• 回答数

    6

  • 浏览数

    259

京荣盛门业
首页 > 学术期刊 > 两相接地短路的毕业论文

6个回答 默认排序
  • 默认排序
  • 按时间排序

waterimilan

已采纳

短路分类:三相交流系统的短路种类主要有三相短路、两相短路、单相短路和两相接地短路。1、两相接地短路是指中性点不接地系统中,任意两相发生单相接地而产生的短路;2、两相短路是指三相供配电系统中任意两相导体间的短路;3、三相短路是指供配电系统中三相导体间的短路。在上述各种短路中,三相短路属于对称短路,其他短路属于不对称短路。因此,三相短路可用于对称三相电路分析,不对称短路采用对称分量法分析,即把一组不对称的三相量分解成三组对称的正序、负序和零序分量来分析研究。在电力系统中,发生单相短路的可能性最大,发生三相短路的可能性最小,但通常三相短路的短路电流最大,危害也最大,所以,短路电流计算的重点是三相短路电流的计算。短路原因:(1)电气设备、元件的损坏。如:设备绝缘部分自然老化或设备本身有缺陷,正常运行时被击穿短路;以及设计、安装、维护不当所造成的设备缺陷最终发展成短路等。(2)自然的原因。如:气候恶劣,由于大风、低温导线覆冰引起架空线倒杆断线;因遭受直击雷或雷电感应,设备过电压,绝缘被击穿等。(3)人为事故。如:工作人员违反操作规程带负荷拉闸,造成相间弧光短路;违反电业安全工作规程带接地刀闸合闸,造成金屑性短路,人为疏忽接错线造成短路或运行管理不善造成小动物进入带电设备内形成短路事故等等。巨大危害:1.巨大的短路电流通过导体,短时间内产生很大热量,形成很高温度,极易造成设备过热而损坏。2.由于短路电流的电动力效应,导体间将产生很大的电动力。如果电动力过大或设备构架不够坚韧,则可能引起电气设备机械变形甚至损坏,使事故进一步扩大。3.短路时系统电压突然下降,对用户带来很大影响。例如作为主要动力设备的异步电动机,其电磁转矩与端电压平方成正比。电压大幅下降将造成电动机转速降低甚至停止运转,给用户带来损失;同时电压降低能造成照明负荷诸如电灯突然变暗及一些气体放电灯的熄灭等,影响正常的工作、生活和学习。4.当系统发生不对称短路时,不对称短路电流的磁效应所产生的足够的磁通在邻近的电路内能感应出很大的电动势。这对于附近的通讯线路、铁路讯号系统及其他电子设备、自动控制系统可能产生强烈干扰。5.短路时会造成停电事故,给国民经济带来损失。并且短路越靠近电源,停电波及的范围越大。短路可能造成的最严重的后果就是使并列运行的各发电厂之间失去同步.破坏系统稳定,最终造成系统瓦解,形成地区性或区城性大停电。

85 评论

小菜菜菜菜子

单相接地故障中:故障相电压为零(与地等电位),电流为间歇性电弧电流,其值与线路参数有关;其余两相电压上升至倍,电流也相应上升。中性点系统发生单相接地时,系统允许运行2小时。原因就是系统其余两相电压上升后长时间运行会造成变压器绝缘问题。两相短路故障中:故障相电压相同为矢量合的电压,由于短路造成阻抗值大大降低,故障电流极大。两相接地短路也称为异相接地,故障电流为系统计算故障电流的87%.接地类故障均有零序产生。

307 评论

嘟嘟200907

1、蓝之韵论文 门类较全。 2、学生大论文中心 3、蜂朝无忧论文网 门类很全。 4、论文下载中心 门类很全。 5、论文帝国 二、 教育类 1、教研论文交流中心 以中小学教育为主,基础教育、英语教学文章居多。 2、教育教学论文网 以教育论文为主,包含:语文论文 美术论文 物理论文 化学论文 英语论文 历史论文 德育论文 教学论文 数学论文 音乐论文 生物论文 自然论文 体育论文 地理论文 摄影论文 劳动技术 农村教育 毕业论文 素质论文 医学论文 电子电器学 思维科学 计算机论文 活动课教学 书法篆刻论文 创新教育研究 心理健康教育 西部教育论文 信息技术论文

