• 回答数

    3

  • 浏览数

    247

whatever345
首页 > 学术期刊 > 数学建模论文题材

3个回答 默认排序
  • 默认排序
  • 按时间排序

山里吃吃

已采纳

台阶设计中的建模分析一.问题的提出台阶,楼梯是我们日常生活中常见的,天天行走的建筑结构,良好的台阶设计不仅可以节省上楼时间,也可最大限度的减少体力消耗。然而,不合理的设计会使人们上楼时既费时又费力,甚至还会发生危险。所以我们不禁要问,怎样设计台阶长度宽度比才能达到最优呢?(下文主要针对上楼过程给出讨论,下楼的讨论在最后涉及)作为解决问题的第一步,我们首先来证明这个最佳设计的存在性,下面两张图为两种不同类型的台阶保持总高度,台阶宽度,体力消耗一定时令台阶高度h充分小,则台阶数目会充分大,最终上楼时间t趋于无穷。因此我们是不会去登此楼梯的。再令h充分大,而人腿运动能力是有限的,由于每一步做功的增加势必会造成登楼时间的集聚增长,这种h我们同样无法接受。由于各种状态的连续变化,我们就可以断定,存在这样一个h,使得t最小。同理,台阶长度r很小时,人无法站稳,r充分大时,时间t趋于无穷。所以我们便有充足理由相信最优的r,h皆存在。分析到这里只是依赖于感性的认识与几何的直观,下面我们将用数学的观点给出尽可能合理的解答。二.问题的分析符号表示:M 人体质量g 重力加速度l 人的小腿长度v 人的正常行走速度F 上楼过程中腿部力量H 楼梯总体高度h 台阶高度r 台阶长度P 人体登上高度H的楼梯时最舒适的输出功率C 人的脚长要细致而全面的分析此问题,可以将人登楼的全过程分解处理,将上楼的每一步设为一个单元,那么可以粗略的绘制出人体运动过程的简图。并考虑到上楼是个非常复杂的人体动力学过程,为了抓住主要矛盾并简化问题,一些人为的假设将是必要的。模型的假设:1,人每走一步脚的前端接触到B点。2,人的所有重量可以看成质点并集中在O(与集中在N是等价的),其他部位没有重量3,每一步迈出同样的距离(台阶宽),并且连续前进。4,人体上升的力量全部来自支撑腿的力F,F与h有关且在h取定的情况下F大小不变且始终保持ON方向。5,上台阶过程做功只在DN段,并且人总是以所谓最舒适的感觉(P恒定)上楼。6,台阶宽度大于等于脚长运动的分解:可以将登上台阶看为两个运动过程1.(由M到N)人若想登上台阶,向前倾斜重心将是第一步,毕竟人是前进的。要在D点发力,将M点移动到N点将是合理的。而且此过程与人在平地行走时的状态非常接近(这里将它们等同看待,速度也为v,v的方向近似水平)。为了简化计算,可以令此段做功充分小从而可以忽略(因为我们的主要矛盾是上楼,此段做功的变化也是相当于平地上走5米与10米的区别,而这种差别在正常人看来是微乎其微的)2.(N点竖直向上达到直立并回到初始状态)在此过程中所做的功为F的贡献(这里腿部的屈申很类似课堂上铅球投掷模型中球的出手过程,因为当时的主要矛盾为球的初速度,所以可以将其近似看做线性关系,然而此时的重点是这个屈申过程,因此假设与模型机理自然不同)。随后根据生物课所学知识,可以知道,人腿的运动都是靠肌肉细胞的伸缩变化产生伸缩力的(伸缩方向只能沿腿的方向),因此这里可以将所有肌肉的发力等效看为一个力,方向总是沿着腿的方向,大小恒定(实际上F要随着角度的变化而变化,为了简化问题可以将其设为恒定)。由于考虑到人在2过程上升时做的功实际为非保守力所做功(并不是w=mgh),一个很简单的直观,就是同样登上两米的高度我们分10步与分2步腿部做功一定不同。造成这种差异的根源在于腿的承重能力与发力方向角度的大小(也就是说台阶越高,我们所做的额外功越多)。所以要去用数学的观点度量所谓“腿部做功”这个概念,假设4将是必要的。其次我们要去度量所谓“舒适”与“疲劳”的概念。通常,在短距离内造成我们疲劳的主要原因实际为腿的运动强度过高,即功率P过大。这就使我们度量“舒适”成为可能。三.数据的获得行走速度v的测算:首先所谓“正常速度”就是一个模糊概念,但又是客观存在的,为了尽可能得到人正常行走时的速度并要求误差尽量的小,所以这里采用多次测量的方法。