首页 > 期刊论文知识库 > 论文参考文献参数

论文参考文献参数

发布时间:

论文参考文献参数

根据不同的杂志的具体要求而定。一般国内期刊上综述类文章20-30篇参考文献居多,如果作者的文章原创度相当高,参考文献不超过10条为好,参考文献数量太多,可能显得很啰嗦,也可能受到部分期刊版面的限制,不同单位对参考文献的要求也会不同,比如有些院校的毕业论文要求20篇参考文献,其中不少于7篇外文文献等

参考文献标准格式如下:

一、期刊类[J]

【格式】[序号]作者。篇名[J]。刊名,出版年份,卷号(期号):起止页码。

【举例1】安心,熊芯,李月娥。70年来我国高等教育的发展历程与特点[J]。当代教育与文化,2020,12(06):75-80。

【举例2】[2]许竞。我国学历教育分化的证书制度溯源[J]。南京师大学报(社会科学版),2020(06):22-29。

二、专著类[M]

【格式】[序号]作者。书名[M]。出版地:出版社,出版年份:起止页码。

【举例1】葛家澍,林志军。现代西方财务会计理论[M]。厦门:厦门大学出版社,2001:42。

三、报纸类[N]

【格式】[序号]作者。篇名[N]。报纸名,出版日期(版次)。

【举例1】[1]葛剑雄,陈鹏。地名、历史和文化[N]。光明日报,2015-09-24(011)。

四、论文集[C]

【格式】[序号]作者。篇名[C]。出版地:出版者,出版年份:起始页码。

【举例】伍蠡甫。西方文论选[C]。上海:上海译文出版社,1979:12-17。

五、学位论文[D]

【格式】[序号]作者。篇名[D]。出版地:保存者,出版年份:起始页码。

【举例】郝桂莲。反思的文学:苏珊·桑塔格小说艺术研究[D]。四川大学,2014。

六、研究报告[R]

【格式】[序号]作者。篇名[R]。出版地:出版者,出版年份:起始页码。

【举例】冯西桥。核反应堆压力管道与压力容器的LBB分析[R]。北京:清华大学核能技术设计研究院,1997:9-10。

七、其他[N]

【格式】[序号]颁布单位。条例名称。发布日期。

DB——数据库 DataBase CP——计算机程序 Computer ProgrameEB——电子公告 Electronic BulletinOL——联机网络 OnLine DB/OL——联机网上的数据库 DataBase/OnLineDB/MT——磁带数据库 DataBase/Magnetic TapeM/CD——光盘图书 Monograph/CDCP/DK——磁盘软件 Computer Program/DisKJ/OL——网上期刊 Journal/OnLineEB/OL——网上电子公告 Electronic Bulletin/OnLine M——专著(含古籍中的史、志论著) MonographC——论文集 CollectionN——报纸文章 NewspaperJ——期刊文章 JournalD——学位论文 DissertationR——研究报告 ReportS——标准 StandardizationP——专利 PatentA——专著、论文集中的析出文献Z——其他未说明的文献类型 Undefined

字母代表所引用的文献的类型,如[J]代表所引用的这篇文献来自期刊。标准编号.标准名称〔S〕。

常见的参考文献字母所表示的类型有:

1、期刊论文类

一般格式如下:

作者.论文名称[J].期刊名称,发表年份(第几期):页码.

注意:一般而言,参考文献里的标点符号用的是英文状态下输入的标点符号。输完汉字要切换到英文状态,再输入相应的标点符号。

示例:沈延生.村政的兴衰与重建[J].战略与管理,1998(6):1-34.

2、学位论文类

一般格式如下:

作者.论文名称[D].毕业院校所在城市:毕业院校,论文提交年份:页码.

示例:

刘杨.同人小说的著作权问题研究[D].重庆:西南政法大学,2012:12-15.

3、书籍著作类

一般格式如下:

作者.著作名称[M].出版社所在城市:出版社名称,出版年份:页码.

示例:金太军.村治治理与权力结构[M].广州:广州人民出版社,2008:50.

参考文献著录格式

1、期刊作者.题名〔J〕.刊名,出版年,卷(期)∶起止页码

2、专著作者.书名〔M〕.版本(第一版不著录).出版地∶出版者,出版年∶起止页码

3、论文集作者.题名〔C〕.编者.论文集名,出版地∶出版者,出版年∶起止页码

引用的文献,每处的页码或页码范围(有的刊物也将能指示引用文献位置的信息视为页码)分别列于每处参考文献的序号标注处,置于方括号后;

作为正文出现的参考文献序号后需加页码或页码范围的,该页码或页码范围也要作上标。

作者和编辑需要仔细核对顺序编码制下的参考文献序号,做到序号与其所指示的文献同文后参考文献列表一致。另外,参考文献页码或页码范围也要准确无误。

论文参考文献数

本科论文参考文献数量不少于10个。

本科论文参考文献并不是越多就越好的,参考文献的数量和论文的信息量成正相关。有些同学认为参考文献引得越多代表作者比较注重引文问题,并尊重了其他作者的成果,而有的人说引得越多,代表文章的水分也越多,也就是变成所谓的从引文里拼拼凑凑了,所以引用时适度即可,能说明自己的问题就好。如果是需要投稿的论文,不知道数量要求,可以在评价期刊的指标中,找到一个为"平均引文数"的指标,这就是参考文献的数量,可以作为参考。

硕士论文的参考文献数量,不同的学校和专业对于硕士研究生论文的参考文献的数量要求不太一样,下面是普适性的要求:

1.中文文献应不少于40篇。2.外文文献应不少于20篇。加起来总共应该不少于60篇。3.参考文献中近五年的文献数一般应不少于总数的1/3,并应有近两年的参考文献参。考文献是毕业论文的重要组成部分,是体现论文科学性和严谨性的重要方式。我们在引用参考文献时需要注意如下的问题:参考文献仅限作者亲自阅读过的与本文相关的主要文献,近3年的文献数量应占30%以上,近5年的文献数量应占50%以上,并应对照原文仔细核实。"内部资料""待发表"及"会议资料"等文献不宜作为参考文献引入。

数学导数论文参考文献

参考1邓小荣.高中数学的体验教学法〔J〕.广西师范学院学报,2003(8)2黄红.浅谈高中数学概念的教学方法〔J〕.广西右江民族师专学报,2003(6)3胡中双.浅谈高中数学教学中创造性思维能力的培养〔J〕.湖南教育学院学报,2001(7)4竺仕芳.激发兴趣,走出误区———综合高中数学教学探索〔J〕.宁波教育学院学报,2003(4)5杨培谊,于鸿.高中数学解题方法与技巧〔M〕.北京:北京学院出版社,19931、《计算机教育应用与教育革新——’97全球华人计算机教育应用大会论文集》李克东何克抗主编北京师范大学出版社19972、《教育中的计算机》全国中小学计算机教育研究中心(北京部)19983、林建详编:《CAI的理论与实践——迎接21世纪的挑战》全国CBE学会第六次学术会议论文集1993北京北京大学出版社。[1]参见。此书是一本从巴门尼德到怀特海的著作选集,按形而上学中的问题分类。[2]参见。此书正文的第一句话是:“要讨论形而上学,唯一正派的、当然也是聪明的方式就是从亚里士多德开始。”[3]《形而上学》,982b14-28。[4]引自《古希腊悲剧经典》,罗念生译,北京:作家出版社,1998年,49页。[5]亚里士多德:《形而上学》,985b-986a,昊寿彭译,北京:商务印书馆,1981年,12-13页。[6]参见若-弗·马泰伊:《毕达哥拉斯和毕达哥拉斯学派》,管震湖译,北京:商务印书馆,1997年,90页以下;《古希腊哲学》,苗力田主编,中国人民大学出版社,1989年,78页;汪子嵩等:《希腊哲学史》第1卷,人民出版社,1997年,290页以下。[7]《古希腊哲学》,78页。[8]《毕达哥拉斯和毕达哥拉斯学派》,115页以下。[9]同上书,125页。译文稍有改动。[10]《希腊哲学史》第1卷,290页。[11]亚里士多德:《论天》,引自〈希腊哲学史〉第1卷,283页。[12]《毕达哥拉斯与毕达哥拉斯学派》,107页以下。[13]巴门尼德的话可以简略地表述为:“是是,它不能不是”,因为“存在”与“是”在古希腊和大多数西方语言中从根子上是一个词,如英文之“being”与“be”。相关性:毕业论文,免费毕业论文,大学毕业论文,毕业论文模板够不够我在给你找

