六月之程
动物细胞和植物细胞工程制药探讨论文
在日复一日的学习、工作生活中,大家都跟论文打过交道吧,借助论文可以有效训练我们运用理论和技能解决实际问题的的能力。那么你知道一篇好的论文该怎么写吗?下面是我为大家整理的动物细胞和植物细胞工程制药探讨论文,欢迎阅读与收藏。
摘要:
细胞工程是生物制药工业中的关键技术,其在医药领域的应用使得生物制药行业得到了极大的发展,细胞工程制药前景广阔。通过对相关文献和数据的整理和分析,概述了细胞工程制药领域相关技术及其在生物制药工业中应用的意义与展望。
关键词:
细胞工程;生物制药;动物细胞工程;植物细胞工程;转基因;反应器;
1、生物制药及细胞工程概述
生物制药是生物技术的综合利用,从生物体、生物组织、细胞和体液中分离出有效成分,制备用于预防、治疗和诊断的产品[1]。天然的生物材料赋予了生物制药安全性高、副作用小、营养价值较高的特点,这些显着的优势使生物药物越来越受人们的青睐,这也是生物药物市场不断扩大的重要原因之一。
细胞工程是以细胞为研究对象,按照需求利用细胞和分子生物学的理论设计和操作,使细胞在遗传学上的特性发生变化,达到改良或创造新品种的目的,在大规模地培养和繁殖后,最终提取出对人类有利的产品。在工业上,主要包括上游工程(包括细胞培养、遗传操作和保存)和下游工程(包括转化细胞在生物制品生产中的应用)[2]。如今,细胞工程在生物制药工业发挥着不可替代的作用。
2、动物细胞工程制药
、动物细胞工程制药的概述及早期发展
动物细胞工程制药最早能够追溯到20世纪50年代,用动物细胞生产病毒,也就是在生物反应器中培养动物细胞,进行大规模培养后,再接种减毒或灭活的病毒来生产疫苗[3]。常见的动物细胞培养技术流程,一般是先将动物组织分散成单个细胞、细胞群(团)后,接种于培养基中进行原代培养,再经过10~50代的传代培养,就初步得到了需要的细胞系。然而,由于自然界的细胞普遍表达水平低,通过这种方法生产的产品不仅产量低,而且成本高,因此,早期动物细胞培养并没有得到充分的重视。
、杂交瘤技术
杂交瘤技术在20世纪70年代的创建,是动物细胞技术发展新的里程碑。随着杂交瘤技术在工业领域的应用,各种新产物相继出现,在生产用于疾病诊断和治疗的生物制品中具有重要意义[3]。1984年的诺贝尔生理学或医学奖颁给了创立抗原选择抗体学说以及发明单克隆抗体技术的3位科学家。他们提出将能够分泌特异性抗体的B淋巴细胞与能够无限增殖的骨髓瘤细胞融合筛选,形成能产生特定抗体的杂交瘤细胞。这种方法得到的融合细胞可以稳定生产特异性强、效价高的单克隆抗体。
、动物细胞大规模生产技术
动物细胞大规模生产指在人工条件下,在细胞生物反应器内大量培养有用的动物细胞,是生产药品的技术,也是制药业的关键技术。由于动物细胞对外界环境变化高度敏感,细胞培养放大工艺需要从实验室规模逐级放大到生产规模,各个反应器中工艺的差别成为目前放大过程的一大技术挑战[4]。通过动物细胞生产生物制品已成为全球生物产业的主要支柱,目前通过动物细胞培养获得较多的生物制剂是蛋白和抗体。
、动物生物反应器
动物生物反应器可以从转基因动物体内源源不断地获得人类需要的某种蛋白,并进行工业化生产蛋白质。依据产生蛋白部位的不同,可分为多种类型的生物反应器,如血液生物反应器、唾液腺生物反应器等。科学家发现,由于雌性动物的乳腺能够高效表达重组蛋白并进行一定的修饰,乳腺生物反应器成为最被看好的生物反应器发展方向。随着技术的发展,乳腺生物反应器的产物已经扩大到了抗凝血酶、凝血因子、人蛋白,还有各种溶菌酶、超氧化物歧化酶、干扰素等许多具有极高医用价值的酶或细胞因子。作为一种全新的生物生产模式,由于其在生产天然产物时的高产量、低成本的优势[5],乳腺生物反应器在生物医药行业将得到更广泛的应用。
、动物细胞核移植
动物细胞核移植在细胞工程中同样具有良好的前景。将动物的供体细胞核取出,注入另一个去核并且处于减数分裂中期的卵母细胞,改变细胞的遗传特性,以产生新产品,再将其进行体外培养、繁殖、纯化、提取,最终用于疾病治疗。我国对鱼类的核移植研究最早,“中国克隆之父”童第周在20世纪60年代就完成了世界上第一例鱼类细胞核移植。后来,我国学者又尝试在其他多种品系鱼类之间进行核质融合实验,并利用模式动物斑马鱼,揭示鱼类核移植后再程序化的分子机制,取得了巨大的研究成果,推动了鱼类核移植技术及其他相关领域的快速发展[6]。如今,动物细胞工程在生物制药领域意义重大。由于动物细胞结构的复杂性和分工的明确[7],动物细胞工程具有巨大的优势。
