1、《医学库》
这是一款非常简单并且好用的医学工具,它能够为大家提供医学会议和医学培训,同时拥有海量的专业医学资讯供大家去学习和了解。
2、《医学界医生站》
你可以在这里学习到大量的临床经验。海量的视频可供大家去选择。同时还有考题考库和临床课程。当然也配备了医学工具和辅助临床的经验,让你不断成长。
3、《医学百科》
在这里你可以浏览词条和新闻,也可以搜索自己想要了解的知识,帮助你提高医学知识的掌握程度,同时还有细划分的栏目,帮助你进行系统化的学习。
4、《医学电子书包》
作为一款医学工具,它能够为你的成长护航,拥有着权威的教学模式和视频学习,各种学习资源都可以供大家去选择,同时还配备了数字教材和专业的培训。
5、《考试宝典》
在这里你可以体验到专业的医学考培资源,同时拥有海量的题库和专业的解析,帮助你提高医学掌握能力,还有备考干货和医考的各种资讯供你了解。
考试宝典,专注医学教育二十年,更多医学备考资料获取可点击:。
推荐第一个:3Dbody解剖,上解剖课必备神器;第二个:丁香园,学习讨论社区,有问题可以上去问问;第三个:YaYa医师,经验派教学代表,一流医院一线输出的教学内容,就冲这含金量可以多学学;第四个:医题库,考试看题\练习习题随身必备,不多说考试党强烈推荐;第五个:心电图普、轻盈医学等等
考试100啊,这里面有大量医学类证书考试的题库
查阅下载医学文献的网站:
1、万方医学网:网拥有220多种中文独家医学期刊全文、1000多种中文医学期刊全文、4100多种国外医学期刊文摘(全文以电子邮件原文传递方式获得,核心期刊全部收齐)。
2、中华医学期刊全文数据库:中华医学会系列杂志是国内外医药卫生界数量最多、影响最大、权威性最强的医学期刊系列,是我国广大医药卫生科技人员不可缺少的重要信息源。中华医学期刊全文数据库支持用户一站式检索到中华医学会系列杂志的全部资源,获得更全面、准确、随时更新的检索结果,数据库收录中华医学会出版的中文医学核心期刊189种。此外,中华医学会杂志社倾力打造了“中华医学知识库”,包括精选指南库、视频库、科研与写作库、名师讲堂、临床诊疗知识库、全科教育库和医学人文库7个子库。
3、中国生物医学文献数据库(CBM):学科涉及基础医学、临床医学、预防医学、药学、中医学以及中药学等生物医学领域的各个方面,是目前国内医学文献的重要检索工具。
4、中国知网:国内最大的知识库,覆盖学科全面。
5、文献党下载器():主要服务于科研人员的文献下载需求。整合汇集海量中外文献数据库,涉及学科全面,资源庞大。中外各科文献基本都可以查找下载到,包括sci-hub和谷歌学术下载不了的文献。适合没有数据库权限的人群。
6、PubMed: 是一个免费的搜寻引擎,提供生物医学方面的论文搜寻以及摘要的数据库。它的数据库来源为MEDLINE。其核心主题为医学,但亦包括其他与医学相关的领域,像是护理学或者其他健康学科。PubMed 的资讯并不包括期刊论文的全文,但可能提供指向全文提供者(付费或免费)的链接。
7、sciencedirect爱思唯尔(Elsevier):是医学与其他科学文献出版社之一。爱思唯尔出版2500余种期刊,包括《柳叶刀》 、《四面体》、《细胞》。39000多种电子书籍以及诸多经典参考书如《格雷氏解剖学》等。
8、Embase:是爱思唯尔(Elsevier)推出的针对生物医学和药理学领域信息所提供的基于网络的数据检索服务。内容涉及药学、临床医学、基础医学、预防医学、法医学和生物医学工程等。除了可以检索丰富的医学文献外,还支持药物和疾病检索。
9、OVID平台:包涵生物医学的数据库有临床各科专著及教科书、循证医学、MEDLINE、EMBASE以及医学期刊全文数据库等。提供60多个出版商出版的科学、技术及医学期刊1 000多种,与LWW、Adis等公司属于姊妹公司。
