首页 > 医学论文 > 医学论文统计方法错误案例

医学论文统计方法错误案例

发布时间:

医学论文统计方法错误案例

不论是什么错,还是谁提出的,一经核实,原刊物会在以后的期刊中,给出勘误表或更正。如果是作者本人,发现的最好尽快与杂志社联系,予以更正,并附一封对读者的致歉信。

《河北省脑瘫患儿生存质量状况调查与经济负担评价_崔巍》文中 表计算错误。统计表核算“合计”结果是错的。按照表里的数据,计算一下就知道了。

杜院士是博士毕业马上要上院士在学校当老师的医生。

最近他老人家给我种草了统计学,三言两语我被问的一愣一愣的,感觉自己以前学的统计学都被狗吃了。

我决定要弱弱地回击一下。嗯,先扳回三十城吧。

好,开始。

是统计学方法必须描述的3方面内容。

SPSS (statistics package for social science) 和 SAS (statistical analysis system ) 是全世界学术界公认且最常用的两大统计软件包。

检验水准即—— 表示组间实际无差别而统计结果判断为有差别,犯这类错误的概率。实际工作中常取 ,表示本次研究计算所得 值必须小于 ,才能认为组间差异有统计学意义。 因而对于检验水准的描述多简化为 " " 。

统计分析方法的准确描述是科技论文科学性的关键所在。统计学方法一般包括 和 (即: 假设检验 ) 两部分内容。

统计描述主要是根据资料类型及原始数据分布类型,选择正确的指标描述资料特征。

资料类型分为 定量资料 和 定性资料 。

定量资料 是指对每个观察对象测得的某个指标 能够用具体数值表示 ,如:年龄、身高、每张切片的阳性细胞百分率等;

定性资料 指对每个观察对象测得的某个指标 不能用具体数值表示 ,仅反映观察对象的某一特征,如: 阳性、阴性,ABO 血型,治愈、显效、好转、无效等。

定量资料如果符合正态分布, 统计描述指标 可用 均数及标准差 ,一般描述为 “数据以均数±标准差表示” ;

定量资料如果不符合正态分布,则 统计描述指标 选用 中位数和级差 (即: 最大值和最小值之差)。

区分资料是正态或偏态分布,可以通过SPSS、SAS 统计软件程序判断,也可以通过目测数据是否有"极端值",即特别大或特别小的数据,进行判断。

定性资料的 统计描述 包括 率、构成比及相对比 。

率 表示单位时间内某现象或事物发生的概率,如发病率、死亡率等; 构成比 指事物内部某一部分的个体数与该事物各部分个体数的总和之比,表示各构成部分在全体中所占的比重或分布,不能说明某现象发生的频率或强度,如性别构成、疾病构成、死亡构成等。然而, 在实际应用中以构成比代替率很常见 。

科技论文中最常用的是 组间差异性检验 。假设检验方法很多,不同的科研设计类型及资料类型适用的检验方法有所不同。定量资料与定性资料常用的统计分析方法介绍如下。

定量资料的统计分析方法包括 参数法 和 非参数法 . 参数法——t检验、方差分析;非参数法——秩和检验。 选择的关键在于 资料分布类型 ,如果资料符合 正态分布且组间方差齐 (即各组标准差彼此接近) 则选用参数法,不符合则选用非参数法。 但在许多医学论文中经常忽略这两个条件,不考虑资料的分布直接采用t 检验或方差分析,由此得出的分析结果是不可信的,见例1。

例1: 为研究 、 肿瘤标志在喉癌患者手术前、后有无差异,分别检测了58 名患者前及术后 和 ,经配对 检验, 术前、后差异有统计学意义,结果见表1。

表1. 肿瘤标记物术前术后的检测*

与术前比较p值﹤

表中两指标 标准差 均相差达2 倍以上,提示 方差不齐 ,故 不宜采用t 检验 ,而适合采用 秩和检验 。 用于两组均数间的比较 ,包括两独立样本 检验、配对 检验和样本均数与总体均数比较的 检验; 用于两组或两组以上均数的比较 。然而,在许多医学论文中,对于3 组或3 组以上均数的两两比较,常 重复使用独立样本t 检验作比较 ,如例2。 这样会加大犯阳性错误的概率 ,即可能将无差别的两个总体均数判断为有差别。这点尤其需引起作者的注意,这也是医学科技论文中 滥用的重要表现之一。

此类资料正确的分析方法应是先进行方差分析,以确定这几组均数总体差异有无统计学意义;如果有统计学意义,则进一步采用 (任意组间两两比较) 或 (每个实验组与对照组比较) 以确定哪些组间差异有统计学意义。

例2: 为了解不同分化程度的下咽癌患者 表达阳性脉管的数目 表达阳性脉管差异,分别检测16 例高分化患者,15 例中分化者及13 例低分化者,作者采用独立样本 ,结果见表2。

表2 下咽癌组织中VEGFR- 3 表达阳性脉管与病理分级的关系

各组之间p 值﹥

定性资料整理与归纳后,主要分为3种类型,即 四格表资料 (只有2组,且结果变量为2分类变量,总络子数为4见表3)、 行×列表资料 (总格子数>4,见表4) 和 列联表资料 (又称双向有序资料,见表5)。 行×列表资料 又包括 单向有序资料 (即等级资料,2组或2组以上,结果变量为有序多分类变量,见表6)。不同资料类型采用的统计分析方法有所不同。

表3 四格表资料格式

表4 行×列表资料格式

表5 列联表资料格式

表6 单向有序资料格式

四格表资料χ2 检验医学论文中,四格表资料χ2 检验的应用很常见,但使用时应注意具体的应用条件。当总例数大于40,且每个格子的理论频数均不小于5 时,应用未校正的χ2 检验;如果总例数大于40,有一个格子的理论频数小于5 但大于1,采用校正的χ2 检验; 如果总例数小于40,或有一个格子的理论频数小于1,则采用Fisher 确切概率法。实际应用中,许多作者不考虑应用的前题条件,均使用未校正的χ2 检验,从而导致结果不可靠。行×列表资料χ2 检验行×列表资料χ2 检验主要用于多个率或构成比的比较。但此时要求所有格子中理论频数小于5 的格子数少于总格子数的1/5。如果大于1/5 ,则相邻格子应删除或合并后再计算。此时若需了解具体那些率之间差异有统计学意义,就需进行χ2 分割来确定。

单向有序资料此类资料如果是比较组间治疗效果差异有无统计学意义,则应采用秩和检验 。如果采用χ2 检验,仅表明各组的疗效构成差异有无统计学意义,因为此时只利用了每组构成比提供的信息,损失了有序指标提供的“等级”信息。这也是许多作者误用统计学方法的资料类型之一,需尤其注意。列联表资料χ2 检验此类资料特征为对同一组观察对象,分别观察其两种有序分类变量的表现,归纳成双向交叉排列的统计表,分析两个分类变量是否有相关联系的假设检验,采用行×列表χ2 检验。

如果需了解两变量有无相关性,或相关程度有多大,此时需作相关分析。 相关分析应报告相关系数及对该相关系数所作的假设检验P 值 。相关系数种类很多,选择时应根据指标类型来确定。如果是计量指标,则应选择 Pearson 相关系数 ; 如果是等级指标,则应选择 Spearman 相关系数 。

