我爱蟹爪兰
1.摩擦力.在光滑的冰面上开车肯定会滑倒 2.加速度.慢的速度肯定不能左右平衡 3.车身在行驶过程中车内有力,修正左右偏移 4重心在前轮重后轮重都可以达到平衡。最主要原因是轮胎高速独有的向心力提供了保持左右平衡的力,载体的加速度使得左右的倒的力变小。摩擦力,轮子向心力,加速度,左右重量平衡都不可或缺。一排三个轮子,一排四个轮子也可以保持平衡。
木本色计
最早期的自行车并没有轮胎,而是直接用木头轮子,但是使用者们发现这样一来,略微不平整的路面就使得自行车行驶得颠簸异常,而且路面对于轮子的磨损也十分明显,即便后期使用实心硬橡胶代替木头,其效果也不甚明显。后来开始使用空心橡胶作为轮胎材料,早期使用的是充水轮胎,而后来则渐渐发展成使用气体填充。总结:1、充气轮胎能够缓冲地面不平整对轮胎造成的冲击,使整个过程不会颠簸; 2、不同于实心轮胎,由于与路面作用得到缓冲, 充气轮胎造成的噪声也小得多; 3、充气轮胎上还可以保有纹路,使其与地面的滚动摩擦力增大,从而使得自行车更为省力; 4、橡胶轮胎本身的特性和充气的缓冲作用使其能够有较长的使用寿命; 5、充气轮胎使得轮胎整体质量更小(相比充水和实心而言),也使得自行车更为轻便。
诠释0525
独轮车也不倒.主要受四个方向的力重力,支持力,这两力大小相等方向相反,作用在一条直线上,一对平衡力,----车不下陷也不上升.驱动力,摩擦力,作用在一条直线上,前者大时车向前并加速,后者大于前者,车减速,当然这两个力是相互影响的,即摩擦力随着向前驱动力的减弱也逐渐减少.没有其它方向的力,或许有风,当有风阻力从侧面作用时,车身也会随着向这个力方向倾斜从而也产生一个和这个风阻力大小相等方向相反的力或者说是个合力所以不倒.
一知蓝色
两轮车辆行驶稳定性原理分析摘要:两轮车辆,比如自行车,是我们十分熟悉的代步工具。因其结构简单,制造和使用成本相对其他车辆更低,而且使用方便,极大的改善了人们的出行方式。但看似简单的结构却包含极为复杂的原理,至今仍无人能清晰合理地解答“两轮车辆在行驶时,具有良好的稳定行驶能力”的根本原理。关键词:两轮车辆;行驶稳定性;力矩轴1 引言两轮车辆(如自行车)早在17世纪就有使用记载(见图1)。 图1但“两轮车辆(如自行车),为什么能稳定行驶而不倒呢”,这个问题可能在绝大多数人脑子里面出现过。下面我们以自行车为例,来分析研究一下。 2 自行车行驶时能稳定不倒的传统理论原理介绍 首先介绍一下最常见和引用较多的“陀螺效应”原理。所谓陀螺效应,就是旋转着的物体具有像旋转中的陀螺一样的效应。陀螺效应有两个特点:进动性和等轴性。当高速旋转的陀螺遇到外力时,它的轴的方向是不会随着外力的方向发生改变的,而是轴围绕着一个定点进动。大家如果玩过陀螺就会知道,陀螺在地上旋转时轴会不断地扭动,这就是进动。简单来说,陀螺效应就是旋转的物体有保持其旋转方向和旋转轴线的惯性。这个效应的推崇者们认为,自行车行驶时,前后轮都会绕着各自的轴线旋转,具备“陀螺效应”,从而保证了自行车行驶时具有稳定性。其实不然,1970年,一位名叫大卫·琼斯(David . Jones)的英国科学家,通过制造一台消除陀螺效应的自行车,证明了“陀螺效应不是自行车行驶时能稳定不倒的根本原因”。本人用另外一个更加简洁的模型,来进一步验证“陀螺效应不是自行车行驶时能稳定不倒的根本原因”。在如图2所示的模型下,前后轮分别用两根轴支撑起来,但支撑轴与地面不固定,先用外力使前后轮具有较高的旋转速度,并用外部设备使得整个装置平衡,然后去掉外部稳定设备,即使前后轮高速旋转,具有很强的“陀螺效应”,自行车还是会很快倒下。另外,本人还用“履带”模型,简洁明了的证明“陀螺效应不是自行车行驶时能稳定不倒的根本原因”。 图琼斯推翻了“陀螺效应”原理后,提出了一个“前轮尾迹”的概念,他认为由于“前轮尾迹”的存在(见图3),一旦自行车发生倾斜,便会自动产生一个将自行车扶正的偏转角。 图3但是,2011年,《科学》杂志,发表了一篇有关自行车的研究论文,研究者们制作了一种既没有陀螺效应也没有前轮尾迹的自行车模型,试验结果表明,这样的“两无”自行车仍然能够稳定行驶(见图4)。 