• 回答数

    3

  • 浏览数

    220

一纯佛雨
首页 > 学术期刊 > 法国数学毕业论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

HaoRen19990828

已采纳

数学应用数学本科毕业论文篇2 试谈数学软件在高等数学教学中的应用 【摘要】高等数学是理工科大学生必修的一门基础课程,具有极其重要的作用.本文以Mathematic软件为例子介绍了其在高等数学课程教学中的几点应用,即用符号运算和可视化的功能辅助教学研究.不仅可以激发学生学习的兴趣,提高课堂效率,而且能提高学生分析和解决问题的能力,可以培养学生的动手能力和创新能力. 【关键词】Mathematic;符号运算;图形处理;高等数学 一、引 言 随着现代科学技术的迅猛发展和教育改革的不断深入,新的知识不断涌现,社会对现在的大学生的要求也越来越高,不仅要求他们具有扎实的理论基础,而且要求他们具有较强的动手能力和一定的创新能力,传统的高等数学教学内容和教学方法不断受到冲击.为了适应这种发展的需要,高校教师就需要不断地对教学内容和教学手段进行改革:如何运用现代信息技术提高课堂教学的质量和效率,不仅教给他们理论知识,而且要教给他们处理实际问题的工具和方法. 而数学软件正是这样一个必备的工具.目前,数学软件有很多,较流行的有四种:Maple、Matlab、MathCAD、Mathematica,这几种数学软件各有所长,难以分出伯仲.Maple与Mathematica以符号计算见长,Matlab以数值计算为强,而MathCAD则具有简洁的图形界面和可视化功能,本文以Mathematica在高等数学中的应用进行介绍.Mathematica是由位于美国伊利诺州的伊利诺大学Champaign分校附近的Wolfram Research公司开发的一个专门进行数学计算的软件. 从1988年问世至今,已广泛地应用到工程、应用数学、计算机科学、财经、生物、医学、生命科学以及太空科学等领域,深受科学家、学生、教授、研究人员及工程师的喜爱.很多论文、科学报告、期刊杂志、图书资料、计算机绘图等都是Mathematica的杰作.Mathematica的基本系统主要由C语言开发而成,因而可以比较容易地移植到各种平台上,其功能主要是强大的符号运算和强大的图形处理,使你能够进行公式推导,处理多项式的各种运算、矩阵的一般运算, 求有理方程和超越方程的(近似)解,函数的微分、积分,解微分方程,统计,可以方便地画出一元和二元函数的图形,甚至可以制作电脑动画及音效等等.我们努力追求的目标是如何将数学软件(如Mathematica)与高等数学教学有机地结合起来,起到促进教学改革和提高教学质量的作用. 二、Mathematica在教学中的作用 Mathematica语言非常简单,很容易学会并熟练掌握,在教学中有以下两个作用: 1.利用Mathematica符号运算功能辅助教学,提高学生的学习兴趣和运算能力 学习数学主要是基本概念和基本运算的掌握.要想掌握基本运算,传统的做法是让学生做大量的习题,数学中基本运算的学习导致脑力和体力的高强度消耗,很容易让学生失去学习兴趣,Mathematica软件中的符号运算功能是学生喜欢的一大功能,利用它可以求一些比较复杂的导数、积分等,学生很容易尝试比较困难的习题的解决,可以提高学生的学习兴趣,牢固地掌握一种行之有效的计算方法. 例1利用符号运算求导数. 利用Mathematica还可以解决求函数导数和偏导数、一元函数定积分和不定积分、常微分方程的解等.由于输入的语言和数学的自然语言非常近似,所以很容易掌握且不容易遗忘.Mathematica不仅是一种计算工具和计算方法,而且是一种验证工具,充分利用Mathematica这个工具进行验证,可以使得学生轻松地理解和接受在高等数学的教学中遇到的难理解的概念和结论.另外,在教学中会遇到难度比较大的习题,利用Mathematica可以验证我们作出的结果是否正确. 2.利用Mathematica可视化功能辅助教学,提高学生分析和解决问题的能力 利用Mathematica可视化功能辅助教学,可以很方便地描绘出函数的二维和三维图形,还可以用动画形式来演示函数图形连续变化的过程,图形具有直观性的特点,可以激发学生的兴趣,是教师吸引学生眼球,展示数学“美”的一种有效的教学手段,可以达到很好的教学效果. 在高等数学的教学中遇到的学生难理解的概念和结论,如果充分利用Mathematica这个工具进行验证,就可以让学生比较轻松地理解和接受. 在空间解析几何和多元函数微积分这两章内容中,涉及许多三维的函数图形,三维函数图形用人工的方法很难作出,要掌握二元函数的性质就需要学生较强的空间想象能力,这对一部分学生来说非常困难.利用Mathematica软件可以作出比较直观的三维图形,学生利用Mathematica软件就比较容易掌握这两章内容. 总之,高等数学中引入数学软件教学,在很多方面正改变着高等数学教学的现状,能给传统的教学注入新的活力,在教学中要充分发挥数学软件(如Mathematica)的作用,培养学生学习高等数学的兴趣,突出他们在学习中的主体地位,提高他们分析解决问题的能力,培养他们的创新意识. 三、结束语 本文探讨了在高等数学的课堂教学中,如何利用Mathematica软件的符号运算功能与可视化功能激发学生学习知识的动力,优化教学效果,提高课堂效率.在教学过程中,适当地运用数学软件,可将抽象的数学公式可视化、具体化,便于学生理解和掌握,最终起到化难为易、 化繁为简的作用.总之,高校教师在教学过程中,若能充分运用数学软件技术与多媒体技术辅助课堂教学,发挥新技术的优势,发掘新技术的潜力,必能提高教学的质量和效果. 【参考文献】 [1]郭运瑞,刘群,庄中文.高等数学(上)[M] .北京:人民出版社,2008. [2]郭运瑞,彭跃飞.高等数学(下)[M] .北京:人民出版社,2008. [3] (美)D尤金(著).Mathematica使用指南(全美经典学习指导系列) [M].邓建松,彭冉冉译.北京:科学出版社,2002. 猜你喜欢: 1. 数学与应用数学毕业论文范文 2. 应用数学教学论文 3. 应用数学系毕业论文 4. 本科数学系毕业论文 5. 数学专业本科毕业论文 6. 数学与应用数学毕业论文