首先要明确“P 值< ”,习惯上称“显著”(significant) ,仅说明两组差异有统计学意义,并不能说明两组该指标相差很大,或在专业上有显著的(重要的)价值; 反之,P 值>,习惯上称“不显著”(non significant) ,不应误解为相差不大,或一定相等,仅说明从统计角度考虑这两组差异无统计学意义。为了不与一般意义上的“显著”、“不显著”相混淆,许多统计学家主张作结论时不用“是否显著”一词,而用“差异有无统计学意义”。

此外,根据统计结果得出专业结论不能太绝对化,因为统计结论均是概率性的,不是绝对的肯定或否定,本次研究统计结果是阴性,如果增加样本含量,组间差异可能就有统计学意义了。

综上所述,不同的统计分析方法均有其应用条件和适用范围,实际应用时,必须根据科研设计类型及变量类型选择恰当的统计分析方法,同时注意检查结果解释和专业结论是否同时满足专业和统计学要求。切忌将t 检验、χ2 检验视为分析资料的“万能工具”,盲目套用,导致文章的科学性降低。

1 设计方面的问题

11 分组没有严格遵循随机化原则研究对象的分组与抽样离不开随机化原则,在足够样本的前提下,随机抽样,随机分组,明确交代随机方法,各组样本量、基本特征等。随机不等于随便,有的作者滥用随机,只要抽样或分组,一概冠以随机,不描述随机方法,把随意、随便当做随机,使研究结果不可信。

12 无对照组或不合理医务科技工作者开展研究的目的就是验证假设是否正确,没有对照,无法做出判断。有的论文无对照组,没有对比观察,所得结论没有说服力。有的论文虽设有对照组,但不是严格的随机分组,组间缺乏可比性,如非同期对照,组间性别、年龄、患病状况不一致等。在实验组和对照组的可比性方面,两组例数要基本一致,否则没有可比性。

13 样本含量过少抽取恰当的样本量,结果才有可靠性。有些文章例数太少,这样抽样误差大,导致结果不可靠。研究对象变量标准差小的,样本可以小一些。观察计数指标的样本一般不少于20~30例,计量指标的样本不少于5~10例。有的作者仅仅观察了数例患者,就得出百分之多少的有效率,显然是不恰当的。

对于对比分析,样本太少得出的结果不可靠,往往随着样本量的增大而发生变化。

2 统计学处理不恰当在进行统计学处理时,首先要明白研究资料是计数资料还是计量资料,尽管是一个常识性的问题,但仍有不少作者搞混了。先分类再计数的资料叫计数资料,如A组30例,B组32例,可根据研究目的计算出阳性率、治愈率等。测定某项具体数值的资料叫计量资料,如身高、体重、脉搏、血压等许多物理诊断和化验结果。在医学科研论文中,计数资料最常用的统计学方法是检验,计量资料最常用的是t检验。在研究设计时,就应根据研究资料的特点,决定假设检验的方法。在处理资料时,因均数和标准差是用来描述正态分布资料集中和离散趋势的指标,可否采用均数±标准差描述研究资料的分布特征,首先要看资料是否是正态分布,如果资料不是正态分布或者方差不齐时,应对资料进行转换处理,使其符合正态分布,方差齐性后采用t检验或方差分析,达不到上述要求,用秩和检验。来稿中,不少作者不考虑适用条件,盲目使用t检验。造成统计学方法使用不当,结果不可靠。更有甚者,有的作者不分计数资料还是计量资料,乱用检验或t检验,其结果可想而知。这是无统计学常识或极不负责任的表现。

有的研究资料数据庞大,只能在表格描述中用阿拉伯数字或特殊符号表示与比较对象的P值,如 P>005 , P<005, P<001,无法一一给出具体的P值。但有的作者既不交代使用的统计学方法,也不给出具体的P值,直接列出 P<005或 P>005,认为差异有统计学意义或无统计学意义,使读者对无法判断结果的可靠性。正确的做法是写明使用的统计学方法,使用了什么统计学软件,如进行了校正检验。亦应说明。这才有说服力。

3 描述不严谨日常生活中对差异的判断与统计学上差异是否有统计学意义是两个完全不同的概念。我们主观上感觉差异不大,而经统计学处理差异可能具有统计学意义;主观上感觉差别很大,但经统计学处理差异可能有统计学意义。有相当数量的作者,在描述统计学结果时,常用差异显着或差异非常显着,易与日常生活中差异的概念混淆,使用差异有统计学意义或差异无统计学意义更为确切。

我们把检验水准设定为 a=005时就是以 P>005为界值,一般以 P>005, P<005, P<0O1 3个档次描述差异有无统计学意义即可,有的作者出现 P<0001,以强调差异的显着性。有的作者用 P>O01或 P<01来表示,是错误的, P>0O1既可能是 P>005,也可能是 P<005,二者有本质的不同。

4 统计符号使用不规范统计符号使用不规范是论文中经常出现的问题,把卡方检验中的 写成x或x2,丢掉平方或把希腊字母x写成英文字母x;把均数±标准差( ±s),丢掉z 上方的一横,既影响论文质量,又影响阅读效果。

5 统计表格不规范统计表格是论文的重要组成部分,表格是否符合统计学要求,对论文有重要影响。常见的问题有:

① 无表题;

② 表题过于简单或过于繁琐。不确切;

③ 横纵标目倒置,不符合语法规律;

④ 标目层次过多;

⑤ 线条太多。甚至左上角有斜线;

⑥ 表内同一栏目数字不对齐,小数点后位数不一致。

表题如同文章的题目,简明扼要,字数控制在15个字以内。表格左侧的标目叫横标目,相当于汉语的主语,表明相应横行内数字的涵义;纵标目位于表格的上方,相当于汉语的谓语部分,说明表格内相应纵行数字的'涵义。

主谓语倒置是统计表格最常见的错误,一般情况下主语做横标目,谓语做纵标目。统计表用三线表,即顶线、底线和隔开纵标目与表内数字的横线,必要时可在纵标目下加辅助线,其余线条一概省略。

统计表格和文字叙述相辅相成,互相补充,能用简洁的文字说明的,一般不用表格,文字描述不要和表格内容完全重复。表格要简洁明快,重点突出,让人一目了然,不要变成数字的堆彻。出现统计表前,要用简要文字描述或强调主要发现,不要把文字叙述放在表格后。

6 使用统计指标不当常见的问题是率与构成比、发病率与患病率、死亡率与病死率等的混淆。

61 把构成比当率构成比是说明事物或现象内部各构成部分的比重,构成比表示某事物内部各组成部分的比重或分布,单位为%,各组成部分之和应为100%。计算公式为:构成比=某组成部分的观察单位数/同一事物各组成的观察单位总数例如2011年某市围产儿死亡总数为18例,其中死胎7例、死产3例、新生儿死亡8例。其构成比分另0为3889%、1667%、4444%。