227 评论

勿忘我1239

免费真的很难有

206 评论

潘朵拉的音乐

目 录摘 要…………………………………………………01. 设计说明………………………………………… 主接线…………………………………………、PT配置……………………………………22主要保护原理及整定……………………………发电机纵差动保护……………………………保护原理……………………………………整定内容……………………………………发电机定子匝间保护…………………………发电机过激磁保护……………………………发电机失磁保护………………………………发电机反时限负序过流保护…………………发电机逆功率保护………………………………发电机两点接地…………………………………主变压器差动保护………………………………变压器复合电压过流保护………………………17参考文献………………………………………………181 设计说明主接线300MW 发电机―变压器组主要保护原理设计,适用于发电机―变压器组采用单元接线,高压侧接入500kV 11/2接线系统;发电机出口侧无断路器;励磁方式为静态励磁系统;在发电机出口侧引接―台高压厂用工作变压器(采用三相分裂线圈)。接地方式:发电机中性点为经配电变压器(二次侧接电阻)接地;主变压器高压侧中性点为直接接地;高压厂用分裂变压器6kV侧中性点为中阻接地系统。 CT、PT配置发电机的出线侧和中性点侧各装设4组CT;主变压器高压侧套管上装设3组CT;高压厂用变压器高压侧套管上(或封闭母线内)装设4组CT;发电机差动保护与主变压器差动保护,当CT不够分配时,允许共用发电机出线侧的一组CT;发电机一变压器组差动保护中,其中的一臂是差接在高压厂用变压器低压侧的CT上;发电机一变压器组差动保护装置,不接入励磁变压器的CT,其差动范围为:从500kV侧CT到发电机中性点CT及高压厂用变压器低压侧CT;CT的二次电流:500kV侧选用1A;其它各侧可为1A或5A。发电机出线侧设有2组PT,其中1组可供匝间保护用(一次侧中性点不直接接地);2组PT均要求设有3个二次线圈。主变压器高压侧设1组PT(三相)。2 主要保护原理及整定计算发电机纵差动保护保护原理变数据窗式标积制动原理∣IT-IN∣2≥KbITINcosφ其中:iT――发电机机端电流iN――发电机中性点电流φ――iT、iN之间的相角差标积制动原理的动作量和比率差动保护一样。在区外发生故障时,该原理的表现行为和比率制动原理也完全一样。但在区内发生故障时,由于标积制动原理的制动量反应电流之间相位的余弦,当相位大于90度,制动量就变为负值,负值的制动量从概念上讲即为动作量,因此可极大地提高内部故障发生时保护反应的灵敏度。而比率制动原理的制动量总是大于0的。动作逻辑方式1:循环闭锁方式原理:当发电机内部发生相间短路时,二相或三相差动同时动作。根据这一特点,在保护跳闸逻辑上设计了循环闭锁方式。为了防止一点在区内另外一点在区外的两点接地故障的发生,当有一相差动动作且同时有负序电压时也出口跳闸。 整定内容(假定:TA二次额定电流为5(A))1) 比率制动系数K整定差动保护的比率制动系数。标积制动原理的Kb和K有一理论上的对应关系,装置自动完成它们之间的转换,对用户仍然整定K。无单位。一般:K=) 启动电流lq整定差动保护的启动电流。单位(A)。一般lq=(A)3) TA断线解闭锁电流定值(仅保护方式Ⅱ有效)lct当发电机差电流大于该定值时,TA断线闭锁功能自动退出。单位(倍)它是以电流互感器的二次额定电流为基准的。一般:lct=(倍)4) 差动速断倍数lsd当发电机差电流大于该定值时,无论制动量多大,差动均动作。