10、The Cochrane Library(考克兰图书馆):是the Cochrane Collaboration 的主要产品,汇集了关于医疗保健治疗和干预有效性的研究。它是循证医学的黄金标准,并且提供有关最新医疗的最客观信息。
11、ClinicalKey临床精钥:是信息分析公司爱思唯尔(Elsevier)推出的一个临床决策支持工具,帮助医生快速获取准确、简洁、世界前沿的循证医学知识。ClinicalKey拥有全球最大的医学信息资源库,涵盖所有医学专科。
12、UpToDate临床顾问数据库:是用于协助临床医生进行诊疗上的判断、决策的循证医学数据库。UpToDate覆盖了常见的 25 个临床专科,涵盖了诊疗全流程和全生命周期的绝大多数疾病及其相关问题,除了核心的临床专题外,UpToDate还提供多平台访问、智能搜索、图表导出生成PPT、重要更新、诊疗实践更新、患者教育、计算器和药物专论等多项功能。
13、Karger医学电子期刊:是由瑞士Karger出版社出版,每年出版约80余种高质量的学术期刊,大部分以英文出版,内容涵盖了整个生物医学领域,包括传统医学以及最新的医学热门课题。
14、Web of Science:是获取全球学术信息的重要数据库,它收录了全球13000多种权威的、高影响力的学术期刊,内容涵盖自然科学、工程技术、生物医学、社会科学、艺术与人文等领域。
15、公共科学图书馆(PLOS):是一家由众多诺贝尔奖得主和慈善机构支持的非赢利性学术组织,旨在推广世界各地的科学和医学领域的最新研究成果。
16、世界顶尖医学杂志的前四名:《柳叶刀》(The Lancet)、NEJM(新英格兰医学期刊)、JAMA 美国医学会杂志(The Journal of the American Medical Association)、BMJ《英国医学期刊》
17、世界四大名刊:《细胞》(Cell)、《自然》(Nature)、《科学》(Science)、《美国科学院院报》(PNAS)
18、谷歌学术:检索外文文献常用网站,包括了世界上绝大部分出版的学术期刊, 可广泛搜索学术文献。谷歌学术涵盖学科全面,可了解有关某一领域的学术文献;了解某一作者的著述,并提供书目信息(引用时必需的图书出版信息或期刊论文的刊名、刊期信息)。部分文献可直接下载。
19、Wiley:成立于1807年,是全球最大的学术出版商之一,有1600多种经同行评审的学术期刊,20000本电子图书,170多种在线参考工具书,580多种在线参考书,19种生物学、生命科学和生物医学的实验室指南(Current Protocols),17种化学、光谱和循证医学数据库(Cochrane Library)。
绝大多数的论文撰写,均需通过一定数量临床病例(或资料)的观察,研究事物间的相互关系,以探讨客观存在的新规律。如确定新诊断、新治疗等措施是否优于原沿用的方法,就需进行两种方法比较,这就涉及统计处理;统计设计又是整个课题研究设计中一个重要的组成部分。显然,经正确统计处理的结果可信度高,论文的质量也高。
大于也叫有意义???你才没学好,多元回归大于也是可以的多因素logistic分析的结果进行交互作用比较复杂的解释,看你是2分类数据还是多分类的
科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。
统计分析方法的选择:对于定量资料,应根据所采用的设计类型、资料所具备的条件和分析目的,选用合适的统计分析方法,不应盲目套用t检验和单因素方差分析;对于定性资料,应根据所采用的设计类型、定性变量的性质和频数所具备的条件以及分析目的,选用合适的统计分析方法,不应盲目套用χ2检验。对于回归分析,应结合专业知识和散布图,选用合适的回归类型,不应盲目套用简单直线回归分析,对具有重复实验数据的回归分析资料,不应简单化处理;对于多因素、多指标资料,要在一元分析的基础上,尽可能运用多元统计分析方法,以便对因素之间的交互作用和多指标之间的内在联系作出全面、合理的解释和评价。