并且需要亲自进行实验。恰好家附近的楼门口的地面由方砖铺成,每块砖为正方形,边长为米。这就为距离的测定提供了方便。用最大自控能力以正常速度行走,规定走过五块砖时开始记时并规定这点为距离零点(为了将加速段去掉)。最终得到11组数据距离(米) 时间(秒)1 在matlab中进行拟合得到下图。一次多项式为y=所以算得自己的正常行走速度为体重53公斤,小腿长米,脚长米,都是可以精确测量的。唯有功率P未知,但由于我们假定它的大小不变,所以在随后的模型求解中可以根据关系式将其反解出。四.模型的建立由假设 台阶总数即为 (有分数出现时如 则可近似看为取每一小段时间的 倍。这种误差是可以被忽略的)设 那么过程一的时间为 且满足关系 代入可得过程一的总时间为过程二的总时间为其中 为h,l,F,p的函数由于我们假设了M,N点有近似相同的高度。那么 是与x无关的函数。若令总时间最小,一定要求x最小。所以可得 。我们得到结论台阶宽度应设计为近似脚长的宽度。由此,我们得到如下A图所示。并据此讨论h的变化由于我们先假设F大小恒定。若F能带动人体上移,必要求Fy至少等于mg,那么在最省力的情况下,我们取 .此时我们已将F分解。因此N点运动到S点过程中要求F所做的功只需对Fx Fy分别求功即可。我们将运动过程细致分析并放大为B图当台阶高为h时Fy方向上的做功:设NNm的长度为变量m,当Nm由N运动到S时。M由0→h变化。计算得用微元分析,当m变化△m时。 其中S(△m)为Om竖制直方向上运动距离。对m积分 2,当台阶高为h时Fx方向上的做功:微元分析,增加△m,我们得到 两边同除△m,并令△m→0。因此其中S(m)为PmOm的长度。对m积分由于我们假定的F为h的函数(h取定时大小恒定)。所以取综上我们得到上楼总时间 下面我们来由此式确定T的最小值,将参数 P待定。以上计算都可交给maple完成。计算过程如下 t:=m->sqrt(((2*)/2)^2); diff(t(m),m); e:=m->-sqrt(((2*)/2)^2)*1/2/(.2209-(.4700000000-1/2*h+1/2*m)^2)^(1/2)*(*h-1/2*m)/; int(e(m),m=0..h); wy:=h->(2**h-h^2/2)/(4*); F:=h->(2**53*)/(2*); wx:=h->> .4999999999**h^2由此,我们发现,Wx,Wy做功基本是一样的。所以最终,总时间表示为>f:=h->H*(*(2**53*)/(2*)*(.4999999999**h^2+.5**h^2)+*P)/(h*P*);而且根据如上结果我们可以观察出人腿做功(Wx(h)+Wy(h))与实际有效功Mgh之间的关系随h变化的过程图。其中红线为人腿做的总功,黄线为有效功Mgh。这种变化也是符合我们感觉的,例如,随h的增大,我们迈上台阶会感到越发的费力,h越大这种变化越明显。随后进行几组实验来确定P的近似取值。分别选取不同的楼梯,从下走到上按一般速率(不感到劳累),并记录下经过的时间。并根据假设与上式分别求得P,得到下表次数 台阶数 n 台阶高度 h 总高度H 时间 t 功率 P1 20 18 25 16 20 22 20 3 18 16 经实践证明,P并没有随总高度H以及h的变化而发生太大变化,说明我们之前的假设是基本合乎情理的。这里取9次测量的平均值作为P,所以我们得到P=.我们在第一种情况下对T进行分析。取H=>f:=h->*(*(2**53*)/(2*)*(.4999999999**h^2+.5**h^2)+*)/(h**); plot(f(h),h=);由图象,我们观察到,确实存在这样一个h使得总时间最少,也就是说任意给出某h下上楼的时间,就可以算得在此情况此功率P下,时间最小时h的理想高度。上图中,从到米间减少的时间在秒左右,而这种时间的优化由于太小(秒)以致于我们可以不去考虑(可以近似看为不变)。而时间迅速减少的阶段在到段。那么为了使腿部用力尽量的小,我们不妨将h定在米。随后我们要问,这种模型的可靠性如何,由于v P是粗略度量的,所以下面我们要对这两个参数进行灵敏度分析。 