜在应用价值,人们可以采用爆炸或其他冲击波的方法对富勒烯施加高压,生产出符合工业标准的低成本金刚石。CVD金刚石膜富勒烯的另一潜在的应用是它们可作为金刚石薄膜生长的均匀成核位置而起重要作用。富勒烯材料的独特性质之一是它们在较低温度下升华,对于C60,其升华点大约是600℃,这使得富勒烯在不规则形状表面上的气体沉积覆盖相对来说很容易实现。另外,由于富勒烯易溶于像苯和甲苯这样的极性有机分子溶剂,因而可以在室温下将复杂表面直接浸于制备好的溶液中,待溶剂挥发后就留下一层富勒烯分子薄膜。1992年,美国西北大学的一个研究小组声称他们发现了一种用富勒烯结晶出金刚石薄膜的简单方法。他们使用包含C70分子的富勒烯,先在硅表面形成富勒烯薄层,然后用带电粒子轰击它,导致有利于金刚石形成的分子结构,使用化学气相沉积(CVD)方法,通过天然气与氢气的混合气体,形成许多微小的金刚石。科学家预测,对这种方法加以改进也许能够生长出电子应用中所需要的类似大块单晶的金刚石薄膜,这将使得生长金刚石单晶的梦想成为现实。据说在多晶体生长中,C70的应用使得在硅表面衬底上金刚石的生成提高了10个量级。金刚石薄膜在军事方面具有许多应用价值,如作为装甲车表面的抗冲击覆盖层,用于制成光学(X射线,粒子束)窗口,半导体晶片,高硬度表面齿轮,金刚石-纤维合成材料,以及高温和防辐射电子器件等。高强度碳纤维1991年日本电气公司的饭岛发现了一种管状碳——巴基管,巴基管具有独特的几何结构和奇妙的导电性质,同时具有高抗张强度和高度热稳定性。巴基管的这种特殊的电学和机械性能使其具有巨大的应用价值。高性能纤维对于要求很高的强度-重量比的结构设计产生了革命性的影响,尤其是在需要耐高温,或者在能控制材料的电磁性能的应用领域。石墨纤维已具有很高的强度、很强的柔韧性以及耐高温性能。巴基管材料具有高度的热稳定性和易变性,而且比碳素纤维具有更大的抗张强度,加之其导电性能可由其结构加以调节,因而巴基管是一种比石墨纤维性能更优越的碳纤维,甚至还可能发展出强度更高、更轻巧的结构,这样使得巴基管可能在电子器件和航空、航天等空间技术领域具有巨大的应用价值。1993年,日本电气公司基础研究室的艾贾安和饭岛在细微的巴基管中填入了铅,从而制成了迄今世界上最细的丝,这种丝只有两三个原子那么粗,具有纳米尺度。有人推测这种巴基细丝可能在电子器件制造上得到应用。理论计算表明,巴基管可吸附大小适合其内径的任意分子。科学家希望通过改变石墨层片卷曲成管的方式等方法调节巴基管的直径,使其有选择性地吸收分子,从而改变其电子及机械性能。科学家正试图制成单晶巴基管,并用巴基管造出分子水平的微型零件用于医学或其它目的。富勒烯作为一种潜在的新碳素材料已得到普遍重视,其应用领域也将不断开拓。高能轰击粒子C60能够得到或失去电子形成离子,带电巴基球可以用作物理碰撞的高能轰击粒子。1992年9月,法国奥塞(Or-say)核物理研究所与厄普撒拉(Uppsala)大学的研究人员用线性加速器将C60离子加速至具有近5000万电子伏的能量。由于C60离子的质量和体积均较大,高能C60离子束轰击固体靶时不能穿透固体,而是停留在表浅的位置,从而将大量的能量施放在固体表面,可以使固体在加速的同时获得巨大的能量,有助于研究高能离子轰击固体靶时产生的物理变化。C60离子轰击实验开创了物理碰撞研究的新领域.另外,C60离子束还有可能在分子束诱发核聚变的研究中得到应用。富勒烯及其衍生物物理性质的应用是多方面的。早在1991年,阿莱芒等人发现C60络合物可以在没有金属存在的情况下表现出铁磁性特征,从而有希望开拓磁性记忆材料的一个新方向。用C60还能在CaAs晶体基质上制成C60-K3C60异质结膜,并可将其用于微电子器件等方面。随着研究的深入,富勒烯独特的物理性质将为其应用开辟一个广阔的领域。 富勒烯电化学C60具有完美对称的足球结构,反应在其电子能级上具有较高的简并度.理论计算表明,C60分子的电子能级简并度最高可达五重。C60的最低未占据分子轨道(LUMO)是三重简并的tlu态,使得C60具有很高的电负性,它能够接受电子而形成带负电子的阴离子。高度结构对称性与分子轨道简并度结合起来,使得C60分子具有非常丰富的氧化还原性质。由于C60分子具有较高的电离势(C60的第一电离能约为),因此一般说来,C60的电化氧化是较为困难的,虽然也有人报道C60和C70的电化学不可逆氧化反应,但更常见的是富勒烯的电化还原.豪夫勒(R. E. Haufler)和斯莫利等首先采用循环伏安特性方法在溶液中产生了离子形式的C60。他们在实验中使用了玻璃状碳钮扣电池,并用铂丝作为反电极。C60进行的这个还原反应是可逆的,显示出使用电化学方法生产稳定的“富勒烯化合物(fulleride)”盐的可能性。这可能导致新材料的发现,并可能制成一类新的可充电电池。C70和C60的电化学行为几乎是相同的,在合适的溶剂中C60能够被还原成六价离子,与理论预测的C60能接受6个电子于很困难的匀质大块化合物的还原中。巴德(A. J. Bard)等首先进行了铂电极上C60膜的电化学研究,这种膜的电化学性质是较为复杂的,并具有不可逆性。查伯(Y. Chabre)等人采用全固态电化学电池和聚合物电解质成功地将锂掺入C60中,实验确定在连续加入电子过程中LixC60中的x值为0,5,2,3,4和12,最后的Li∶C的比例达到相当于Li12C60即LiC5,这是Li嵌入石墨化合物中的饱和值。查伯等还研究了固态C60电极上钠的电化学嵌入过程.C60的固态电化学研究为生产掺杂富勒烯化合物提供了新的途径。C60还容易发生电化学加氢反应.C60电极能够通过氢而发生电化学充电反应,而生成的C60Hx可以以很高的效率放电。富勒烯的伯奇(Birch)还原反应和催化氢化反应得到的产物很多,有C60H18、C60H36、C60H56及完全氢化的C60H60等,还有C70的加氢产物C70H46.富勒烯加氢化合物非常稳定,具有广阔的应用前景.利用它们能够安全地大量收集和储存氢的性质,作为储存氢气的材料,这可以应用在氢的纯化、吸收、氢燃烧发动机以及氢—空气燃料电池中。富勒烯对氢气的存储和释放为研究氢的压缩、纯化、热泵以及制冷的新方法打开了大门。加氢富勒烯是一种碳氢化合物,可作为洁净的燃烧迅速的燃料,有望作为火箭推进剂而用于航空航天领域。另外,利用加氢富勒烯储氢引起的化学及热力学性质,制成可充电电池,用来替代镍-镉(Ni-Cd)电池中的镉电极,也可用来替代镍-金属氢化物电池中的金属氢化物以储存电能。完全氢化的富勒烯能最大限度地存储能量。从实验结果看,一类新的无毒、轻便、高效的富勒烯氢化物电池将很快问世。催化剂催化剂有着广泛的应用,如石油精炼和化学过程等方面。富勒烯可以作为一类新的催化剂材料的基础。斯莫利提出可以在富勒烯分子的中心空隙加入一些已知具有催化性能的金属原子,如铂(pt)、钯(pd)等,制成一类新的催化剂,在这种催化剂中,催化性原子被碳笼保护起来。1992年,日本的研究人员用C60制成了一类含钯的高催化性能复合物,这是在室温下用C60的苯溶液与钯的络合物混合制成的,每个C60分子与6个钯原子配位。这是第一个发现的在分子水平上具有规则形状的催化剂载体,并且已发现它能在正常温度和压强下催化二苯乙炔的加氢反应;这也是第一个发现的由一种材料的数个原子组成的团簇催化化学反应,因为催化剂通常只在很大质量下才起作用。富勒烯还可以作为催化剂载体而与其他催化剂结合,催化其他的反应。假如其他类似以富勒烯为基础的催化剂也具有如此之高的催化活性,那么这些基于富勒烯的催化剂将在那些既需要高效率又要低质量或小体积的方面得到应用。抗癌药物美国亚特兰大埃莫里(Emory)大学医学院的病毒药物学家斯辛纳齐(R. F. Schinazi)和他的同事们发现,巴基球对一种关键性的HIV病毒酶有杀伤作用,而不伤害宿生细胞。HIV蛋白酶是一种导致艾滋病的病毒,巴基球能够抑制HIV的生长,使其对人类细胞失去感染作用。科学家认为,巴基球虽然不能用来治疗艾滋病,但它可能具有药用价值。这种富勒烯能够消除HIV病毒,阻止HIV蛋白酶的作用而不损害被感染的细胞本身,它在人类被HIV感染的三种免疫细胞中具有抗病毒能力,而且还对这种病毒的反向转录酶起作用,因此能够抑制HIV对细胞的感染。虽然巴基球还不能作为一种有用的药物,但这将是巴基球在生物学上的首次应用;而且科学家认为,富勒烯将为研究抗癌药物提供潜在而有趣的线索。富勒烯具有十分丰富的化学内涵,富勒烯及其衍生物在化学方面的应用是十分广阔的。除作为催化剂载体、制成高能电池及抑制病毒外,还可以利用富勒烯能有选择性地吸收某些种类气体的性质,将其在工业上用作气体杂质的去除剂,此外还可以作为有机溶剂以及在医学上作为影像剂,这方面的前景是广阔的。 非线性光学器件实验和理论研究表明,C60和C70等富勒烯都是良好的非线性光学材料,C60/C70混合物(C70约占10%)的非线性光学系数约为×10-9esu,C76甚至还具有光偏振性。富勒烯分子中不存在对非线性光学性能有干扰作用的碳—氢键和碳-氧键,与其他非线性光学材料相比,性能更加优越。美国西北大学的研究者们发现C60薄膜具有很高的二阶非线性光学系数,显示出在非线性光学器件方面的应用价值。C60薄膜具有很高的光学效率,这一性质使得C60在激光光学通信和光学计算机方面有着重要的潜在应用,并有望在短期内付诸实现。科学家还发现,C60和C70溶液可以作为光学限制器,这种溶液只允许低强度的光通过,当光强增强时,溶液很快变得不透光,其饱和阈值与其他任何已知的光学限制材料相比差不多或更好。英国科学家还报道过,富勒烯被多孔矿物质俘获并经蓝色激光照射后,成为一种光致发光材料,尽管这一工作尚没有在其他实验室内重复出来,但揭示出它可能用来制作能发射任何频率光的激光器,已经发现许多大的富勒烯分子具有手性特征,这种手征性预示着非线性光学响应的可能.生产和分离出大量的大富勒烯分子将在高阶非线性光学效应方面取得突破.预计富勒烯作为一种良好的非线性光学材料可能很快投入应用。光导体光导材料是复印机、传真机和激光打印机的基本部分,旧的光导材料使用硒作为感光剂,较为先进的有机光导聚合物已经代替了硒材料。美国杜邦公司的研究人员发现用1%的C60(可能是C60和C70的混合物)掺杂的PVK聚合物是一类全新的高性能光导体,类似的产品已经应用于静电复印技术中。这种光导材料具有良好的性质,其图象分辨率相当或优于其他材料,而寿命远远高于含硒材料,其性能实际上已经可以与最好的商用光导体相比拟.这使得掺杂富勒烯材料在印刷及光通信等方面将获得巨大的应用。超导材料掺杂C60超导体的发现是超导领域的又一重大成果,这种超导体具有相对较高的临界温度,掺杂C60超导体的临界温度不仅远远高于所有的有机分子超导体,而且也大大高于以前发现的金属和合金超导体,只比炙手可热的氧化物陶瓷超导体低。如果掺杂C60超导体的临界温度尚不能与高温氧化物超导体相比的话,那么这种超导体在其他方面却具有许多更为优越的性质,而这些性质都直接影响到超导体的实际应用.富勒烯超导体最大的优点在于这种化合物容易加工成所需要的各种形状;同时由于它们是三维分子超导体,各向同性,使得电流可以在各个方向均等地流动。我们知道,氧化物陶瓷超导体是一种层状材料,表现为各向异性,在每层平面内和与平面垂直的方向上导电性质不同,同时这种陶瓷材料难于加工成线形或其他所需要的形状,给实际应用造成困难。同时,富勒烯化合物超导体还具有较高的临界磁场和临界电流密度,理论分析和一些实验结果显示,在更大的富勒烯分子掺杂化合物中可能大幅度提高超导临界温度。良好的性质和潜在的高临界温度为富勒烯超导体的应用创造了条件。掺杂富勒烯超导体的可能应用包括磁悬浮列车,基于约瑟夫逊结和更新更快设计原理的高速计算机开关器件、长距离电力输送、超导发动机和发电机、作物理研究的大型磁铁(如超导超级对撞机)、超导计算机的电子屏蔽以及基于超导量子干涉器件(SQUID)的电子设备等方面。掺杂的C60化合物显示超导电性,理论计算已经证明,不掺杂的C60是一种直接能隙半导体,由于C60分子在其格点位置作高速无序自由转动,使C60固体成为继Si,Ge和GaAs之后的又一种新型半导体材料。日本三菱电气公司的研究人员已经用C60制成了一种新型富勒烯半导体。随着研究的深入,富勒烯及其衍生的材料走向应用已指日可待。C60及富勒烯家族的诞生是20世纪80年代的重大发现之一,具有重要意义的是,这些神奇的全碳分子及其衍生的物质显示新颖奇特的物理化学性质,它们首先是作为一种可实用化的新材料而出现的。 由于富勒烯能够亲和自由基,具有极强的抗氧化能力,能够起到活化皮肤细胞,预防肌肤衰亡的作用。关于富勒烯在清除自由基方面的功效目前已有近3万篇论文被发表,近3千个专利获得了认可。正因如此,21世纪以来富勒烯开始被用作化妆品原料,具有抗皱、美白、预防衰老的卓越价值,成为备受瞩目的尖端美容成分。许多高端护肤品品牌含有富勒烯成分。 主条目:有机太阳能电池自1995年俞刚博士将富勒烯的衍生物PCBM([6,6]-phenyl-c61-butyric acid methyl ester,简称PC61BM或PCBM)用于本体异质结有机太阳能电池以来,有机太阳能电池得到了长足的发展,其中有三家公司已经将掺杂PCBM的有机太阳能电池商用,迄今大部分有机太阳能电池以富勒烯做为电子受体材料。

富勒烯水1985文家研究宇宙星云构意外发现科家实验室模拟宇宙星云高真空、高能量环境利用高能量激光溅射放置真空室环境石墨意外发现种具超稳定结构类似足球形全碳由五元环与六元环组——种材料称纳米王富勒烯水

富勒烯是一种完全由碳组成的中空分子,形状呈球型、椭球型、柱型或管状。富勒烯在结构上与石墨很相似,石墨是由六元环组成的石墨烯层堆积而成,而富勒烯不仅含有六元环还有五元环,偶尔还有七元环。

由于富勒烯能够亲和自由基,因此个别商家将水溶性富勒烯分散于化妆品。富勒烯具有抗氧化作用。富勒烯衍生物与卟啉、二茂铁等富电子基团共价或非共价形成多元体,用于研究分子内能量、电荷转移、光致能量和电荷转移。

扩展资料:

富勒烯功能化后产生的自组装前体,通过超分子作用形成有序聚集态结构,既是提高对富勒烯本征认识以及单分子器件构筑水平,也是对富勒烯高新技术功能化材料的需要。

富勒烯衍生物的超分子自组装的研究一直是个热点,远远多于不修饰的富勒烯的组装,特别是在基于富勒烯的功能材料、光致电子转移、人工光合作用体系、光子器件等诸多的研究领域。