excel只能做简单的数据处理,稍微难度些的建模分析,则需要用spss或者r等,一般毕业设计中都是不承认excel的吧
统计分析方法的选择:对于定量资料,应根据所采用的设计类型、资料所具备的条件和分析目的,选用合适的统计分析方法,不应盲目套用t检验和单因素方差分析;对于定性资料,应根据所采用的设计类型、定性变量的性质和频数所具备的条件以及分析目的,选用合适的统计分析方法,不应盲目套用χ2检验。对于回归分析,应结合专业知识和散布图,选用合适的回归类型,不应盲目套用简单直线回归分析,对具有重复实验数据的回归分析资料,不应简单化处理;对于多因素、多指标资料,要在一元分析的基础上,尽可能运用多元统计分析方法,以便对因素之间的交互作用和多指标之间的内在联系作出全面、合理的解释和评价。
科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。
绝大多数的论文撰写,均需通过一定数量临床病例(或资料)的观察,研究事物间的相互关系,以探讨客观存在的新规律。如确定新诊断、新治疗等措施是否优于原沿用的方法,就需进行两种方法比较,这就涉及统计处理;统计设计又是整个课题研究设计中一个重要的组成部分。显然,经正确统计处理的结果可信度高,论文的质量也高。楼主信不信由你,这篇文章就是在、创新医学网那摘录下来的。别的太多的我也复制不下来....
科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。
论文的数据分析怎么写如下:
首先,针对实证性论文而言,在开始撰写论文之前,必须要提前确定好数据研究方法。而数据研究方法的确定与选择需要根据大家毕业论文的研究课题来确定。
另外,大家也可以跟自己的的论文指导老师多多交流,尽可能多的了解更多关于研究方法的知识,以供自己选择。除此之外,大家还需要大量查找文献资料,见多识广有大量输入之后才能有所输出,本环节需要大家跟导师沟通商议后决定。
接下来一个比较重要的步骤是搜集和整理实验数据。在这一部分,很多同学朋友都会遇到各种各样的问题,比如,不知道去哪里找数据,找到的数据可靠性无法保障,需要的数据总是无法搜集全面等等各种问题。
那么在这里需要跟大家强调一下,推荐大家使用国家统计局、中国统计年鉴、国泰安、万方等等这些比较权威的网站去搜集数据资料。
在此需要注意的是,国泰安和万方等这些网站是需要收费的,上去看了一下,价格不是很亲民。
给大家分享一下,如果有些数据在国家官方网站确实找不到或者毕业论文所需的最新数据还没及时发布,推荐大家可以上某宝,因为某宝上电子版数据往往都很全面,而且价格大都可以接受。
在此提醒大家搜集到数据之后,一定要按照自己的习惯整理保存好,避免后期使用数据时出现差错。
excel只能做简单的数据处理,稍微难度些的建模分析,则需要用spss或者r等,一般毕业设计中都是不承认excel的吧
缺失值的处理:缺失值是人群研究中不可避免的问题,其处理方式的差异可能在不同程度上引入偏倚,因此,详细报告数据清理过程中缺失值的处理方法有助于读者对潜在偏倚风险进行评价。例如,瑞舒伐他汀试验在统计分析部分详细说明了缺失值的填补策略,包括:将二分类结局中的缺失值视为未发生事件;将生物标志物和心电图测量中的缺失值进行多重填补(multiple imputation);为了证明缺失值处理的合理性和填补结果的稳定性,研究还比较了多重填补与完整数据(complete-case)分析的结果。2、数据的预处理:实施统计分析之前往往需要将原始数据进行预处理,如:对连续变量进行函数转换使其更接近正态分布,基于原始数据构建衍生变量,将连续变量拆分为分类变量或将分类变量的不同类别进行合并等。