率为表示某种现象发生的频率或强度。常以%、/万或/lo万表示。计算公式为率=某时期内某现象实际观察单位数/同时期内可能发生该现象的观察单位总数,如共检测568名5~7岁儿童,患龋齿儿童314人,检出率5528%。

构成比和率都是相对数指标。有一篇题为某年某地区4种乙类传染病疫情分析。经数据处理后,作者认为,4种传染病的发病率依次为痢疾5453%(1546/2 835)、肝炎1619%(459/2 835)、乙脑921%(261/2 835)、流脑689% (569/28352007)。该资料是构成比,不是发病率。作者犯了以比代率的错误。

62 发病率与患病率发病率是指观察期内(年、季、月等)新发生某病的例数与同期平均人口数之比,强调在观察期内的新发病例数,常以‰、/7/或/lO万表示。其计算公式为:某病发病率等于某年(期)内所发生的新病例数除以同年(期)平均人口数乘1000%o。例如某地某年年平均人口数为2500人,白喉发病28人,该地白喉年发病率为1120%0。而患病率则指观察时点的某病的现患病例数与该时点人口数之比强调的是该观察时点上某病的现患(新、旧病例)情况,常以百分率表示。有人调查16 875人,其中男性8 674人,沙眼患者7 632人,发病率为8799%;女性8 201人,沙眼患者6 210人。发病率为7572%。这样的结论当然是错误的,其所描述的结果应该是患病率。

63 死亡率与病死率这也是两个容易混淆的指标。某病死亡率是观察人群中某病的死亡频率。常以‰、/万或/10万表示;某病病死率是某病患者中因该病而死亡的频率。

一般以百分率表示。前者反映人群因该病而死亡的频率,后者反映疾病的预后。部分作者常将某病住院病死率误为某病死亡率。如重症监护室患者死亡情况分析一文中报道,颅脑损伤32例,死亡20例,死亡率为625%;严重心衰26例,死亡9例,死亡率为346%;严重肾衰竭18例,死亡11例,死亡率为611%。很明显,作者在这里是将住院病死率误作死亡率来讨论。

我们在编辑医学论文中经常会发现存在这样那样的统计学问题,致使文章质量下降,甚至无法刊用,十分可惜。提高统计学应用水平,减少统计学差错,是作者、审稿专家和编辑共同的责任。树立严谨的科学态度,选择正确的统计学方法,对提高科研水平,确保论文质量有着十分重要的意义。

医学论文统计错误案例

呵呵~~~没事,查到也是学校的责任,学校会帮你的,没事放心吧!

《中国电子商务》格式说明 [论文题目]作者A1作者B2[作者]1(单位A上海 210000)[单位] 2(单位B上海 210000)本规格为在《中国电子商务》上发表的科技论文而设定。请作者逐条阅读并落实,如不符合要求,将影响文章的发表。摘要的内容应包含与论文同等量的主要信息,一般应说明研究工作目的、实验方法、结果和最终结论等,而重点是结果和结论。电子商务格式说明信息化FORMAT DESCRIPTION OF COMPUTER APPLICATIONS AND SOFTWARE[英文题目]Zuo Zhe A1 Zuo Zhe B2 [英文作者]1(Editorial Department, Computer Applications and Software, Shanghai 210000,China) [英文单位]2(Editorial Department, Computer Applications and Software, Shanghai 210000,China) [英文单位]This specification is set for the theses to be published in Computer Applications and Software, including fonts, margins, page size and print area. Computer Format description Software [keywords] 引言 [标题1]采用Word 2000或Word xp格式排版,请同时提供Word版本和打印稿。[正文缩进]务请作者按照本规格编排论文。请直接使用样式,不要对样式作任何修改! 格式说明版心说明 [标题2]用A4纸,页边距上下左右已经设置好,请不要改动。论文题目一般不要超过两行。作者 关于作者中文名字的要求 [标题3]使用“作者”样式。姓名是两个字的,中间用一个中文空格或两个英文空格隔开。只有一个作者的,且作者姓名字数为三个的(包括三个的),姓名的每个字之间用一个英文空格隔开。 关于作者简介使用“收稿日期”样式。在文章的第一页右下角,可附一段说明,内容包括收稿日期、基金项目、第一作者姓名、职称、主研领域等。多个研究领域之间使用全角逗号隔开。一般保持在2行,如果高度不够,可作适当调整。单位使用“单位”样式。作者工作单位准确到系或学院等,要写全称。如:“清华大学计算机科学与技术系”不应简写为“清华大学计算机系”;“浙江大学计算机科学与工程学系”不应简写为“浙江大学计算机系”。单位是多个的写在多行中,可以用上标加以区分。在单位名称和城市名之间使用一个中文空格或两个英文空格隔开,在城市名和邮编之间使用一个英文空格隔开,不能用逗号。摘要使用“摘要”样式。中文摘要需写成200字左右的篇幅,摘要内容不能太简单,要有研究目的、方法、结果和结论等。摘要请采用第3人称的写法,且放在一个段落中。关键词提供3-8个关键词,之间用一个中文空格或两个英文空格隔开。英文题目使用“英文题目”样式。英文标题全部大写,一般不要超过两行。英文署名使用“英文作者”样式。两个姓名中间用两个英文空格隔开。姓氏第一个字母大写,单、双名第1个字母大写,双名中间不加连字符。例如: 李伟 Li Wei 张小军 Zhang Xiaojun英文单位使用“英文单位”样式。作者单位的中英文要完全对应。每个实词的首字母大写。在部门名称和单位名称之间、在单位名称和城市名之间使用英文逗号隔开,城市名和邮编之间使用一个英文空格隔开,不能用逗号。 Abstract使用“Abstract”样式。英文摘要需写成200词左右的篇幅,为了使本刊尽快实现国际化,所以要求英文摘要水平一定要高,内容要充实,要包括研究目的、方法、结果和结论等,与中文摘要可不完全对应。Keywords使用“Keywords”样式。提供与中文关键词对应的英文关键词。每个关键词之间用两个英文空格分开。每个关键词以一个单词的首字母大写,其余小写。 标题 一级标题使用“标题1”样式。用阿拉伯数字1,2,3…,数字之后没有任何符号,如小数点、顿号、逗号等。一般不超过一行。 二级标题使用“标题2”样式。前面冠之于一级标题,用阿拉伯数字表示,形如,,…。一般不超过一行。 三级标题及下级标题要求如同二级标题。形如,…。一般不超过一行。 四级标题使用“标题4”样式。形如,…。…。可以是多行。 标题文字标题为两个字的,如“引言”、“结论”等,两字中间用空格(一个中文空格或两个英文空格)隔开。 正文使用“正文缩进”样式。每个自然段开始时缩进两个汉字。