参考资料来源:百度百科-富勒烯

具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性 超导材料和常规导电材料的性能有很大的不同。主要有以下性能。①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量 有以下 3个基本临界参量。①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为。到1987年,临界温度最高值已提高到100K左右。②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=)起,直到1986年以前,人们发现的最高的 Tc才达到(Nb3Ge,1973)。1986年瑞士物理学家.米勒和联邦德国物理学家.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类 超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶瓷。①超导元素:在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为。电工中实际应用的主要是铌和铅(Pb,Tc=),已用于制造超导交流电力电缆、高Q值谐振腔等。② 合金材料: 超导元素加入某些其他元素作合金成分, 可以使超导材料的全部性能提高。如最先应用的铌锆合金(Nb-75Zr),其Tc为,Hc为特。继后发展了铌钛合金,虽然Tc稍低了些,但Hc高得多,在给定磁场能承载更大电流。其性能是Nb-33Ti,Tc=,Hc=特;Nb-60Ti,Tc=,Hc=12特()。目前铌钛合金是用于7~8特磁场下的主要超导磁体材料。铌钛合金再加入钽的三元合金,性能进一步提高,Nb-60Ti-4Ta的性能是,Tc=,Hc=特();Nb-70Ti-5Ta的性能是,Tc=,Hc=特。③超导化合物:超导元素与其他元素化合常有很好的超导性能。如已大量使用的Nb3Sn,其Tc=,Hc=特。其他重要的超导化合物还有V3Ga,Tc=,Hc=24特;Nb3Al,Tc=,Hc=30特。④超导陶瓷:20世纪80年代初,米勒和贝德诺尔茨开始注意到某些氧化物陶瓷材料可能有超导电性,他们的小组对一些材料进行了试验,于1986年在镧-钡-铜-氧化物中发现了Tc=35K的超导电性。1987年,中国、美国、日本等国科学家在钡-钇-铜氧化物中发现Tc处于液氮温区有超导电性,使超导陶瓷成为极有发展前景的超导材料。 应用 超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。但要实际应用超导材料又受到一系列因素的制约,这首先是它的临界参量,其次还有材料制作的工艺等问题(例如脆性的超导陶瓷如何制成柔细的线材就有一系列工艺问题)。到80年代,超导材料的应用主要有:①利用材料的超导电性可制作磁体,应用于电机、高能粒子加速器、磁悬浮运输、受控热核反应、储能等;可制作电力电缆,用于大容量输电(功率可达10000MVA);可制作通信电缆和天线,其性能优于常规材料。②利用材料的完全抗磁性可制作无摩擦陀螺仪和轴承。③利用约瑟夫森效应可制作一系列精密测量仪表以及辐射探测器、微波发生器、逻辑元件等。利用约瑟夫森结作计算机的逻辑和存储元件,其运算速度比高性能集成电路的快10~20倍,功耗只有四分之一。 1911年,荷兰物理学家昂尼斯(1853~1926)发现,水银的电阻率并不象预料的那样随温度降低逐渐减小,而是当温度降到附近时,水银的电阻突然降到零。某些金属、合金和化合物,在温度降到绝对零度附近某一特定温度时,它们的电阻率突然减小到无法测量的现象叫做超导现象,能够发生超导现象的物质叫做超导体。超导体由正常态转变为超导态的温度称为这种物质的转变温度(或临界温度)TC。现已发现大多数金属元素以及数以千计的合金、化合物都在不同条件下显示出超导性。如钨的转变温度为,锌为,铝为,铅为。超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌三锗的23.22K,才提高了19K。 1986年,高温超导体的研究取得了重大的突破。掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度超导体为目标的“超导热”。全世界有260多个实验小组参加了这场竞赛。 1986年1月,美国国际商用机器公司设在瑞士苏黎世实验室科学家柏诺兹和缪勒首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;紧接着,日本东京大学工学部又将超导温度提高到37K;12月30日,美国休斯敦大学宣布,美籍华裔科学家朱经武又将超导温度提高到40.2K。 1987年1月初,日本川崎国立分子研究所将超导温度提高到43K;不久日本综合电子研究所又将超导温度提高到46K和53K。中国科学院物理研究所由赵忠贤、陈立泉领导的研究组,获得了48.6K的锶镧铜氧系超导体,并看到这类物质有在70K发生转变的迹象。2月15日美国报道朱经武、吴茂昆获得了98K超导体。2月20日,中国也宣布发现100K以上超导体。3月3日,日本宣布发现123K超导体。3月12日中国北京大学成功地用液氮进行超导磁悬浮实验。3月27日美国华裔科学家又发现在氧化物超导材料中有转变温度为240K的超导迹象。很快日本鹿儿岛大学工学部发现由镧、锶、铜、氧组成的陶瓷材料在14℃温度下存在超导迹象。高温超导体的巨大突破,以液态氮代替液态氦作超导制冷剂获得超导体,使超导技术走向大规模开发应用。氮是空气的主要成分,液氮制冷机的效率比液氦至少高10倍,所以液氮的价格实际仅相当于液氦的1/100。液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一。超导科学研究 1.非常规超导体磁通动力学和超导机理 主要研究混合态区域的磁通线运动的机理,不可逆线性质、起因及其与磁场和温度的关系,临界电流密度与磁场和温度的依赖关系及各向异性。超导机理研究侧重于研究正常态在强磁场下的磁阻、霍尔效应、涨落效应、费米面的性质以及T医学研究等 磁体科学和技术 强磁场的价值在于对物理学知识有重要贡献。八十年代的一个概念上的重要进展是量子霍尔效应和分数量子霍耳效应的发现。这是在强磁场下研究二维电子气的输运现象时发现的(获85年诺贝尔奖)。量子霍尔效应和分数量子霍尔效应的发现激起物理学家探索其起源的热情,并在建立电阻的自然基准,精确测定基本物理常数e,h和精细结构常数(=e2/h(0c等应用方面,已显示巨大意义。高温超导电性机理的最终揭示在很大程度上也将依赖于人们在强磁场下对高温超导体性能的探索。 熟悉物理学史的人都清楚,由固体物理学演化为凝聚态物理学,其重要标志就在于其研究对象的日益扩大,从周期结构延伸到非周期结构,从三维晶体拓宽到低维和高维,乃至分数维体系。这些新对象展示了大量新的特性和物理现象,物理机理与传统的也大不相同。这些新对象的产生以及对新效应、新现象的解释使得凝聚态物理学得以不断的丰富和发展。在此过程中,极端条件一直起着至关重要的作用,因为极端条件往往使得某些因素突出出来而同时抑制其它因素,从而使原本很复杂的过程变得较为简单,有利于直接了解物理本质。 相对于其它极端条件,强磁场有其自身的特色。强磁场的作用是改变一个系统的物理状态,即改变角动量(自旋)和带电粒子的轨道运动,因此,也就改变了物理系统的状态。正是在这点上,强磁场不同于物理学的其他一些比较昂贵的手段,如中子源和同步加速器,它们没有改变所研究系统的物理状态。磁场可以产生新的物理环境,并导致新的特性,而这种新的物理环境和新的物理特性在没有磁场时是不存在的。低温也能导致新的物理状态,如超导电性和相变,但强磁场极不同于低温,它比低温更有效,这是因为磁场使带电的和磁性粒子的远动和能量量子化,并破坏时间反演对称性,使它们具有更独特的性质。 强磁场可以在保持晶体结构不变的情况下改变动量空间的对称性,这对固体的能带结构以及元激发及其互作用等研究是非常重要的。固体复杂的费米面结构正是利用强磁场使得电子和空穴在特定方向上的自由运动从而导致磁化和磁阻的振荡这一原理而得以证实的。固体中的费米面结构及特征研究一直是凝聚态物理学领域中的前沿课题。当今凝聚态物理基础研究的许多重大热点都离不开强磁场这一极端条件,甚至很多是以强磁场下的研究作为基础。如波色凝聚只发生在动量空间,要在实空间中观察到此现象必需在非均匀的强磁场中才得以可能。又如高温超导的机理问题、量子霍尔效应研究、纳米材料和介观物体中的物理问题、巨磁阻效应的物理起因、有机铁磁性的结构和来源、有机(包括富勒烯〕超导体的机理和磁性、低维磁性材料的相变和磁相互作用、固体中的能带结构和费米面特征以及元激发及其互作用研究等等,强磁场下的研究工作将有助于对这些问题的正确认识和揭示,从而促进凝聚态物理学的进一步发展和完善。 带电粒子象电子、离子等以及某些极性分子的运动在磁场特别是在强磁场中会产生根本性变化。因此,研究强磁场对化学反应过程、表面催化过程、材料特别是磁性材料的生成过程、生物效应以及液晶的生成过程等的影响,有可能取得新的发现,产生交叉学科的新课题。强磁场应用于材料科学为新的功能材料的开发另辟新径,这方面的工作在国外备受重视,在国内也开始有所要求。高温超导体也正是因为在未来的强电领域中蕴藏着不可估量的应用前景才引起科技界乃至各国政府的高度重视。因此,强磁场下的物理、化学等研究,无论是从基础研究的角度还是从应用角度考虑都具有非常重要的科学和技术上的意义,通过这一研究,不仅有助于将当代的基础性研究向更深层次开拓,而且还会对国民经济的发展起着重要的推动作用。

关于富勒烯研究新进展的论文

富勒烯的定义上面的朋友已经回答得很好了,但还有一点没提到。

其中的富勒烯C60因其特性独特,能够很好的消除自由基,对女性抗皱美白抗衰有极高价值。

如果你在寻找含有富勒烯的护肤产品,可以了解我们品牌——雅慕诗婷

富勒烯这个成分用于护肤品有什么作用?很多商家把它的功效夸大了

由于富勒烯能够亲和自由基,具有极强的抗氧化能力,能够起到活化皮肤细胞,预防肌肤衰亡的作用。关于富勒烯在清除自由基方面的功效目前已有近3万篇论文被发表,近3千个专利获得了认可。正因如此,21世纪以来富勒烯开始被用作化妆品原料,具有抗皱、美白、预防衰老的卓越价值,成为备受瞩目的尖端美容成分。许多高端护肤品品牌含有富勒烯成分。

生活中我们不难发现,一个苹果切开后暴露在空气中,用不了15分钟就会变黄,这个现象如同金属被氧化生锈。同样当肌肤细胞被氧化后,会产生出一种有害物质叫自由基(活性氧)其活性强,破坏肌肤的胶原蛋白,令肌肤失去弹性和光泽,肤色变得暗哑灰黄、出现皱纹,甚至破坏细胞组织,可以说自由基是皮肤衰老的直接源头!

富勒烯是目前解决肌肤自由基问题最有效的成分,其颠覆了自由基革命,抗氧化能力是维他命C的172倍!经过权威试验验证,添加富勒烯的护肤品一次涂抹可以保持11小时的持续自由基阻击,长期使用,对肤色不均,色斑,有痘肌,老化肌肤等皮肤问题有明显的逆转和修复功能,并能有效根源呵护保持改善后的皮肤新生健康状态。何为富勒烯?

富勒烯与钻石都是完全由碳原子所组成的同素异形体(由相同的元素构成的分子)由60个碳原子构成的分子,它形似足球,因此又名足球烯,被誉为“纳米”王子。推演出富勒烯的三位博士,也因此发现 ,1996年获得诺贝尔奖的殊荣。富勒烯物质在地球自然界某些特殊矿石中微量存在,其在宇宙空间也被发现存在。日本三菱旗下VC60公司利用独家技术专利制成水溶性富勒烯跟油溶性富勒烯两种制剂,从而使富勒烯作为活性成分在护肤品上得以应用。

因富勒烯而获得诺贝尔奖的三位科学家: 水溶性富勒烯(Radical Spong) 与 油溶性富勒烯 (Lipo Fullerence)

2005年在日本首先推出市场,最先受到美容诊所医师们的信赖,富勒烯作为护肤品的抗衰老成分,就患者的不同肌肤问题,能够针对性的解决与保养,且安心安全。

美白效果

与其他材料的美白机制是完全不同的解决路径,富勒烯是从造成暗沉原因的活性氧,也就是从变黑的源头清除并且抑制。

连续使用四周后,不光是暗沉部分,可以真实感受到整体肌肤变的明亮。

抗衰老功效

富勒烯其特殊的分子结构,使其具有特使的自由基吸收作用,能有效抚平肌肤皱纹,从源头上缓解肌肤老化效果。

改善毛孔

皮肤的水分与油份需要达到一个平衡,富勒烯能否有限抑制皮脂过度氧化,从而很好地改善痘痘肌肤,收细毛孔,抑制敏感。

镭射光疗术后保养

越来越多的人接收镭射光疗美肤,一般而言,术后肌肤会产生大量的自由基,富勒烯可以有效及时清除自由基,抑制后续肌肤敏感反应和色素沉淀,是光疗后续保养的最佳搭档。

富勒烯目前已经经过成千上万的各国专家学者研究,确切的科学实验报告显示,富勒烯是目前市面上上最强的抗氧化成分,能像海绵一样快速将皮肤自由基清除。当皮肤的自由基减少,老化速度会缓解,肌肤弹性增加,肤质自然得到改善。

日本三菱旗下的VC60公司生产的水溶性富勒烯(Radical Sponge)与油溶性富勒烯(Lipo Fulleren)是目前唯一经过日本市场十年考验的明星级化妆品原料。

自由基(活性氧)是引发皱纹、暗沉、色斑、干燥等各类肌肤问题的导火线。高新成分富勒烯具有卓越的生物活性,能像海绵吸水一般吸收并消除自由基,从而切断肌肤问题的源头,重新唤回年轻的健康素颜。 有效浓度的水溶性富勒烯,为加龄及受紫外线伤害的肌肤角质层充分蓄水、缓解损伤,并提高肌肤的自身抵抗力。