3、植物细胞工程制药
、植物细胞工程制药的概述及早期发展
将植物直接入药或者从植物体中提取有效成分是一种生产药物的传统方法。随着技术的成熟,处理和提取过程越来越简便,目前多种中药都是这样生产的。但是,这样的方法只适合容易栽培、繁殖速度快的植物,对于那些生长周期长、提取难度大的植物并不适合,所以受到了诸多限制。比如拥有抗癌成分的红豆杉曾因为人们的大规模砍伐,遭受了毁灭性的破坏[8]。
植物细胞工程制药,是将植物细胞作为基本研究单位,对植物细胞进行一系列操作,改变植物细胞生物特性,最终达到改良或培育新品种的目的[9]。应用植物细胞及组织培养,具有杂质少、提取简单、有效成分含量高和培养周期短的优势。植物细胞工程制药目前主要体现在组织及细胞培养、遗传特性改造以及转基因植物等方面。
、植物细胞工程大规模培养
最早提出应用植物大规模提取天然药物的是20世纪50年代美国的科学家,他们从多升发酵罐中得到了大量药用成分呋喃色酮。我国作为植物药用历史最悠久的国家之一,应用细胞培养技术能够帮助我国传统中药材发挥更大的价值。
丹参是具有活血化瘀、通经止痛功效的一味中药,其中的'主要成分——酚酸类和二萜类,药理作用主要表现在对心血管系统疾病的治疗。目前,由于丹参有效成分含量低、生长缓慢,野生丹参资源遭到大规模破坏,加上各地培育出的品种质量良莠不齐等原因,其在数量以及质量上都难以满足市场的供给需求[10]。经过实验研究发现,用一种10L规模的特殊植物组织反应器培养丹参发根,仅用50天,鲜重增殖倍数高达240倍,各种有效成分含量也得到大幅度提升。这是一种非常适合丹参发根生长及产物积累的方法,而且避免了农药等物质的污染。
、植物转基因技术
转基因植物与转基因动物相比有独特的优势,一方面植物细胞具有全能性,细胞培养条件简单且易于成活;另一方面进入植物体的外源基因,可以在与其他植物杂交的过程中积累有益基因优化表达。利用转基因植物也能生产疫苗,以植物作为生物反应器,将携带抗原基因的载体导入受体细胞,在植物体内表达和修饰这类特定抗原,成为具有免疫活性的蛋白质。香蕉、胡萝卜、土豆等都可以作为受体植物。一些转化编码基因的植物疫苗,如HBsAg、LTB、诺沃克病毒等,已被用于预防和治疗乙型肝炎及细菌性腹泻。在生物和临床试验中,均展示了良好的免疫应答,相较于传统疫苗,具有生产成本低、成功率高、易形成规模化生产等优势。尽管植物转基因疫苗的研究还处于起步阶段,但我国报道的转基因植物生物试验已经取得了一些成果[11],成为我国制药业的重要进步。
、植物生物反应器
植物生物反应器,又名“植物基因药厂”。这种技术拓宽了药用蛋白及疫苗的来源,在降低成本的同时,扩大了生物制药产业规模,并产生了巨大的商业价值。植物生物反应器的研发,对于在全球范围内抢占生物经济制高点有着重要的意义,许多发达国家都已把植物生物反应器的研发列入了国家重点生物技术研究的战略性计划[12]。我国开发植物作为反应器始于20世纪90年代,目前对于植物生物反应器的研发和投入与发达国家还存在一定的差距。在我国“九五”计划对这一项目进行政策扶持后,目前已经取得了大幅度进展[13]。
4、细胞工程制药的意义与展望
研究细胞工程制药的研究进展和前景,对于制药业的发展有重要意义。据统计,世界上50%的医药产品来自细胞工程制药,其中,植物细胞提取物和动物细胞提取物大约各占1/2。细胞工程在生物制药工业中占据重要地位,为新药开发提供了技术操作基础,在治疗免疫性疾病、提升治病疗效、创新医药品等方面都有广泛的应用[8],细胞工程制药的研究在不断取得突破,其影响和前景也日渐得到展现。如今,生物制药与细胞工程已经紧密联系在一起,随着细胞工程技术在生物制药生产中的普遍应用,生物制药行业发展迅速,取得了巨大的经济效益[14]。
伴随着更多新兴技术的出现和更新,在未来细胞工程制药研发过程中,可以充分利用各种技术平台寻找最佳研究方案。与其他相关领域的结合,也将更好地推动我国生物制药领域的发展。近半个世纪以来,细胞工程制药发展迅猛,并且已在医药领域取得了众多的研究成果。所以,在“十四五”规划期间,应更加重视战略性新兴产业,进一步加快和壮大新一代生物技术的发展。
参考文献
[1]雷世成,杨永红生物制药的发展现状、特征及技术平台[J].临床医药文献电子杂志,2019(6):22-24.