这是一个学生的毕业论文后的参考文献[1] 裴礼文.数学分析中的典型问题与方法究(第二版)[M].北京:高等教育出版社,2006[2] 陈纪修等.数学分析第二版[M].北京:高等教育出版社,[3] 翟连林,姚正安.数学分析方法论[M].北京:北京农业大学出版社,1992[4] 龚冬保.高等数学典型题解法、技巧、注释[M].西安:西安交通大学出版社,2000[5] 郭乔.如何作辅助函数解题[J].高等数学研究, (5),48- 49[6] Patrick M.Fitzpatrick.AdvancedCalculus: A Course in Mathematical Analysis [M].北京:中国工业出版社,2003[7] 林远华.浅谈辅助函数在数学分析中的作用[J].河池师范高等专科学校学报,[8] 肖平.辅助函数的构造方法探寻.西昌师范高等专科学校学报[J],供参考。

数学教学论文参考文献范文

参考文献一

[1]杜威着,许崇清译:《哲学的`改造》[M],商务印书馆.1958 年,P46

[2]阮忠英.初中几何教学策略浅谈[J].理科爱好者,2009(2)

[3]胡蓉.利用信息技术优化几何教学[J].信息技术与应用,2008(4).

[4]吕月霞.杜威的“从做中学”之我见[J] .教育新论,

[5]陈琦,刘儒德.当代教育心理学[M].北京师范大学出版社,2007,P185

[6]袁振国.当代教育学[M].教育科学出版社,2004,P184

[7]尚晓青.DGS 技术与初中几何教学整合研究[D].重庆:西南大学博士学位论文,2008.

[8]周军.教学策略[M].北京:教育科学出版社,2007,P11

[9]中华人民共和国教育部.义务教育数学课程标准 [S].北京:北京师范大学出版社,2011

[10]左晓明等.基于 GeoGebra 的数学教学全过程优化研究[J],2010,P101

[11]杨庆余.小学数学课程与教学[M].北京:高等教育出版社.2004,P102

[12]李伯黍,燕国材.教育心理学[M].上海:华东师范大学出版社.

参考文献二

[1]王汉澜.教育评价学 [M].开封:河南大学出版社,1995.

[2]吴钢.现代教育评价基础[M].上海:学林出版社,2004.

[3] 黎世法.异步教育学[M].北京:当代中国出版社,1994.

[4]虞应连.采用复合评分法 注重个体内差异评价[J].中小学管理,2001(1).

[5](美) Carol Ann Tomlinson,刘颂译.多元能力课堂中的差异教学[M].北京:中国轻工业出版社, 2003.

[6]茹建文.关于构建小学数学发展性评价体系的思考[J].现代教育科学,2005(2).

[7]曾继耘.差异发展教学研究[M].北京:首都师范大学出版社,2006.

[8]顾 泠 沅等.寻找中间地带--国际数学教育改革的大趋势[M].上海:上海教育出版社, 2003.

[9]马艳云.评价应注意学生的心理需求[J].人民教育,2005(17).

[10]陈小菊.给自己一个支点超越自己-“个体内差异评价策略”探微[J].福建教育,2005(7).

[11](美)Diane Heacox ,杨希洁译.差异教学-帮助每个学生获得成功[M]. 北京:中国轻工业出版社,2004.

[12]陈泳超.差异评价“ 实施因材施教”[J].福建教育,2001(7、8).

[13]安艳.差异性学生评价研究--以济南市三所初中为例[D],济南.山东师范大学,2007.

[14]王俭.教育评价发展历史的哲学考察[J].教师教育研究,2008(3).

点我用户名,空间博文有介绍详细各种论文检测系统软件介绍见我空间各种有效论文修改秘籍 111

论文数字包括参考参考文献吗

是的,论文字数是摘要和参考文献,而且字体,格式,大小也有一定的要求,在撰写论文是最好使用学校的论文模板,这样可以省去以后的修改格式,字体等等一些列问题。

1、毕业论文的字数要求是对正文部分而言,比如本科论文8000字,指的是你正文部分。但是在查重的时候这些内容也是要检测的 2、毕业论文总字数不算摘要和参考文献,指从第一章到最后一章。 3、毕业论文总字数一般只算正文部分,专科毕业论文正文字数一般应在5000字以上,本科文学学士毕业论文通常要求8000字以上,硕士论文可能要求在3万字以上(不同院校可能要求不同)。 4、毕业论文正文包括前言、本论、结论三个部分。 5、前言(引言)是论文的开头部分,主要说明论文写作的目的、现实意义、对所研究问题的认识,并提出论文的中心论点等。前言要写得简明扼要,篇幅不要太长。 6、本论是毕业论文的主体,包括研究内容与方法、实验材料、实验结果与分析(讨论)等。在本部分要运用各方面的研究方法和实验结果,分析问题,论证观点,尽量反映出自己的科研能力和学术水平。 7、结论是毕业论文的收尾部分,是围绕本论所作的结束语。其基本的要点就是总结全文,加深题意。

参考文献的字数都包括在正文里面的。参考文献是文章的构成部分,虽然不是最关键的部分,但也是不可缺少的部分。 参考文献主要是注明作者所引用的文献来源,是对文献著作权的一种保护,也起到了标注说明的作用,因此,参考文献既然是文章的一部分,那么参考文献的字数也就是文章字数的构成。

在论文里面,参考文献也算是字数,只是说参考文献不算是重复性的文字内容,已经显示是引用。

数论论文参考文献

大学数学文化教学研究优秀论文

当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。下面是我整理的大学数学文化教学研究优秀论文,欢迎大家分享。