富勒烯是一种新发现的工业材质, 它的特性: 1.硬度比钻石还硬 2.轫度(延展性)比钢强100倍 3.它能导电,导电性比铜强,重量只有铜的六分之一 4.它的成分是碳,所以可从废弃物中提炼可想像我们的未来生活中将有“无金属电线”“富勒烯(非金属)钢筋的建筑物” “富勒烯防弹背心”“富勒烯汽车壳”...◎构想中的“东京湾金字塔城”亦将富勒烯列为主要建材,纳米巴克管(富勒烯)分子可无限延伸(巴克管长度越长,其原子数越多,所以巴克管的原子数不一定是C60),且巴克管分子是碳原子自动组合而成。 C60本身的对称性决定了C60自身有非线性光学性质。作为一种新的化合物,研究其电、磁、光等应用是非常重要的,实际上C60就是因为掺杂碱金属在一定条件下具有超导电性,其电荷转移复合物有铁磁性而引起人们极大兴趣和关注。1991年北京大学化学系和物理系在国内首次获得了K3C60和Rb3C60超导体,超导转变温度为18K和28K,其超导相达75%,达到了当时国际先进水平。1993年他们成功制备了K3C60外延超导膜,其Tc=21K,Jc=5×10A / cm。1994年后有关C60超导研究,国内外都处于更深入的艰难阶段。C60的磁学研究实际上从其超导性开始的。C60家族分子是三维π电子离域的化合物,有良好的非线性光学效应。北京大学测定了C60、C70的非线性光学系数,并利用飞秒技术研究了C60的光克尔效应,证实了C60的非线性效应起源于的π电子,并研究了C60电荷转移复合物的非线性性质。在研究C60甲苯溶液的光限制效应时,他们首先发现了反饱和吸收过程的饱和现象,并给出了理论解释。中科院化学研究所在对C60进行化学修饰后进行PVK掺杂,发现了一全新的光导体体系,此体系暗导小,放电迅速,且完全具有重要的潜在应用价值。另外,他们还发现了一类新的光限幅材料,此材料在线性透过率高达80%的条件下,其限幅幅值为300mJ/cm,具有潜在实用价值。 润滑剂和研磨剂C60具有特殊的圆球形状,是所有分子中最圆的分子;另外,C60的结构使其具有特殊的稳定性。在分子水平上,单个C60分子是异常坚硬的,这使得C60可能成为高级润滑剂的核心材料。C60分子一出世,就有人提议用它来作“分子滚珠”,制成润滑剂。将C60完全氟化得到的C60F60是一种超级耐高温材料,这种白色粉末状物质是比C60更好的优良润滑剂,可广泛应用于高技术领域。另外,C60分子的特殊形状和极强的抵抗外界压力的能力使其有希望转化成为一类新的超高硬度的研磨材料。一种有希望的方法是将C60直接转化为金刚石,这可通过在室温下加高压来实现。1992年初,法国格雷诺布尔(Grenoble)低温研究中心的雷古埃罗等人在英国《自然》杂志上报道,通过在室温下对C60分子施以压强达200亿帕的快速非静压,可将其瞬间转化为大量人工钻石晶体。雷古埃罗等已为这种由C60快速有效生产金刚石的方法申请了专利,这使得C60可作为一种研磨材料而具有潜在应用价值,人们可以采用爆炸或其他冲击波的方法对富勒烯施加高压,生产出符合工业标准的低成本金刚石。CVD金刚石膜富勒烯的另一潜在的应用是它们可作为金刚石薄膜生长的均匀成核位置而起重要作用。富勒烯材料的独特性质之一是它们在较低温度下升华,对于C60,其升华点大约是600℃,这使得富勒烯在不规则形状表面上的气体沉积覆盖相对来说很容易实现。另外,由于富勒烯易溶于像苯和甲苯这样的极性有机分子溶剂,因而可以在室温下将复杂表面直接浸于制备好的溶液中,待溶剂挥发后就留下一层富勒烯分子薄膜。1992年,美国西北大学的一个研究小组声称他们发现了一种用富勒烯结晶出金刚石薄膜的简单方法。他们使用包含C70分子的富勒烯,先在硅表面形成富勒烯薄层,然后用带电粒子轰击它,导致有利于金刚石形成的分子结构,使用化学气相沉积(CVD)方法,通过天然气与氢气的混合气体,形成许多微小的金刚石。科学家预测,对这种方法加以改进也许能够生长出电子应用中所需要的类似大块单晶的金刚石薄膜,这将使得生长金刚石单晶的梦想成为现实。据说在多晶体生长中,C70的应用使得在硅表面衬底上金刚石的生成提高了10个量级。金刚石薄膜在军事方面具有许多应用价值,如作为装甲车表面的抗冲击覆盖层,用于制成光学(X射线,粒子束)窗口,半导体晶片,高硬度表面齿轮,金刚石-纤维合成材料,以及高温和防辐射电子器件等。高强度碳纤维1991年日本电气公司的饭岛发现了一种管状碳——巴基管,巴基管具有独特的几何结构和奇妙的导电性质,同时具有高抗张强度和高度热稳定性。巴基管的这种特殊的电学和机械性能使其具有巨大的应用价值。高性能纤维对于要求很高的强度-重量比的结构设计产生了革命性的影响,尤其是在需要耐高温,或者在能控制材料的电磁性能的应用领域。石墨纤维已具有很高的强度、很强的柔韧性以及耐高温性能。巴基管材料具有高度的热稳定性和易变性,而且比碳素纤维具有更大的抗张强度,加之其导电性能可由其结构加以调节,因而巴基管是一种比石墨纤维性能更优越的碳纤维,甚至还可能发展出强度更高、更轻巧的结构,这样使得巴基管可能在电子器件和航空、航天等空间技术领域具有巨大的应用价值。1993年,日本电气公司基础研究室的艾贾安和饭岛在细微的巴基管中填入了铅,从而制成了迄今世界上最细的丝,这种丝只有两三个原子那么粗,具有纳米尺度。有人推测这种巴基细丝可能在电子器件制造上得到应用。理论计算表明,巴基管可吸附大小适合其内径的任意分子。科学家希望通过改变石墨层片卷曲成管的方式等方法调节巴基管的直径,使其有选择性地吸收分子,从而改变其电子及机械性能。科学家正试图制成单晶巴基管,并用巴基管造出分子水平的微型零件用于医学或其它目的。富勒烯作为一种潜在的新碳素材料已得到普遍重视,其应用领域也将不断开拓。高能轰击粒子C60能够得到或失去电子形成离子,带电巴基球可以用作物理碰撞的高能轰击粒子。1992年9月,法国奥塞(Or-say)核物理研究所与厄普撒拉(Uppsala)大学的研究人员用线性加速器将C60离子加速至具有近5000万电子伏的能量。由于C60离子的质量和体积均较大,高能C60离子束轰击固体靶时不能穿透固体,而是停留在表浅的位置,从而将大量的能量施放在固体表面,可以使固体在加速的同时获得巨大的能量,有助于研究高能离子轰击固体靶时产生的物理变化。C60离子轰击实验开创了物理碰撞研究的新领域.另外,C60离子束还有可能在分子束诱发核聚变的研究中得到应用。富勒烯及其衍生物物理性质的应用是多方面的。早在1991年,阿莱芒等人发现C60络合物可以在没有金属存在的情况下表现出铁磁性特征,从而有希望开拓磁性记忆材料的一个新方向。用C60还能在CaAs晶体基质上制成C60-K3C60异质结膜,并可将其用于微电子器件等方面。随着研究的深入,富勒烯独特的物理性质将为其应用开辟一个广阔的领域。 富勒烯电化学C60具有完美对称的足球结构,反应在其电子能级上具有较高的简并度.理论计算表明,C60分子的电子能级简并度最高可达五重。C60的最低未占据分子轨道(LUMO)是三重简并的tlu态,使得C60具有很高的电负性,它能够接受电子而形成带负电子的阴离子。高度结构对称性与分子轨道简并度结合起来,使得C60分子具有非常丰富的氧化还原性质。由于C60分子具有较高的电离势(C60的第一电离能约为),因此一般说来,C60的电化氧化是较为困难的,虽然也有人报道C60和C70的电化学不可逆氧化反应,但更常见的是富勒烯的电化还原.豪夫勒(R. E. Haufler)和斯莫利等首先采用循环伏安特性方法在溶液中产生了离子形式的C60。他们在实验中使用了玻璃状碳钮扣电池,并用铂丝作为反电极。C60进行的这个还原反应是可逆的,显示出使用电化学方法生产稳定的“富勒烯化合物(fulleride)”盐的可能性。这可能导致新材料的发现,并可能制成一类新的可充电电池。C70和C60的电化学行为几乎是相同的,在合适的溶剂中C60能够被还原成六价离子,与理论预测的C60能接受6个电子于很困难的匀质大块化合物的还原中。巴德(A. J. Bard)等首先进行了铂电极上C60膜的电化学研究,这种膜的电化学性质是较为复杂的,并具有不可逆性。查伯(Y. Chabre)等人采用全固态电化学电池和聚合物电解质成功地将锂掺入C60中,实验确定在连续加入电子过程中LixC60中的x值为0,5,2,3,4和12,最后的Li∶C的比例达到相当于Li12C60即LiC5,这是Li嵌入石墨化合物中的饱和值。查伯等还研究了固态C60电极上钠的电化学嵌入过程.C60的固态电化学研究为生产掺杂富勒烯化合物提供了新的途径。C60还容易发生电化学加氢反应.C60电极能够通过氢而发生电化学充电反应,而生成的C60Hx可以以很高的效率放电。富勒烯的伯奇(Birch)还原反应和催化氢化反应得到的产物很多,有C60H18、C60H36、C60H56及完全氢化的C60H60等,还有C70的加氢产物C70H46.富勒烯加氢化合物非常稳定,具有广阔的应用前景.利用它们能够安全地大量收集和储存氢的性质,作为储存氢气的材料,这可以应用在氢的纯化、吸收、氢燃烧发动机以及氢—空气燃料电池中。富勒烯对氢气的存储和释放为研究氢的压缩、纯化、热泵以及制冷的新方法打开了大门。加氢富勒烯是一种碳氢化合物,可作为洁净的燃烧迅速的燃料,有望作为火箭推进剂而用于航空航天领域。另外,利用加氢富勒烯储氢引起的化学及热力学性质,制成可充电电池,用来替代镍-镉(Ni-Cd)电池中的镉电极,也可用来替代镍-金属氢化物电池中的金属氢化物以储存电能。完全氢化的富勒烯能最大限度地存储能量。从实验结果看,一类新的无毒、轻便、高效的富勒烯氢化物电池将很快问世。催化剂催化剂有着广泛的应用,如石油精炼和化学过程等方面。富勒烯可以作为一类新的催化剂材料的基础。斯莫利提出可以在富勒烯分子的中心空隙加入一些已知具有催化性能的金属原子,如铂(pt)、钯(pd)等,制成一类新的催化剂,在这种催化剂中,催化性原子被碳笼保护起来。1992年,日本的研究人员用C60制成了一类含钯的高催化性能复合物,这是在室温下用C60的苯溶液与钯的络合物混合制成的,每个C60分子与6个钯原子配位。这是第一个发现的在分子水平上具有规则形状的催化剂载体,并且已发现它能在正常温度和压强下催化二苯乙炔的加氢反应;这也是第一个发现的由一种材料的数个原子组成的团簇催化化学反应,因为催化剂通常只在很大质量下才起作用。富勒烯还可以作为催化剂载体而与其他催化剂结合,催化其他的反应。假如其他类似以富勒烯为基础的催化剂也具有如此之高的催化活性,那么这些基于富勒烯的催化剂将在那些既需要高效率又要低质量或小体积的方面得到应用。抗癌药物美国亚特兰大埃莫里(Emory)大学医学院的病毒药物学家斯辛纳齐(R. F. Schinazi)和他的同事们发现,巴基球对一种关键性的HIV病毒酶有杀伤作用,而不伤害宿生细胞。HIV蛋白酶是一种导致艾滋病的病毒,巴基球能够抑制HIV的生长,使其对人类细胞失去感染作用。科学家认为,巴基球虽然不能用来治疗艾滋病,但它可能具有药用价值。这种富勒烯能够消除HIV病毒,阻止HIV蛋白酶的作用而不损害被感染的细胞本身,它在人类被HIV感染的三种免疫细胞中具有抗病毒能力,而且还对这种病毒的反向转录酶起作用,因此能够抑制HIV对细胞的感染。虽然巴基球还不能作为一种有用的药物,但这将是巴基球在生物学上的首次应用;而且科学家认为,富勒烯将为研究抗癌药物提供潜在而有趣的线索。富勒烯具有十分丰富的化学内涵,富勒烯及其衍生物在化学方面的应用是十分广阔的。除作为催化剂载体、制成高能电池及抑制病毒外,还可以利用富勒烯能有选择性地吸收某些种类气体的性质,将其在工业上用作气体杂质的去除剂,此外还可以作为有机溶剂以及在医学上作为影像剂,这方面的前景是广阔的。 非线性光学器件实验和理论研究表明,C60和C70等富勒烯都是良好的非线性光学材料,C60/C70混合物(C70约占10%)的非线性光学系数约为×10-9esu,C76甚至还具有光偏振性。富勒烯分子中不存在对非线性光学性能有干扰作用的碳—氢键和碳-氧键,与其他非线性光学材料相比,性能更加优越。美国西北大学的研究者们发现C60薄膜具有很高的二阶非线性光学系数,显示出在非线性光学器件方面的应用价值。C60薄膜具有很高的光学效率,这一性质使得C60在激光光学通信和光学计算机方面有着重要的潜在应用,并有望在短期内付诸实现。科学家还发现,C60和C70溶液可以作为光学限制器,这种溶液只允许低强度的光通过,当光强增强时,溶液很快变得不透光,其饱和阈值与其他任何已知的光学限制材料相比差不多或更好。英国科学家还报道过,富勒烯被多孔矿物质俘获并经蓝色激光照射后,成为一种光致发光材料,尽管这一工作尚没有在其他实验室内重复出来,但揭示出它可能用来制作能发射任何频率光的激光器,已经发现许多大的富勒烯分子具有手性特征,这种手征性预示着非线性光学响应的可能.生产和分离出大量的大富勒烯分子将在高阶非线性光学效应方面取得突破.预计富勒烯作为一种良好的非线性光学材料可能很快投入应用。光导体光导材料是复印机、传真机和激光打印机的基本部分,旧的光导材料使用硒作为感光剂,较为先进的有机光导聚合物已经代替了硒材料。美国杜邦公司的研究人员发现用1%的C60(可能是C60和C70的混合物)掺杂的PVK聚合物是一类全新的高性能光导体,类似的产品已经应用于静电复印技术中。这种光导材料具有良好的性质,其图象分辨率相当或优于其他材料,而寿命远远高于含硒材料,其性能实际上已经可以与最好的商用光导体相比拟.这使得掺杂富勒烯材料在印刷及光通信等方面将获得巨大的应用。超导材料掺杂C60超导体的发现是超导领域的又一重大成果,这种超导体具有相对较高的临界温度,掺杂C60超导体的临界温度不仅远远高于所有的有机分子超导体,而且也大大高于以前发现的金属和合金超导体,只比炙手可热的氧化物陶瓷超导体低。如果掺杂C60超导体的临界温度尚不能与高温氧化物超导体相比的话,那么这种超导体在其他方面却具有许多更为优越的性质,而这些性质都直接影响到超导体的实际应用.富勒烯超导体最大的优点在于这种化合物容易加工成所需要的各种形状;同时由于它们是三维分子超导体,各向同性,使得电流可以在各个方向均等地流动。我们知道,氧化物陶瓷超导体是一种层状材料,表现为各向异性,在每层平面内和与平面垂直的方向上导电性质不同,同时这种陶瓷材料难于加工成线形或其他所需要的形状,给实际应用造成困难。同时,富勒烯化合物超导体还具有较高的临界磁场和临界电流密度,理论分析和一些实验结果显示,在更大的富勒烯分子掺杂化合物中可能大幅度提高超导临界温度。良好的性质和潜在的高临界温度为富勒烯超导体的应用创造了条件。掺杂富勒烯超导体的可能应用包括磁悬浮列车,基于约瑟夫逊结和更新更快设计原理的高速计算机开关器件、长距离电力输送、超导发动机和发电机、作物理研究的大型磁铁(如超导超级对撞机)、超导计算机的电子屏蔽以及基于超导量子干涉器件(SQUID)的电子设备等方面。掺杂的C60化合物显示超导电性,理论计算已经证明,不掺杂的C60是一种直接能隙半导体,由于C60分子在其格点位置作高速无序自由转动,使C60固体成为继Si,Ge和GaAs之后的又一种新型半导体材料。日本三菱电气公司的研究人员已经用C60制成了一种新型富勒烯半导体。随着研究的深入,富勒烯及其衍生的材料走向应用已指日可待。C60及富勒烯家族的诞生是20世纪80年代的重大发现之一,具有重要意义的是,这些神奇的全碳分子及其衍生的物质显示新颖奇特的物理化学性质,它们首先是作为一种可实用化的新材料而出现的。 由于富勒烯能够亲和自由基,具有极强的抗氧化能力,能够起到活化皮肤细胞,预防肌肤衰亡的作用。关于富勒烯在清除自由基方面的功效目前已有近3万篇论文被发表,近3千个专利获得了认可。正因如此,21世纪以来富勒烯开始被用作化妆品原料,具有抗皱、美白、预防衰老的卓越价值,成为备受瞩目的尖端美容成分。许多高端护肤品品牌含有富勒烯成分。 主条目:有机太阳能电池自1995年俞刚博士将富勒烯的衍生物PCBM([6,6]-phenyl-c61-butyric acid methyl ester,简称PC61BM或PCBM)用于本体异质结有机太阳能电池以来,有机太阳能电池得到了长足的发展,其中有三家公司已经将掺杂PCBM的有机太阳能电池商用,迄今大部分有机太阳能电池以富勒烯做为电子受体材料。