我搜到3篇文章,希望对你有所帮助医学科研设计中一个常被忽视的统计学错误辨析【作者中文名】 毕京峰; 段俊国; 【作者单位】 山东中医药大学; 成都中医药大学; 【文献出处】 时珍国医国药, Lishizhen Medicine and Materia Medica Research, 编辑部邮箱 2008年 10期 期刊荣誉:中文核心期刊要目总览 ASPT来源刊 CJFD收录刊 【关键词】 医学统计学; 科研设计; 【摘要】 统计学错误在既往的临床科研设计中是常见的,但一般易于发现和改正。笔者近期查阅相关医学科研论文发现,有一个统计学错误,其错误应用率很高,甚至许多统计专业人员也不例外。例:某研究者研究A药对高脂血症性脂肪肝大鼠的作用,设计了如下试验方案:建立高脂血症性脂肪肝大鼠模型,以高、中、低剂量去脂胶囊进行干预,通过血液生化检查,观察其对脂肪肝大鼠的血脂的影响。结果:去脂胶囊能明显降低脂肪肝大鼠血脂,与对照组比较差异有显著性意义(P<)。结论:去脂胶囊对大鼠脂肪肝有肯定治疗作用。在本设计方案中,研究者将A药高、中、低3个剂量组与甲硫氨酸片组和自然恢复组按多因素一水平的统计方法进行方差分析。仔细考察各处理组之间的关系,其实本研究主要涉及两个因素:A药治疗与甲硫氨酸片治疗,而A药高、中、低3个剂量组是A药的3个水平,而不是与甲硫氨酸片平等的3个因素。表1各组大鼠血清脂质比较(x-±s)mmol·L-1组别TC TG HDL-C自然恢复± ± ±药低剂量± ± ±药中剂量±... 【DOI】 CNKI:SUN: 医学科研论文中常见的统计学错误【作者中文名】 李祝华; 【作者单位】 白城市传染病医院 吉林白城; 【文献出处】 吉林医药学院学报, Journal of Jilin Medical College, 编辑部邮箱 2007年 02期 期刊荣誉:ASPT来源刊 CJFD收录刊 【关键词】 医学; 科研论文; 统计学错误; 【摘要】 科技论文常用统计学方法对资料进行加工、整理与分析,从而定性或定量地阐述一些理论或实验结果。现就一些医学期刊(1999~2000年度国家级期刊8种共60期)中出现错误的统计方法进行归纳分析,以提醒科技工作者在撰写科技论文时能合理应用统计学方法,准确地进行描述、估计、比较、预测与分析,尽量减少统计学方法的错误应用,提高科技论文的写作水平。1资料缺乏可靠性有的资料样本数量较少,有的作者选择的实验对象不具代表性,有许多人为因素,有个别作者根据自己主观期望判断结果,更有甚者有时更改实验数据,致使一些实验结果出现较大误差。2统计学方法缺乏科学性统计学方法比较多,如率、构成比、发展速度、显著性检验方法等。有时计算方法不当就能直接影响结果或造成误解。如率与构成比的联系与区别就常被人误解,也有的作者只看表面现象,不经统计学方法处理,就下结论。3统计量投入缺乏规范性科学恰当地计算统计量,才能正确反映事物的真实情况,但如果计算不当,则会出现假象或错误的结果。如未经标准化处理的资料就进行率的比较,由于两组资料的内部结构不同,结... 【DOI】 CNKI:SUN: 医学论文中常见的统计学错误及对策【作者中文名】 杨云华; 【作者单位】 天津市医学科学技术信息研究所 300050天津; 【文献出处】 中华医学科研管理杂志, Chinese Journal of Medical Science Research Management, 编辑部邮箱 2004年 02期 期刊荣誉:ASPT来源刊 CJFD收录刊 【关键词】 医学论文; 统计学; 常见错误; 对策; 【摘要】 分析医学科研论文中统计学方法应用中常出现的错误 ,提高编辑人员识别统计学常见错误的能力 ,确保科研论文的科学性、准确性和可信性 ,努力办成精品期刊。 【DOI】 cnki:ISSN:

算数据造假,但是已经毕业,应该不至于被取消学位。

硕士论文算错也就是数据造假。如果论文数据的确存在造假行为,那就存在被人发现的可能,一旦被查,将会受到相应的处罚。据统计,数据造假发生最多的领域,第一是医学, 其次是药理学。硕士论文一般是由学校保存,只有优秀的论文才能被知网等网络数据库收录。

但是在论文答辩之前要经过审核的,还是要注意一些为好。 对论文的认真程度,要看你的答辩组的老师态度了,还有硕士论文在毕业之后,还会经历一次教育部的抽查, 如果到那时被发现出了问题,就比较麻烦了。所以建议你如果数据可以得到真实的,就避免使用虚假数据。

论文数据重要性:

虽然审稿专家没有发现,但是并不代表论文发表出去后,别人发现不了。要知道论文发表出去,面向的是与你方向相同的人员,肯定会有不少同行业的人员阅读你的论文,若是发现错误,那么会质疑你的论文水平,也会怀疑杂志社及审稿专家的水平,对你今后在行业的发展并没有好处。

所以,一旦发现错误之后,就要及时联系杂志社或是审稿专家修改。尤其是医学方面的作者来说,任何一个小数的错误,可能都会影响整个研究实验,甚至会造成连锁反应。就拿药学论文来说,因为一个小数原则,可能导致某一项药品成分增加或是减少, 起到相反的作用,那么后果是非常严重的。

而对于一件机械零件的设计而言,可能因为一厘一毫的差别, 而导致一批零件无法投入使用。所以发现错误后要及时修改,这既是对自己,也是对他人负责的表现。

医学论文错误统计案例

中国光大(集团)总公司:你公司《关于报送企业集团统计报表的请示》(光京字[2003]67号)收悉。经研究,现批复如下:一、我局现行企业集团统计报表制度规定,国家试点企业集团和中央管理的企业集团统计报表由我局企业调查总队负责布置、收集。由于你公司属于中央管理的企业集团,因此你公司填报的企业集团统计报表应直接报送给我局企业调查总队,具体执行时间从今年半年报开始。二、《北京市统计局关于完善企业集团统计报表制度的通知》(京统发[2003]85号)要求你公司向其报送集团2003年年报和半年报的有关事宜,我局企业调查总队已和北京市统计局企调队进行了沟通,北京市企业集团统计的范围不再包括你公司,其所需资料由我局企业调查总队予以提供。国家统计局办公室二○○三年九月十五日