单位:(倍)它是以电流互感器的二次额定电流为基准的。一般:lsd=3-8(倍)5)负序电压定值(仅保护方式Ⅰ有效)当负序电压达该定值,允许一相差动动作出口跳闸。单位(V)。一般:=4-10(V)6)TA断线延时定值tct经该定值时间延时发TA断线信号。单位:秒。 发电机定子匝间保护 原理反应发电机纵向零序电压的基波分量。“零序”电压取自机端专用电压互感器的开口三角形绕组,此互感器必须是三相五柱式或三个单相式,其中性点与发电机中性点通过高压电缆相联。“零序”电压中三次谐波不平衡量由数字付氏滤波器滤除。为准确、灵敏反应内部匝间故障,同时防止外部短路时保护误动,本方案以纵向“零序”电压中三次谐波特征量的变化来区分内部和外部故障。为防止专用电压互感器断线时保护误动作,本方案采用可靠的电压平衡继电器作为互感器断线闭锁环节。本保护能在一定负荷下反应双Y接线的定子绕组分支开焊故障。保护分两段:Ⅰ段为次灵敏段:动作值必须躲过任何外部故障时可能出现的基波不平衡量,保护瞬时出口。Ⅱ段为灵敏段:动作值可靠射过正常运行时出现的最大基波不平衡量,并利用“零序”电压中三次谐波不平衡量的变化来进行制动。保护可带秒延时出口以保证可靠性。保护引入专用电压互感器开口三角绕组零序电压,及电压平衡继电器用2组PT电压量。 整定内容1) 次灵敏段基波“零序”电压分量定值Uh 单位(V)2) 灵敏段基波“零序”电压分量定值U1 单位(V)3)额定负荷下“零序”电压三次谐波不平衡量整定值U3wn 单位(V)4)灵敏段三次谐波增量制动系数K2 单位:(无)5)灵敏段延时Tzj 单位:(秒) 整定计算1)Uh次灵敏段“零序”电压基波分量定值(整定范围1-10V)动作值按躲过任何外部故障时可能出现的基波不平衡量整定Uh=KUo•bp•max式中:Uh=KUo•bp•max――外部短路故障时可能出现的“零序”电压最大基波不平衡量。K――可靠系数,可取2-)U1灵敏段“零序”电压基波分量定值(整定范围)动作值按可靠躲过正常运行时出现的最大基波不平衡量整定U1=KUo•bp•n式中:U1=KUo•bp•n――额定负荷下固有的“零序”电压基波不平衡量,由实测得到(本机有监测软件)。K――可靠系数,可取)U3wn额定负荷下“零序”电压三次谐波不平衡量整定值(整定范围1-10V)开始可整定4(V),开机后由实测得到准确直,然后整定。4)灵敏段三次谐波增量制动系数(整定范围)由经验决定。一般取)Tzj灵敏段延时(整定范围0-1秒)为增加此段可靠性而设。一般取秒。 发电机(变压器)过激磁保护原理发电机(变压器)会由于电压升高或者频率降低而出现过励磁,发电机的过励磁能力比变压器的能力要低一些,因此发变组保护的过盛磁特性一般应按发电机的特性整定。过激磁保护反应过激磁倍数而动作。过激磁倍数定义如下:B U/f U*N= = =Be Ue/fe f*其中:U、f――电压、频率Ue、fe――额定电压、额定频率U*、f *――电压、频率标么值B、Be――磁通量和额定磁通量过激磁电压取自机端TV线电压(如UAB电压)。出口方式Ⅰ:定时限方式定时限t1发信或跳闸定时限t2发信或跳闸U/f> t1/o 发信或跳闸t2/o 发信或跳闸出口方式Ⅱ:反时限方式定时限发信反时限发信或跳闸反时限曲线特性由三部分组成:a)上限定时限;b)反时限;c)下限定时限。当发电机(变压器)过激磁倍数大于上限整定值时,则按上限定时限动作;如果倍数超过下限整定值,但不足以使反时限部分动作时,则按下限定时限动作;倍数在此之间则按反时限规律动作.