富勒烯毕业论文

ML28-1 杯芳烃化合物的合成及其在氟化反应中的相转移催化作用ML28-2 高效液相色谱分离硝基甲苯同分异构体ML28-3 甲烷部分氧化反应的密度泛函研究ML28-4 硝基吡啶衍生物的结构及其光化学的研究ML28-5 酰胺衍生的P,O配体参与的Suzuki偶联反应及其在有机合成中的应用ML28-6 磺酰亚胺的新型加成反应的研究ML28-7 纯水相Reformatsky反应的研究ML28-8 一个合成邻位氨基醇化合物的绿色新反应ML28-9 恶二唑类双偶氮化合物的合成与光电性能研究ML28-10 CO气相催化偶联制草酸二乙酯的宏观动力学研究ML28-11 三芳胺类空穴传输材料及其中间体的合成研究ML28-12 光敏磷脂探针的合成、表征和光化学性质研究ML28-13 脱氢丙氨酸衍生物的合成及其Michael加成反应研究ML28-14 5-(4-硝基苯基)-10,15,20-三苯基卟啉的亲核反应研究ML28-15 醇烯法合成异丙醚的研究ML28-16 手性螺硼酸酯催化的前手性亚胺的不对称硼烷还原反应研究ML28-17 甾类及相关化合物的结构与生物活性关系研究ML28-18 金属酞菁衍生物的合成与其非线性光学性能的研究ML28-19 新型手性氨基烷基酚的合成及其不对称诱导ML28-20 水滑石类化合物催化尿素醇解法合成有机碳酸酯研究ML28-21 膜催化氧化正丁烷制顺酐ML28-22 甲醇选择性催化氧化制早酸甲酯催化剂的研制与反应机理研究ML28-23 甲酸甲酯水解制甲酸及其动力学的研究ML28-24 催化甲苯与甲醇侧链烷基化反应制取苯乙烯和乙苯的研究ML28-25 烯胺与芳基重氮乙酸酯的新反应研究 ML28-26 核酸、蛋白质相互作用研究及毛细管电泳电化学发光的应用ML28-27 H-磷酸酯在合成苄基膦酸和肽衍生物中的应用ML28-28 微波辐射下三价锰离子促进的2-取代苯并噻唑的合成研究ML28-29 铜酞菁—苝二酰亚胺分子体系的光电转换特性研究ML28-30 新型膦配体的合成及烯烃氢甲酰化反应研究ML28-31 肼与羰基化合物的反应及其机理研究ML28-32 离子液体条件下杂环化合物的合成研究ML28-33 超声波辐射、离子液体以及无溶剂合成技术在有机化学反应中的应用研究ML28-34 有机含氮小分子催化剂的设计、合成及在不对称反应中的应用ML28-35 金属参与的不对称有机化学反应研究ML28-36 黄酮及噻唑类衍生物的合成研究ML28-37 钐试剂产生卡宾的新方法及其在有机合成中的应用ML28-38 琥珀酸酯类内给电子体化合物的合成与性能研究ML28-39 3-甲基-4-芳基-5-(2-吡啶基)-1,2,4-三唑铜(II)配合物的合成、晶体结构及表征ML28-40 直接法合成二甲基二氯硅烷的实验研究ML28-41 中性条件下傅氏烷基化反应的初步探索IIβ-溴代醚新合成方法的初步探索ML28-42 几种氧化苦参jian类似物的合成ML28-43 环丙烷和环丙烯类化合物的合成研究ML28-44 基于甜菜碱的超分子设计与研究ML28-45 新型C2轴对称缩醛化合物合成研究ML28-46 环状酰亚胺光化学性质研究及消毒剂溴氯甘脲的制备ML28-47 蛋白质吸附的分子动力学模拟ML28-48 富硫功能化合物的分子设计与合成ML28-49 ABEEM-σπ模型在Diels-Alder反应中的应用ML28-50 快速确定丙氨酸-α-多肽构象稳定性的新方法ML28-51 SmI2催化合成含氮杂环化合物的研究及负载化稀土催化剂的探索ML28-52 新型金属卟啉化合物的合成及用作NO供体研究ML28-53 磁性微球载体的合成及其对酶的固定化研究ML28-54 甾体—核苷缀合物的合成及其性质研究ML28-55 非键作用和库仑模型预测甘氨酸-α-多肽构象稳定性ML28-56 多酸基有机-无机杂化材料的合成和结构表征ML28-57 5-芳基-2-呋喃甲醛-N-芳氧乙酰腙类化合物的合成、表征及生物活性研究ML28-58 氟喹诺酮类化合物的合成、表征及其生物活性研究ML28-59 手性有机小分子催化剂催化的Baylis-Hillman反应和直接不对称Aldol反应ML28-60 多核铁配合物通过水解途径识别蛋白质a螺旋ML28-61 一种简洁地获取结构参数的方法及应用ML28-62 水杨酸甲酯与硝酸钇的反应性研究及其应用ML28-63 脯氨酸及其衍生物催化丙酮与醛的不对称直接羟醛缩合反应的量子化学研究ML28-64 新型荧光分子材料的合成及其发光性能研究ML28-65 枸橼酸西地那非中间体1-甲基-3-丙基-4-硝基吡唑-5-羧酸的合成研究ML28-66 具有生物活性的含硅混合二烃基锡化合物的研究ML28-67 直接法合成三乙氧基硅烷的研究ML28-68 具有生物活性的含硅混合三烃基锡化合物的研究ML28-69 过氧钒有机配合物的合成及其对水中有机污染物氧化降解的催化性能研究ML28-70 查耳酮化合物的合成与晶体化学研究ML28-71 二唑衍生物的合成研究ML28-72 2-噻吩甲酸-2,2’-联吡啶二元、三元稀土配合物的合成、表征及光致发光ML28-73 3’,5’-二硫代脱氧核苷的合成及其聚合性质的研究ML28-74 β-烷硫基丁醇和丁硫醇类化合物及其衍生物的合成研究ML28-75 新型功能性单体丙烯酰氧乙基三甲基氯化铵合成与研究ML28-76 5-取代吲哚衍生物结构和性能的量子化学研究ML28-77 新型水溶性手性胺膦配体的合成和在芳香酮不对称转移氢化中的应用ML28-78 大豆分离蛋白的接枝改性及其溶液行为研究ML28-79 N-(4-乙烯基苄基)-1-氮杂苯并-34-冠-11的合成和其自由基聚合反应的研究ML28-80 稀土固体超强酸催化合成酰基二茂铁ML28-81 硒(硫)杂环化合物与金属离子的合成与表征ML28-82 新型二阶非线性光学发色团分子的设计、合成与性能研究ML28-83 对△~4-烯-3-酮结构的甾体选择性脱氢生成△~(4,6)-二烯-3-酮结构的研究ML28-84 对苯基苯甲酸稀土二元、三元配合物的合成、表征及荧光性能研究ML28-85 D-π-A共轭结构有机分子的设计合成及理论研究ML28-86 羧酸酯一步法嵌入式烷氧基化反应研究ML28-87 分子内电荷转移化合物溶液及超微粒分散体系的光学性质研究ML28-88 手性氨基烷基酚的合成ML28-89 酪氨酸酶的模拟及酚的选择性邻羟化反应研究ML28-90 单分子膜自组装结构与性质的研究ML28-91 氯苯三价阳离子离解势能面的理论研究ML28-92 香豆素类化合物的合成与晶体化学研究ML28-93 离子液体的合成及离子液体中的不对称直接羟醛缩合反应研究ML28-94 五元含氮杂环化合物的合成研究ML28-95 ONOO~-对胰岛素的硝化和一些因素对硝化影响的体外研究ML28-96 酶解多肽一级序列分析与反应过程建模及结构变化初探ML28-97 一系列二茂铁二取代物的合成和表征ML28-98 N2O4-N2O5-HNO3分析和相平衡及硝化环氧丙烷研究ML28-99 光催化甲烷和二氧化碳直接合成乙酸的研究ML28-100 N-取代-4-哌啶酮衍生物的合成研究ML28-101 电子自旋标记方法对天青蛋白特征分析ML28-102 材料中蛋白质含量测定及蛋白质模体分析ML28-103 具有不同取代基的偶氮芳烃化合物的合成及其性能研究ML28-104 非光气法合成六亚甲基二异氰酸酯(HDI)ML28-105 邻苯二甲酸的溶解度测定及其神经网络模拟ML28-106 甲壳多糖衍生物的合成及其应用研究ML28-107 吲哚类化合物色谱容量因子构致关系ab initio方法研究ML28-108 全氯代富勒烯碎片的亲核取代反应初探ML28-109 自催化重组藻胆蛋白结构与功能的关系ML28-110 二茂铁衍生的硫膦配体的合成及在喹啉不对称氢化中的应用ML28-111 离子交换电色谱纯化蛋白质的研究ML28-112 氨基酸五配位磷化合物的合成、反应机理及其性质研究ML28-113 手性二茂铁配体的合成及其在碳—碳键形成反应中的应用研究ML28-114 水溶性氨基卟啉和磺酸卟啉的合成研究ML28-115 金属卟啉催化空气氧化对二甲苯制备对甲基苯甲酸和对苯二甲酸ML28-116 简单金属卟啉催化空气氧化环己烷和环己酮制备己二酸的选择性研究ML28-117 四苯基卟啉锌掺杂8-羟基喹啉铝与四苯基联苯二胺的电致发光性能研究ML28-118 可降解聚乳酸/羟基磷灰石有机无机杂化材料的制备及性能研究ML28-119 大豆分离蛋白接枝改性及应用研究ML28-120 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-121 常压非热平衡等离子体用于甲烷转化的研究ML28-122 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-123 蛋白质在晶体界面上吸附的分子动力学模拟ML28-124 微乳条件下氨肟化反应的探索性研究ML28-125 微波辅助串联Wittig和Diels-Alder反应的研究ML28-126 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-127 3-乙基-4-苯基-5-(2-吡啶基)-1,2,4-三唑配合物的合成、晶体结构及表征ML28-128 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-129 具有生物活性的1,2,4-恶二唑类衍生物的合成研究ML28-130 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-131 PhSeCF2TMS的合成及转化ML28-132 离子液体中脂肪酶催化(±)-薄荷醇拆分的研究ML28-133 脂肪胺取代蒽醌衍生物及其前体化合物合成ML28-134 萘酰亚胺类一氧化氮荧光探针的设计、合成及光谱研究ML28-135 微波条件下哌啶催化合成取代的2-氨基-2-苯并吡喃的研究ML28-136 镍催化的有机硼酸与α,β-不饱和羰基化合物的共轭加成反应研究ML28-137 茚满二酮类光致变色化合物的制备与表征ML28-138 新型手性螺环缩醛(酮)化合物的合成ML28-139 芳醛的合成及凝胶因子的设计及合成ML28-140 固定化酶柱与固定化菌体柱耦联—高效拆分乙酰-DL-蛋氨酸ML28-141 苯酚和草酸二甲酯酯交换反应产品的减压歧化反应研究ML28-142 有机物临界性质的定量构性研究ML28-143 3-噻吩丙二酸的合成及卤代芳烃亲核取代反应ML28-144 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-145 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-146 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-147 功能性离子液的合成及在有机反应中的应用ML28-148 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-149 气相色谱研究β-二酮酯化合物的互变异构ML28-150 二元烃的混合物过热极限的测定与研究ML28-151 芳杂环取代咪唑化合物的合成及洛汾碱类过氧化物化学发光性能测定ML28-152 卤代苯基取代的咪唑衍生物的合成及其荧光性能的研究ML28-153 取代并四苯衍生物的合成及其应用ML28-154 苯乙炔基取代的杂环及稠环化合物的合成ML28-155 吸收光谱在有机发光材料研发材料中的应用ML28-156 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-157 苯并噻吩-3-甲醛的合成研究ML28-158 微波辅助串联Wittig和Diels-Alder反应的研究ML28-159 超声辐射下过渡金属参与的药物合成反应研究ML28-160 呋喃酮关键中间体—3,4-二羟基-2,5-己二酮的合成研究ML28-161 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-162 吡咯双希夫碱及其配合物的制备与表征ML28-163 负载型Lewis酸催化剂的制备及催化合成2,6-二甲基萘的研究ML28-164 PhSeCF2TMS的合成及转化ML28-165 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-166 多取代β-CD衍生物的合成及其对苯环类客体分子识别ML28-167 多取代_CD衍生物的合成及其对苯环类客体分子识别ML28-168 柿子皮中类胡萝卜素化合物的分离鉴定及稳定性研究ML28-169 毛细管电泳研究致癌物3-氯-1,2-丙二醇ML28-170 超临界水氧化苯酚体系的分子动力学模拟ML28-171 甲烷和丙烷无氧芳构化反应研究ML28-172 2-取代咪唑配合物的合成、晶体结构及表征ML28-173 气相色谱研究β-二酮酯化合物的互变异构ML28-174 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-175 二元烃的混合物过热极限的测定与研究ML28-176 氨基酸在多羟基化合物溶液中的热力学研究ML28-177 分子印迹膜分离水溶液中苯丙氨酸异构体研究ML28-178 杯[4]芳烃酯的合成及中性条件下对醇的酯化反应研究ML28-179 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-180 双氨基甲酸酯化合物的合成及分子自组装研究ML28-181 由芳基甲基酮合成对应的半缩水合物的新方法ML28-182 取代芳烃的选择性卤代反应研究ML28-183 吡啶脲基化合物的合成、分子识别及配位化学研究ML28-184 丙烯(氨)氧化原位漫反射红外光谱研究ML28-185 嘧啶苄胺二苯醚类先导结构的发现和氢化铝锂驱动下邻位嘧啶参与的苯甲酰胺还原重排反应的机理研究ML28-186 酰化酶催化的Markovnikov加成与氮杂环衍生物的合成ML28-187 多组分反应合成嗪及噻嗪类化合物的研究ML28-188 脂肪酶构象刻录及催化能力考察ML28-189 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-190 烯基铟化合物与高碘盐偶联反应的研究及其在有机合成中的应用ML28-191 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-192 邻甲苯胺的电子转移机理及组分协同效应研究ML28-193 负载型非晶态Ni-B及Ni-B-Mo合金催化剂催化糠醛液相加氢制糠醇的研究ML28-194 含吡啶环套索冠醚及配合物的合成与性能研究ML28-195 芳烃侧链分子氧选择性氧化反应研究ML28-196 多组分复合氧化物对异丁烯制甲基丙烯醛氧化反应的催化性能研究ML28-197 多孔甲酸盐[M3(HCOO)6]及其客体包合物的合成、结构和性质ML28-198 纳米修饰电极的制备及其应用于蛋白质电化学的研究ML28-199 对于几种蛋白质模型分子的焓相互作用的研究ML28-200 氨基酸、酰胺、多羟基醇化合物相互作用的热力学研究......

富勒烯是美容产品中常用的化学品,对皮肤没有直接影响。富勒烯是从矿物中提取的简单化学品,用于市场上的一些美容和皮肤护理产品。目前还没有关于其对皮肤直接影响的明确研究。有必要注意自己皮肤的敏感性。对于敏感皮肤,建议选择简单和温和的化妆品。

如果想改善皮肤,需要注意日常保湿、防晒,多吃富含维生素C的食物。还应按时休息,不要熬夜,可适当运动,增强身体免疫力。富勒烯对皮肤有很多好处,保护细胞,有很好的抗氧化作用,有抗病毒活性,对自由基有很好的亲和力。如果想让皮肤更好,可以在饮食中多吃富含维生素C的食物,外出时做好防晒工作,避免紫外线的长期照射。富勒烯刚在日本问世时,首先得到了皮肤科医生和女演员的信任。因为日本科学家发现,富勒烯独特的C60分子结构,能迅速捕捉自由基,并具有亲和力--吸附--清除自由基,激活皮肤细胞,防止衰老。自21世纪富勒烯被用作护肤品成分以来,由于其抗皱、美白、抗衰老的卓越价值,迅速成为一种前沿的美容成分。

关于富勒烯清除自由基的功效,已经有3万多篇论文发表,近3000项专利得到认可,富勒烯被称为护肤品行业的 "抗衰老之王"。富勒烯比著名的抗氧化剂维生素C持续时间更长、更稳定。

小编针对问题做得详细解小编针对问题做得详细解读,希望对大家有所帮助,如果还有什么问题可以在评论区给我留言,大家可以多多和我评论,如果哪里有不对的地方,大家也可以多多和我互动交流,如果大家喜欢作者,大家也可以关注我哦,的点赞是对我最大的帮助,谢谢大家了。

在美容护肤方面,富勒烯作用非常大!主要是通过吸收人体内的自由基,起到抗衰抗氧化的作用。机体代谢,紫外线等因素使人体产生自由基,自由基会抢夺正常细胞中的电子,使正常细胞病变、死亡。富勒烯进入人体内像海绵一样吸附自由基,当吸附的自由基为偶数时,自由基会两两结合淬灭,随汗液体液等排出体外,进而提高皮肤中胶原蛋白质,水分的含量,达到抗衰老,抗氧化,细化皱纹,祛痘,美白,抗紫外线等效果。