我搜到3篇文章,希望对你有所帮助医学科研设计中一个常被忽视的统计学错误辨析【作者中文名】 毕京峰; 段俊国; 【作者单位】 山东中医药大学; 成都中医药大学; 【文献出处】 时珍国医国药, Lishizhen Medicine and Materia Medica Research, 编辑部邮箱 2008年 10期 期刊荣誉:中文核心期刊要目总览 ASPT来源刊 CJFD收录刊 【关键词】 医学统计学; 科研设计; 【摘要】 统计学错误在既往的临床科研设计中是常见的,但一般易于发现和改正。笔者近期查阅相关医学科研论文发现,有一个统计学错误,其错误应用率很高,甚至许多统计专业人员也不例外。例:某研究者研究A药对高脂血症性脂肪肝大鼠的作用,设计了如下试验方案:建立高脂血症性脂肪肝大鼠模型,以高、中、低剂量去脂胶囊进行干预,通过血液生化检查,观察其对脂肪肝大鼠的血脂的影响。结果:去脂胶囊能明显降低脂肪肝大鼠血脂,与对照组比较差异有显著性意义(P<)。结论:去脂胶囊对大鼠脂肪肝有肯定治疗作用。在本设计方案中,研究者将A药高、中、低3个剂量组与甲硫氨酸片组和自然恢复组按多因素一水平的统计方法进行方差分析。仔细考察各处理组之间的关系,其实本研究主要涉及两个因素:A药治疗与甲硫氨酸片治疗,而A药高、中、低3个剂量组是A药的3个水平,而不是与甲硫氨酸片平等的3个因素。表1各组大鼠血清脂质比较(x-±s)mmol·L-1组别TC TG HDL-C自然恢复± ± ±药低剂量± ± ±药中剂量±... 【DOI】 CNKI:SUN: 医学科研论文中常见的统计学错误【作者中文名】 李祝华; 【作者单位】 白城市传染病医院 吉林白城; 【文献出处】 吉林医药学院学报, Journal of Jilin Medical College, 编辑部邮箱 2007年 02期 期刊荣誉:ASPT来源刊 CJFD收录刊 【关键词】 医学; 科研论文; 统计学错误; 【摘要】 科技论文常用统计学方法对资料进行加工、整理与分析,从而定性或定量地阐述一些理论或实验结果。现就一些医学期刊(1999~2000年度国家级期刊8种共60期)中出现错误的统计方法进行归纳分析,以提醒科技工作者在撰写科技论文时能合理应用统计学方法,准确地进行描述、估计、比较、预测与分析,尽量减少统计学方法的错误应用,提高科技论文的写作水平。1资料缺乏可靠性有的资料样本数量较少,有的作者选择的实验对象不具代表性,有许多人为因素,有个别作者根据自己主观期望判断结果,更有甚者有时更改实验数据,致使一些实验结果出现较大误差。2统计学方法缺乏科学性统计学方法比较多,如率、构成比、发展速度、显著性检验方法等。有时计算方法不当就能直接影响结果或造成误解。如率与构成比的联系与区别就常被人误解,也有的作者只看表面现象,不经统计学方法处理,就下结论。3统计量投入缺乏规范性科学恰当地计算统计量,才能正确反映事物的真实情况,但如果计算不当,则会出现假象或错误的结果。如未经标准化处理的资料就进行率的比较,由于两组资料的内部结构不同,结... 【DOI】 CNKI:SUN: 医学论文中常见的统计学错误及对策【作者中文名】 杨云华; 【作者单位】 天津市医学科学技术信息研究所 300050天津; 【文献出处】 中华医学科研管理杂志, Chinese Journal of Medical Science Research Management, 编辑部邮箱 2004年 02期 期刊荣誉:ASPT来源刊 CJFD收录刊 【关键词】 医学论文; 统计学; 常见错误; 对策; 【摘要】 分析医学科研论文中统计学方法应用中常出现的错误 ,提高编辑人员识别统计学常见错误的能力 ,确保科研论文的科学性、准确性和可信性 ,努力办成精品期刊。 【DOI】 cnki:ISSN:

以字数定框架

安瑞医学希望能解答您的问题,有更多医学sci疑问的朋友也可以私信我:医学sci论文在投稿中有以下10种状态:1. Submitted to Journal当上传结束后,显示的状态是Submitted to Journal,这个状态是自然形成的无需处理。2. With editor如果在投稿的时候没有要求选择编辑,就先到主编那里,主编会分派给别的编辑。这当中就会有另两个状态:① Editor assigned编辑分派② Editor Declined Invitation编辑拒绝邀请,这时主编不得不将投稿文章重新分派给其它编辑。3. Reviewer(s) invited说明编辑已接手处理,正在邀请审稿人中。有时该过程会持续很长时间,如果其中原因是编辑一直没有找到合适的审稿人,这时投稿者可以向编辑推荐审稿人。4. Under review审稿人的意见已上传,说明审稿人已接受审稿,正在审稿中,这应该是一个漫长的等待(期刊通常会限定审稿人审稿时间,一般为一个月左右)。当然前面各步骤也可能很慢的,要看编辑的处理情况。如果被邀请审稿人不想审,就会decline,编辑会重新邀请别的审稿人。5. required review completed审稿结束,等编辑处理,该过程短则几天,长则无期,科学堂有一篇文章出现required review completed状态已近一个月了,还是没有消息。6. Decision in Process到了这一步就快要有结果了,编辑开始考虑是给修改还是直接拒,当然也有可能直接接受的,但可能性很小,呵呵。7. Minor revision/Major revision小修/大修,这个时候可以稍微庆祝一下了,因为有修改就有可能。具体怎么改就不多说了,谦虚谨慎是不可少的(因为修改后一般会再发给审稿人看,所以一定要细心的回答每一个审稿人的每一个问题,态度要谦逊,要让审稿人觉得他提的每个问题都很有水准的,然后针对他的问题,一个一个的做出答复,能修改的就修改,不能修改的给出理由,而且都要列出来,文章的哪一段哪一行修改了最好都说出来,记住:给审稿人减少麻烦就是给你自己减少麻烦!另注:有时,审稿人会在修改意见里隐讳里说出要你仔细阅读某几篇文献,这时可要注意了,其中某些文章可能就是评审者自己发表的,这时你最好在你的修改稿中加以引用),修改后被拒绝的例子也多不胜数的。8. Revision Submitted to Journal修改后重新提交,等待编辑审理。9. Accepted如果不要再审,只是小修改,编辑看后会马上显示这个状态,但如果要再审也会有上面的部分状态。一步会比较快,但也有慢的。看杂志的。10. Rejected相信大家见了Rejected,都会很郁闷。但也不要太灰心,耐心将评审意见看完,一般评审者会给出有益的建议,相信看后你会有所收获。在投稿和审稿的过程中有可能出现的错误以及需要注意的问题是:发表的研究论文会给科研与创新带来新方法,为科学、技术与社会发展开辟新视野。本文分享下着名学者审稿和投稿经历,让投稿、审稿更轻松;相关经验总结如下:一、做研究决不能拖拉,有了idea一定要努力push,不管任务有多难,总是有希望完成的,一鼓作气,不到论文发表决不停歇(最好是还有后续工作); 二、论文投稿一定要及时,多少导师压着学生的paper不理不改不投,耽误了时机甚至影响其毕业? 三、即便是follow别人的研究工作,只要做的更加深入、系统、具体,总是能得到更为普遍的结论,也具有一定的发表价值,但是如果做的单薄,就难免被审稿人诟病而被拒稿; 四、审稿应该认真仔细些,不仅需要通读细读全文,也要提出准确中肯的意见,还得认认真真参照杂志审稿要求打分。试问有多少人认为光有审稿意见足矣,而打分只是随便打打的? 五、要学会从审稿意见中推测审稿人是谁,如果被拒稿,改投其他期刊后在建议审稿人里把之前可能是给好意见的那位加上,而对于给苛刻难以对付的审稿意见那位,就建议编辑规避,这样也许可以加速文章审稿和被接收的进程。目前, 国际一流SCI杂志基本都已采用了在线投稿方式。 常见的投稿系统有: ScholarOne Manuscripts, Editorial Manager, Elsevier Editorial System, EJPress, Open Journal Systems (OJS), 等等; 也有些出版者倾向于自己开发投稿系统, 如美国物理联合会出版社(AIP)的Peer X-Press, 英国物理学会出版社(IOPP)的Author Service and Referee Service, 等等。 这些在线投稿系统虽然界面风格各有不同, 但总体功能十分相似, 极大地方便了编者、作者、审稿人之间的联系与沟通, 对于提高出版效率、降低出版成本具有非常重要的作用。 在线投稿时应注意的事项主要有: (1) 应注意查询拟投稿期刊的最新要求, 以便在稿件的准备中尽早开始遵循期刊的习惯和格式。 (2) 投稿时应严格遵循期刊的相关要求, 按规定的程序填写或添加投稿信息, 如投稿信、摘要、文件类型、辅助信息、图件、建议的审稿人等, 以满足期刊的要求 (3) Email地址必须准确, 有些期刊要求主要作者和通信作者有相互独立的用户名和密码, 并且主要是与通信作者进行投稿及投稿后的联系, 这也是在投稿时需要注意的。 (4) 在投稿系统注册以后作者便拥有自己的网页, 该网页通常分为几个区域, 如投稿、查询已投稿件的状态、继续已经开始的投稿、传送修改稿、已录用稿件的出版阶段等, 因此, 对于特定的期刊(群), 应尽量保持自己唯一的用户名和密码, 以免导致混乱。 (5) 除了Email和FTP投稿形式需要一次性投稿外, 通过网页的投稿可以采取暂时保存的形式分多次完成投稿任务, 在最终递交稿件前, 投稿系统需要作者确认所有项目均已完成并且允许作者修改。 通常情况下投稿完成以后就不允许作者对已投的稿件进行修改, 除非编辑和出版商要求作者作某些修改。 (6) 投稿成功以后, 作者通常会收到一份来自编辑或系统的确认函, 作者可根据确认函提供的稿件编号跟踪稿件状态及进行投稿后的联系(如要求加快稿件处理速度), 可通过投稿系统规定的渠道或Email与编辑联络。