发电机失磁保护原理失磁保护由发电机机端测量阻抗判据、转子低电压判据、变压器高压侧低电压判据、定子过流判据构成。一般情况下阻抗整定边界为静稳边界圆,但也可以为其它形状。当发电机须进相运行时,如按静稳边界整定圆整定不能满足要求时,一般可采用以下三种方式之一来躲开进相运行区。a) 下移阻抗圆,按异步边界整定b) 采用过原点的两根直线,将进相区躲开。此时,进相深度可整定。c) 采用包含可能的进相区(圆形特性)挖去,将进相区躲开。转子低电压动作方程Vfd< Vfd<< (P-Pt) 当Vfd<×SN其中:Vfd――转子电压――转子低电压动作值Vfdo――发电机空载转子电压Sn――发电机额定功率Kf――转子低电压系数P――发电机出力Pt――发电机反应功率保护的整定计算1)高压侧低电压 Uhi•dz按照系统长期允许运行的低电压整定。2)阻抗圆心 -Xc以静稳圆整定,也可按异步圆整定。3)阻抗圆半径 -Xr以静稳圆整定,也可按异步圆整定。4)转子低电压Vfl•dz转子低电压可按发电机空载励磁电压的倍整定。5)转子低电压判据系数Kf转子低电压系数,用于整定转子电压动作曲线斜率。单位(元)KkKf = 式中,Xd∑=Xd+XsXd∑若实际基准为Vfd[0],P[0],与装置假定值Vfd0=125V, SN=866VA相差较大时,可修正Kf125 P[0][整] = Kf866 Vfd[0]Xs为升压变压器及系统等值电抗之和(标么)Kk=为可靠系数,Xd为发电机电抗(标么)5)反应功率Pt考虑凸极效应。单位(W)1 1 1Pt = ( - )SN,式中:Xd∑=Xd+Xs, Xd∑=Xq+Xs2 Xq∑ Xd∑Xd及Xq分别为发电机d轴和q轴电抗(标么),SN为二次基准功率。7)定子过流lg•dz可按发电机过载异步功率整定。单位(A)。一般lg•dz= le8)动作时间t1整定保护的延时动作时间。单位(S)9)动作时间t2整定保护的延时动作时间。单位(S)10)动作时间t3整定保护的延时动作时间。单位(S)发电机反时限负序过流保护保护原理保护反应发电机定子的负序电流大小。保护发电机转子以防表面过热。保护由二部分组成:负序定时限过负荷和负序反时限过流。电流取自发电机中性点(或机端)TA三相电流。反时限曲线特性由三部分组成:a)上限定时限;b)反时限;c)下限定时限。当发电机负序电流大于上限整定值时,则按上限定时限动作;如果负序电流超过下限整定值,但不足以使反时限部分动作时,则按下限定时限动作;负序电流在此之间则按反时限规律动作。负序反时限特性能真实地模拟转子的热积累过程,并能模拟散热,即发电机发热后若负序电流消失,热积累并不立即消失,而是慢慢地散热消失,如此时负序电流再次增大,则上一次的热积累将成为该次的初值。反时限动作议程:(I22-K22)t≥K21其中:I2――发电机负序电流标么值K22――发电机发热同时的散热效应K21――发电机的A值出口方式:可发信或跳闸保护的整定计算1) 定时限负序过负荷电流定值I2•ms•dz按发电机长期允许的负序电流下能可靠返回的条件整定。2) 定时限负序过负荷动作时间ts按躲后备保护的动作延时整定。3)反时限负序过流启动定值I2•m•dz按保护装置所能提供的最大跳闸时间确定(通常为1000秒),据此发电机能承受的负序电流整定。此值一般应接近于负序过负荷保护的动作电流。4)反时限负序过流速断定值I2•up•dz按躲过主变压器高压侧两相短路的条件整定。5)散热系数K22一般按发电机长期允许的负序电流标么值整定。