大学数学文化教学研究论文

大学数学是由高等数学、线性代数、概率论与数理统计等课程所组成的基础学科。传统意义下的大学数学教学是传授数学知识和技能,培养学生用数学方法和思维分析问题、解决问题。但普遍而言,很多学生对于一些知识点,不知道怎么学、为什么学以及学了如何用。教师的教学方法始终以灌输式为主,缺乏以问题为导向的教学实践,等等。因此,如何激发学生学习数学的兴趣,是大学数学教学的一个重点和难点。而数学文化对于大学数学教学来说是一种十分有效、不可或缺的工具。本文研究的正是解决这一问题的方法之一———数学文化。认识到其在大学数学教学中的重要作用,并将数学文化与大学数学教学合理结合,不但能有效地激发学生学习数学的兴趣,增强大学生的学术专业水平,更能够提升大学生的数学文化素质。数学文化的内涵不仅表现在知识本身,还寓于它的历史。通过对数学文化的学习,不仅可以激发学生的学习兴趣,也有利于学生对数学概念、数学方法和数学原理的理解与认识的深化。在此过程中,可以使学生在接受数学专业训练的同时,获得人文科学方面的修养,提高学生的人文素质。数学文化中的数学史可以引导学生学习数学家的优秀品质,坚持真理,不畏强权,努力追求,使学生正确认识学习过程中遇到的困难,树立学习数学的兴趣和信心;数学文化中蕴含的美可以培养学生的美学修养,感受数学的简洁美、统一美,形成对数学良好的情感体验,提高学生的数学素养和审美素质。

一、数学文化教育渗透于大学数学教学中的重要性

1.有利于活跃课堂气氛,激发学生的学习兴趣。学生跨入大学校门,不适应高等数学的思想方法。这就要求高校数学教师在传授知识的同时,培养他们的兴趣。如果用历史回顾和名家轶事来点缀教学一定会使学生远离数学的抽象、复杂,再适时地将数学的概念与方法贯穿其中,能够将内容由抽象变具体,使枯燥的数学教学变得生动活泼,从而使学生热爱数学,激发其学习的兴趣。

2.有助于体会数学本身的美著名数学家陈省身先生曾不止一次地提出:“数学是美的。”数学的美体现在方方面面,数学中处处充满着简洁美、奇异的美、对称的美、抽象的美。比如对称美:12×12=144,21×21=441;13×13=169,31×31=961;102×102=10404,201×201=40401。再比如,0.618…它被中世纪学者、艺术家达芬奇誉为“黄金数”,他也被德国天文学家、物理学家、数学家开普勒赞为几何学中的两大“瑰宝”之一(另一个为“勾股定理”)。事实上,无论是古埃及的金字塔,还是古雅典的巴特农神庙以及今日的巴黎的埃菲尔铁塔,这些世人瞩目的建筑中都蕴涵着0.618…这一黄金比值(它显然展示着数学美感)。而数学中更为一般的对称,则体现在函数图像的对称性和几何图形上。前者是运用在建筑、美术领域后给人以无穷的美感,后者则为我们探求函数的性质提供了方便。爱因斯坦说过:“这个世界可以由音乐的音符组成,也可以由数学的公式组成”。数学文化则是数学美的主要表现形式。数学是无国界的,大部分学生对于数学的公式和符号心生畏惧,但这些数学公式和符号的实质是一种数学语言的表现,如同音乐的韵律一般。数学是一种理性的美,音乐是感性的美。在教学过程中,介绍数学中的美学,将增加数学本身的魅力,提高学生的学习兴趣,从而使学生真正的喜欢上数学,最终提高教学效率,提升大学生自身的数学素养。

3.有助于数学知识的掌握数学教学中充满了对公式的推理和应用,教学过程重视严密性、逻辑性和系统性。因此,需要培养学生的逻辑思维能力,而这种能力的培养要求给学生传授专业的数学知识,并且加以练习。但是,在课程教学过程中,部分教师很少讲数学精神以及数学思想等一系列数学文化给学生听,甚至一些数学专业的大学生都对数学学科发展史以及一些著名数学家这一系列的数学文化内容知晓甚少。笔者认为,许多数学知识体系的'建立都是通过不断进步最终形成的较为完善的体系。可很多学生只知其然,不知其所以然的模式导致只是为学习而学习,却不知道这些公式的原理。故了解知识背后的数学文化,能够使学生避免成为填鸭教学的受体,真正地成为数学魅力的感受者和学习者。

二、如何将数学文化渗透于大学数学教学中

大学数学教学的主要任务是让学生掌握数学的概念、思想和方法,在课堂教学中,要有目的地再现数学历史情景。如讲导数概念时可讲授微积分的创立过程,要用问题式、启发式和发现式等方式使学生有意识地分析数学家们原来的创造思维活动脉络,体会数学思想的整体连贯性,不能简单的回顾历史。这样才会全面深刻地理解极限概念,从而对以后用极限作为基础的微积分学、级数论等会更容易接受,大学数学也就变得具体、简单了。具体地,

1.高校教师加强对数学文化的认识如果一个大学数学老师在课堂上只侧重于理论的证明、推导,数学的概念,定理证明的过程,而不是概念的由来,也不是发现定理的过程,这对于学生对知识的全面掌握和理解是十分不利的。因此大学数学教师应该转变数学教育观念,把数学教学看成一种文化系统,利用数学文化的教育来启蒙学生的思想,让学生了解数学知识和方法背后的数学文化价值。比如,高等数学中微积分的教学,应该介绍微积分产生的发展史和思想史,而后是讲授概念、定理及相关方法,最后是介绍其具体的应用价值。

2.运用多媒体技术辅助数学文化教学多媒体通常是指录像带与录像机、幻灯片与幻灯机、投影片与投影机、光盘与VCD、CAI课件与计算机,等等。“课件”是通过计算机将文本、图形、声音、图像、动画、视频等多种媒体进行综合处理制作而成的、用于课堂教学的软件。多媒体是现代化教育技术的重要组成部分,它可以丰富和优化传统教学方法。借助现代教学手段,数学文化可以更好地与教学过程相结合,提高资源的利用率,使大学数学教学活动焕发青春、充满活力。比如,在介绍定积分概念时,我们可以溯源到牛顿的“分析学”,计算任意曲线下图形的面积。此时,可以利用多媒体课件制作动态的图形分割,而后近似求曲边梯形的面积,利用数学软件再现此过程无疑是生动形象的,很有利于学生从直观上理解这种基于积分思想的求面积的方法,同时使学生感受到了纯数学与现代科技相结合的巨大魅力。

三、结语

在大学数学教学过程中突出数学的文化功能,可以提高数学教学的效率,扩展学生的视野,加深学生对数学知识的理解,使学生在学习数学知识与思想方法的同时,进一步了解数学、喜欢数学、爱上数学,最终达到事半功倍的效果。

自主构建知识初中数学教学研究论文

【摘要】

随着我国教育事业的进一步发展,教育部门对课堂教学质量提出了进一步要求,对于课堂主体与课堂教学目标等,也做出了明确规定。结合实际情况,对以学生自主构建知识为核心初中数学教学顺利进行的有效途径进行分析,以期为今后的各项工作提供宝贵经验。

【关键词】

自主构建知识;数学教学;提问

初中数学学科具有一定的抽象性与难度,若是学生缺乏对相关知识的正确理解,将会直接影响到数学学习质量。因此,初中数学教师需要在尊重学生主体地位的前提下,鼓励学生自主构建知识,使得学生在这一过程中可以深入了解数学知识,为培养其自主学习能力、良好的思维模式奠定有利基础。