[2]李刚,刘鹏,刘诚迅,等我国细胞工程制药的研究现状和发展前景[J].中国现代应用药学,2002(4):28-31.
[3]胡显文,肖成祖.细胞工程在生物制药工业中的地位[J].生物技术通讯,2001(2):39-44.
[4]刘小双,陈飞,赵孟江,等大规模哺乳动物细胞培养中pCO2的控制策略[J]药物生物技术,2019(2):82-87.
[5]谢晶莹,张勇,冯若飞乳腺生物反应器在生物制药领域的研究进展[J].西北民族大学学报(自然科学版),2018(2):61-66.
[6]王学耕,朱作言,孙永华,等鱼类核移植与重编程[J].遗传,2013(4):45-52.
[7]唐亚雄细胞工程在生物制药I业中的地位[J].科技风。2020(6):198.
[8]成静,郭勇.植物细胞工程药物生产的研究进展[J].江西科学,2000(1):62-64.
[9]赵玉平,杨夏,高峰丽植物细胞制药的研究进展[J]中国中医药现代远程教育,2012(12):169-170.
[10]晏琼提高丹参毛状根生产丹参酮的诱导和过程策略研究[D]天津:天津大学,2005.
[11]郝宇娉,陆琳,杨志红.转基因植物疫苗的研究进展[J].核农学报,2020(12):86-102.
[12]张胜利,李东方,许桂芳,等.植物生物反应器在生物制药中的应用[J]资源开发与市场,2011,27(2):102-105.
[13]李从林.细胞工程在制药方面的研究[J]科技风,2021(5):173-174.
[14]陈劼.细胞工程在生物制药工业中的地位[J].中国高新区,2018(3):58.
听风者三
摘要:丹参是一种具有广泛的药理活性和应用价值的常用中药材,通过查阅相关 文献资料,进行分类总结,本文从丹参的品种考证、种类资源、化学成分、药理 作用、丹参制剂及其质量控制、展望等方面对有关丹参的研究进行综述。关键词:来源 资源状况 有效成分 药效作用 中成药制剂 丹参是著名的活血化瘀药, 现代药理研究表明丹参对心血管系统,血液系统 的作用十分显著。 1997 年,复方丹参滴丸成为第一个向美国 FDA 以治疗药身份 申报的品种, 意味着丹参将成为首例用国际标准进行评价的传统中药。 此后丹参 的研究又形成了一个新的热潮。 本文就丹参各方面的研究概况进行综述。 1、丹参道地性、资源状况、产地迁移 丹参是唇形科多年生草本植物丹参 Salvia miltiorrhiza Bge 的干燥根及根 茎[1],在我国应用历史悠久,始载于《神农本草经》,被列为上品。 但历代本草 对其道地产区叙述多有不同。 按郭宝林考证, 《名医别录》述: “生桐柏山谷及太 山”(今河南和湖北交界及山东泰山一带); 《图经本草》 : “今陕西河东州郡及随 州皆有之”(今山西、湖北,河东州郡应归为山西而非陕西); 《本草品汇精要》 : “道地随州” (今湖北随州); 《药物出产辨》 : “产四川龙安府为佳” (今四川平武)。 现代研究表明:丹参在我国分布甚广,南起江西、湖南,北达辽宁,西至四 川,广布于海拔 120-1300m 的山地丘陵。 丹参野生、家种兼有,野生品有效成分 高于栽培品,但栽培丹参的种植面积和规模较大 ,生长条件稳定,产量大,已经成 为目前丹参商品的主流。 栽培面积较大的有山东、四川、河南、河北、陕西、安 徽等省。 