K22=(I2∝/ Ie)2当发电机实际额定电流为Ie,与CT二次额定电流IN相差较大时,需折算leK22[整] =( )2 K22lNleK21[整] =( )2 K21lN其中:l2∝-发电机长期允许的负序电流le-发电机额定电流6)热值系数 K21按发电机A值整定7)长延时动作时间t1按l2•m•dz电流能够承受的时间整定(一般1000秒)。8)速断动作时间tup当与其它保护在动作时间的配合上出现矛盾时,应兼顾保护的选择性和灵敏性要求。发电机逆功率保护保护原理逆功率保护用于保护汽轮机,当主汽门误关闭,或机组保护动作于关闭主汽门而出口断路器未跳闸时,发电机将变为电动机运行,从系统中吸收有功功率。此时由于鼓风损失,汽机尾部叶片有可能过热,赞成汽机损坏。因此一般不允许这种情况长期存在,逆功率保护可很好地起到保护作用。在大型发电机组上一般为可靠装设二套独立的逆功率保护。逆功率保护反应发电机从系统吸收有功的大小。逆功率受TV断线闭锁。电压取自发电机机端;电流取自发电机中性点(或机端)TA。出口方式:可发信或跳闸P< t1/o 发信或跳闸t2/o 发信或跳闸 发电机转子两点接地保护反应定子电压中二次谐波的“正序”分量,此分量是由转子绕组不对称匝间短路时含二次谐波的磁场以同步转速正向旋转而在定子绕组中生成。保护受一点接地保护闭锁,发生一点接地时保护自动投入。保护经入机端三相电压。 整定内容1) 二次波电压动作值Uido 单位:(V)2) 保护动作延时Tido 单位:(S) 整定计算方法1)Uid二次谐波电压动作值(整定范围0-10V)Uld=Kk×UbpnUbpn为额定负荷下二次谐波电压实测值;Kk为可靠系数,可取)Lld保护动作延时(整定范围秒),为增加可靠性而设。主变压器(发变组、厂变、高备变)差动保护保护原理变压器差动保护采用有二次谐波制动的比率差动原理,并使用了变数据窗快速算法。比率制动原理∣I1+I2∣≥KMax{I1,I2}(二侧差动)∣I1+I2+I3∣≥KMax{I1+I2+I3}(三侧差动)其中:I1――第一侧电流I2――第二侧电流I3――第三侧电流K――制动系数Max(x,y)――取x,y中最大值变数据窗算法原理所谓变数据窗算法是指差动保护能够在故障刚开始发生且故障采样数据量较少时自适应地提高保护的制动曲线,随着故障的进一步发展、计算精度的进一步提高,能逢动降低制动特性曲线,以其与算法精度完全相配套。这种自适应的制动曲线,最终的(也是最精确的)是用户整定的特性。采用这一算法可以大大提高严重内部故障时的动作速度,同时丝毫不会降低轻微故障时的灵敏度。出口方式原理:任一相差动保护动作即出口跳闸。这种方式另外配有TA断线检测功能。在TA断线时瞬时闭锁差动保护,并延时发TA断线信号。TA断线可根据需要投退运行。保护的 整定内容(假定TA二次额定电流为5(A))1) 比率制动系数 K整定差动保护的比率制动系数。单位(无)一般:K=) 二次谐波制动比整定差动二次谐波制动比。单位(无)。一般:Nec=) 启动电流 lq整定差动保护的启动电流。(归算到低压侧)。单位(A)。一般:lq=(A)4) TA断线解闭锁电流定值 lct当差电流大于该定值时,TA断线闭锁功能自动退出。单位:(倍)它是以TA的二次额定电流为基准的。(装置内部默认为5(A)或1(A)一般:lct=(倍)。(归算到低压侧)5) 速断电流 lsd整定差动保护速断电流倍数。它是以TA的二次额定电流为基准的。(装置内部默认为lN5(A)或1(A))单位(倍)。一般lsd=(倍)(归算到低压侧)6) 启动电流 lq按躲过最大负荷电流条件下流入保护装置的不平衡电流整定。最小动作电流宜在以上。