一、鼓励学生提问

问题是促使学生进行思考的根本动力与源头,只有在发现问题以后,学生才会从心里引起重视,并充分开动脑筋进行思考,有助于培养学生良好的思维能力与自主学习能力。这就需要初中数学教师在进行课堂教学的过程中,加强对学生的引导,引导学生及时发现各种问题,对此教师可以通过启发诱导、设置疑问、类比分析等方式来展示问题,使得学生可以在教师正确的引导下,对问题进行思考。值得注意的是,教师在这一过程中还需要充分激发学生的学习兴趣,虽然问题设置可以在一定程度上引起学生的好奇心,但是若是学生缺乏足够的兴趣,将会影响到学生思考效果。因此,初中数学教师可以通过为学生创设情境的方式,来吸引学生,刺激学生思维,从而达到引导学生思考数学问题的目的。与此同时,为了使学生在今后的数学学习过程中,提高自主学习能力,教师还需要针对学生的问题意识进行培养,让学生将学习、阅读、课堂中的无法理解的内容以问题的形式提问,以培养其问题意识,而教师则是可以让学生通过小组合作探讨的方式,让学生对问题进行思考与探索,加强学生之间的交流与沟通,为进一步提高其自主学习能力奠定有利基础。

二、鼓励学生自主发现问题并进行探索得出结论

新时期,传统教学模式已经无法满足现下教育部门对于初中课堂教学的要求,同时要求教师必须尊重学生的主体地位,且要以培养学生的个人能力、开发学生思维为目标而开展各项工作,这就需要初中数学教师及时改变教学方式、教学模式等,以适应当前教育需求。为了帮助学生实现自主构建知识,教师在实际教学的过程中,需要充分发挥自身引导作用,鼓励学生勇于提问、发现问题,并充分利用自身所掌握的数学知识对问题进行自主探索,使得学生可以通过自己思考,来学习相关知识,并深化对于数学知识的理解。例如,教师在为学生讲授《点、线、面之间的位置关系》这一部分内容时,可以通过话语对学生进行引导:“在我们生活中,点、线、面是非常常见,那么在你们的生活中会遇到哪些与点、线、面相关的事物呢?”由此来引起学生的思考,在学生指出这些存在于生活中的点、线、面时,教师又可以引导学生对这些事物的特点进行概括,从而总结出有关点、线、面位置关系的相关性质,让其在思考与探索中得出结论,培养其思维能力与自主学习能力,从而实现自主构建知识。

三、引导学生得出结论后进行反思,实现自主构建知识

在学生通过思考与自主探索得出结论以后,并不意味着教学环节就此结束,教师还需要结合学生的实际情况、思维情况等方面,引导学生进行反思,做到学与思之间的相互结合。通过引导学生进行反思,有助于进一步加强学生对相关数学知识的理解,而学生也可以对自己从提问、思考、探索、得出结论的整个过程进行思考,以便于学生及时发现自身问题。为了使学生今后的努力方向更加明确,初中数学教师应根据实际情况,对学生进行全面、综合性的评价,在肯定其思想上闪光点的同时,指出学生在思考、探索过程中存在的偏差,促使学生在今后思考的过程中加以改正,对于培养学生良好的思维能力、自主学习能力等方面具有重要意义。此外,通过对整个过程进行反思,还可以帮助学生发现知识之间的内在联系,从而为其构建完成的知识脉络奠定有利基础。

四、结束语

综上所述,在时代发展的过程中,传统教学模式无法适应当前国家教育部门对于学生各方面的要求,且教学手段的滞后性也会在一定程度上限制人才培养有效性的进一步提升,而中学作为培养学生思维能力、自主学习能力的重要阶段,对于学生今后学习与发展具有重要影响。这就需要初中数学教师充分利用课堂教学时间,引导并帮助学生实现知识的自主构建,深化学生对于各项数学知识理解,并在知识之间建立起联系,从而有效提高课堂教学质量。

参考文献:

[1]马贤.初中数学自主学习能力的培养[J].学周刊,2017,(28):99.

[2]党晓红,徐大贵.初中数学教学中学生自主学习方式初探[J].中国校外教育,2017,(07):61.

[3]肖瑶.中学数学教学中培养学生探索和自主学习的能力[J].现代妇女,2014,(02):116.