丹参的化学成分在地理空间上没有一定的规律可循, 表明在较大尺度上, 气候、 大的土壤类型等生态因子对丹参次生代谢产物积累的影响不明显。 丹参化 学成分在同一个省内的变异可能会大于空间距离更远的不同的省之间, 提示遗 传背景及小尺度上的生态因子,如区域土壤、小气候及人为影响等,对丹参中化 学成分的积累有重要影响。 以中江丹参为例: 四川中江丹参大面积人工栽种历史约 300 年,中江丹参作 为我国丹参的主源优质道地药材,以其根粗壮、色泽朱红、药味浓郁、药效高而 弛名海内外。 在《中国道地药材》中,被列为川产道地药材,是四川省主要中药 材品种之一,在四川道地药材中占有非常重要的地位。 当地丹参种植面积大,栽 图1 培技术成熟。 由此可见,遗传背景的一致性以及最终带来的质量的均一性,可以 被视为中江丹参被视为道地药材的原因和特征( 即道地性),而丹参道地性的形 成与当地的加工种植历史、 栽培技术及栽培过程中的品种选育有密切相关。 资料 表明中江丹参现实面对情况如下:第一、丹参种植多是散户种植,种植规模化程 度较低,企业、专合组织参与度不高,丹参产业化程度较低。 第二、因为丹参种 植农户文化程度普遍较低而且年龄偏大,从农户种植行为分析发现,丹参规范化 种植程度也偏低,农户对丹参规范化种植的认知度较低。 第三、由于政府产业引 导力度不足, 丹参种植较低的规模化和产业化制约了丹参种植规范化的发展。 由 以上现象提出建议:首先开展技能培训,留住青壮年劳动力,并且加大土地流转 力度,提升丹参种植规模化水平,同时加强丹参产业化基地建设,加大培训和技 术指导力度,最后加大监管力度,从源头抓起。 2.丹参的化学成分研究 丹参的化学成分主要分为水溶性和脂溶性 2 大类。 其中脂溶性有效成分主 要是丹参酮类;水溶性有效成分主要为酚酸类化合物。 20 世纪 30 年代末,日本学者[3]首次发现丹参酮ⅡA,丹参酮ⅡB,是天然抗氧 剂。 随后几十年,有连续发现了丹参酮Ⅰ、隐丹参酮、二氢丹参酮Ⅰ、异丹参酮、 丹参新酮、丹参新酮Ⅱ、去甲丹参酮、羟基丹参酮等[4]脂溶性有效成分。 母继林, 和顺琴等[5]采用匀浆法提取,超高效液相色谱法测定中药材丹参中的隐丹参酮、 二氢丹参酮、 丹参酮 I 和丹参酮Ⅱ 的方法,使 4 种丹参酮在 5 分钟内可达到完 全分离,大大缩短了分离时间。 20 世纪 80 年代初,我国首先研究了丹参素的结构,并证明丹参水溶性成分 主要是以丹参素为基本结构的酚酸类化合物, 多数命名为丹酚酸[6], 包括丹参素、 丹酚酸 A、丹酚酸 B、丹酚酸 C、紫草酸、原儿茶醛、原儿茶酸、迷迭香酸等。 曾令杰,林文雄等 通过高效液相色谱法对丹参药材的水溶性成分进行了定量分 析,发现丹参的各种水溶性的活性成分的含量之间存在着明显的相关性。 3.丹参的药理作用研究 改善微循环作用 丹参可以使微循环血流显著加快,扩张微动脉,增加毛细血管网开放数目, 使血液流态得到改善,其中丹参素的作用最为显著。 李焰等[8]采用乙代乙酰胺复 [7] 图2 制大鼠暴发性肝衰竭模型, 并用丹参注射液进行治疗,与正常对照组和暴发性肝 衰竭对照组进行肠系膜微循环比较,结果丹参组肠系膜微循环灌注得到显著改 善。 改善血液流变学 丹参可以降低血液黏度和红细胞压积,减慢红细胞沉降率,加快红细胞电泳 速度,增强红细胞变形能力等。 