医学期刊统计错误案例

不论是什么错,还是谁提出的,一经核实,原刊物会在以后的期刊中,给出勘误表或更正。如果是作者本人,发现的最好尽快与杂志社联系,予以更正,并附一封对读者的致歉信。

幸存者偏差只是个简单的说法而已,并不是真正是幸存,更广的概念是Selection bias,选择偏差,在回报的时候有误,这种事情用统计学来统计,这种大数据,我觉得是非常不对的。

2022年11月24日,国际医学期刊《柳叶刀》编辑部对原湖北省武汉市金银潭医院院长张定宇、中国医学科学院北京协和医学院副院校长王健伟教授、中日友好医院副院长曹彬教授等人关于“新冠肺炎对患者健康的长期影响”的一篇研究论文发表关注声明。该论文披露了对2020年1月7日至5月29日期间自武汉市金银潭医院出院的1733例患者,在当年6月至9月期间完成的集中随访的研究结果。该论文发现,超过四分之三的COVID-19患者报告了发病6个月后仍有至少一个症状,比如疲劳或肌肉无力。《柳叶刀》编辑部上述关注声明称,《柳叶刀》编辑部在询问通讯作者后,于2022年11月7日被告知,涉事论文中使用的“数据集中的一些变量被错误地打乱了顺序”。“鉴于这些数据错误的程度,我们现在对‘6个月’论文发表关注声明,同时将进一步调查,包括对更正后数据的进一步统计和临床审查。”2022年11月24日,国际医学期刊《柳叶刀》编辑部发布的关注声明涉事论文的标题是《新冠肺炎出院患者的6个月临床结局:一项队列研究》,于2021年1月8日在线发表在《柳叶刀》上。该论文标明,曹彬、张定宇和王健伟贡献相同。曹彬为论文中标注的通讯作者。其中,曹彬的署名单位包括中日友好医院、呼吸与危重症医学科、国家呼吸疾病临床医学研究中心、国家呼吸医学中心。中日友好医院相关网页2021年1月11日发布的信息称,上述研究由武汉市金银潭医院、中日友好医院呼吸中心、国家呼吸医学中心和中国医学科学院病原生物学研究所共同完成。黄朝林、黄立学、王业明、李霞、任丽丽、谷晓颖、康亮、郭丽和刘敏为共同第一作者。该研究评估了COVID-19对患者的长期结局影响。“研究发现,76%的患者在发病6个月后仍有至少一个持续症状。疲劳、肌肉无力是最常见的症状,睡眠障碍、焦虑和抑郁也频繁出现。”“国家呼吸医学中心、中日友好医院和首都医科大学的曹彬教授表示:‘因为COVID-19是一种新发的疾病,我们才刚刚开始了解它对患者健康的长期影响。我们的随访研究表明,大部分患者在出院后仍然会继续受到该病毒的至少部分影响,出院后的医疗照护是非常有必要的,特别是针对住院时病情更重的患者。我们的研究也提示在更大的人群中进行更长期随访研究的重要性,以便了解该疾病可能对人体产生的全面影响。’这项随访研究于2020年6月16日至9月3日期间完成,入选了2020年1月7日至5月29日期间自武汉市金银潭医院出院的1733例患者。患者中位年龄57岁,中位随访时间为发病后186天。”中日友好医院相关网页上述信息称。《柳叶刀》编辑部关注声明针对的文章。该论文称,随访发现,76%的新冠肺炎患者在发病6个月后仍存在至少一个持续症状上述论文的署名作者有ChaolinHuang、LixueHuang、YemingWang、XiaLi、LiliRen、XiaoyingGu、LiangKang、LiGuo、MinLiu、XingZhou、JianfengLuo、ZhenghuiHuang、ShengjinTu、YueZhao、LiChen、DecuiXu、YanpingLi、CaihongLi、LuPeng、YongLi、WuxiangXie、DanCui、LianhanShang、GuohuiFan、JiuyangXu、GengWang、YingWang、JingchuanZhong、ChenWang、JianweiWang、DingyuZhang、BinCao。什么是新冠长期症状?在上述论文发表约一个月前,2020年12月,国际医学期刊《柳叶刀》发表社论称,“直面新冠长期症状困境”,并称,在2020年11月底举办的2020“柳叶刀-中国医学科学院医学与健康大会”上,“曹彬介绍了关于武汉COVID-19患者长期结局的情况,并警示,一些出院患者的功能障碍和并发症可能会持续至少6个月。我们称之为‘新冠长期症状’,这是一个迅猛发展的医学问题而且现在就需要采取行动来应对。”在上述涉事论文发表7个月后,2021年8月,曹彬、王健伟等人在《柳叶刀》上发表了对此前从武汉市金银潭医院出院患者中的1276名患者随访一年的研究结果。他们发现,“还存在至少一种后遗症状的患者比例从6个月时的68%下降到12个月时的49%。”论文的标题是《新冠肺炎住院幸存者的1年临床结局:一项纵向队列研究》。对1276名新冠肺炎出院患者随访一年的研究结果但该论文在首次发表后进行了更正。其更正后的版本最早于2022年5月5日发布在《柳叶刀》网站上。值得注意的是,上述“6个月论文”提及,在新冠肺炎发病6个月后,幸存者报告还存在至少一种症状的比例是76%。但上述“1年论文”提及的相关比例为68%。《柳叶刀》目前尚未披露其关切声明中提及的“数据不一致”是否为这一比例。《柳叶刀》编辑部2022年11月24日发布的上述关注声明称,“在收到了一位研究人员关于这两篇文章之间数据不一致的询问,我们向这两篇文章的通讯作者寻求解释。2022年11月7日,《柳叶刀》编辑部被告知,‘6个月’和‘1年’数据之间的不一致,是由于‘用于6个月的论文的数据集中的一些变量被错误地打乱了顺序’。鉴于这些数据错误的程度,我们现在对‘6个月’论文发表关注声明,同时将进一步调查,包括对更正后数据的进一步统计和临床审查。如有更多信息,我们将立即更新此通知。”此外,2022年5月11日,曹彬和王健伟作为共同通讯作者,在国际学术期刊《柳叶刀呼吸医学》上在线发表论文,报告了对武汉市金银潭医院新冠肺炎出院患者中1192人随访两年的研究结果。该论文称,从2020年1月7日至5月29日,2469新冠肺炎患者从武汉市金银潭医院出院。其中1192人在三次随访中完成了评估,被纳入最终分析;94%的人、1119人参加了感染两年后的面对面访谈。总体而言,新冠康复患者在首次感染后两年时的健康状况仍然差于普通人群,这意味着部分患者需要更长的时间才能完全康复。“还存在至少一种后遗症状的新冠肺炎幸存者的比例从6个月时的68%,显著下降到2年时的55%,疲劳或肌肉无力是最常见的症状。”该论文的标题是《新冠肺炎住院幸存者的2年健康结局:一项纵向队列研究》。该研究被媒体报道为“全球新冠最长随访”。对1192名新冠肺炎出院患者随访2年的研究结果此外,据《柳叶刀》微信公众号发布的消息,2021年7月17日,该期刊发表一项针对英国302家医院超过7万人的观察性研究,发现每两个COVID-19住院患者中会有一人出现至少一种并发症。“来自中日友好医院的曹彬教授及谷晓颖在一篇相关评论中写道:‘考虑到全球有大量的SARS-CoV-2感染者,COVID-19后急性期的公共卫生影响是巨大的。除了分析COVID-19后急性期整个临床疾病谱的多种表现之外,还需要在具有不同人口和临床特征的人群中开展进一步研究,以阐明COVID-19后急性期尤其是远期COVID-19的病理生理机制。此外,还需要研究血清学特征,以及急性SARS-CoV-2感染导致的免疫异常和炎症损伤对后急性期或长期COVID-19的影响。’”中日友好医院官网显示,曹彬,主任医师,教授,博士生导师,专业特长是诊疗呼吸系统感染;现任中日友好医院副院长、呼吸与危重症医学科主任兼呼吸与危重症医学科二部主任、临床医学研究所管委会主任、国家呼吸医学中心常务副主任、中国医学科学院呼吸病学研究院副院长;担任“国际流感和呼吸道病毒感染学会”委员、《ClinicalRespiratoryJournal》杂志副主编、《InternationalJournalofInfectiousDiseases》杂志编辑指导委员会委员、《中华医学杂志》及《中华结核和呼吸杂志》通讯编委。中国医学科学院北京协和医学院官网显示,王健伟,研究员、教授、博士生导师;2006年2月至今,历任中国医学科学院北京协和医学院病原生物学研究所副研究员、研究员、教授、博士生导师,克里斯托弗_梅里埃实验室主任、所长助理、副所长、院校科技管理处处长。2019年6月任副院校长、党委常委。上述信息称,王健伟主要从事重要呼吸道病毒感染致病机制与防治研究,曾获多项人才计划项目支持,系“艾滋病和病毒性肝炎等重大传染病防治”科技重大专项总体组成员、“生物安全关键技术研发”重点专项专家组成员;系中华预防医学会第六届理事会常务理事、Biosafety&Health杂志执行主编。