plot3d(f(h,v),h=); plot3d(f(h,p),h=);从三维图形可以观察出,模型还是比较可靠的。这里没有用老师上课应用的灵敏分析方法是因为我只想直观的表现出解对参数的连续依赖程度。仅仅用离散数据似乎是不直观的。到这里为止,已经算得对于我来说,最佳的台阶高度应该为米左右,也就是说,这个高度可以最充分而有效的利用我的正常功率,使上楼总时间最短,而不致超过限度而感到疲劳。这里顺便说明一下下楼过程,人的下楼过程在短距离内完全可以近似看为腿部做0功并完全由重力做功的过程。由于重力是保守力,那么下楼时间应该于h近似无关。但是长时间下楼为何又使我们感到疲劳呢?原因也许是下楼时的缓冲用力。毕竟人不同于木块和小球,过快的下降对腿部以及身体的冲击造成人的不适感,因此腿部总要做一些功使其缓慢下降,平稳着陆。我在这里引入缓冲时间 这一变量并且 其中T为下楼实际总时间,L为台阶宽度,v为水平行走速度。显然 便为缓冲(延迟)时间总和。对于大部分正常人,在短的距离下楼过程中,在h正常范围内(上文算得的范围内), 都可近似看为0。则我们只许讨论上楼的过程即可。然而,是不是 可以永远被忽略呢?答案显然是否定的。例如当H很大时 就是H与h的函数了(H的影响不可忽略),又如一些特殊人群老年人,残疾人等等 便会相当大,这时下楼这一过程就要单独考虑了。五.模型的检验由于这个以上数据的特殊性,便使模型过分特殊化了,毕竟台阶不是我一人走。然而自己是个正常人,即使考虑到众多人参数的不确定性因素,变化也不会太大。经调查发现,校园内各台阶都是在到米之间变动,最低为科技楼前台阶,最高为四食堂前台阶。宽度都为近似脚的长度,说明模型的结论还是勉强可以的(虽不那么准确)。这就相当于对模型做了一定程度的检验(因为台阶的高度可以根据实践进行适当调整,不适当的高度一定无法存在的,或是被改造,或是在下一次建设中改进)进一步,我们可以参考1999年6月1日起实施的《建筑设计规范GB50096-1999》的相关规定:“楼梯踏步宽度不应小于,踏步高度不应大于,坡度为°,接近舒适性标准。”而其中的一定是脚长,便是最佳高度。(此结果也许是相关力学家与统计学家做出的结果,应该是比较权威的数据)误差分析:从上面的检验可以看出,计算的结果与实际确实有着差异,计算的h偏大,造成这种偏差的原因我归结为如下几点(1) 人的体重差异(2) 身高以及腿长的差异(3) 人的脚长差异(4) 身体前倾的速度(这里取为行走速度,然而过程一,只是前倾过程,其速度一定要比行走速度大,可不易测量,因此误差一定不可避免)(5) F随腿的运动而变化的函数未精确知道(将涉及复杂的人体动力学,由于所学知识有限,为化繁为简,只好假设其大小恒定。计算结果又无太大偏差,说明假设基本合理,但误差同样不可避免)(6) 人的正常功率的差异,例如:老年人与青壮年,专业运动员与普通人所能承受的运动量一定不同因此如果能够精确知道如上数据,有理由相信计算结果的误差会非常之小。模型将会更加可靠。六.模型的意义通过对此模型的分析,找到了F v P c L M 之间的大致关系。但也由此提出了一个问题,建筑设计规范《GB50096-1999》中的规定是否太片面呢?其中数据米一定是一个统计平均值。在某些特定场合一定要再进行进一步明确的规定,例如:中学校舍与大学校舍台阶高度可以等高。然而幼儿园内,养老院内,康复中心内的台阶就一定要另做规定。否则会由于台阶高度的不适当导致危险的发生。如果我们得到相关数据便可根据模型,分别计算最适高度,从而将建筑设计规范的内容进行扩充。END参考资料:相关人体力学分析可参考网页小注:此模型最早由中学数学老师在建模课中提出,当时由于数学工具的缺乏只是作为话题提出的。由于自己的好奇从此便将此问题牢记在心。随着数学知识的积累,今天在自己的能力范围内做了一次大胆尝试,心知此问题必定有许多人潜心研究过。但这并不妨碍建立自己的模型。虽然假设过多,内容略显粗糙臃肿。至此问题得到了基本粗略的解决.Thank you for your time and kind consideration !!