270 评论

笑逍遥客

《数学教学方法综合》

【摘要】文章在综述数学教学方法已有研究的基础上,分析了数学教学方法改革的趋势,探讨了已有研究存在的不足,对今后数学教学方法的研究进行了展望。

【关键词】数学教学方法研究综述

1. 引言

我国的数学教学方法是在继承传统,学习国外理论和经验中构建起来的。不但继承吸收了传统优秀的教学方法,而且在学习国外结合自己的实践的过程中产生了不少新的运用比较广泛的教学方法。

2. 教学方法界定的研究

中外对教学方法有不同的界定。由于时代、社会背景、文化氛围的不同,以及研究者研究问题的角度的差异,使得中外不同时期的教学理论研究者对“教学方法”概念的说法也不尽相同。

(1)教学方法要服务于教学目的和教学任务的要求。

(2)教学方法是师生双方共同完成教学活动内容的手段。

(3)教学方法是教学活动中师生双方行为体系。

3. 教学方法本质的研究

教学方法,如果我们从更高角度去理解的话,我们可以理解为教法。教法,在国内基本是围绕三个方面理解:一是指教学方法论,也包含教学原则;二是指教学模式;三是指教学技能。关于教学方法的本质,有以下几种说法。

教学法说

教学是双边活动,教为学提供有利条件,使学法更合理并不断科学化。教还可以使学在速度与质量上得以优化。因此,教与学,必然同在于一个法。

学法前提说

有学者认为,现代教学论不能只重视教学方法的研究,还得重视学习方法的研究,教学方法的本质要求我们在实施教学时必须要考虑到教法的要求和学法的要求,使教与学结合,做到既教知识又教方法。