中国光大(集团)总公司:你公司《关于报送企业集团统计报表的请示》(光京字[2003]67号)收悉。经研究,现批复如下:一、我局现行企业集团统计报表制度规定,国家试点企业集团和中央管理的企业集团统计报表由我局企业调查总队负责布置、收集。由于你公司属于中央管理的企业集团,因此你公司填报的企业集团统计报表应直接报送给我局企业调查总队,具体执行时间从今年半年报开始。二、《北京市统计局关于完善企业集团统计报表制度的通知》(京统发[2003]85号)要求你公司向其报送集团2003年年报和半年报的有关事宜,我局企业调查总队已和北京市统计局企调队进行了沟通,北京市企业集团统计的范围不再包括你公司,其所需资料由我局企业调查总队予以提供。国家统计局办公室二○○三年九月十五日

医学论文统计学错误案例

不论是什么错,还是谁提出的,一经核实,原刊物会在以后的期刊中,给出勘误表或更正。如果是作者本人,发现的最好尽快与杂志社联系,予以更正,并附一封对读者的致歉信。

医学统计中的常见误区有哪些

医学统计学是运用概率论与数理统计的原理及方法,结合医学实际,研究数字资料的搜集、整理分析与推断的一门学科。医学研究的对象主要是人体以及与人的健康有关的各种因素。下面是我为大家带来的关于医学统计中的常见误区的知识,欢迎阅读。

一,真正差异和统计学差异

常常有人和我说: P值越小,试验结果的差异就越大!而且还有依据 [P < 是有显著性差异; P < 是有极显著性差异]。

其实,这些人忽略了 n 这个样本数的作用,n 的大小会影响 P 值。但更应该澄清一下的是: P 值代表的是统计学差异,并不是真正的差异!真正的差异只能靠平均值或者频度的比较才能得到。

二,卡方检验的局限性

我们知道各组之间的计数资料的比较,要用卡方检验,但有些情况是不行的!!!

1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!

2,当组与组之间有不同的背景,而这些背景因子还可能会影响到组与组之间结果差异,这是就必须要用 Mantel-Haenszel 检验!

这第2条可能大家不要理解,那我就举两个例子:

1) 关于男性和女性对于不同颜色的喜好的统计学分析

但这里应该注意到年龄可能会对这个分析造成影响,这就要用Mantel-Haenszel 检验了。

***红色 蓝色 黄色

男性 5 7 8

女性 15 10 6

可以按大人和小孩(比如我们以15岁为分界)分层,在SPSS中要把这个因素放到[行] [列]下边的[层化]一栏里,并在统计指标选项里,选 Cochran和Mantel-Haenszel的统计量选项,这样出来的结果就可靠了!

2)两种治疗(A和B)效果的评价分析:

*****A法 B法

生存 41 54

死亡 47 31

用卡方检验 X2=; P <

但是,病人的临床分期将影响着分析结果:

********生存**************死亡

——————————***——————————

————A****B————————A*****B———

1期-----18-----21--------------------0--------0-------

2期-----23-----33-------------------13------- 8-------

3期------0------0--------------------34-------23-------

再用Mantel-Haenszel检验: X2=; P >

说明实际上A法和B法两组的统计学差异,是这个不同的分期造成的!!!