医学论文应报告处理原始数据的方法及依据,瑞舒伐他汀试验即在统计分析部分描述了对血液生物标志物的对数转换。3、变量分布特征描述:确定统计分析使用的变量,并针对每一个变量的分布特征进行描述,是决定研究选用何种统计分析方法的基础。医学期刊虽然普遍对此提出要求,但作者往往套用常用方法,如:连续变量符合正态分布时,采用均数(标准差)描述,否则采用中位数(四分位间距)描述;分类变量采用频数(百分比)描述等。事实上,应根据研究设计类型、统计分析目的和数据特征选择恰当的描述方法。例如,CKB选择采用年龄、性别和地区校正的均值和率来描述人群分布特征,而非简单的报告连续变量的均数和分类变量的构成比。4、主要分析(primary analysis):指针对研究结局的统计分析,是研究论文的核心证据。因此,医学论文应详细描述主要分析的实施过程和适用性。在试验性研究中,应明确统计分析数据集、试验效应指标、相对或绝对风险及其置信区间的计算方法、以及假设检验的方法。
医学统计论文
医学统计是研究如何搜集、整理和分析医学研究对象的数据和作出推断的一门学科,下面是我为大家收集整理的是医学统计论文,仅供参考。
摘要: 不同的统计分析方法均有其适用的范围和应用的条件,研究者在书写医学论文时应根据论文设计及资料的类型进行合理的试验设计,选择恰当的统计分析方法,切记勿盲目套用。同时,还应注意得出的结果和结论应满足设计的要求。医学统计方法的正确运用,是充分利用试验研究获得的数据,也是最终得出科学、可信的结论的必要条件。
关 键词 :医学统计;方法;运用;原理;选择
一、统计学方法简介
统计学方法包括统计软件包、统计分析方法以及检验水准三方面的内容。其中医学论文中常提到检验水准即α,它是用来表示组间实际无差别而统计结果判断有差别,犯这类错误的概率。实际工作中常取α=,当研究数据计算的P值小于时,组间差异比较被认为有统计学意义。统计学方法包括统计描述和假设检验两个方面的内容。统计描述是指根据资料及原始数据分布的类型,选择正确的指标来描叙资料及数据的特征。而假设检验即组间差异性检验,是医学论文中最常用的统计学方法。资料类型则包括能用具体数据表示的定量资料与不能用具体数值表示但能反映被观察对象某一特征的定性资料。定性资料的统计描述包括率、相对比和构成比。而参数法及非参数法是常用的定量资料统计分析方法。参数法一般包括t检验、方差分析,非参数法常用的有秩和检验。
二、试验设计中的统计学原理
合理的试验设计与统计处理的可信度存在直接联系,研究者在编写医学论文时应对医学研究设计方法进行说明。在进行试验设计时应遵循随机、对照、均衡和重复四大原则。在进行试验设计的时候通常会涉及到研究对象的选择,研究对象的分组及选择合理的检测指标三个方面的内容。
医学论文就是通过对样本的研究来进行推断总体,找出其共性,得出结论。因此研究者在选择研究对象时应注意选择样本应具有一定数量,能反映出该事物的规律性特征,但又应注意例数不能太多,以免造成不必要的浪费。其选择的原则就是在保证试验结果可靠性的前提下选择最少的样本例数。研究者在选择样本对象后应对其基本特征进行详细的描述,比如患者的年龄、性别、病理分期、疾病诊断的标准等。此外在试验中所用到的试剂、仪器的型号、规格等都应作出说明,以供读者借鉴和做出判断。选定好研究对象后就要对其进行分组。在进行分组时研究者一般遵循统计学中的“随机分配”、“设立对照”以及“均衡”、“重复”的原则。随机化原则是提高组间均衡性的一个重要手段,也是资料分析时进行统计推断的前提。有对照才有比较,在进行组间比较时,应确定好处理因素与实验效应的关系。均衡性则是要使得对结果产生影响的非处理因素尽可能保持一致,这样才能保证对照的结果让人信服。观察实验效应的.指标主要有主观指标与客观指标。正所谓主观指标就是通过问答的方式调查受试者自己判断的主观感受;而客观指标则是通过仪器来检验和测量所得出的结果。在进行试验设计时应选择客观性较强、高灵敏性和精确性的指标。