作者:沈爱华 单位:江苏省连云港市海庆中

论文格式要求一篇完整的论文应包括如下四部分:第一部分:正文之前(1)题目(2)作者(3)数学系 级 专业 班(4) 指导教师 名字空一行(5)摘要(中文)200字以内;(6)关键词3—5个空一行第二部分:正文(1)引言;(2)主要结论和必要的论证.(可分成若干节讨论)第三部分:参考文献:应依引用次序编号,注意书写的规范性.例1:[1]陈世明.一类半线性双调和方程的整体解,应用数学[J],1994,7(1):85—92说明:其中,[1]是文献出现的序号,陈世明是作者名,"一类半线性双调和方程的整体解"是论文的题目,"应用数学"是杂志的名称,[J]表示杂志,"1994,7:85—92"表示发表的年份,卷,期,页(起止)码.例2:[3]华罗庚.数论导引[M].北京:科学出版社,1985说明:其中,[3]是文献出现的序号,华罗庚是作者名,"数论导引"书的题目,其后加[M]表示这是一本书,"北京:科学出版社"表示出版地点和出版社,"1985"表示出版的年份.第四部分:英文部分(1)英文题目(2)作者姓名(拼音字母)(3)数学系 级 专业 班(4)指导教师 名字(3)英文摘要;(4)英文关键词.二,文字字体要求:用A4纸打印,其中(1)题目用2号宋体(粗);(2)小标题用4号黑体;(3)其他用5号宋体(中文)(英文用5号Times New Roman);(4)其他未说明的问题(如脚码,脚注等)按一般科技论文格式要求三,其他论文一律采用Word文档或Latex文档形式打印编排(尤其是符号,字母要用数学形态);要用统一的封面;在左侧装订.例文:活动片段展示: 我首先通过一个活动让学生进行操作,使学生亲身体验知识的形成。 师:小朋友们到野外秋游,带了三箱矿泉水,回来时只剩下一部分(黑板出现一箱9瓶,别外还有7瓶),请小朋友们算一算剩下的矿泉水有几瓶?请你们用小棒来代替矿泉水来数一数。 生1:我是1瓶1瓶地数……一共16瓶。 生2:我是2瓶2瓶数……一共16瓶。 生3:我是4瓶加5瓶加7瓶一共16瓶。 生4:我是先拿1瓶和9瓶合起来是10瓶,10瓶和6瓶合起来是16瓶。 (老师有意识地抽出各种数法的代表来比赛看谁数得快) 师:老师现在请三位小朋友来同时数一数老师这里一共有几朵花。(出示红花9朵,黄花8朵,分三组来数) 师:哪个小朋友数得最快?为什么他数得这么快?哪种方法好? …… 教学反思 上面的教学片段,我改变了以往教学中通过事先的设计一环一环、一层一层引着学生走,整个教学程序成了一部“教案剧”。而是从学生学习实际出发,组织和引导学生进行探索研究,较好地体现了现代数学教学的基本理念。 1、把学生当作研究者,满足学生心理需要。 苏霍姆林斯基说进:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界里这种需要特别强烈。”小学生天生就有强烈的好奇心和求知欲。在以上教学片段中,我正是从这一特点出发,让小学生在活动中学习数学,重视学生学习的过程,让学生亲身体验知识的形成和发展,而不是单纯地把凑十法强加给学生,因为这些算法都是学生在动手操作、自主探索、动脑思考获得的。这样教学,学生的好奇心和求知欲得到了满足,并能感到自己是个研究者、发明者,体验到学习成功的快乐。 2、为学生创造条件,引导学生探索发现。《新课标》指出:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验的基础上。教师应激发学生的学习积极性,向学生提供充分从事教学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”对一年级学生来说,他们对数数已经掌握了很多种方法,因此在教学中我不是简单的用一种方法强加学生掌握,而是引导、实践、探索,发现,虽然有些学生认知水平存在一定差异,他们不是用很优化的方法,但通过他们的亲身体验,感悟,也能发现其它方法比自己的方法好。这种多向交流,为学生创造了生动、愉悦、和谐的学习氛围,使每一位学生都能在自主探索中获得成功。 3、使学生学会学习,渗透数学思想方法。 爱因斯坦曾经说过:“在一切方法的背后,如果没有一种生机勃勃的精神,它们到头来不过是笨拙的工具。”这里的精神就是对方法的本质认识,即数学思想。学生在学习活动中一旦把数学精神、数学的思维方法、研究方法、推理方法等铭刻于头脑中,那么不管他今后从事什么工作,将会使他受益终身。正是鉴于这样的认识,在上面的教学片段中,我为学生创设了自主探索的时空,让他们像从事科学研究那样经历:“操作----发现”的过程。在这一过程中培养了学生的思维能力、口算能力,更为重要的是学生在这一过程中运用了数学思想和方法,体验到计算过程中的优化意识,促使学生在掌握知识与基本技能的同时,体会知识的产生、形成与发展的过程,获得积极的情感体验,为后继学习乃至于他们的终身发展奠定了基础。例文:随着九年制义务教育阶段数学教材的改革,“通过义务教育阶段的数学学习,使学生能够具有初步的创新精神和实践能力”的创新教育已成为数学教学的一个重点,在实际教学过程中对学生创新能力的培养,已引起广大数学教师的高度重视,如何培养学生创新能力,找到培养和发展学生创新能力的有效途径,在数学教学中愈来愈显得重要。本人在具体的数学教学过程中,注重了学生创新能力的培养,该文就“学生创新精神的培养和创新能力的发展”的几点做法和体会表述如下:一、数学教师的创新意识是培养学生创新能力的首要条件教育本身就是一个创新的过程,教师必须具有创新意识,改变以知识传授为中心的教学思路,以培养学生的创新意识和实践能力为目标,从教学思想到教学方式上,大胆突破,确立创新性教学原则。(一)克服对创新认识上的偏差。一提到创新教育,往往想到的是脱离教材的活动,如小制作、小发明等等,或者是借助问题,让学生任意去想去说,说得离奇,便是创新,走入了另一个极端。其实,每一个合乎情理的新发现,别出心裁的观察角度等等都是创新。一个人对于某一问题的解决是否有创新性,不在于这一问题及其解决是否别人提过,而关键在于这一问题及其解决对于这个人来说是否新颖。学生也可以创新,也必须有创新的能力。教师完全能够通过挖掘教材,高效地驾驭教材,把与时代发展相适应的新知识、新问题引入课堂,与教材内容有机结合,引导学生再去主动探究。让学生掌握更多的方法,了解更多的知识,培养学生的创新能力。(二)建立新型的师生关系,创设宽松氛围、竞争合作的班风,营造创造性思维的环境罗杰斯提出:“有利于创造活动的一般条件是心理的安全和心理的自由”。首先,要使学生积极主动地探求知识,发挥创造性,必须克服那些课堂上老师是主角,少数学生是配角,大多学生是观众、听众的旧地教学模式。因为这种课堂教学往往过多地发挥教师的主导作用,限制了学生创造性思维的发展。教师应以训练学生创新能力为目的。保留学生自己的空间,尊重学生的爱好、个性和人格,以平等、宽容、友善的态度对待学生,使学生在教育教学过程中能够与教师一起参与教和学中,做学习的主人,形成一种宽松和谐的教育环境。只有在这种氛围中,学生才能充分发挥自己的聪明才智和创造想象的能力;其次,班集体能集思广益,有利于学生之间的多向交流,在班集体中,取长补短。课堂教学中有意识地搞好合作教学,使教师、学生的角色处于随时互换的动态变化中,设计集体讨论、查缺互补、分组操作等内容,锻炼学生的合作能力。特别是一些不易解决的问题,让学生在班集体中开展讨论,这是营造创新环境发扬教学民主环境的表现在班集体中。学生在轻松环境下,畅所欲言,各抒己见,学生敢于发表独立的见解,或修正他人的想法,或将几个想法组合为一个更佳的想法,从而在学习过程中,培养学生集体创新能力。值得注意的是,任何合作,都不要让有的学生处于明显的从属地位,都是应细心把握,责任确定到每个学生,最大限度调动学生潜能。(三)教师应当充分地鼓励学生发现问题,提出问题,讨论问题、解决问题,通过质疑、解疑,让学生具备创新思维、创新个性、创新能力。教师运用有深度的语言,创设情境,激励学生打破自己的思维定势,从独特的角度提出疑问。鼓励学生进行批判性质疑。批判性质疑是创新思维的集中体现,科学的发明与创造正是通过批判性质质疑开始。让学生敢于对教材上的内容质疑,敢于对教师的讲解质疑,特别是同学的观点,由于商榷余地较大,更要敢于质疑。能够打破常规,进行批判性质疑,并且勇于实践、验证,寻求解决的途径,是具有创新意识的学生必备的素质。培养学生对复杂问题的判断能力,在课堂教学中随时体现。设计一些复杂多变的问题,让学生自己的判断来加以解决,或用辩论形式训练学生的判断能力,使学生思维更具流畅性和敏捷性,发表出具有个性的见解在课堂教学过程中,教师在每堂课里都要进行各种总结,也必须有意识地让学生总结,总结能力是一种综合素质的体现。培养学生总结能力,即锻炼学生集中思维的能力,这与培养学生的求异思维是相辅相成的,集中思维使学生准确、灵活地掌握各种知识,将它们概括、提取为自己的观点、作为求异思维的基础,保障了求异思维的广度、新颖程度和科学性。培养总结能力,课堂教学中要将总结的机会尽可能地放给学生,如总结一个问题总结一堂课的内容;总结一次讨论的结果;总结一次辩论的正、反意见等。每次总结,都挑选多位学生发言,要求他们说出自己的独特理解,不要众口一词,随声附和。总结完后,让学生提出自己发现的更深层次的问题,进一步延伸,拓展思维。二、学生的创新兴趣是培养和发展创新能力的关键教育学家乌申斯基说:“没有丝毫兴趣的强制学习,将会扼杀学生探求真理的欲望”兴趣是学习的重要动力,兴趣也是创新的重要动力。创新的过程需要兴趣来维持。(一)利用“学生渴求他们未知的、力所能及的问题”的心理,培养学生的创新兴趣。兴趣产生于思维,而思维又需要一定的知识基础。在教学中出示恰如其分的出示问题,让学生“跳一跳,就摘到桃子”,问题高低适度,问题是学生想知道的,这样问题会吸引学生,可以激发学生的认知矛盾,引起认知冲突,引发强烈的兴趣和求知欲,学生因兴趣而学,而思维,并提出新质疑,自觉的去解决,去创新。(二)合理满足学生好胜的心理,培养创新的兴趣。学生都有强烈的好胜心理,如果在学习中屡屡失败,会对从事的学习失去信心,教师创造合适的机会使学生感受成功的喜悦,对培养他们的创新能力是有必要的。比如:针对不同的群体开展几何图形设计大赛、数学笑话晚会、逻辑推理故事演说等等,展开想象的翅膀,发挥它们不同的特长,在活动中充分展示自我,找到生活与数学的结合点,感受自己胜利的心理,体会数学给他们带来的成功机会和快乐,培养创新的兴趣。(三)利用数学中图形的美,培养学生的兴趣。生活中大量的图形有的是几何图形本身,有的是依据数学中的重要理论产生的,也有的是几何图形组合,它们具有很强的审美价值,在教学中宜充分利用图形的线条美、色彩美,给学生最大的感知,充分体会数学图形给生活带来的美。在教学中尽量把生活实际中美的图形联系到课堂教学中,再把图形运用到美术创作、生活空间的设计中,产生共鸣,使他们产生创造图形美的欲望,驱使他们创新,维持长久的创新兴趣。 (四)利用数学中的历史人物、典故、数学家的童年趣事、某个结论的产生等等激发学生的创新兴趣。学生一般喜欢听趣人趣事,教学中结合学习内容讲述数学发展的历史和历史上数学家的故事,象数学理论所经历的沧桑,数学家成长的事迹,数学家在科技进步中的贡献,数学中某些结论的来历,既可以了解数学的历史,丰富知识,又可以增加学生对数学的兴趣,学习其中的创新精神。三、教师是保护学生创新能力发展的“监护人”(一)分清学生错误行为是有意的,还是思维的结晶。学生早求知的过程中属于不成熟的个体,在探索中出现这样或那样的错误是难免的,也是允许的。教师不要急于评价,出示结论,而是重在帮助弄清出现错误的原因,从而让他们以积极的态度去承认并且改正错误,与文过饰非相比在对待错误的态度上,这个不正是一种创新态度吗?作为教师对发展中的个体要以辩证的观点,发展的眼光,实行多元化的发展的评价。从客观上保护了学生思维的积极性,促使学生以积极的态度投入到学习中去。比如:教学中常见的“插嘴”,可理解为学生的不遵守纪律,也可以理解为学生思维快的表现,这就要看他们的动机是什么,再作结论。 (二)多给学生一些鼓励,一些支持,对学生的正确行为或好的成绩表示赞许。学生时期自我评价能力较低,常常默认教师的评价,而且常以教师的评价衡量自己在群体中的地位。同时,又常从成人的表情或语言判断对其的评价,带有一定片面性。因此,教师应对学生正确行为表示明确的赞扬,使学生明白教师对他们的评价,增强他们的自信心,使学生看到自己成功的希望。比如:教学中宜常使用表扬的语气词,如:“很好!”“太棒了!”“不错”“有进步”等等表示你的关注和赞许。(三)保护学生的好奇心。好奇是儿童与生俱来的天性,好奇是思维的源泉,创新的动力。因为好奇,学生有了创新的愿望,努力去揭开事物的神秘面纱,这种欲望就是求知行为在孩子心灵中点燃的思维的火花,是最可贵的创新性心理品质之一,但随着年龄的增长,好奇程度呈递减趋势,而创造性人才的特点却是永驻的,用好奇的眼光和心理去审视整个世界,每一个成才的人,必须保持这颗好奇的童心,教师对教学中学生好奇的表现应给予肯定。比如:对于学生“打破沙锅问到底”精神,应加以爱护和培养。教学实践中,学生创新能力的培养是多方位的,既需要教师的主导,也需要学生的主体,只有师生共同的配合下,才能教学相长.