有着保养皮肤的作用,也可以美白皮肤,有利于保证皮肤的光泽度,有着抗氧化的作用,还可以解决皮肤各方面的问题。

乙烯的研究进展论文题目

关键词:超高分子 量聚乙烯 工程塑料1 引言UHMWPE是一种线型结构的具有优异综合性能的热塑性工程塑料。世界上最早由美国Allied Chemical公司于1957年实现工业化,此后德国Hoechst公司、美国Hercules公司、日本三井石油化学公司等也投入工业化生产。我国上海高桥化工厂于1964年最早研制成功并投入工业生产,70年代后期又有广州塑料厂和北京助剂二厂投入生产。限于当时条件,产物分子量约150万左右,随着工艺技术的进步,目前北京助剂二厂的产品分子量可达100万~300万以上。UHMWPE的发展十分迅速,80年代以前,世界平均年增长率为,进入80年代以后,增长率高达15%~20%。而我国的平均年增长率在30%以上。1978年世界消耗量为12,000~12,500吨,而到1990年世界需求量约5万吨,其中美国占70%。UHMWPE平均分子量约35万~800万,因分子量高而具有其它塑料无可比拟的优异的耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能。而且,UHMWPE耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。UHMWPE优异的物理机械性能使它广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。另外,由于UHMWPE优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节等在临床医学上使用。2 UHMWPE的成型加工由于UHMWPE熔融状态的粘度高达108Pa*s,流动性极差,其熔体指数几乎为零,所以很难用一般的机械加工方法进行加工。近年来,UHMWPE的加工技术得到了迅速发展,通过对普通加工设备的改造,已使UHMWPE由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其它特殊方法的成型。 一般加工技术(1)压制烧结压制烧结是UHMWPE最原始的加工方法。此法生产效率颇低,易发生氧化和降解。为了提高生产效率,可采用直接电加热法〔1〕;另外,Werner和Pfleiderer公司开发了一种超高速熔结加工法〔2〕,采用叶片式混合机,叶片旋转的最大速度可达150m/s,使物料仅在几秒内就可升至加工温度。(2)挤出成型挤出成型设备主要有柱塞挤出机、单螺杆挤出机和双螺杆挤出机。双螺杆挤出多采用同向旋转双螺杆挤出机。60年代大都采用柱塞式挤出机,70年代中期,日、美、西德等先后开发了单螺杆挤出工艺。日本三井石油化学公司最早于1974年取得了圆棒挤出技术的成功。北京化工大学于1994年底研制出Φ45型UHMWPE专用单螺杆挤出机,并于1997年取得了Φ65型单螺杆挤出管材工业化生产线的成功。(3)注塑成型日本三井石油化工公司于1974年开发了注塑成型工艺,并于1976年实现了商业化,之后又开发了往复式螺杆注塑成型技术。1985年美国Hoechst公司也实现了UHMWPE的螺杆注塑成型工艺。北京塑料研究所1983年对国产XS-ZY-125A型注射机进行了改造,成功地注射出啤酒罐装生产线用UHMWPE托轮、水泵用轴套,1985年又成功地注射出医用人工关节等。(4)吹塑成型UHMWPE加工时,当物料从口模挤出后,因弹性恢复而产生一定的回缩,并且几乎不发生下垂现象,故为中空容器,特别是大型容器,如油箱、大桶的吹塑创造了有利的条件。UHMWPE吹塑成型还可导致纵横方向强度均衡的高性能薄膜,从而解决了HDPE薄膜长期以来存在的纵横方向强度不一致,容易造成纵向破坏的问题。 特殊加工技术 冻胶纺丝以冻胶纺丝—超拉伸技术制备高强度、高模量聚乙烯纤维是70年代末出现的一种新颖纺丝方法。荷兰DSM公司最早于1979年申请专利,随后美国Allied公司、日本与荷兰联合建立的Toyobo-DSM公司、日本Mitsui公司都实现了工业化生产。中国纺织大学化纤所从1985年开始该项目的研究,逐步形成了自己的技术,制得了高性能的UHMWPE纤维〔3〕。UHMWPE冻胶纺丝过程简述如下:溶解UHMWPE于适当的溶剂中,制成半稀溶液,经喷丝孔挤出,然后以空气或水骤冷纺丝溶液,将其凝固成冻胶原丝。在冻胶原丝中,几乎所有的溶剂被包含其中,因此UHMWPE大分子链的解缠状态被很好地保持下来,而且溶液温度的下降,导致冻胶体中UHMWPE折叠链片晶的形成。这样,通过超倍热拉伸冻胶原丝可使大分子链充分取向和高度结晶,进而使呈折叠链的大分子转变为伸直链,从而制得高强度、高模量纤维。UHMWPE纤维是当今世界上第三代特种纤维,强度高达,比强度是化纤中最高的,又具有较好的耐磨、耐冲击、耐腐蚀、耐光等优良性能。它可直接制成绳索、缆绳、渔网和各种织物:防弹背心和衣服、防切割手套等,其中防弹衣的防弹效果优于芳纶。国际上已将UHMWPE纤维织成不同纤度的绳索,取代了传统的钢缆绳和合成纤维绳等。UHMWPE纤维的复合材料在军事上已用作装甲兵器的壳体、雷达的防护外壳罩、头盔等;体育用品上已制成弓弦、雪橇和滑水板等。 润滑挤出(注射)润滑挤出(注射)成型技术是在挤出(注射)物料与模壁之间形成一层润滑层,从而降低物料各点间的剪切速率差异,减小产品的变形,同时能够实现在低温、低能耗条件下提高高粘度聚合物的挤出(注射)速度。产生润滑层的方法主要有两种:自润滑和共润滑。(1)自润滑挤出(注射)UHMWPE的自润滑挤出(注射)是在其中添加适量的外部润滑剂,以降低聚合物分子与金属模壁间的摩擦与剪切,提高物料流动的均匀性及脱模效果和挤出质量。外部润滑剂主要有高级脂肪酸、复合脂、有机硅树脂、石腊及其它低分子量树脂等。挤出(注射)加工前,首先将润滑剂同其它加工助剂一起混入物料中,生产时,物料中的润滑剂渗出,形成润滑层,实现自润滑挤出(注射)。有专利报道〔4〕:将70份石蜡油、30份UHMWPE和1份氧相二氧化硅(高度分散的硅胶)混合造粒,在190℃的温度下就可实现顺利挤出(注射)。(2)共润滑挤出(注射)UHMWPE的共润滑挤出(注射)有两种情况,一是采用缝隙法〔5、6〕将润滑剂压入到模具中,使其在模腔内表面和熔融物料间形成润滑层;二是与低粘度树脂共混,使其作为产物的一部分(详见)。如:生产UHMWPE薄板时,由定量泵向模腔内输送SH200有机硅油作润滑剂,所得产品外观质量有明显提高,特别是由于挤出变形小,增加了拉伸强度。 辊压成型〔1〕辊压成型是一种固态加工方法,即在UHMWPE的熔点以下对其施加一很大的压力,通过粒子形变,有效地将粒子与粒子融合。主要设备是一带有螺槽的旋转轮和一带有舌槽的弓形滑块,舌槽与螺槽垂直。在加工过程中有效地利用了物料与器壁之间的摩擦力,产生的压力足够使UHMWPE粒子发生形变。在机座末端装有加热支台,经过模口挤出物料。如将此项辊压装置与挤压机联用,可使加工过程连续化。 热处理后压制成型〔8〕把UHMWPE树脂粉末在140℃~275℃之间进行1min~30min的短期加热,发现UHMWPE的某些物理性能出人意料地大大改善。用热处理过的UHMWPE粉料压制出的制品和未热处理过的UHMPWE制品相比较,前者具有更好的物理性能和透明性,制品表面的光滑程度和低温机械性能大大提高了。 射频加工〔9〕采用射频加工UHMWPE是一种崭新的加工方法,它是将UHMWPE粉末和介电损耗高的炭黑粉末均匀混合在一起,用射频辐照,产生的热可使UHMWPE粉末表面发生软化,从而使其能在一定压力下固结。用这种方法可在数分钟内模压出很厚的大型部件,其加工效率比目前UHMWPE常规模压加工高许多倍。 凝胶挤出法制备多孔膜〔10〕将UHMWPE溶解在挥发溶剂中,连续挤出,然后经一个热可逆凝胶/结晶过程,使其成为一种湿润的凝胶膜,蒸除溶剂使膜干燥。由于已形成的骨架结构限制了凝胶的收缩,在干燥过程中产生微孔,经双轴拉伸达到最大空隙率而不破坏完整的多孔结构。这种材料可用作防水、通氧织物和耐化学品服装,也可用作超滤/微量过滤膜、复合薄膜和蓄电池隔板等。与其它方法相比,由此法制备的多孔UHMWPE膜具有最佳的孔径、强度和厚度等综合性能。3 UHMWPE的改性 物理机械性能的改进与其它工程塑料相比,UHMWPE具有表面硬度和热变形温度低、弯曲强度以及蠕变性能较差等缺点。这是由于UHMWPE的分子结构和分子聚集形态造成的,可通过填充和交联的方法加以改善。 填充改性采用玻璃微珠、玻璃纤维、云母、滑石粉、二氧化硅、三氧化二铝、二硫化钼、炭黑等对UHMWPE进行填充改性,可使表面硬度、刚度、蠕变性、弯曲强度、热变形温度得以较好地改善。用偶联剂处理后,效果更加明显。如填充处理后的玻璃微珠,可使热变形温度提高30℃。玻璃微珠、玻璃纤维、云母、滑石粉等可提高硬度、刚度和耐温性;二硫化钼、硅油和专用蜡可降低摩擦因数,从而进一步提高自润滑性;炭黑或金属粉可提高抗静电性和导电性以及传热性等。但是,填料改性后冲击强度略有下降,若将含量控制在40%以内,UHMWPE仍有相当高的冲击强度。 交联交联是为了改善形态稳定性、耐蠕变性及环境应力开裂性。通过交联,UHMWPE的结晶度下降,被掩盖的韧性复又表现出来。交联可分为化学交联和辐射交联。化学交联是在UHMWPE中加入适当的交联剂后,在熔融过程中发生交联。辐射交联是采用电子射线或γ射线直接对UHMWPE制品进行照射使分子发生交联。UHMWPE的化学交联又分为过氧化物交联和偶联剂交联。(1)过氧化物交联过氧化物交联工艺分为混炼、成型和交联三步。混炼时将UHMWPE与过氧化物熔融共混,UHMWPE在过氧化物作用下产生自由基,自由基偶合而产生交联。这一步要保证温度不要太高,以免树脂完全交联。经过混炼后得到交联度很低的可继续交联型UHMWPE,在比混炼更高的温度下成型为制件,再进行交联处理。UHMWPE经过氧化物交联后在结构上与热塑性塑料、热固性塑料和硫化橡胶都不同,它有体型结构却不是完全交联,因此在性能上兼有三者的特点,即同时具有热可塑性和优良的硬度、韧性以及耐应力开裂等性能。国外曾报道用2,5-二甲基-2,5双过氧化叔丁基己炔-3作交联剂〔11〕,但国内很难找到。清华大学用廉价易得的过氧化二异丙苯(DCP)作为交联剂进行了研究〔12〕,结果发现:DCP用量小于1%时,可使冲击强度比纯UHMWPE提高15%~20%,特别是DCP用量为时,冲击强度可提高48%。随DCP用量的增加,热变形温度提高,可用于水暖系统的耐热管道。(2)偶联剂交联UHMWPE主要使用两种硅烷偶联剂:乙烯基硅氧烷和烯丙基硅氧烷,常用的有乙烯基三甲氧基硅烷和乙烯基三乙氧基硅烷。偶联剂一般要靠过氧化物引发,常用的是DCP,催化剂一般采用有机锡衍生物。硅烷交联UHMWPE的成型过程首先是使过氧化物受热分解为化学活性很高的游离基,这些游离基夺取聚合物分子中的氢原子使聚合物主链变为活性游离基,然后与硅烷产生接枝反应,接枝后的UHMWPE在水及硅醇缩合催化剂的作用下发生水解缩合,形成交联键即得硅烷交联UHMWPE。(3)辐射交联在一定剂量电子射线或γ射线作用下,UHMWPE分子结构中的一部分主链或侧链可能被射线切断,产生一定数量的游离基,这些游离基彼此结合形成交联链,使UHMWPE的线型分子结构转变为网状大分子结构。经一定剂量辐照后,UHMWPE的蠕变性、浸油性和硬度等物理性能得到一定程度的改善。用γ射线对人造UHMWPE关节进行辐射,在消毒的同时使其发生交联,可增强人造关节的硬度和亲水性,并且使耐蠕变性得以提高〔13〕,从而延长其使用寿命。有研究〔14〕表明,将辐照与PTFE接枝相结合,也可改善UHMWPE的磨损和蠕变行为。这种材料具有组织容忍性,适于体内移植。 加工性能的改进UHMWPE树脂的分子链较长,易受剪切力作用发生断裂,或受热发生降解。因此,较低的加工温度,较短的加工时间和降低对它的剪切是非常必要的。为了解决UHMWPE的加工问题,除对普通成型机械进行特殊设计外,还可对树脂配方进行改进:与其它树脂共混或加入流动改性剂,使之能在普通挤出机和注塑机上成型加工,这就是中介绍的润滑挤出(注射)。 共混改性共混法改善UHMWPE的熔体流动性是最有效、最简便和最实用的途径。目前,这方面的技术多见于专利文献。共混所用的第二组份主要是指低熔点、低粘度树脂,有LDPE、HDPE、PP、聚酯等,其中使用较多的是中分子量PE(分子量40万~60万)和低分子量PE(分子量<40万)。当共混体系被加热到熔点以上时,UHMWPE树脂就会悬浮在第二组份树脂的液相中,形成可挤出、可注射的悬浮体物料。(1)与低、中分子量PE共混UHMWPE与分子量低的LDPE(分子量1,000~20,000,以5,000~12,000为最佳)共混可使其成型加工性获得显著改善,但同时会使拉伸强度、挠曲弹性等力学性能有所下降。HDPE也能显著改善UHMWPE的加工流动性,但也会引起冲击强度、耐摩擦等性能的下降。为使UHMWPE共混体系的力学性能维持在一较高水平,一个有效的补偿办法是加入PE成核剂,如苯甲酸、苯甲酸盐、硬脂酸盐、己二酸盐等,可以借PE结晶度的提高,球晶尺寸的微细均化而起到强化作用,从而有效阻止机械性能的下降。有专利〔15〕指出,在UHMWPE/HDPE共混体系中加入很少量的细小的成核剂硅灰石(其粒径尺寸范围5nm~50nm,表面积100m2/g~400m2/g),可很好地补偿机械性能的降低。(2)共混形态UHMWPE的化学结构虽然与其它品种的PE相近,但在一般的熔混设备和条件下,它们的共混物都难以形成均匀的形态,这可能与组份之间粘度相差悬殊有关。采用普通单螺杆混炼得到的UHMWPE/LDPE共混物,两组份各自结晶,不能形成共晶,UHMWPE基本上以填料形式分散于LDPE基体中。熔体长时间处理和使用双辊炼塑机混炼,两组份之间作用有所加强,性能亦有进一步的改善,不过仍不能形成共晶的形态。Vadhar发现〔16〕,当采用两步共混法,即先在高温下将UHMWPE熔融,再降到较低温度下加入LLDPE进行共混,可获得形成共晶的共混物。Vadher用溶液共混法也得到了能形成共晶的UHMWPE/LLDPE共混物。(3)共混物的力学强度对于未加成核剂的UHMWPE/PE体系,其在冷却过程中会形成较大的球晶,球晶之间存在着明显的界面,而在这些界面上存在着由分子链排布不同引起的内应力,由此会导致裂纹的产生,所以与基体聚合物相比,共混物的拉伸强度常常有所下降。当受到外力冲击时裂纹会很快地沿球晶界面发展而导致最后的破碎,因此又引起冲击强度的下降。 流动改进剂改性流动改进剂促进了长链分子的解缠,并在大分子之间起润滑作用,改变了大分子链间的能量传递,从而使得链段位移变得容易,改善了聚合物的流动性。用于UHMWPE的流动改进剂主要是指脂肪族碳氢化合物及其衍生物。其中脂肪族碳氢化合物有:碳原子数在22以上的n-链烷烃及以其作主成分的低级烷烃混合物;石油分裂精制得到的石蜡等。其衍生物是指末端含有脂肪族烃基、内部含有1个或1个以上(最好为1个或2个)羧基、羟基、酯基、羰基、氮基甲酰基、巯基等官能团;碳原子数大于8(最好为12~50)并且分子量为130~2000(以200~800为最佳)的脂肪酸、脂肪醇、脂肪酸酯、脂肪醛、脂肪酮、脂肪族酰胺、脂肪硫醇等。举例来说,脂肪酸有:癸酸、月桂酸、肉豆蔻酸、棕榈酸、硬酯酸、油酸等。北京化工大学制备了一种有效的流动剂(MS2)〔17〕,添加少量(~)就能显著改善UHMWPE的流动性,使其熔点下降达10℃之多,能在普通注塑机上注塑成型,而且拉伸强度仅有少许降低。另外,用苯乙烯及其衍生物改性UHMWPE,除可改善加工性能使制品易于挤出外,还可保持UHMWPE优良的耐摩擦性和耐化学腐蚀性〔18〕;1,1-二苯基乙炔〔19〕、苯乙烯衍生物〔20〕、四氢化萘〔21〕皆可使UHMWPE获得优良的加工性能,同时使材料具有较高的冲击强度和耐磨损性。 液晶高分子原位复合材料液晶高分子原位复合材料是指热致液晶高分子(TLCP)与热塑性树脂的共混物,这种共混物在熔融加工过程中,由于TLCP分子结构的刚直性,在力场作用下可自发地沿流动方向取向,产生明显的剪切变稀行为,并在基体树脂中原位就地形成具有取向结构的增强相,即就地成纤,从而起到增强热塑性树脂和改善加工流动性的作用。清华大学赵安赤等采用原位复合技术,对UHMWPE加工性能的改进取得了明显的效果〔22〕。用TLCP对UHMWPE进行改性,不仅提高了加工时的流动性,采用通常的热塑加工工艺及通用设备就能方便地进行加工,而且可保持较高的拉伸强度和冲击强度,耐磨性也有较大提高。 聚合填充型复合材料高分子合成中的聚合填充工艺是一种新型的聚合方法,它是把填料进行处理,使其粒子表面形成活性中心,在聚合过程中让乙烯、丙烯等烯烃类单体在填料粒子表面聚合,形成紧密包裹粒子的树脂,最后得到具有独特性能的复合材料。它除具有掺混型复合材料性能外,还有自己本身的特性:首先是不必熔融聚乙烯树脂,可保持填料的形状,制备粉状或纤维状的复合材料;其次,该复合材料不受填料/树脂组成比的限制,一般可任意设定填料的含量;另外,所得复合材料是均匀的组合物,不受填料比重、形状的限制。与热熔融共混材料相比,由聚合填充工艺制备的UHMWPE复合材料中,填料粒子分散良好,且粒子与聚合物基体的界面结合也较好。这就使得复合材料的拉伸强度、冲击强度与UHMWPE相差不大,却远远好于共混型材料,尤其是在高填充情况下,对比更加明显,复合材料的硬度、弯曲强度,尤其是弯曲模量比纯UHMWPE提高许多,尤其适用作轴承、轴座等受力零部件。而且复合材料的热力学性能也有较好的改善:维卡软化点提高近30℃,热变形温度提高近20℃,线膨胀系数下降20%以上。因此,此材料可用于温度较高的场合,并适于制造轴承、轴套、齿轮等精密度要求高的机械零件。采用聚合填充技术还可通过向聚合体系中通入氢或其它链转移剂,控制UHMWPE分子量大小,使得树脂易加工〔23〕。美国专利〔24〕用具有酸中性表面的填料:水化氧化铝、二氧化硅、水不溶性硅酸盐、碳酸钙、碱式碳酸铝钠、羟基硅灰石和磷酸钙制成了高模量的均相聚合填充UHMWPE复合材料。另有专利〔25〕指出,在60℃,且有催化剂存在的条件下,使UHMWPE在庚烷中干燥的 氧化铝表面聚合,可得到高模量的均相复合材料。齐鲁石化公司研究院分别用硅藻土、高岭土作为填料合成了UHMWPE复合材料〔26〕。 UHMWPE的自增强〔27、28〕在UHMWPE基体中加入UHMWPE纤维,由于基体和纤维具有相同的化学特征,因此化学相容性好,两组份的界面结合力强,从而可获得机械性能优良的复合材料。UHMWPE纤维的加入可使UHMWPE的拉伸强度和模量、冲击强度、耐蠕变性大大提高。与纯 UHMWPE相比,在UHMWPE中加入体积含量为60%的UHMWPE纤维,可使最大应力和模量分别提高160%和60%。这种自增强的UHMWPE材料尤其适用于生物医学上承重的场合,而用于人造关节的整体替换是近年来才倍受关注的,UHMWPE自增强材料的低体积磨损率可提高人造关节的使用寿命。4 UHMWPE的合金化UHMWPE除可与塑料形成合金来改善其加工性能外(见和),还可获得其它性能。其中,以PP/UHMWPE合金最为突出。通常聚合物的增韧是在树脂中引入柔性链段形成复合物(如橡塑共混物),其增韧机理为“多重银纹化机理”。而在PP/UHMWPE体系,UHMWPE对PP有明显的增韧作用,这是“多重裂纹”理论所无法解释的。国内最早于1993年报道采用UHMWPE增韧PP取得成功,当UHMWPE的含量为15%时,共混物的缺口冲击强度比纯PP提高2倍以上〔29〕。最近又有报道,UHMWPE与含乙烯链段的共聚型PP共混,在UHMWPE的含量为25%时,其冲击强度比PP提高一倍多〔30〕。以上现象的解释是“网络增韧机理”〔31〕。PP/UHMWPE共混体系的亚微观相态为双连续相,UHMWPE分子与长链的PP分子共同构成一种共混网络,其余PP构成一个PP网络,二者交织成为一种“线性互穿网络”。其中共混网络在材料中起到骨架作用,为材料提供机械强度,受到外力冲击时,它会发生较大形变以吸收外界能量,起到增韧的作用;形成的网络越完整,密度越大,则增韧效果越好。为了保证“线性互穿网络”结构的形成,必须使UHMWPE以准分子水平分散在PP基体中,这就对共混方式提出了较高的要求。北京化工大学有研究发现:四螺杆挤出机能将UHMWPE均匀地分散在PP基体中,而双螺杆挤出机的共混效果却不佳。EPDM能对PP/UHMWPE合金起到增容的作用。由于EPDM具备的两种主要链节分别与PP和UHMWPE相同,因而与两种材料都有比较好的亲合力,共混时容易分散在两相界面上。EPDM对复合共晶起到插入、分割和细化的作用,这对提高材料的韧性是有益的,能大幅度地提高缺口冲击强度。另外,UHMWPE也可与橡胶形成合金,获得比纯橡胶优良的机械性能,如耐摩擦性、拉伸强度和断裂伸长率等。其中,橡胶是在混合过程中于UHMWPE的软化点以上进行硫化的。5 UHMWPE的复合化UHMWPE可与各种橡胶(或橡塑合金)硫化复合制成改性PE片材,这些片材可进一步与金属板材制成复合材料。除此之外,UHMWPE还可复合在塑料表面以提高耐冲击性能。在UHMWPE软化点以上的温度条件下,将含有硫化剂的未硫化橡胶片材与UHMWPE片材压制在一起,可制得剥离强度较高的层合制品,与不含硫化剂的情况相比,其剥离强度可提高数十倍。用这种方法同样可使未硫化橡胶与塑料的合金(如EPDM/PA6、EPDM/PP、SBR/PE)和UHMWPE片材牢固地粘接在一起。参考文献:〔1〕 钟玉荣,卢鑫华.塑料〔J〕,1991,20(1):30〔2〕 孙大文.塑料加工应用〔J〕,1983(5):1〔3〕 杨年慈.合成纤维工业〔J〕,1991,14(2):48〔4〕 JP 63,161,075〔P〕〔5〕 .〔J〕,1981,27(1):8