1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!

讨论:当样本有小于5的值2X2表时,必须要用 Fisher 确切概率法。

当样本有小于5的值R×C表时,将某两组合并,用pearson卡方检验。

三,t 检验的局限性

1,我们经常用 t 检验来判别两组病人血清中某种标记物水平上的差异,但这里要注意,有一些血清标记物的水平是不能用 t 检验的!

比如: 血清标记物 PSA和AFP,在正常人的水平是很低的,而在病人则明显增加,呈现指数幂次改变,这样一来,血清 PSA和AFP水平在每组病人中很容易不是呈现正态分布!

这时应该用 非参数性检验---即 Mann-Whitney U test (Wilcoxon U test)。

2,关于用不用配对t 检验,我个人认为当同一组样本在不同时点,不同处理方式的比较上,应该用配对t 检验。

四,ANOVA 检验的局限性

1,在2组以上计量资料样本比较时,ANOVA 检验非常常用。但这个检验只是说明了一个趋势的比较结果,并不能说明真正的统计学差异,真正的`差异还要通过每两个点的直接比较,也就是说应该在ANOVA 检验后,还必须做两两比较或多重比较,这样才能从全貌上反映出统计的全部结果。

2,既然方差分析得到差别有显著性意义的结论后,还需进行两两比较,有人认为还不如一开始就进行多次t检验更方便,其实,这种认识是不妥当的。t检验用于ANOVA的两两比较将增大第一类错误,产生假阳性,因此要采用特定的方法,在SPSS的one-way ANOVA或General linear models中操作时,Post Hoc(多重比较)对话框内有多种方法可供选择,象两两比较一般用SNK法,而多个试验组和一个对照组的比较则多用dunnett检验。

3,我们经常用 ANOVA 检验来判别几组病人血清中某种标记物水平上的差异,但这里要注意,与 t 检验一样,有一些血清标记物的水平是不能用 ANOVA 检验的!

如上所说的: 血清标记物 PSA和AFP,在正常人的水平是很低的,而在病人则明显增加,呈现指数幂次改变,这样一来,血清 PSA和AFP水平在每组病人中很容易不是呈现正态分布!

这时应该用 非参数性检验---即 Kruskal-Wallis rank test 。

五,单元线性相关分析

有时我们常常只注意到了 P 值大小,可最重要的是 r 值!

样本数 n 对 P 值 结果的影响很大,容易让我们产生错觉,其实,相关的存在与否的评价是与 r 值最直接相关的,如下:

当 P 值小于时: r 值

几乎没有相关关系

弱的相关关系

有相关关系

强相关关系

极强相关关系

P 值只是证明这个相关在统计学上是否成立!!!

1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!

讨论:当样本有小于5的值2X2表时,必须要用 Fisher 确切概率法。

当样本有小于5的值R×C表时,将某两组合并,用pearson卡方检验。

不是说样本小于5

而是说:在R×C表中

理论频数不应该小于1,并且1≤T≤5的格子数不应该超过总格子数的1/5,若出现上述情况可以通过以下方法:

a.增加样本含量,使理论频数增大;

b.根据专业知识,删除理论频数太小的行和列;或者将理论频数太小的行或列与性质相近的邻行和邻近列合并。

c.改用双向无序的R×C表的fishher确切概率法。

还有一点

四格表卡方检验的适应指标:(T为理论频数)

1。n≥40,且T≥5时用卡方检验基本公式。但是当p≈α应该用fisher确切概率法

2。n≥40,但是1≤T≤5时,用四格表校正公式

3。n<40,或者T<1时,用fisher四格表确切概率法

4。四格表卡方检验的连续性校正仅仅用于自由度为1的四格表尤其是n较小时。

补充几点:

1. 关于P值:P值的大小并不是各组差异的大小,而是统计学差异显著性的大小。P值越小,说明得出各组没有差异的概率越小,越有理由说明各组存在差异(可以说,P值的大小反映了做出统计结论的“理由”的大小,而不是被比较的各组的实际差异的大小,得出有意义的结论后,其差异的大小可直接通过各组的均数或率进行比较)。

2. 关于t检验和方差分析:katalyster兄上面提到的t检验及方差分析在某些时候不适用,实际上就是每种方法都有其应用条件,不服从正态分布当然不能用。对这样的资料首先可考虑变量变换(如抗体滴度等资料,为指数或幂次的关系,可用对数转换),如变换后,服从正态分布,可用上述方法;若还不符合,则考虑非参数检验。

3. 关于相关分析:两个变量间是否存在相关关系,要看P值,而不是r值,r值用来说明相关关系的大小。当P<,才能讲两变量间存在相关关系,再看r值,r值越大,相关关系越强,反之越小;否则,P>,不能讲两变量间存在相关关系,r值毫无意义。

感谢kushuya, xiaoxiongzjh两位专家的补充和指正!之所以开这个专题,是真心想让初学者从这些<误区>中走出来!

六,Logistic regression 分析

在判断某因子对疾病的危险度时常用的方法。

1,假设要判断某因子对疾病的危险度(OR),要了解这个OR是一个相对危险度,即是有某因子存在和没有某因子存在之间比较的OR值。

2,OR 和 RR 不一样,OR是在Logistic regression model中使用,RR是在Cox proportional hazard model中使用。

3,假设要判断某因子对疾病的危险度,要在多变量Logistic regression model中校正一些混扰因素,如常见的年龄,性别,吸烟等等,并最后得出这个 Adjusted OR。但并不是说有了这些校正,我们就可以在实验设计上就不考虑这些混扰因素,相反,必须在实验设计上就把这些混扰因素在实验组和对照组配平,光靠在多变量Logistic regression model中校正是不可靠的。

其它方法---生存分析 (Kaplan-Meier法+ Logrank法):

我们有时在临床研究只注意到了用这种方法分析与生存相关的研究,其实,在疾病复发上也常用这种方法!前者是以生---死为判别,后者则以复发---不复发为判别。

你可以参考一下 《当代医学论文研究 》 里面很多这样子的文章

中国光大(集团)总公司:你公司《关于报送企业集团统计报表的请示》(光京字[2003]67号)收悉。经研究,现批复如下:一、我局现行企业集团统计报表制度规定,国家试点企业集团和中央管理的企业集团统计报表由我局企业调查总队负责布置、收集。由于你公司属于中央管理的企业集团,因此你公司填报的企业集团统计报表应直接报送给我局企业调查总队,具体执行时间从今年半年报开始。二、《北京市统计局关于完善企业集团统计报表制度的通知》(京统发[2003]85号)要求你公司向其报送集团2003年年报和半年报的有关事宜,我局企业调查总队已和北京市统计局企调队进行了沟通,北京市企业集团统计的范围不再包括你公司,其所需资料由我局企业调查总队予以提供。国家统计局办公室二○○三年九月十五日

  • 索引序列
  • 医学论文统计方法错误案例
  • 医学论文统计错误案例
  • 医学论文错误统计案例
  • 医学期刊统计错误案例
  • 医学论文统计学错误案例
  • 返回顶部