丹参可使冠心病、心肌梗死、缺血性中风等患者 的血液粘稠度明显降低,对血瘀证患者血液的“粘、聚、滞”倾向有较好的改善 作用。 丹参可使血粘度增高的心血管病患者的红细胞电泳时间缩短、全血粘度、 高切变率、低切变率明显降低,有利于心肌组织获取氧供[9]。 保护心肌的作用 丹参素具有缩小心肌梗死范围、降低心肌梗死程度、减少心肌酶的释放和缩 短病程的作用,同时对心、脑组织缺血再灌注损伤具有保护作用。 胡爱萍等[10] 的研究结果表明, 丹参处理可明显减弱缺氧/复氧对心肌细胞的收缩和细胞内钙 参数的作用,减少心肌细胞乳酸脱氢酶(LDH)的释放,提示丹参可对抗缺氧/复 氧对心肌细胞的影响和损伤。 抗血栓作用 丹参酚酸对多种因素引起的血小板聚集均有显著的抑制作用。 丹参多酚酸盐 通过降低 TXB2 和 P-选择素水平,发挥显著的抗血小板聚集作用,增强机体纤溶 能力,有助于维持血运和预防血栓形成;丹参素可抑制血小板黏附和聚集,促进 纤维蛋白分解,降低血液黏度;丹酚酸 B 可抑制凝血系统的激活,抑制血小板与 暴露内皮下胶原黏附;隐丹参酮可抑制血小板与内皮细胞的黏附[11]。 其他 丹参还具有抗心脑缺血,抗肝纤维化、抗肿瘤、降血脂和康动脉粥样硬化、 抗心律失常等药理作用 4.丹参中成药制剂 水溶性有效成分入药的丹参制剂 这类制剂的主药丹参多采用水煎法或水提醇沉法制备,其有效成分为水溶性 酚酸类化合物。 主要品种有丹参注射液、口服液、冲剂、气雾剂、粉针剂、煎剂、 透皮吸收剂、多相脂质体;如:丹参素注射液、复方丹参注射液、丹红注射液、 [12] 。 图3 丹归注射液、丹参黄芪注射液、丹芪口服液、丹芪益心贴、复方丹参膏、复方丹 参糖浆等。 脂溶性有效成分入药的丹参制剂 这类制剂按用途可分为两类,一类用于治疗化脓性感染性疾病如痤疮、扁桃 体炎、骨髓炎、蜂窝组织炎、烧伤等,主药品种有丹参酮片、丹参酮胶囊、丹参 酮油膏等。 另一类用于治疗心脑血管疾病,主药品种有丹参舒心胶囊、丹参舒心 片、丹参酮Ⅱ2A 磺酸钠注射液、精制冠心片等。 5.提取方法 随着丹参药理作用机制和药代动力学研究的不断深入, 从丹参中提取的活性 成分大量用于制药工业, 将对丹参药材的需求不断增加。 除现代制药工厂常用的 提取方法外,随着微波萃取、生物酶、半仿生提取、CO2 超临界流体萃取、大孔 树脂吸附、超滤、分子蒸馏、高速逆流色谱等新技术在中草药有效成分的提取分 离纯化中的推广应用,高纯度有效成分的获取将成为可能。 因此,丹参有效成分 提取分离的研究有待进一步开展。
牡丹,是中国固有的特产花卉,有数千年的自然生长和两千多年的人工栽培历史。其花大、形美、色艳、香浓,为历代人们所称颂,具有很高的观赏和药用价值,自秦汉时以药植物载
完全可以。各大高校的学报都接收外校稿件的。只要你论文有水平,都是可以发表的,不比担心是本科生就受歧视。
闫吉青撰写的《俄罗斯生态文学之特质探蕴》发表于《俄罗斯文艺》2009年第4期。作品主要强调俄罗斯生态文学继承了19世纪俄罗斯批判现实主义文学的文化传统,密切关心
丹参适应性强,喜气候温暖、湿润、阳光充足的环境,适宜砂质壤土,大田种植以中等偏下肥力地块产出的丹参药效较好,尤其适宜新开垦的生地或二荒地。 丹参生长发育大致分
堵海燕史静安丽芝 (中国地质图书馆) 冯景兰是我国著名的地质学家、教育家,是我国近代地质工作的先驱。冯景兰在两广地区、黄河及黑龙江流域的新构造运动、地貌、成矿控