装置上一般以归算到低压侧(如发电机侧)电流来整定。7) TA断线解闭锁电流定值 lct按躲开变压器最大负荷电流整定。该电流装置上一般以归算到低压侧(如发电机侧)电流来整定计算。它是以TA的二次额定电流为基准的。Ict =()If•max/(nL×Ict•e)其中:If•max-变压器最大负荷电流Ict•e-电流互感器二次额定电流8) 速断电流 lsd该电流装置上一般以归算到低压侧(如发电机侧)电流来整定计算。它是以TA的二次额定电流为基准的。如整定n倍额定电流,且TA二次额定电流为5(A):则:lsd=n×le/(n1×5)(倍)推荐n用4-8。 变压器复合电压过流保护原理保护反应变压器电压、负序电压和电流大小。电流电压一般取自变压器的同一侧TA和TV出口方式:可发信或跳闸。整定内容1) 电流定值lg•dz整定电流。单位(A)2) 低电夺定值U1•dz整定低电压。单位(V)3) 负序电压定值U2•dz整定负序电压。单位(V)4) 动作时间t1整定保护的延时动作时间。单位(S)5) 动作时间t2整定保护的延时动作时间。单位(S)参 考 文 献[1]、<微型计算机原理及应用>郑学坚、周斌编著。清华大学出版社,1995年8月出版社。[4]、Malvino Computer Electronics. McGraw-Hill Publishing Co,1977.[2] Relay,.[3]、Committee Report, Tvansient Respponse of Current .[4]、马长贵主编<高压电网继电保护原理>水利电力出版社,1988。[5]、许正亚编<电力系统故障分析>水利电力出版社,1993。[6]、西北电力设计院,<电力工程电气设计手册2>,水利电力出版社,1990[7]、国家电力调度通信中心<电力系统继电保护实用技术问答>,中国电力出版社,1997、5[8]、国家电力调度通信忠心<电力系统继电保护规定汇编>中国电力出版社,1997[9]、山东省电力局文件<山东电力继电保护配置原则>1997。[10]、东南大学,南京电力自动化设备总厂联合编制,<WFB2-01型微机发电机变压器组保护装置技术说明书>。1997、4、28[11]、南瑞继电保护公司,戴学安,<微机继电保护原理及技术>

269 评论

吃是王道呼

CNKI有好多硕士博士论文,可以查阅

334 评论

相关问答

  • 毕业论文最短路优化问题

    最优化方法论文可以从哪几个方面写选我来帮忙

    钱川同学 4人参与回答 2023-12-07
  • 地接导游毕业论文

    我没有这方面的资源,不过你可以这样:进入到你学校的图书馆网站,进入相关的数据库网站,下载相关的论文作参考.

    虎斑宝贝 3人参与回答 2023-12-07
  • 毕业论文两部分不相关

    不可以。毕业论文是学校要求学生在毕业前总结性独立作业、撰写的论文,论文内容必须于题目相关,所以不可以与工厂设计不相关。毕业论文,按一门课程计,是普通中等专业学校

    claire小雨 4人参与回答 2023-12-08
  • 最短路径应用毕业论文

    毕业论文是教学科研过程的一个环节,也是学业成绩考核和评定的一种重要方式。毕业论文的目的在于总结学生在校期间的学习成果,培养学生具有综合地创造性地运用所学的全部专

    微笑的可爱多 4人参与回答 2023-12-05
  • 最短路径问题毕业论文

    去看下OSPF详解吧。。。

    溪爱Mr彬 3人参与回答 2023-12-12