图4 上述2种最常见的解释“自行车行驶时能稳定不倒”原理,其实都未能从本质上解释说明清楚,但都有其积极意义,比如“前轮尾迹”让前轮具备了一个回正力矩,使得前轮回正性能更好,操纵性更好。 4 探索并构建新的理论模型从本质上分析,自行车能稳定行驶,必须具备两个必要的关键因素:驱动力及稳定的支撑点。驱动力很容易找到,是由人力最终转化为地面对轮胎的摩擦力,从而驱动自行车向前行驶。但稳定的支撑点有几个?在哪里呢?我们看看下图5。 图5很容易找到有A、B两个支撑点,但2个支撑点,无法支撑自行车平衡。所以,我们就看到自行车在静止状态下,必须要加一个支撑点才能稳定。然而,自行车在行驶过程中,没有看到第3个或者更多的支撑点,它仍然可以稳定的行驶,是否存在第3个或者更多无形的支撑点呢?答案是肯定的。客观世界的现象背后必然有其不可违背的规律,本人通过研究分析,提出“力矩矢量轴”,简称“力矩轴”的概念,不仅能解释“自行车行驶时能稳定不倒”,还能客观有效的解释很多其他现象。图6如上图6所示(简化版的自行车支撑示意图),直线行驶中的自行车,在原A、B两个支撑点的基础上,实际上又具备了一根“力矩轴”, “力矩轴”通过自行车质心Z,正是这根“力矩轴”,让行驶中的自行车,具备了良好的稳定性。“力矩轴”是怎么产生的呢?我们先以“自行车在水平路面直线行驶”时来进行分析(见图6,为了简便易懂),自行车两个轮胎的摩擦力f1、f2方向一致,并且与行驶方向一致,且到质心Z点的力臂均为H,自行车驱动力F=f1+f2。因此,F对质心Z点的力矩:M=F*H。力矩作用产生了“力矩轴”。“力矩轴”有其明显的特征,首先“力矩轴”是一个无形的矢量轴,此处用S表示,S值的大小与物体重量m及物体所受外力F成正比,与力臂H成反比,因此推导出经验公式如下:S=λ*m*F/H其中λ为力矩轴系数,与自行车所在地的引力场有关。“力矩轴”方向始终垂直于“受力点、质心Z及驱动力方向所组成的平面”,通过质心Z,并且符合“右手定则”。从图6也可以看出,此状态下“力矩轴”实际上平行于自行车行驶的水平面,相当于在无限远处,有2个支撑点C、D,始终平稳的支撑着质心Z,并且跟着质心Z随时移动,A、B、C、D四个支撑点,确保了行驶中的自行车,具备了良好的稳定性。下面我们再用“自行车在水平路面转弯”时来进行分析: 图7 如上图7所示,转弯时,前后轮所受的摩擦力方向不同。此时,前轮(转向轮)所受摩擦力f2,后轮所受摩擦力f1。支撑点A、质心Z以及摩擦力f1确定了“力矩轴”S1的大小和方向,“力矩轴”S1等同于在无限远处有C1和D1两个支撑点(如图7);支撑点B、质心Z以及摩擦力f2确定了“力矩轴”S2的大小和方向,“力矩轴”S2等同于在无限远处有C2和D2两个支撑点(如图7);综上分析,转弯时,自行车相当于有A、B、C1、C2、D1、D2六个支撑点,也是稳定的。但并不是“力矩轴”(或转化为效果等同的支撑点)越多,就越稳定,还跟“力矩轴”数量值大小有关,数值越大则越稳定,反之则越不稳定。同时,因为“力矩轴”S1、S2作为矢量,会最终合成为“力矩轴”S,最终也等同于是4个支撑点。当自行车行驶过程中,遇到外力等因素,比如突然遇到大坑或者碰到大石头,轮胎的摩擦力f1、f2瞬间就减少或者没有了,同时会受到坑或者石头较大的反作用力,原来维持自行车稳定行驶的“力矩轴”瞬间被削弱或者破坏,自行车行驶稳定性就会变差甚至直接倒地。分析到这里,可能有人会问,惯性是不是保持“自行车行驶时能稳定不倒”的原因呢?其实不然。物体(自行车)的惯性,会对自行车的行驶稳定性造成影响,有正面的影响和负面的影响两种。当自行车直线行驶且不需要改变状态时,惯性有保持自行车行驶稳定性的正面效果;但是,当自行车需要改变状态,如转弯时,惯性会破坏自行车的行驶稳定性。我们再来扩展分析一下陀螺旋转的时候,也具有稳定性的原因。图8如图8所示,当陀螺受初始外力矩驱动旋转,状态稳定后,绕着轴A-A'旋转时,其“力矩轴”S与A-A'轴重合, “力矩轴”S一端与地面有一个交点,另外一端等同于在无限远处与其他物体相交,两个交点作为支撑点保持陀螺稳定,因此“力矩轴”S是陀螺能够稳定旋转的根源所在。