ML28-1 杯芳烃化合物的合成及其在氟化反应中的相转移催化作用ML28-2 高效液相色谱分离硝基甲苯同分异构体ML28-3 甲烷部分氧化反应的密度泛函研究ML28-4 硝基吡啶衍生物的结构及其光化学的研究ML28-5 酰胺衍生的P,O配体参与的Suzuki偶联反应及其在有机合成中的应用ML28-6 磺酰亚胺的新型加成反应的研究ML28-7 纯水相Reformatsky反应的研究ML28-8 一个合成邻位氨基醇化合物的绿色新反应ML28-9 恶二唑类双偶氮化合物的合成与光电性能研究ML28-10 CO气相催化偶联制草酸二乙酯的宏观动力学研究ML28-11 三芳胺类空穴传输材料及其中间体的合成研究ML28-12 光敏磷脂探针的合成、表征和光化学性质研究ML28-13 脱氢丙氨酸衍生物的合成及其Michael加成反应研究ML28-14 5-(4-硝基苯基)-10,15,20-三苯基卟啉的亲核反应研究ML28-15 醇烯法合成异丙醚的研究ML28-16 手性螺硼酸酯催化的前手性亚胺的不对称硼烷还原反应研究ML28-17 甾类及相关化合物的结构与生物活性关系研究ML28-18 金属酞菁衍生物的合成与其非线性光学性能的研究ML28-19 新型手性氨基烷基酚的合成及其不对称诱导ML28-20 水滑石类化合物催化尿素醇解法合成有机碳酸酯研究ML28-21 膜催化氧化正丁烷制顺酐ML28-22 甲醇选择性催化氧化制早酸甲酯催化剂的研制与反应机理研究ML28-23 甲酸甲酯水解制甲酸及其动力学的研究ML28-24 催化甲苯与甲醇侧链烷基化反应制取苯乙烯和乙苯的研究ML28-25 烯胺与芳基重氮乙酸酯的新反应研究 ML28-26 核酸、蛋白质相互作用研究及毛细管电泳电化学发光的应用ML28-27 H-磷酸酯在合成苄基膦酸和肽衍生物中的应用ML28-28 微波辐射下三价锰离子促进的2-取代苯并噻唑的合成研究ML28-29 铜酞菁—苝二酰亚胺分子体系的光电转换特性研究ML28-30 新型膦配体的合成及烯烃氢甲酰化反应研究ML28-31 肼与羰基化合物的反应及其机理研究ML28-32 离子液体条件下杂环化合物的合成研究ML28-33 超声波辐射、离子液体以及无溶剂合成技术在有机化学反应中的应用研究ML28-34 有机含氮小分子催化剂的设计、合成及在不对称反应中的应用ML28-35 金属参与的不对称有机化学反应研究ML28-36 黄酮及噻唑类衍生物的合成研究ML28-37 钐试剂产生卡宾的新方法及其在有机合成中的应用ML28-38 琥珀酸酯类内给电子体化合物的合成与性能研究ML28-39 3-甲基-4-芳基-5-(2-吡啶基)-1,2,4-三唑铜(II)配合物的合成、晶体结构及表征ML28-40 直接法合成二甲基二氯硅烷的实验研究ML28-41 中性条件下傅氏烷基化反应的初步探索IIβ-溴代醚新合成方法的初步探索ML28-42 几种氧化苦参jian类似物的合成ML28-43 环丙烷和环丙烯类化合物的合成研究ML28-44 基于甜菜碱的超分子设计与研究ML28-45 新型C2轴对称缩醛化合物合成研究ML28-46 环状酰亚胺光化学性质研究及消毒剂溴氯甘脲的制备ML28-47 蛋白质吸附的分子动力学模拟ML28-48 富硫功能化合物的分子设计与合成ML28-49 ABEEM-σπ模型在Diels-Alder反应中的应用ML28-50 快速确定丙氨酸-α-多肽构象稳定性的新方法ML28-51 SmI2催化合成含氮杂环化合物的研究及负载化稀土催化剂的探索ML28-52 新型金属卟啉化合物的合成及用作NO供体研究ML28-53 磁性微球载体的合成及其对酶的固定化研究ML28-54 甾体—核苷缀合物的合成及其性质研究ML28-55 非键作用和库仑模型预测甘氨酸-α-多肽构象稳定性ML28-56 多酸基有机-无机杂化材料的合成和结构表征ML28-57 5-芳基-2-呋喃甲醛-N-芳氧乙酰腙类化合物的合成、表征及生物活性研究ML28-58 氟喹诺酮类化合物的合成、表征及其生物活性研究ML28-59 手性有机小分子催化剂催化的Baylis-Hillman反应和直接不对称Aldol反应ML28-60 多核铁配合物通过水解途径识别蛋白质a螺旋ML28-61 一种简洁地获取结构参数的方法及应用ML28-62 水杨酸甲酯与硝酸钇的反应性研究及其应用ML28-63 脯氨酸及其衍生物催化丙酮与醛的不对称直接羟醛缩合反应的量子化学研究ML28-64 新型荧光分子材料的合成及其发光性能研究ML28-65 枸橼酸西地那非中间体1-甲基-3-丙基-4-硝基吡唑-5-羧酸的合成研究ML28-66 具有生物活性的含硅混合二烃基锡化合物的研究ML28-67 直接法合成三乙氧基硅烷的研究ML28-68 具有生物活性的含硅混合三烃基锡化合物的研究ML28-69 过氧钒有机配合物的合成及其对水中有机污染物氧化降解的催化性能研究ML28-70 查耳酮化合物的合成与晶体化学研究ML28-71 二唑衍生物的合成研究ML28-72 2-噻吩甲酸-2,2’-联吡啶二元、三元稀土配合物的合成、表征及光致发光ML28-73 3’,5’-二硫代脱氧核苷的合成及其聚合性质的研究ML28-74 β-烷硫基丁醇和丁硫醇类化合物及其衍生物的合成研究ML28-75 新型功能性单体丙烯酰氧乙基三甲基氯化铵合成与研究ML28-76 5-取代吲哚衍生物结构和性能的量子化学研究ML28-77 新型水溶性手性胺膦配体的合成和在芳香酮不对称转移氢化中的应用ML28-78 大豆分离蛋白的接枝改性及其溶液行为研究ML28-79 N-(4-乙烯基苄基)-1-氮杂苯并-34-冠-11的合成和其自由基聚合反应的研究ML28-80 稀土固体超强酸催化合成酰基二茂铁ML28-81 硒(硫)杂环化合物与金属离子的合成与表征ML28-82 新型二阶非线性光学发色团分子的设计、合成与性能研究ML28-83 对△~4-烯-3-酮结构的甾体选择性脱氢生成△~(4,6)-二烯-3-酮结构的研究ML28-84 对苯基苯甲酸稀土二元、三元配合物的合成、表征及荧光性能研究ML28-85 D-π-A共轭结构有机分子的设计合成及理论研究ML28-86 羧酸酯一步法嵌入式烷氧基化反应研究ML28-87 分子内电荷转移化合物溶液及超微粒分散体系的光学性质研究ML28-88 手性氨基烷基酚的合成ML28-89 酪氨酸酶的模拟及酚的选择性邻羟化反应研究ML28-90 单分子膜自组装结构与性质的研究ML28-91 氯苯三价阳离子离解势能面的理论研究ML28-92 香豆素类化合物的合成与晶体化学研究ML28-93 离子液体的合成及离子液体中的不对称直接羟醛缩合反应研究ML28-94 五元含氮杂环化合物的合成研究ML28-95 ONOO~-对胰岛素的硝化和一些因素对硝化影响的体外研究ML28-96 酶解多肽一级序列分析与反应过程建模及结构变化初探ML28-97 一系列二茂铁二取代物的合成和表征ML28-98 N2O4-N2O5-HNO3分析和相平衡及硝化环氧丙烷研究ML28-99 光催化甲烷和二氧化碳直接合成乙酸的研究ML28-100 N-取代-4-哌啶酮衍生物的合成研究ML28-101 电子自旋标记方法对天青蛋白特征分析ML28-102 材料中蛋白质含量测定及蛋白质模体分析ML28-103 具有不同取代基的偶氮芳烃化合物的合成及其性能研究ML28-104 非光气法合成六亚甲基二异氰酸酯(HDI)ML28-105 邻苯二甲酸的溶解度测定及其神经网络模拟ML28-106 甲壳多糖衍生物的合成及其应用研究ML28-107 吲哚类化合物色谱容量因子构致关系ab initio方法研究ML28-108 全氯代富勒烯碎片的亲核取代反应初探ML28-109 自催化重组藻胆蛋白结构与功能的关系ML28-110 二茂铁衍生的硫膦配体的合成及在喹啉不对称氢化中的应用ML28-111 离子交换电色谱纯化蛋白质的研究ML28-112 氨基酸五配位磷化合物的合成、反应机理及其性质研究ML28-113 手性二茂铁配体的合成及其在碳—碳键形成反应中的应用研究ML28-114 水溶性氨基卟啉和磺酸卟啉的合成研究ML28-115 金属卟啉催化空气氧化对二甲苯制备对甲基苯甲酸和对苯二甲酸ML28-116 简单金属卟啉催化空气氧化环己烷和环己酮制备己二酸的选择性研究ML28-117 四苯基卟啉锌掺杂8-羟基喹啉铝与四苯基联苯二胺的电致发光性能研究ML28-118 可降解聚乳酸/羟基磷灰石有机无机杂化材料的制备及性能研究ML28-119 大豆分离蛋白接枝改性及应用研究ML28-120 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-121 常压非热平衡等离子体用于甲烷转化的研究ML28-122 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-123 蛋白质在晶体界面上吸附的分子动力学模拟ML28-124 微乳条件下氨肟化反应的探索性研究ML28-125 微波辅助串联Wittig和Diels-Alder反应的研究ML28-126 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-127 3-乙基-4-苯基-5-(2-吡啶基)-1,2,4-三唑配合物的合成、晶体结构及表征ML28-128 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-129 具有生物活性的1,2,4-恶二唑类衍生物的合成研究ML28-130 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-131 PhSeCF2TMS的合成及转化ML28-132 离子液体中脂肪酶催化(±)-薄荷醇拆分的研究ML28-133 脂肪胺取代蒽醌衍生物及其前体化合物合成ML28-134 萘酰亚胺类一氧化氮荧光探针的设计、合成及光谱研究ML28-135 微波条件下哌啶催化合成取代的2-氨基-2-苯并吡喃的研究ML28-136 镍催化的有机硼酸与α,β-不饱和羰基化合物的共轭加成反应研究ML28-137 茚满二酮类光致变色化合物的制备与表征ML28-138 新型手性螺环缩醛(酮)化合物的合成ML28-139 芳醛的合成及凝胶因子的设计及合成ML28-140 固定化酶柱与固定化菌体柱耦联—高效拆分乙酰-DL-蛋氨酸ML28-141 苯酚和草酸二甲酯酯交换反应产品的减压歧化反应研究ML28-142 有机物临界性质的定量构性研究ML28-143 3-噻吩丙二酸的合成及卤代芳烃亲核取代反应ML28-144 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-145 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-146 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-147 功能性离子液的合成及在有机反应中的应用ML28-148 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-149 气相色谱研究β-二酮酯化合物的互变异构ML28-150 二元烃的混合物过热极限的测定与研究ML28-151 芳杂环取代咪唑化合物的合成及洛汾碱类过氧化物化学发光性能测定ML28-152 卤代苯基取代的咪唑衍生物的合成及其荧光性能的研究ML28-153 取代并四苯衍生物的合成及其应用ML28-154 苯乙炔基取代的杂环及稠环化合物的合成ML28-155 吸收光谱在有机发光材料研发材料中的应用ML28-156 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-157 苯并噻吩-3-甲醛的合成研究ML28-158 微波辅助串联Wittig和Diels-Alder反应的研究ML28-159 超声辐射下过渡金属参与的药物合成反应研究ML28-160 呋喃酮关键中间体—3,4-二羟基-2,5-己二酮的合成研究ML28-161 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-162 吡咯双希夫碱及其配合物的制备与表征ML28-163 负载型Lewis酸催化剂的制备及催化合成2,6-二甲基萘的研究ML28-164 PhSeCF2TMS的合成及转化ML28-165 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-166 多取代β-CD衍生物的合成及其对苯环类客体分子识别ML28-167 多取代_CD衍生物的合成及其对苯环类客体分子识别ML28-168 柿子皮中类胡萝卜素化合物的分离鉴定及稳定性研究ML28-169 毛细管电泳研究致癌物3-氯-1,2-丙二醇ML28-170 超临界水氧化苯酚体系的分子动力学模拟ML28-171 甲烷和丙烷无氧芳构化反应研究ML28-172 2-取代咪唑配合物的合成、晶体结构及表征ML28-173 气相色谱研究β-二酮酯化合物的互变异构ML28-174 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-175 二元烃的混合物过热极限的测定与研究ML28-176 氨基酸在多羟基化合物溶液中的热力学研究ML28-177 分子印迹膜分离水溶液中苯丙氨酸异构体研究ML28-178 杯[4]芳烃酯的合成及中性条件下对醇的酯化反应研究ML28-179 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-180 双氨基甲酸酯化合物的合成及分子自组装研究ML28-181 由芳基甲基酮合成对应的半缩水合物的新方法ML28-182 取代芳烃的选择性卤代反应研究ML28-183 吡啶脲基化合物的合成、分子识别及配位化学研究ML28-184 丙烯(氨)氧化原位漫反射红外光谱研究ML28-185 嘧啶苄胺二苯醚类先导结构的发现和氢化铝锂驱动下邻位嘧啶参与的苯甲酰胺还原重排反应的机理研究ML28-186 酰化酶催化的Markovnikov加成与氮杂环衍生物的合成ML28-187 多组分反应合成嗪及噻嗪类化合物的研究ML28-188 脂肪酶构象刻录及催化能力考察ML28-189 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-190 烯基铟化合物与高碘盐偶联反应的研究及其在有机合成中的应用ML28-191 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-192 邻甲苯胺的电子转移机理及组分协同效应研究ML28-193 负载型非晶态Ni-B及Ni-B-Mo合金催化剂催化糠醛液相加氢制糠醇的研究ML28-194 含吡啶环套索冠醚及配合物的合成与性能研究ML28-195 芳烃侧链分子氧选择性氧化反应研究ML28-196 多组分复合氧化物对异丁烯制甲基丙烯醛氧化反应的催化性能研究ML28-197 多孔甲酸盐[M3(HCOO)6]及其客体包合物的合成、结构和性质ML28-198 纳米修饰电极的制备及其应用于蛋白质电化学的研究ML28-199 对于几种蛋白质模型分子的焓相互作用的研究ML28-200 氨基酸、酰胺、多羟基醇化合物相互作用的热力学研究......

