当前位置:学术参考网 > 发表卷积神经网络论文
本篇论文是神经网络大神JonathanLong与他的博士同学EvanShelhamer、导师TrevorDarrell的代表作,获得了CVPR2015年最佳论文奖。该文的核心贡献,在于提出了全卷积网络(FCN)的概念,它是一种可以接受任意大小图像并输出与输入等大的...
而研读卷积神经网络的经典论文,对于学习和研究卷积神经网络必不可缺。今天,给大家推荐一些资料,有论文、知识图谱。7份经典学术论文这些论文大部分都发表在计算机视觉顶级学术会议上。这7份论文资料,100p以上的内容体量。建议收藏学习。01resnet
AlexNet是卷积神经网络架构的起源(尽管可能会有人认为,1998年YannLeCun发表的论文才是真正的开创性出版物)。这篇名为“基于深度卷积网络ImageNet分类”的论文总共被引用6,184次,被公认为是该领域最具影响力的论文之一。
摘要:为了更好地帮助你理解卷积神经网络,在这里,我总结了计算机视觉和卷积神经网络领域内许多新的重要进步及有关论文。手把手教你理解卷积神经网络(一)手把手教你理解卷积神经网络(二)本文将介绍过去五年内发表的一些重要论文,并探讨其重要性。
卷积神经网络论文版.doc,卷积神经网络摘要:卷积神经网络是近年来广泛应用于模式识别、图像处理等领域的一种高效识别算法,它具有结构简单、训练参数少和适应性强等特点。本文从卷积神经网络的发展历史开始,详细阐述了卷积神经网络的网络结构、神经元模型和训练算法。
继“理解卷积神经网络的利器:9篇重要的深度学习论文(上)”文章,本文继续介绍过去五年内发表的一些重要论文,并探讨其重要性。论文1—5涉及通用网络架构的发展,论文6—9则是其他网络架构的论文。
严格意义上说cnn的提出是由yannlecun大神在1989年发表的backpropagationappliedtohandwrittenzipcoderecongnition这篇paper中正式提出他将反向传播用于neuralnetwork并且提出一种新的神经网络convolutionnn。.但是当时的硬体无法支持这么大量的运算随之整个神经网络学习停止...
一直都想梳理一下CNN网络结构的发展过程,却感觉无从下手,直到最近看到这篇文章:CNN网络结构的发展:从LeNet到EfficientNet。于是我便下决心依照这篇文章所述顺序,对卷积神经网络的发展历程做一次粗略的梳理…
大盘点|卷积神经网络必读的100篇经典论文,包含检测/识别/分类/分割多个领域,极市视觉算法开发者社区,旨在为视觉算法开发者提供高质量视觉前沿学术理论,技术干货分享,结识同业伙伴,协同翻译国外视觉算法干货,分享视觉算法应用的平台
卷积神经网络(CNN)在计算机视觉领域已经取得了前所未有的巨大成功,但我们目前对其效果显著的原因还没有全面的理解。2018年3月,约克大学电气工程与计算机科学系的IsmaHadji和RichardP.Wildes发表了论文《WhatDoWeUnderstandAbout...