当再受到外力作用,原“力矩轴”S会发生弯曲变形(类似于普通实物轴变形),如果外力小,“力矩轴”弹性变形后会再次与A-A'轴重合;如果外力大,“力矩轴”会像实物轴一样,塑性变形甚至断裂。 5 新平衡模型及理论应用 为了提高两轮车辆行驶稳定性,我们根据公式:S=λ*m*F/H,可以通过适当加大车辆的重量m;或者是通过适当增加轮胎宽度,改变轮胎花纹,从而增加轮胎与地面的摩擦力F;也可以通过改进车辆结构,降低车辆质心Z的位置,从而缩短力臂。这三种方式可以根据实际情况,任选其一或者随意搭配选择使用,都可以提高两轮车辆行驶稳定性。 “力矩轴”是一根无形的能量轴,同时具有方向性。因为无形的“力矩轴”可提供稳定的支撑作用,并且可以瞬时改变大小和方向,使得两轮车辆在通过性方面,跟其他车辆相比,具有无可比拟的优势。现在大城市,私家轿车拥有量大增,交通拥堵严重。两轮车辆通过改进设计,加装车顶及封闭式前挡玻璃,使其具备遮风挡雨功能,其普及性将会大大提高,从而缓解城市拥堵问题。 鉴于前面的分析,陀螺稳定旋转也遵循“力矩轴”原理,通过扩展分析,我们发现“力矩轴”原理可以在先进的飞行器开发研究上推广使用,可以开发出更具特色的,更加安全和便捷的飞行器。 6 结束语人们对各类现象背后客观规律孜孜不倦的探索,发现和总结成了无数规律,为我们的生产和生活带来了极大的便利。本人通过对“为什么自行车行驶时能稳定不倒”这个历史悠久的课题进行再次研究分析,总结提炼出一个全新的“力矩轴”概念,能有效的解释两轮车辆行驶稳定性的问题,并能推广应用,解释很多其他问题,希望可以给大家的工作提供相关便利。 参考文献:[1]陈治. 大学物理[M].清华大学出版社.2007[2]范钦珊.理论力学[M]. 清华大学出版社. 2014[3]某研究团队.科学[J].科学杂志出版社.2011[4]T·C·马丁.尼古拉·特斯拉的发明、研究及著作[M].欧姆尼出版社.1977
奔跑的鱼肝油
自行车的发明者——德莱斯 现在,自行车像潮水一样,遍及世界各地,进入家家户户。但很少有人知道,发明自行车的是德国的一个看林人,名叫德莱斯(1785—1851)。 德莱斯原是一个看林人,每天都要从一片林子走到另一片林子,多年走路的辛苦,激起了他想发明一种交通工具的欲望。他想:如果人能坐在轮子上,那不就走得更快了吗!就这样,德莱斯开始设计和制造自行车。他用两个木轮、一个鞍座、一个安在前轮上起控制作用的车把,制成了一辆轮车。人坐在车上,用双脚蹬地驱动木轮运动。就这样,世界上第一辆自行车问世了。 1817年,德莱斯第一次骑自行车旅游,一路上受尽人闪的讥笑,……他决心用事实来回答这种讥笑。一次比赛,他骑车4小时通过的距离,马拉车却用了15个小时。尽管如此,仍然没有一家厂商愿意生产、出售这种自行车。 1839年,苏各兰人马克米廉发明了脚蹬,装在自行车前轮上,使自行车技术大大提高了一步。此后几十年中,涌现出了各种各样的自行车,如风帆自行车、水上踏车、冰上自行车、五轮自行车,自行车逐渐成为大众化的交通工具。以后随着充气轮胎、链条等的出现,自行车的结构越来越完善。 德莱斯还发明了绞肉机、打字机等,都能减轻劳动强度。现在铁路工人在铁轨上利用人力推进的小车,也是德莱斯发明的,所以称它为“德莱斯”。 参考文献:小学科学网
自行车码表测量的是车轮运动的圈数,所以在使用自行车码表前要设置车轮的周长。是不是很简单,哈哈。买块100多元的906码表就可以了。
自行车中的物理原理自行车 物理原理 结构 刹车 摩擦力日常生活中有许多事物看似非常简单,但却涉及了许多深刻的物理问题,需要运用物理学原理去解释。通过对
1.摩擦力.在光滑的冰面上开车肯定会滑倒 2.加速度.慢的速度肯定不能左右平衡 3.车身在行驶过程中车内有力,修正左右偏移 4重心在前轮重后轮重都可以达到平
您好,,卡尔赛德棚业别墅车棚铝合金车棚为您开启精彩人生!
近年来,国内学界对公共管理的一些相关问题进行了深入探讨,取得了可喜的成绩。那我们写公共管理的论文可以有哪些选题呢?下面我给大家带来本科公共管理 毕业 论文题