Q糖奶爸
简单的说,是有用解的向量数。 ①比如回答多说:秩是阶梯型矩阵非0行的个数,为什么呢? 因为如果是0行(初等行变换后),0X1+0X2+0X3+0X4+0X5+……=0,对解这个方程没有任何帮助,就不能包括在秩里面。(X为未知数,不是乘号) 同样地,为什么秩是极大线性无关组的个数? 因为一旦线性相关,矩阵就可以将相关的一组中的一行通过初等行变换化为0,那就是无用解了。如:|1 2 3||2 4 6|1X1+2X2+3X3=02X1+4X2+6X3=0你会发现,两个方程其实是一样的,这就是线性相关。我们也可以通过初等行变换来做|1 2 3||2 4 6|r2-r1乘2=0,秩为1 ②从空间角度来说,秩是矩阵占用的维数,比如我们可以用三元一次方程组解出三个未知数,(三个方程三个未知数)那么我们称为满秩。 可以理解成三个未知数分别是X轴,y轴,和Z轴,可以组成三维空间。 但如果无用解存在,其实就不再是三个方程,那么就不满秩,这时候会有引入基础解系。 以上内容只讨论齐次线性方程组,并且并不准确,只适用于初学者。
尘世任我行
矩阵的秩的定义:是其行向量或列向量的极大无关组中包含向量的个数。
能这么定义的根本原因是:矩阵的行秩和列秩相等(证明可利用n+1个n维向量必线性相关)
矩阵的秩的几何意义如下:在n维线性空间V中定义线性变换,可以证明:在一组给定的基下,任一个线性变换都可以与一个n阶矩阵一一对应;而且保持线性;换言之,所有线性变换组成的空间End
扩展资料:
A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。
特别规定零矩阵的秩为零。
显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r 由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)≠0;不满秩矩阵就是奇异矩阵,det(A)=0。 由行列式的性质知,矩阵A的转置AT的秩与A的秩是一样的。 奇异值分解非常有用,对于矩阵A(p*q),存在U(p*p),V(q*q),B(p*q)(由对角阵与增广行或列组成),满足A = U*B*V U和V中分别是A的奇异向量,而B是A的奇异值。AA'的特征向量组成U,特征值组成B'B,A'A的特征向量组成V,特征值(与AA'相同)组成BB'。因此,奇异值分解和特征值问题紧密联系。 如果A是复矩阵,B中的奇异值仍然是实数。 SVD提供了一些关于A的信息,例如非零奇异值的数目(B的阶数)和A的阶数相同,一旦阶数确定,那么U的前k列构成了A的列向量空间的正交基。 参考资料来源:百度百科——矩阵的秩
Lucia慢半拍
第一个角度,也就是书本上的定义,矩阵中的任意一个r阶子式不为0,且任意的r+1阶子式为0,则阶数r就叫作该矩阵的秩。
对一个矩阵,存在某个r阶行列式,值不为0,这个r阶行列式就是对一个矩阵你画r条横线,r条竖线,这个横竖线交叉的元素构成了一个新的数表,这个数表的行列式就叫作这个矩阵的r阶子式。
第二个角度,如果我们把矩阵进行初等行变换,将矩阵变换为一个行阶梯形矩阵后,那么行阶梯形矩阵的非0行就是这个矩阵的秩。这是通过运算的角度来给出的矩阵的秩的定义,对矩阵进行初等行变换后得到的行阶梯形矩阵的非0行的个数。
第三个角度,是从线性方程组的角度来给出的,我们可以把秩理解为一种约束,因为方程我们就可以理解为约束,当我们把矩阵看成齐次线性方程组的系数的时候,矩阵的秩就是这个方程组里真正存在的方程的个数。
虽然写出了很多个方程,但有一些是没有用的,可以由其他方程来表示的,这些没用的消去之后剩下的真正的约束的个数就是这个矩阵的秩。
第四个角度,将矩阵看成由一个个向量放在一起拼成的,这个秩就是向量组中独立的向量的个数,其实和上述方程组的角度是差不多的。
扩展资料
定理:矩阵的行秩,列秩,秩都相等。
定理:初等变换不改变矩阵的秩。
定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。
定理:矩阵的乘积的秩Rab<=min{Ra,Rb};
引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。
当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。
当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
参考资料来源:百度百科-矩阵的秩
随机环境中经济增长模型研究广义生产函数假设下的经济增长模型分析考虑市场预期的供求关系模型基于Matlab的离散事件模拟用风险预算进行资产配置有向图上的PAR贯序
你怎么也做分块矩阵的应用毕业论文??
矩阵的迹有下列性质 线性tr(A+B) = tr(A) + tr(B)tr(kA) = ktr(A)线性算子d tr(A) = tr(dA)tr(AB) = t
数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.
这种文体一般是先指出对方错误的实质,或直接批驳(驳论点),或间接批驳(驳论据、驳论证);继而,针锋相对地提出自己的观点并加以论证。驳论是跟立论紧密联系着的,因为