UHMWPE辐照交联,添加助剂改性

乙烯的研究进展论文怎么写

关键词:超高分子 量聚乙烯 工程塑料1 引言UHMWPE是一种线型结构的具有优异综合性能的热塑性工程塑料。世界上最早由美国Allied Chemical公司于1957年实现工业化,此后德国Hoechst公司、美国Hercules公司、日本三井石油化学公司等也投入工业化生产。我国上海高桥化工厂于1964年最早研制成功并投入工业生产,70年代后期又有广州塑料厂和北京助剂二厂投入生产。限于当时条件,产物分子量约150万左右,随着工艺技术的进步,目前北京助剂二厂的产品分子量可达100万~300万以上。UHMWPE的发展十分迅速,80年代以前,世界平均年增长率为,进入80年代以后,增长率高达15%~20%。而我国的平均年增长率在30%以上。1978年世界消耗量为12,000~12,500吨,而到1990年世界需求量约5万吨,其中美国占70%。UHMWPE平均分子量约35万~800万,因分子量高而具有其它塑料无可比拟的优异的耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能。而且,UHMWPE耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。UHMWPE优异的物理机械性能使它广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。另外,由于UHMWPE优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节等在临床医学上使用。2 UHMWPE的成型加工由于UHMWPE熔融状态的粘度高达108Pa*s,流动性极差,其熔体指数几乎为零,所以很难用一般的机械加工方法进行加工。近年来,UHMWPE的加工技术得到了迅速发展,通过对普通加工设备的改造,已使UHMWPE由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其它特殊方法的成型。 一般加工技术(1)压制烧结压制烧结是UHMWPE最原始的加工方法。此法生产效率颇低,易发生氧化和降解。为了提高生产效率,可采用直接电加热法〔1〕;另外,Werner和Pfleiderer公司开发了一种超高速熔结加工法〔2〕,采用叶片式混合机,叶片旋转的最大速度可达150m/s,使物料仅在几秒内就可升至加工温度。(2)挤出成型挤出成型设备主要有柱塞挤出机、单螺杆挤出机和双螺杆挤出机。双螺杆挤出多采用同向旋转双螺杆挤出机。60年代大都采用柱塞式挤出机,70年代中期,日、美、西德等先后开发了单螺杆挤出工艺。日本三井石油化学公司最早于1974年取得了圆棒挤出技术的成功。北京化工大学于1994年底研制出Φ45型UHMWPE专用单螺杆挤出机,并于1997年取得了Φ65型单螺杆挤出管材工业化生产线的成功。(3)注塑成型日本三井石油化工公司于1974年开发了注塑成型工艺,并于1976年实现了商业化,之后又开发了往复式螺杆注塑成型技术。1985年美国Hoechst公司也实现了UHMWPE的螺杆注塑成型工艺。北京塑料研究所1983年对国产XS-ZY-125A型注射机进行了改造,成功地注射出啤酒罐装生产线用UHMWPE托轮、水泵用轴套,1985年又成功地注射出医用人工关节等。(4)吹塑成型UHMWPE加工时,当物料从口模挤出后,因弹性恢复而产生一定的回缩,并且几乎不发生下垂现象,故为中空容器,特别是大型容器,如油箱、大桶的吹塑创造了有利的条件。UHMWPE吹塑成型还可导致纵横方向强度均衡的高性能薄膜,从而解决了HDPE薄膜长期以来存在的纵横方向强度不一致,容易造成纵向破坏的问题。 特殊加工技术 冻胶纺丝以冻胶纺丝—超拉伸技术制备高强度、高模量聚乙烯纤维是70年代末出现的一种新颖纺丝方法。荷兰DSM公司最早于1979年申请专利,随后美国Allied公司、日本与荷兰联合建立的Toyobo-DSM公司、日本Mitsui公司都实现了工业化生产。中国纺织大学化纤所从1985年开始该项目的研究,逐步形成了自己的技术,制得了高性能的UHMWPE纤维〔3〕。UHMWPE冻胶纺丝过程简述如下:溶解UHMWPE于适当的溶剂中,制成半稀溶液,经喷丝孔挤出,然后以空气或水骤冷纺丝溶液,将其凝固成冻胶原丝。在冻胶原丝中,几乎所有的溶剂被包含其中,因此UHMWPE大分子链的解缠状态被很好地保持下来,而且溶液温度的下降,导致冻胶体中UHMWPE折叠链片晶的形成。这样,通过超倍热拉伸冻胶原丝可使大分子链充分取向和高度结晶,进而使呈折叠链的大分子转变为伸直链,从而制得高强度、高模量纤维。UHMWPE纤维是当今世界上第三代特种纤维,强度高达,比强度是化纤中最高的,又具有较好的耐磨、耐冲击、耐腐蚀、耐光等优良性能。它可直接制成绳索、缆绳、渔网和各种织物:防弹背心和衣服、防切割手套等,其中防弹衣的防弹效果优于芳纶。国际上已将UHMWPE纤维织成不同纤度的绳索,取代了传统的钢缆绳和合成纤维绳等。UHMWPE纤维的复合材料在军事上已用作装甲兵器的壳体、雷达的防护外壳罩、头盔等;体育用品上已制成弓弦、雪橇和滑水板等。 润滑挤出(注射)润滑挤出(注射)成型技术是在挤出(注射)物料与模壁之间形成一层润滑层,从而降低物料各点间的剪切速率差异,减小产品的变形,同时能够实现在低温、低能耗条件下提高高粘度聚合物的挤出(注射)速度。产生润滑层的方法主要有两种:自润滑和共润滑。(1)自润滑挤出(注射)UHMWPE的自润滑挤出(注射)是在其中添加适量的外部润滑剂,以降低聚合物分子与金属模壁间的摩擦与剪切,提高物料流动的均匀性及脱模效果和挤出质量。外部润滑剂主要有高级脂肪酸、复合脂、有机硅树脂、石腊及其它低分子量树脂等。挤出(注射)加工前,首先将润滑剂同其它加工助剂一起混入物料中,生产时,物料中的润滑剂渗出,形成润滑层,实现自润滑挤出(注射)。有专利报道〔4〕:将70份石蜡油、30份UHMWPE和1份氧相二氧化硅(高度分散的硅胶)混合造粒,在190℃的温度下就可实现顺利挤出(注射)。(2)共润滑挤出(注射)UHMWPE的共润滑挤出(注射)有两种情况,一是采用缝隙法〔5、6〕将润滑剂压入到模具中,使其在模腔内表面和熔融物料间形成润滑层;二是与低粘度树脂共混,使其作为产物的一部分(详见)。如:生产UHMWPE薄板时,由定量泵向模腔内输送SH200有机硅油作润滑剂,所得产品外观质量有明显提高,特别是由于挤出变形小,增加了拉伸强度。 辊压成型〔1〕辊压成型是一种固态加工方法,即在UHMWPE的熔点以下对其施加一很大的压力,通过粒子形变,有效地将粒子与粒子融合。主要设备是一带有螺槽的旋转轮和一带有舌槽的弓形滑块,舌槽与螺槽垂直。在加工过程中有效地利用了物料与器壁之间的摩擦力,产生的压力足够使UHMWPE粒子发生形变。在机座末端装有加热支台,经过模口挤出物料。如将此项辊压装置与挤压机联用,可使加工过程连续化。 热处理后压制成型〔8〕把UHMWPE树脂粉末在140℃~275℃之间进行1min~30min的短期加热,发现UHMWPE的某些物理性能出人意料地大大改善。用热处理过的UHMWPE粉料压制出的制品和未热处理过的UHMPWE制品相比较,前者具有更好的物理性能和透明性,制品表面的光滑程度和低温机械性能大大提高了。 射频加工〔9〕采用射频加工UHMWPE是一种崭新的加工方法,它是将UHMWPE粉末和介电损耗高的炭黑粉末均匀混合在一起,用射频辐照,产生的热可使UHMWPE粉末表面发生软化,从而使其能在一定压力下固结。用这种方法可在数分钟内模压出很厚的大型部件,其加工效率比目前UHMWPE常规模压加工高许多倍。 凝胶挤出法制备多孔膜〔10〕将UHMWPE溶解在挥发溶剂中,连续挤出,然后经一个热可逆凝胶/结晶过程,使其成为一种湿润的凝胶膜,蒸除溶剂使膜干燥。由于已形成的骨架结构限制了凝胶的收缩,在干燥过程中产生微孔,经双轴拉伸达到最大空隙率而不破坏完整的多孔结构。这种材料可用作防水、通氧织物和耐化学品服装,也可用作超滤/微量过滤膜、复合薄膜和蓄电池隔板等。与其它方法相比,由此法制备的多孔UHMWPE膜具有最佳的孔径、强度和厚度等综合性能。3 UHMWPE的改性 物理机械性能的改进与其它工程塑料相比,UHMWPE具有表面硬度和热变形温度低、弯曲强度以及蠕变性能较差等缺点。这是由于UHMWPE的分子结构和分子聚集形态造成的,可通过填充和交联的方法加以改善。 填充改性采用玻璃微珠、玻璃纤维、云母、滑石粉、二氧化硅、三氧化二铝、二硫化钼、炭黑等对UHMWPE进行填充改性,可使表面硬度、刚度、蠕变性、弯曲强度、热变形温度得以较好地改善。用偶联剂处理后,效果更加明显。如填充处理后的玻璃微珠,可使热变形温度提高30℃。玻璃微珠、玻璃纤维、云母、滑石粉等可提高硬度、刚度和耐温性;二硫化钼、硅油和专用蜡可降低摩擦因数,从而进一步提高自润滑性;炭黑或金属粉可提高抗静电性和导电性以及传热性等。但是,填料改性后冲击强度略有下降,若将含量控制在40%以内,UHMWPE仍有相当高的冲击强度。 交联交联是为了改善形态稳定性、耐蠕变性及环境应力开裂性。通过交联,UHMWPE的结晶度下降,被掩盖的韧性复又表现出来。交联可分为化学交联和辐射交联。化学交联是在UHMWPE中加入适当的交联剂后,在熔融过程中发生交联。辐射交联是采用电子射线或γ射线直接对UHMWPE制品进行照射使分子发生交联。UHMWPE的化学交联又分为过氧化物交联和偶联剂交联。(1)过氧化物交联过氧化物交联工艺分为混炼、成型和交联三步。混炼时将UHMWPE与过氧化物熔融共混,UHMWPE在过氧化物作用下产生自由基,自由基偶合而产生交联。这一步要保证温度不要太高,以免树脂完全交联。经过混炼后得到交联度很低的可继续交联型UHMWPE,在比混炼更高的温度下成型为制件,再进行交联处理。UHMWPE经过氧化物交联后在结构上与热塑性塑料、热固性塑料和硫化橡胶都不同,它有体型结构却不是完全交联,因此在性能上兼有三者的特点,即同时具有热可塑性和优良的硬度、韧性以及耐应力开裂等性能。国外曾报道用2,5-二甲基-2,5双过氧化叔丁基己炔-3作交联剂〔11〕,但国内很难找到。清华大学用廉价易得的过氧化二异丙苯(DCP)作为交联剂进行了研究〔12〕,结果发现:DCP用量小于1%时,可使冲击强度比纯UHMWPE提高15%~20%,特别是DCP用量为时,冲击强度可提高48%。随DCP用量的增加,热变形温度提高,可用于水暖系统的耐热管道。(2)偶联剂交联UHMWPE主要使用两种硅烷偶联剂:乙烯基硅氧烷和烯丙基硅氧烷,常用的有乙烯基三甲氧基硅烷和乙烯基三乙氧基硅烷。偶联剂一般要靠过氧化物引发,常用的是DCP,催化剂一般采用有机锡衍生物。硅烷交联UHMWPE的成型过程首先是使过氧化物受热分解为化学活性很高的游离基,这些游离基夺取聚合物分子中的氢原子使聚合物主链变为活性游离基,然后与硅烷产生接枝反应,接枝后的UHMWPE在水及硅醇缩合催化剂的作用下发生水解缩合,形成交联键即得硅烷交联UHMWPE。(3)辐射交联在一定剂量电子射线或γ射线作用下,UHMWPE分子结构中的一部分主链或侧链可能被射线切断,产生一定数量的游离基,这些游离基彼此结合形成交联链,使UHMWPE的线型分子结构转变为网状大分子结构。经一定剂量辐照后,UHMWPE的蠕变性、浸油性和硬度等物理性能得到一定程度的改善。用γ射线对人造UHMWPE关节进行辐射,在消毒的同时使其发生交联,可增强人造关节的硬度和亲水性,并且使耐蠕变性得以提高〔13〕,从而延长其使用寿命。有研究〔14〕表明,将辐照与PTFE接枝相结合,也可改善UHMWPE的磨损和蠕变行为。这种材料具有组织容忍性,适于体内移植。 加工性能的改进UHMWPE树脂的分子链较长,易受剪切力作用发生断裂,或受热发生降解。因此,较低的加工温度,较短的加工时间和降低对它的剪切是非常必要的。为了解决UHMWPE的加工问题,除对普通成型机械进行特殊设计外,还可对树脂配方进行改进:与其它树脂共混或加入流动改性剂,使之能在普通挤出机和注塑机上成型加工,这就是中介绍的润滑挤出(注射)。 共混改性共混法改善UHMWPE的熔体流动性是最有效、最简便和最实用的途径。目前,这方面的技术多见于专利文献。共混所用的第二组份主要是指低熔点、低粘度树脂,有LDPE、HDPE、PP、聚酯等,其中使用较多的是中分子量PE(分子量40万~60万)和低分子量PE(分子量<40万)。当共混体系被加热到熔点以上时,UHMWPE树脂就会悬浮在第二组份树脂的液相中,形成可挤出、可注射的悬浮体物料。(1)与低、中分子量PE共混UHMWPE与分子量低的LDPE(分子量1,000~20,000,以5,000~12,000为最佳)共混可使其成型加工性获得显著改善,但同时会使拉伸强度、挠曲弹性等力学性能有所下降。HDPE也能显著改善UHMWPE的加工流动性,但也会引起冲击强度、耐摩擦等性能的下降。为使UHMWPE共混体系的力学性能维持在一较高水平,一个有效的补偿办法是加入PE成核剂,如苯甲酸、苯甲酸盐、硬脂酸盐、己二酸盐等,可以借PE结晶度的提高,球晶尺寸的微细均化而起到强化作用,从而有效阻止机械性能的下降。有专利〔15〕指出,在UHMWPE/HDPE共混体系中加入很少量的细小的成核剂硅灰石(其粒径尺寸范围5nm~50nm,表面积100m2/g~400m2/g),可很好地补偿机械性能的降低。(2)共混形态UHMWPE的化学结构虽然与其它品种的PE相近,但在一般的熔混设备和条件下,它们的共混物都难以形成均匀的形态,这可能与组份之间粘度相差悬殊有关。采用普通单螺杆混炼得到的UHMWPE/LDPE共混物,两组份各自结晶,不能形成共晶,UHMWPE基本上以填料形式分散于LDPE基体中。熔体长时间处理和使用双辊炼塑机混炼,两组份之间作用有所加强,性能亦有进一步的改善,不过仍不能形成共晶的形态。Vadhar发现〔16〕,当采用两步共混法,即先在高温下将UHMWPE熔融,再降到较低温度下加入LLDPE进行共混,可获得形成共晶的共混物。Vadher用溶液共混法也得到了能形成共晶的UHMWPE/LLDPE共混物。(3)共混物的力学强度对于未加成核剂的UHMWPE/PE体系,其在冷却过程中会形成较大的球晶,球晶之间存在着明显的界面,而在这些界面上存在着由分子链排布不同引起的内应力,由此会导致裂纹的产生,所以与基体聚合物相比,共混物的拉伸强度常常有所下降。当受到外力冲击时裂纹会很快地沿球晶界面发展而导致最后的破碎,因此又引起冲击强度的下降。 流动改进剂改性流动改进剂促进了长链分子的解缠,并在大分子之间起润滑作用,改变了大分子链间的能量传递,从而使得链段位移变得容易,改善了聚合物的流动性。用于UHMWPE的流动改进剂主要是指脂肪族碳氢化合物及其衍生物。其中脂肪族碳氢化合物有:碳原子数在22以上的n-链烷烃及以其作主成分的低级烷烃混合物;石油分裂精制得到的石蜡等。其衍生物是指末端含有脂肪族烃基、内部含有1个或1个以上(最好为1个或2个)羧基、羟基、酯基、羰基、氮基甲酰基、巯基等官能团;碳原子数大于8(最好为12~50)并且分子量为130~2000(以200~800为最佳)的脂肪酸、脂肪醇、脂肪酸酯、脂肪醛、脂肪酮、脂肪族酰胺、脂肪硫醇等。举例来说,脂肪酸有:癸酸、月桂酸、肉豆蔻酸、棕榈酸、硬酯酸、油酸等。北京化工大学制备了一种有效的流动剂(MS2)〔17〕,添加少量(~)就能显著改善UHMWPE的流动性,使其熔点下降达10℃之多,能在普通注塑机上注塑成型,而且拉伸强度仅有少许降低。另外,用苯乙烯及其衍生物改性UHMWPE,除可改善加工性能使制品易于挤出外,还可保持UHMWPE优良的耐摩擦性和耐化学腐蚀性〔18〕;1,1-二苯基乙炔〔19〕、苯乙烯衍生物〔20〕、四氢化萘〔21〕皆可使UHMWPE获得优良的加工性能,同时使材料具有较高的冲击强度和耐磨损性。 液晶高分子原位复合材料液晶高分子原位复合材料是指热致液晶高分子(TLCP)与热塑性树脂的共混物,这种共混物在熔融加工过程中,由于TLCP分子结构的刚直性,在力场作用下可自发地沿流动方向取向,产生明显的剪切变稀行为,并在基体树脂中原位就地形成具有取向结构的增强相,即就地成纤,从而起到增强热塑性树脂和改善加工流动性的作用。清华大学赵安赤等采用原位复合技术,对UHMWPE加工性能的改进取得了明显的效果〔22〕。用TLCP对UHMWPE进行改性,不仅提高了加工时的流动性,采用通常的热塑加工工艺及通用设备就能方便地进行加工,而且可保持较高的拉伸强度和冲击强度,耐磨性也有较大提高。 聚合填充型复合材料高分子合成中的聚合填充工艺是一种新型的聚合方法,它是把填料进行处理,使其粒子表面形成活性中心,在聚合过程中让乙烯、丙烯等烯烃类单体在填料粒子表面聚合,形成紧密包裹粒子的树脂,最后得到具有独特性能的复合材料。它除具有掺混型复合材料性能外,还有自己本身的特性:首先是不必熔融聚乙烯树脂,可保持填料的形状,制备粉状或纤维状的复合材料;其次,该复合材料不受填料/树脂组成比的限制,一般可任意设定填料的含量;另外,所得复合材料是均匀的组合物,不受填料比重、形状的限制。与热熔融共混材料相比,由聚合填充工艺制备的UHMWPE复合材料中,填料粒子分散良好,且粒子与聚合物基体的界面结合也较好。这就使得复合材料的拉伸强度、冲击强度与UHMWPE相差不大,却远远好于共混型材料,尤其是在高填充情况下,对比更加明显,复合材料的硬度、弯曲强度,尤其是弯曲模量比纯UHMWPE提高许多,尤其适用作轴承、轴座等受力零部件。而且复合材料的热力学性能也有较好的改善:维卡软化点提高近30℃,热变形温度提高近20℃,线膨胀系数下降20%以上。因此,此材料可用于温度较高的场合,并适于制造轴承、轴套、齿轮等精密度要求高的机械零件。采用聚合填充技术还可通过向聚合体系中通入氢或其它链转移剂,控制UHMWPE分子量大小,使得树脂易加工〔23〕。美国专利〔24〕用具有酸中性表面的填料:水化氧化铝、二氧化硅、水不溶性硅酸盐、碳酸钙、碱式碳酸铝钠、羟基硅灰石和磷酸钙制成了高模量的均相聚合填充UHMWPE复合材料。另有专利〔25〕指出,在60℃,且有催化剂存在的条件下,使UHMWPE在庚烷中干燥的 氧化铝表面聚合,可得到高模量的均相复合材料。齐鲁石化公司研究院分别用硅藻土、高岭土作为填料合成了UHMWPE复合材料〔26〕。 UHMWPE的自增强〔27、28〕在UHMWPE基体中加入UHMWPE纤维,由于基体和纤维具有相同的化学特征,因此化学相容性好,两组份的界面结合力强,从而可获得机械性能优良的复合材料。UHMWPE纤维的加入可使UHMWPE的拉伸强度和模量、冲击强度、耐蠕变性大大提高。与纯 UHMWPE相比,在UHMWPE中加入体积含量为60%的UHMWPE纤维,可使最大应力和模量分别提高160%和60%。这种自增强的UHMWPE材料尤其适用于生物医学上承重的场合,而用于人造关节的整体替换是近年来才倍受关注的,UHMWPE自增强材料的低体积磨损率可提高人造关节的使用寿命。4 UHMWPE的合金化UHMWPE除可与塑料形成合金来改善其加工性能外(见和),还可获得其它性能。其中,以PP/UHMWPE合金最为突出。通常聚合物的增韧是在树脂中引入柔性链段形成复合物(如橡塑共混物),其增韧机理为“多重银纹化机理”。而在PP/UHMWPE体系,UHMWPE对PP有明显的增韧作用,这是“多重裂纹”理论所无法解释的。国内最早于1993年报道采用UHMWPE增韧PP取得成功,当UHMWPE的含量为15%时,共混物的缺口冲击强度比纯PP提高2倍以上〔29〕。最近又有报道,UHMWPE与含乙烯链段的共聚型PP共混,在UHMWPE的含量为25%时,其冲击强度比PP提高一倍多〔30〕。以上现象的解释是“网络增韧机理”〔31〕。PP/UHMWPE共混体系的亚微观相态为双连续相,UHMWPE分子与长链的PP分子共同构成一种共混网络,其余PP构成一个PP网络,二者交织成为一种“线性互穿网络”。其中共混网络在材料中起到骨架作用,为材料提供机械强度,受到外力冲击时,它会发生较大形变以吸收外界能量,起到增韧的作用;形成的网络越完整,密度越大,则增韧效果越好。为了保证“线性互穿网络”结构的形成,必须使UHMWPE以准分子水平分散在PP基体中,这就对共混方式提出了较高的要求。北京化工大学有研究发现:四螺杆挤出机能将UHMWPE均匀地分散在PP基体中,而双螺杆挤出机的共混效果却不佳。EPDM能对PP/UHMWPE合金起到增容的作用。由于EPDM具备的两种主要链节分别与PP和UHMWPE相同,因而与两种材料都有比较好的亲合力,共混时容易分散在两相界面上。EPDM对复合共晶起到插入、分割和细化的作用,这对提高材料的韧性是有益的,能大幅度地提高缺口冲击强度。另外,UHMWPE也可与橡胶形成合金,获得比纯橡胶优良的机械性能,如耐摩擦性、拉伸强度和断裂伸长率等。其中,橡胶是在混合过程中于UHMWPE的软化点以上进行硫化的。5 UHMWPE的复合化UHMWPE可与各种橡胶(或橡塑合金)硫化复合制成改性PE片材,这些片材可进一步与金属板材制成复合材料。除此之外,UHMWPE还可复合在塑料表面以提高耐冲击性能。在UHMWPE软化点以上的温度条件下,将含有硫化剂的未硫化橡胶片材与UHMWPE片材压制在一起,可制得剥离强度较高的层合制品,与不含硫化剂的情况相比,其剥离强度可提高数十倍。用这种方法同样可使未硫化橡胶与塑料的合金(如EPDM/PA6、EPDM/PP、SBR/PE)和UHMWPE片材牢固地粘接在一起。参考文献:〔1〕 钟玉荣,卢鑫华.塑料〔J〕,1991,20(1):30〔2〕 孙大文.塑料加工应用〔J〕,1983(5):1〔3〕 杨年慈.合成纤维工业〔J〕,1991,14(2):48〔4〕 JP 63,161,075〔P〕〔5〕 .〔J〕,1981,27(1):8