在数学的哲学中,直觉主义可谓引起引起了现代学术思想的一次革命。数学与哲学的关系一是人们谈论的问题。以下是我整理的数学与哲学的论文的相关资料,欢迎阅读!

摘要:在数学哲学中,直觉主义可谓引起引起了现代学术思想的一次革命。虽然直觉主义可以追溯到康德,甚至柏拉图。然而,它是近现代的,20世纪前20年,它作为一个独立的数学哲学思潮而闻名。它是逻辑学哲学中的一次风暴逆袭,是经典数学的有力挑战者。直觉主义强调“构造”,出发于“心智”。直觉主义把整个自然数论视为整个数学的基础,直觉主义拒绝排中律和反证律,抵制实无穷而推崇潜无穷。随着计算机的产生和发展,直觉主义在数字构造中起到了积极的应用。同时,直觉主义对数学哲学的创新 教育 等方面都有着不可忽视的影响。

关键词:数学哲学 直觉主义 传统逻辑 布劳威尔

一、 “存在必须是被构造”——直觉主义的产生

直觉(intuition)一词意为未经充分逻辑推理的,直观的,直接领捂事物本质的思考。与H.柏格森、B.克罗齐、E.胡塞尔等人的直觉主义不同,我们这里所研究的“直觉”并不是指主体对于客观事物的一种直接把握能力,而是指思维的本能上的一种心智活动。在这里,直觉主义提倡的直觉,并非辩证唯物主义的“直观的感觉”,其本意是“先验的心智构造”,以此为出发点,形成了对数学对象“存在性”与“可构造性”等同的要求。[1]直觉主义哲学是一种反理性主义的唯心主义哲学思潮。数学研究中的构造主义是一种有关数学基础的观点,它主张自然数及其某些规律和 方法 ,特别是数学归纳法,是可靠的出发点, 其它 一切数学对象和理论都应该从自然数构造出来。[2]“存在必须是被构造”,这是直觉主义派最著名的 口号 。也因此,直觉主义是一种构造逻辑。直觉派认为,数学中的概念和方法都是必须可以被构造的,非构造性的证明不是直觉主义者能接受的。在数学领域中,集合论悖论的问题不可能通过对已有的数学作某种局部的修改和限制加以解决,而必须依靠一些可信的标准对已有的数学进行全面的审视和改造。直觉主义认为逻辑依赖于数学,而非数学依赖逻辑。数学建立在直觉的基础上。同时,直觉主义认为哲学、逻辑甚至计数等概念都比数学复杂得多,不能作为数学的基础,数学的基础需要更简单、更直接的概念,它就是直觉,直觉是心智的一项基本功能。[3]一位直觉主义数学家阿伦特·海廷(Arend Heyting)在他的论文《数学的直觉主义基础》中指出:“立即处理数学的构造也许是符合直觉主义者的积极态度了。这个构造的最重要基石是一(unity)的概念,它是整数序列所依赖的构造原则。整数必须作为单位(units)来看待,这些单位仅仅由于在这个序列中的位置而相互区别。”[4]61

直觉主义者认为,数学的基础在于数学直觉,在他们看来,建立在数学直觉之上的理论能使“概念和推理十分清楚地呈现在我们面前”,即“对于思想来说是如此的直接,而其结果又是如此的清楚,以致不再需要任何铸的什么基础了”(A·黑丁:《直觉主义导论》)。任何数学对象被视为思维构造的产物,所以一个对象的存在性等价于它的构造的可能性。这和经典的方法不同,因为经典方法说一个实体的存在性可以通过否定它的不存在性来证明。对于直觉主义者,这是不正确的;不存在性的否定不表示可能找到存在性的构造证明。正因为如此,直觉主义是数学结构主义的一种;但它不是唯一的一类。直觉主义的基本哲学立场是,数学是人类心智“固有”的一种创造活动,是主体的自身的活动,而不是对外在的描述.数学概念是一种自主的智力活动的结果,智力活动则是研究自明定律所支配的思想构造。[5]