三、统计学方法的选择
统计学方法的正确选择是直接影响到论文结论可信度的重要依据,因此研究者在编写论文时应注意选择合适的统计学方法。不同的统计学方法应用的范围不同。研究者在编写医学论文时常根据论文研究的目的、资料类型、试验设计的方案、样品大小、水平数、特定条件、数据分布特征以及综合分析等来选择对应的统计方法,同时还要根据专业知识与资料的实际情况,结合统计学原则,灵活地选择。当定性资料正态分布时,研究者一般用均数和标准差来表示统计描述指标;当定性资料不符合正态分布时,则可选用中位数及级差来表示;当定量资料正态分布且组间方差齐时一般选用参数法,反之则选用非参数法。t检验一般适用于小样本(n<50)的定量资料且方差齐的两组数据之间的比较。其特点是在均方差不知道的情况下,可以检验样本平均数的显著性,大样本(n≥50)采用u检验;多个样本均数两两比较则用方差分析,如差异有统计学意义,可采用q检验;Dunnett检验则适用于多个实验组与一个对照组均数的比较。定性资料中,表现为互不相容的类别或属性,分为二分类和多类反应,如治疗结果为显著和好转的人数等,该种资料可选用字检验,大样本(n≥50)时采用u检验。如:患者的治疗结果评定为痊愈、显著有效、好转、无效或死亡。该种资料可选用秩和检验或u检验。总之,不论论文中选用的是哪种统计学方法,都要计算出检验值,然后再根据统计量值来判定P值的大小,结论一般描述为“差异有(无)统计学意义”。
四、常见统计学方法的误用分析及对策
1.统计方法误用。最常见统计方法误用是对等级资料进行比较时应用秩和检验而误用卡方检验。例如:在评价采取不同治疗方法的两组急性脑血管病患者疗效中,治疗组显著有效、有效、无效三种分型分别为15例、10例、8例,对照组分别为14例、11例、9例。本资料例数较少,应选用等级比较的秩和检验,而有些作者却认为只要是率的比较就可以采用字检验。研究者在选择统计学方法时应根据相应的原则,对文章研究目的、资料类型、样品大小、水平数、数据分布特征等进行综合分析后,再来选择对应的统计方法。
2.选用检验方法错误。在有些论文中,作者常将本应用方差分析和q检验的误用t检验。t检验一般适用于小样本(n<50)定量资料且方差齐的两组数据之间的比较,而方差分析及q检验主要用于对多个样本均数进行比较,几种不同治疗或处理方法等的同时比较。例如:在讨论中、西以及中西医结合治疗急性脑血管病时,两组患者的年龄、病程、病情严重程度等差别均无统计学意义,比较三组患者的一些指标变化。组间多重比较应用q检验,但文中作者采用的是t检验,对三组均数进行两两比较。这不仅造成了资料的利用率低,也增加了假阳性的概率,降低了试验结果的可信度。
五、结论表述中的统计学应用
资料的统计处理不是医学研究工作的最终目的,而是通过统计学分析为研究结论提供依据或者线索。因此,在对统计资料进行分析后应把握统计学术语,对结论做出科学的分析跟解释。在根据统计结果得出专业结论时研究者应遵循一个重要原则,就是统计结论都是概率性的,不能绝对地肯定或否定。研究者习惯上将“P<”称为显著性,不应误解为差别很大或者在医学上有显著的价值。统计推断是以一定的概率界值为依据,说明来自同一总体的可能性大小。“差异有统计学意义”说明在试验中的差异不能用抽象误差进行解释;“差异无统计学意义”表明在试验既定的条件下,差异可能是因抽象误差引起的,在增加样本数量的情况下,差异可能变成“有统计学意义”。
参考文献:
[1]医学统计工作的基本内容[J].国际检验医学杂志,2013(19):2563.
[2]关红阳,郭轶男.医学统计t检验的分析研究[J].中国校外教育,2013(30):114.
是临床试验吗,一般的有Skpearman分析,分析软件、分析软件等