论文的进展情况要分多个角度写,如何时选定题目、收集齐材料、拟定好论文提纲、开题报告的撰写、初稿和修改稿的完成时间、定稿等过程的具体时间

科学或社会研究工作者在学术书籍或学术期刊上刊登,并用来进行科学研究的,从而描述或呈现自己研究成果、对前任工作总结的回顾及做出评价的文章,这类文章特别强调原创性。论文类别有学年论文、毕业论文、学位论文、科技论文、成果论文等。

论文的进展情况即是对于写作时间和写作顺序上的安排,在这个过程上,材料的收集、文章的撰写和改动等都要有明细的安排,对于发表有个具体时间,要考虑到论文课题研究中的每个阶段的重难点,且要根据学习毕业论文答辩时间来安排自己论文的进度。

论文的进展情况要分多个角度写,如何时选定题目、收集齐材料、拟定好论文提纲、开题报告的撰写、初稿和修改稿的完成时间、定稿等过程的具体时间。更为详细时间更应该根据要求细分,如学校毕业论文规定时间内完成。

论文的进展情况要分多个角度写:选定题目、收集材料、拟定论文提纲、开题报告撰写、初稿和修改稿的完成时间、定稿等过程的具体时间;还有材料的收集、文章的撰写和改动等都要有明细的安排,要考虑到论文课题研究中的每个阶段的重难点,且要根据毕业论文答辩时间来安排自己论文的进度。

论文进展写作步骤:

1、查阅了大量的相关资料,包括国内外有关文献,国内外众学者的相关论文、专著,以及国内外相关新闻报道等,对所要着手研究的课题作全面地了解与认识。

2、在对所搜集资料认真研究的基础上,拟定论文题目,填写开题报告。

3、对论文作初步构思,构建主体框架,写出论文提纲。

4、在老师的指导下,完成论文的初稿。

论文写作几大要素:

1、论文题目:要求准确、简练、醒目、新颖。

2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)

3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。

4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。

主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。

乙烯生产技术简介: 煤制烯烃。全球首个煤制烯烃工业化装置工程-神华集团煤制油有限公司的煤制烯烃项目于2005年10月28日举行了奠基仪式。该项目的厂址位于内蒙古包头市九原区哈林格尔镇新规划的工业基地内,总体工程包括180万吨/年煤制甲醇装置、60万吨/年甲醇制乙烯加丙烯装置、31万吨/年聚丙烯装置、30万吨/年聚乙烯装置等。整个项目消耗原料煤345 万吨/年、燃料煤128万吨/年。其关键技术将采用美国环球油品公司煤制烯烃技术,项目总投资124亿元。规划到2020年,将发展到3000万吨/年煤制油、300万吨/年煤制甲醇及衍生产品的规模。(2)甲醇制乙烯。由中科院大连化学物理研究所、陕西新兴煤化工科技发展有限公司和洛阳石化工程公司合作进行的甲醇制烯烃(MTO)的试验取得了实质性进展,并于2005年建成1万吨/年甲醇制烯烃的工业化试验装置,为建设100万吨/年大型化MTO工业化装置打下可靠的技术基础。MTO技术开发成功后,将有效缓解我国乙烯、丙烯等化工产品对石油轻烃原料资源依赖程度,开辟出一条崭新的烯烃生产途径。(3)甲烷制乙烯技术。LG化学公司目前正在进行利用天然气的主要成分甲烷生产乙烯的技术。这是目前世界上利用甲烷生产乙烯的首例技术尝试。以甲烷为原料生产乙烯的新技术,可以降低乙烯的生产成本,其关键是开发出新催化剂。按计划,LG化学公司将于2008年开发成功新催化剂,2010年实现商业化生产。(4)重质渣油制乙烯。沈阳化工集团投资36亿元建设国内首套50万吨/年催化热裂解(CPP)制乙烯生产装置。该装置采用北京化工研究院开发的以重质渣油为原料富产烯烃的国际领先技术,是该技术研发后国内第1套生产装置,被国家认定为乙烯新的原料来源承萝项目。该项目于2005年11月29日开工建设,计划于2008年竣工投产。(5)干气回收乙烯。由四川天一科技股份有限公司和北京燕化股份公司共同开发的国内首套催化裂化干气净化回收乙烯工业化装置在北京燕化股份公司开车成功,各项技术经济指标全部达到设计要求。该技术属国内首创,国外无类似工业装置报道。(6)甜高梁制乙烯。新疆农科院研制成功甜高粱制备生物质乙烯的新技术。生物质乙烯是利用甜高梁生产乙醇,然后通过脱水制造乙烯,从而达到节省原油的目的。据测算,甜高梁可产95%乙醇280万吨,可转化成乙烯200万吨,如果200万吨乙烯用原油来生产,需原油600万吨。因此该项目被誉为"再造一个地上绿色塔里木的油田"。2005年8月,中国石化集团公司对新疆发展生物质乙烯产业前期工作进行了调研,中国石化集团公司经济技术研究院在完成该项目的经济技术评估后,认为中国石化集团公司与新疆合作开发以甜高梁生产生物质乙烯是必要的。目前,新疆与中国石化集团公司达成了共同推进生物质乙烯产业化的合作意向。希望能提供点小帮主

  • 索引序列
  • 富勒烯研究新进展论文
  • 关于富勒烯研究新进展的论文
  • 富勒烯毕业论文
  • 乙烯的研究进展论文题目
  • 乙烯的研究进展论文怎么写
  • 返回顶部