二、颠覆传统逻辑,形式主义的逆袭——直觉主义的特点

直觉主义不承认实无穷,拒绝实际无穷的抽象。也就是说,它不考虑像所有自然数的集合或任意有理数的序列无穷这样的无穷实体作为给定对象。数学上的实无穷思想是指:把无限的整体本身作为一个现成的单位,是已经构造完成了的东西,换言之,即是把无限对象看成为可以自我完成的过程或无穷整体。数学上存在着潜无穷与实无穷之争,就如同哲学上存在着唯物主义与唯心主义之争。而且必将长时间的持续的争论不休。数学上的潜无穷思想是指:把无限看作永远在延伸着的,一种变化着成长着被不断产生出来的东西来解释。举个形象点的例子就是,构成一条直线的点有无穷个,并且这条直线永远延伸着,不会有终结的一天。它永远处在构造中,永远完成不了,是潜在的,而不是实在。按照全称和条件量词的标准直觉主义,一个证明就是这样的潜无穷结构,这可能是合理的。(达米特《直觉主义逻辑的哲学基础》)[4]142按照此观点,所有的自然数可以构成一个集合,因为可以将所有的自然数看做是一个完成了的无穷整体。很显然,直觉主义支持潜无穷的观点,即把无穷集合看成无限延伸着的序列。

直觉主义反对排中律,这意味着直觉主义者可能和经典的数学家对一个数学命题的含义有不同理解。排中律和同一律、矛盾律并称为形式逻辑的三大基本规律。传统逻辑首先把排中律当作事物的规律,意为任一事物在同一时间里具有某属性或不具有某属性,而没有其他可能。排中律同时也是思维的规律,即一个命题是真的或不是真的,此外没有其他可能。例如,说A 或 B, 对于一个直觉主义者,是宣称A或B可以证明。但是,对于排中律, A 或 非 A, 是不被允许的,因为不能假设人们总是能够证明命题A或它的否命题。

直觉主义主要对抗的是形式主义。多个世纪以来,对数学规律的无懈可击的精确性的信念的依据是数学哲学研究的主要对象。直觉主义表示,精确性存在于人类心智之中,形式主义者认为,存在于纸面上。[4]90

直觉主义具有非逻辑性和整体性。数学直觉是作为逻辑的对立面而介定的一种认识方法,因此非逻辑性是数学直觉的最主要特性。可以说数学直觉的其他特性都是由它的非逻辑性所决定的,这是许多哲学家、科学家的共同见解。[6]直觉主义认为,数学是心灵的创造活动,心灵是丰富的,逻辑则是贫乏的。因此,坚决不能用贫乏的逻辑规则来全面准确地规划丰富的心灵活动。直觉主义的另一位代表人物阿伦特?海廷(Arend Heyting)说:“逻辑属于应用数学”。在对于直觉主义整体性上,一个日本数学家有如下精辟的解释:当一个人已经长期而持续地从事了研究并已成为一个完全成熟的研究人员时,他就已经在自己的头脑中形成了一种相对稳定的知识体系。经过他自己的努力,这种知识体系已被综合成为一种特殊的,确定的形式。而且自己综合的工作当然本身就是一种极有价值的 经验 。[7]

彭加勒在《数学中的直觉和逻辑》一文中写道:

哲学家告诉我们,纯逻辑永远也不能使我们得到任何东西;它不能创造任何新东西,任何科学也不能仅仅从它产生出来。在某种惫义上,这些哲学家是对的;要构成算术,像要构成几何学或构成任何科学一样,除了纯逻辑之外,还需要其他东西。为了称呼这种东西,我们只好使用直觉这个词。可是,在这同一谕后,潜藏着多少不同的意思呢?比较一下这四个公理:(1)等于第三个最的两个量相等;(2)若一定理对数1为真,假定它对N为真,如果我们证明它对N+1为真,则它对所有整数均为真;(3)设在一直线上,C点在A与B之间,D点在A与C之间,则D点将在A与B之间;(4)通过一个定点仅有一条直线与已知直线平行。所有这四个公理都归之于直觉,不过第一个阐明了形式逻辑诸法则中的一个法则;第二个是真实的先验综合判断,它是严格的数学归纳法的基础;第三个求助于想象:第四个是伪定义。直觉不必建立在感觉明白之上;感觉不久便会变得无能为力。[8]

值得注意的是,直觉主义不是神秘主义。直觉的“不可解释性”并不等于直觉的“神秘性”,尽管直觉是“不可解释”的,但它却有着确定的本质。我们认为,直觉是认识过程中的一种飞跃,因此它就不是一种经验的认识,而是原来的思想路线的中断,不可能按照通常的 思维方式 ,用结论和推理的环节把它连接起来,所以直觉是“不可解释的”。[9]

三、从Kant到Dummett,直觉主义派的主要人物及其思想

伊曼努尔·康德(Immanuel Kant, 1724-1804),从某种意义上来说,直觉主义是由哲学家康德开始的。1755到1770年,康德在哥尼斯堡大学教物理和数学,他认为我们所有的感觉都来自于一个预先假定的外部世界。虽然这些感觉不能提供任何知识,但是被感知到的物体间相互作用就产生了知识。心智将这些感觉梳理清楚,得到对空间和时间的直觉。康德说,感性直觉有两个纯形式,它们是先天知识的原则,这两个纯形式就是空间和时间。空间是外直觉的纯形式,而时间是内直觉的纯形式,它们都不是从外邻经验得来的,而是必然的、先天的观念。空间和时间不是客观存在的,而是心智的创作。心智理解经验,经验唤醒心智。虽然康德的思想有着直觉主义的影子,但是依旧没有直观地提出直觉主义,就数学基础的方法而言,直觉主义是现代的。[10]

亨利·彭加勒(常译作庞加莱,Henry Poincare,1854-1912),当代语境中的数学直觉主义的先驱。后人评价为数学哲学与当代数学直觉主义之间的一座桥梁。逻辑主义对于数学基础的理解是虚幻的。它使数学失去基础。然而数学的基础是存在的,它就是我们的直觉。它赋予数学以意义,从而给数学以对象。彭加勒指明了一座(本来就)架在人类精神和数学存在之间的桥梁,那便是我们的数学直觉。[11]彭加勒主张自然数是最基本的直觉,认为数学归纳法是一种包含直观的思维方法,是不能简单地归结为逻辑的。他主张使用有限个词能定义的概念,主张数学对象的可构造性。他还在另一种意义上理解和强调数学直觉,将其看做选择和发明的工具。彭加勒认为,我们有多种直觉。然而,最重要的可以归结为两类:一是“纯粹直觉”,即他通常所说的“纯粹数的直觉”、“纯粹逻辑形式的直觉”、“数学次序的直觉”等,这主要是解析家的直觉;二是“可觉察的直觉”,即想象,这主要是几何学家“形”的直觉。对于这两类直觉,他认为都是必要的,各自发挥着不同的作用。他认为,这两类直觉“似乎发挥出我们心灵的两种不同的本能”,它们像“两盏探照灯,引导陌生人相互来往于两个世界”。[12]