240 评论

sylviali1109

数学建模论文题目取法如下:

首先看论文首页的三要素:

1.标题:基于xx模型的xx问题研究

2.摘要:针对每一个问题分别阐述问题、方法、结果

3.关键词

其次看论文题目基本要求:

简短精练、高度概括、准确得体、恰如其分;既要准确表达论文内容,恰当反映所研究的范围和深度;又要尽可能概括、精练,力求题目的字数较少。

最后论文题目的字数一般不要超过20个字;当希望题目字数少与恰当反映论文内容发生冲突,可多用几个字表达准确。

基于旅行商规划模型(方法)的碎纸片拼接复原问题(问题)研究

基于利润最大化的奥运商业网点分布微观经济模型

基于力学分析的系泊系统设计

奥运场馆中临时商业网点设计中的数学模型化方法

CT 系统参数标定及反投影重建成像

拓展

参加数学建模比赛的意义

有利于培关学生综合解决问题的能力因为数学建模最后提交的成果是交一篇完整5论文,于大多数学生决说,款是第一次,已可么想高学生如何的数学知识用到实呀生活中的能力,提高学生合理利用网络道淘资料物能力,超是高学生的新意识和团队协作能力等,很名参委学生事后感收到团以合作能力对于建模比赛很重要,这对街后参加工作也会有很好的帮助。

2有利干促迸高职数学课程的改革

大多数学校的高职数学课还是采用软师在上面讲,学生在下面听的方法,殊不和对于高职生历言,他们不但听不懂,而目也不愿意听,这就促进教师要改进教学方法,最好的方法是在机房里上课,吉师把重要的理论思想教给学生之后,具体的计算方法可以让学生利用软件在电脑上操作,这样既提高了学生的学习兴趣,也提高了学生运用软件的能力。

358 评论

呼啦啦呼嘞嘞

数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。

数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用

一、高等数学教学的现状

(一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二) 教学 方法 传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体 措施

(一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献

[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.

[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.

[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.

数学建模论文范文二:数学建模教学中数学素养和创新意识的培养

前言

创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.

因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].

在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.

而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.

近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].

所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.

因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].

因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.

1掌握数学语言独有的特点和表达形式

准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.

用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.

现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.

2借助数学建模教学使学生学会使用数学语言构建数学模型

根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.

而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.

对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.

3借助数学实验教学,展示高度抽象

的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.

因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.

配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.

选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.

教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.

教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.

数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.

4突出学生的主体作用,循序渐进培养学生学习、实践到创新

实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.

在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.

再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.

同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.

通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.

5具体的教学策略和途径

数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:

1)注重背景的阐述

让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.

2)注重模型建立与求解过程中的数学语言的使用

在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.

3)注重经典算法的数学软件的实现和改进

由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.

参考文献:

[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.

[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。

[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.

[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.

[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.

[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.

[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.

307 评论

相关问答

  • 2022数学建模e题论文

    数学建模论文写作 一、写好数模答卷的重要性 1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。 2. 答卷是竞赛活动的成绩结晶的书面形式。 3

    708带你去吃吧 7人参与回答 2023-12-05
  • 2016a题数学建模论文题目

    论文首页的三要素:1.标题:基于xx模型的xx问题研究2.摘要:针对每一个问题分别阐述问题、方法、结果3.关键词:…、…、建模论文题目形式一般采用以下两种:Ø

    麦生啤酒 4人参与回答 2023-12-11
  • 数学建模题目及论文

    重点:数模论文的格式及要求 难点:团结协作的充分体现 一、 写好数模论文的重要性 1. 数模论文是评定参与者的成绩好坏、高低、

    菩小帅傲娇脸 4人参与回答 2023-12-07
  • 数学建模题目及模版论文

    全国大学生数学建模竞赛论文格式规范 本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。 论文用白色A4纸单面打印;上下左右各留出至少2.5

    依依0317 3人参与回答 2023-12-10
  • 数学建模论文素材

    随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视, 数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,

    密云汉子 3人参与回答 2023-12-10