布劳威尔(,1881-1966),直觉主义真正的创始人和奠基人是布劳威尔。布劳威尔在数学上的直觉主义立场来源于他的哲学。1907年他在博士论文《数学基础》中提出直觉主义观点,认为数学的基础是先验的初始直觉。数学是起源于和产生于头脑的人类活动,不存在于头脑之外,因此,是独立于真实世界的。布劳威尔认为数学思维是智力构造的一个过程,它建造自己的天地,独立于经验,并且只受到必须建立于基本的数学直觉之上的限制。[10]布劳维尔发表的《数学基础》表明直觉主义的立场是强调“直觉”,这并不是说否认数学的逻辑性和严谨性,而只是突出直觉、灵感和创造力在数学中的地位。直觉主义者认为数学不仅是最讲究严格性的科学,也是最富有创造性的科学。布劳维尔认为数学的基础是先验的初始直觉,他和他的学生说他们所说的直觉正是人心对于它本身所构造的东西的清晰理解。[13]布劳维尔修改了康德的先验时空学说,放弃了“外直觉的纯形式”的先验时空概念,以适应非欧几何的发展;池把数学的基本直觉建立在“内直觉的纯形式”的先验时间概念的基础之上。[14]布劳威尔还提出了“二·一原则”(tow-oneness)。他认为这是数学的基本直觉。即假设N成立,则N+1成立。这个过程可以无限重复,创造了一切有限序数,因为“二·一原则”的元素之一可以被认为是一个新的“二·一原则”。布劳威尔认为,在这个数学的基本直觉中,联通和分离、连续和离散得到统一,并直接引出了线性连续统的直觉,即“介于”(between)的直觉。(布劳威尔《直觉主义和形式主义》)[4]93

阿伦特·海廷(Arend Heyting,1898-1980),他是布劳威尔的学生。继承了布劳威尔有关数学直觉主义的思想。他认为,直觉主义是从一定的、多少有点任意的假设出发的。它的主题是构造性的数学思想。这使得它处于经典数学之外。形式主义和直觉主义的差别在于,直觉主义的进行独立于形式化,形式化只能追随在数学构造的后面。逻辑不是直觉主义的立足点,数学构造在头脑中是很直接的,结论也应该是很清楚的,所以不需要任何基础。海廷主张,在描述直觉主义数学时,应当在日常生活中去理解。比如,在注视那边树木时,我确信我看到树木,而实际上光波达到我眼中,使我构造出树木这一信念需要相当的训练。这种观点是自然的。两个人说话,我向你灌输意见,实际制造了空气的震动。这是理论的构造。(阿伦特·海廷《论辩》)[4]77-88

迈克尔·达米特(又译米歇尔·杜麦特Michael Dummett,1925-2011),当代数学直觉主义学派的代表人物。达米特认为,数学首先是先验的,然后是分析的。达米特曾经从语言学角度和意义理论角度为直觉主义辩护。直觉主义关于数学陈述意义的解释避免了以真概念为核心概念的意义理论的不足,它把说话者关于数学陈述的理解与说话者使用这个陈述的实际能力结合在一起,因此具有很大的优点。从直觉主义关于数学陈述的意义说明出发,达米特提出了以证实为核心概念的新的意义理论的构想。[15]202达米特指出:“对于直觉主义逻辑来说,排中律的双重否定是有效的语义原则,就像二值逻辑认为排中律本身是有效的一样:断言任何陈述既不真也不假是不一致的。”[4]132

四、直觉主义的意义以及合理性

直觉主义对古典逻辑中的排中律和双重否定律等原理中的部分原则以及非构造性的结论持否定态度,也不承认数学中的实无限的对象和方法。数学的历史也表明,数学知识与理论不仅无法脱离对外部世界的永恒的依存关系,而且数学的错误不是通过限制数学,如排斥非构造数学和传统逻辑而得到克服的。数学真理的积累以及对谬误的抛弃是通过数学知识的不断增长和理论的不断完善获得的。一句话、数学的生命在于生生不息的创造过程中。庆幸的是,直觉主义由十其思想体系中某种先天的弱点而末成为数学的统治思想。但也应看到其构造思想的重要价值。[16]123-124可以说,直觉主义学派在本质上是主观和荒谬的,以直觉上的可构造性为由来绝对的肯定直觉派数学是不能真正解决问题的。但是,直觉主义揭示了经典逻辑只具有相对的真理性,在具体的数学工作中具有重要意义。

首先,数学哲学中的直觉主义学派高度认可直觉和个人的创造性思维在科学实践中的作用,推动了现代递归函数论的建立和发展,这无疑对数学的进步起到了很积极的作用。其次,直觉主义者倡导的构造性的能行性的研究方法,促进了人工智能和计算机科学的发展。这种积极探讨可行性方法在计算机数学以及计算机科学中具有重大的现实意义。第三,直觉主义数学哲学的思想方法在素质教育理论研究与实践上,具有宝贵的参考价值。在数学教育中,逻辑的作用很明显,其特征为,从已知知识出发,依据逻辑规则进行推导和演算,一步一步地达到对研究对象的认识。而直觉主义可以跳跃式地认知,虽然能一步得到正确答案,却无法说清楚其中的步骤。直觉主义虽排斥传统逻辑,但与逻辑关系十分密切,对培养良好的数学逻辑观念有着不可忽视的作用。另外,直觉主义有助于培养数学教育中大胆猜测的思维习惯。这种创新和探索精神有利于数学的进步和发展。

参考文献:

[1] 傅敏.直觉主义数学哲学研究及其对数学素质教育的启示[J].西北师范大学学报(自然科学版),1996(1).

[2] 诸葛殷同.对传统逻辑的有力挑战——评《经典逻辑与直觉主义逻辑》[J].哲学动态,1990(4).

[3] 柯华庆.直觉主义数学哲学的两个阶段[J].学术研究,2005(2).

[4] 保罗·贝纳塞拉夫(美),希拉里?普特南(美).数学哲学[M].北京:商务印书馆,2003.

[5] 黄秦安.数学哲学与数学 文化 [M].西安:陕西师范大学出版社,1999.

论文格式要求 一篇完整的论文应包括如下四部分: 第一部分:正文之前 (1)题目 (2)作者 (3)数学系 级 专业 班 (4) 指导教师 名字 空一行 (5)摘要(中文)200字以内; (6)关键词3—5个 空一行 第二部分:正文 (1)引言; (2)主要结论和必要的论证.(可分成若干节讨论) 第三部分:参考文献:应依引用次序编号,注意书写的规范性. 例1:[1]陈世明.一类半线性双调和方程的整体解,应用数学[J],1994,7(1):85—92 说明:其中,[1]是文献出现的序号,陈世明是作者名,"一类半线性双调和方程的整体解"是论文的题目,"应用数学"是杂志的名称,[J]表示杂志,"1994,7:85—92"表示发表的年份,卷,期,页(起止)码. 例2:[3]华罗庚.数论导引[M].北京:科学出版社,1985 说明:其中,[3]是文献出现的序号,华罗庚是作者名,"数论导引"书的题目,其后加[M]表示这是一本书,"北京:科学出版社"表示出版地点和出版社,"1985"表示出版的年份. 第四部分:英文部分 (1)英文题目 (2)作者姓名(拼音字母) (3)数学系 级 专业 班 (4)指导教师 名字 (3)英文摘要; (4)英文关键词. 二,文字字体要求: 用A4纸打印,其中 (1)题目用2号宋体(粗); (2)小标题用4号黑体; (3)其他用5号宋体(中文)(英文用5号Times New Roman); (4)其他未说明的问题(如脚码,脚注等)按一般科技论文格式要求 三,其他 论文一律采用Word文档或Latex文档形式打印编排(尤其是符号,字母要用数学形态);要用统一的封面;在左侧装订.

  • 索引序列
  • 论文参考文献参数
  • 论文参考文献数
  • 数学导数论文参考文献
  • 论文数字包括参考参考文献吗
  • 数论论文参考文献
  • 返回顶部