教法学法统一说

持这种观点的学者认为,教学方法不仅仅理解为“教师在教学过程中为了完成教学任务所采用的方式和在教师指导下学生的学习方式”。教学方法的本质教法学法的辩证统一。

4. 教学方法分类的研究

人们在长期的教学实践中积累了很多的教学方法。而教学方法的分类就是把多种多样的教学方法,按照一定的规则或者标准,将它们有机地组织成为一个体系。

国外学者对教学方法的分类

巴班斯基根据对人的活动的认识,把教学活动分成三种,即知识信息活动的组织、个人活动的调整、活动过程的随机检查。从而把教学方法划分为三大类:①组织和自我组织学习认识活动的方法;②激发学习和形成学习动机的方法;③检查和自我检查教学效果的方法。

拉斯卡依据新行为主义的学习理论,即刺激——反应联结理论。教学方法——学习刺激——预期的学习结果。

5. 教学方法运用问题的研究

有了正确的教学思想的指导,理解了教学方法的特性与功能,在具体的教学当中如何科学的运用是广大老师关注的问题。综述已有的研究,关于如何运用的观点如下。

综合运用说

任何教学方法都有它的优点和缺点。回顾以往,往往是由一个极端走向另一个极端,片面、盲目、形而上学是造成教学效果严重低下的主要原因。因此,有人提出要把各种教学方法综合的运用。要想做到综合运用,必须有:①教法学法相统一;②讲习知识的的方法于训练智能的方法要统一;③常规教学方法与现代教学方法相统一。

发扬借鉴说

有这种观点的学者认为,在运用教学方法的时候,应该做到:①发扬国内教学方法中的优势;②有选择的学习国外的先进理论和方法;③借鉴教学控制论,掌握教学平衡,提高教学质量。尤其对新的教学方法,更要有选择的学习、吸收。

目的要求说

学者认为,不能抛开教学目的去选择教学方法,如果抛开教学目的,盲目的选择,教学必然不会成功。因此,选择教学方法应该考虑以下几点:①教学目的;②学生的素质和特点;③教材内容;④教师的素质和特点;⑤教学条件。教学目标以及教学任务的完成,最终取决于学生,并且通过学生表现出来。所以,教师选择的教学方法也是为学生服务的,教学方法的选择也是建立在对中学各类基本知识的逻辑推理上的模糊评价。

6. 数学教学方法改革的趋向

强调提高教学效率

所谓教学效率,就是单位时间内所完成的教学任务。20世纪美国全国数学教师协会(NCTM)拟定的八十年代《行动计划》中第四条,明确提出:“必须把既讲效果又讲效率的严格标准应用于数学教学”。

强调发挥学生的积极性,鼓励学生独立发现和探索

传统的教学法是灌输式,把学生看作容器,不注意发展学生的智力,不能适应时代发展的要求。因此一些教育学家、心理学家提出了新的教学理论。布鲁纳也认为,学习重要的不是记忆事实,而是获得知识的过程。他提出“发现法”,强调“教数学……要让学生自行思考数学,参与到掌握知识的过程中去。”

发现法有利于促进学生理解,学会发现的方法,培养探究能力,有利于知识的记忆,提高学习的积极性。

面向全体适应个别差异

近些年来我们现在的教育,已经开始注意面向全体学生,同时适应个别差异。近年来,国外在这方面进行了许多试验,提倡分组教学。

7. 以往教学方法研究中存在问题

近几十年来,我国数学教育工作者将国外先进的教育理论与我国数学教育实践相结合,摸索出许多具有中国特色的数学教学方法,如:讲授法、谈话法、演示法、读书指导法、参观法、实验法、实习作业法、练习法、问题法(或发现法),等等。

但随着社会的发展,知识的更新以及教育教学理论的发展,这些教学方法需要加以反思。传统的数学教学方法研究主要存在以下几个问题:

①方法及名称繁多,缺乏科学的教育实验。

②强调单一教学方法而忽视教学方法的选择与组合。

③理论总结不够,体系混乱。

④以教为中心。长期以来,数学教学方法的研究往往侧重于教材和教师,而忽视了学生学习的心理规律。

⑤重知识轻能力。

⑥重结果轻过程。

⑦忽视非智力因素的作用。

8. 展望

纵观近几年来国际数学教育发展的趋势和我国数学教育发展的现状,我国数学教学方法的发展有以下几种趋势:

第一,计算机辅助数学教学(CAI)将大面积开展。计算机是当今社会先进生产工具的代表,21世纪,计算机工业将是全球最大的工业之一。 CAI必将渗透到教育的各个领域。

第二,引入以“问题解决”为中心的教学模式。“问题解决”对数学教育有着重大的意义。

第三,引入体现数学应用意识的教学方法。数学应用是数学教育的根本目的之一。随着新技术革命的深入发展,数学应用也越来越被人们重视。

第四,“再创造”、“发现式”教学方法将得到重视。

参考文献

[1]李定仁,徐继存.教学论研究二十年[M].北京:人民教育出版社,2001.

[2] 林六十,高仕汉,李小平.数学教育改革的现状与发展[M].武汉:华中理工大学出版社,1997.

[3] 陈丽.浅析中学数学教学方法的继承与发展[J].理科教学探索,2007:19

[4] 杨骞.我国数学教育研究近20年回顾与思考[J].大连教育学报.1999.

172 评论

liuyanfei0451

数学硕士论文开题报告

导语:数学是一门博大高深的学科,要想学好数学必须进行艰苦的研究与知识的积淀。数学硕士撰写论文可以提高学术水平,在写作之前需要提交开题报告。下面和我一起来看数学硕士论文开题报告,希望有所帮助!

一、数学文化的内涵

数学作为一种科学的语言、工具和技术渗透在现代科技的方方面面早已是不争的事实,但是现代数学在人们心中的地位却远远没有达到它应当达到的高度。随着数学专业化程度的提高,它仿佛离人们越来越远了。专业的知识因为艰涩和高深仅仅掌握在少数人手中而无法被大众共享,这直接导致了新的成果无人理解,获得的奖项无人关注,所以数学人是“孤独的”.孤独造成高傲,高傲造成疏远,这其中有误解也有无奈。所以我们强调文化,因为脱离了文化基础的数学只能离人们越来越远。

受目前学校教育情况的影响,很多人认为数学是高高在上的,除了作为升学的工具,毫无用处。这样一来,对于数学这样一门富有深刻文化内涵的学科,就连一些受过良好教育的人也持无视的态度,对数学的无知成了一种很普遍的社会现象,这是一个令人十分担忧的事实。就像美丽的图画并非只是线条和色彩,动人的乐曲并非只是音符和节拍,数学也不是只有数字、符号和运算。了解数学的人都知道,运算只是数学微不足道的方面,数学的精神、思想、方法都蕴藏着无比深刻的内涵,渗透到科学的每个角落。如果将数学比作一棵大树,那么这棵大树的生命力是旺盛的,这种生命力体现在数学起源、发展、完善和应用的每一个过程当中,而数学文化就像土壤一样几百几千年来滋养这棵大树,使它繁衍生息,长盛不衰。因此,扎根于文化土壤的数学教育是十分必要的,也是我们目前十分需要的,这一点将在第五章进行详细论述。

19世纪末到20世纪初的几十年是数学哲学研究领域的黄金时代,关于数学基础的讨论十分活跃,也形成了不同的学派,包括逻辑主义学派、形式主义学派、直觉主义学派、集合论公理化学派等,大家都在筹划为数学建立牢固的哲学基础。虽然几个学派各有优缺点,但都为数学基础的严密性做出了贡献。然而哥德尔的工作击碎了他们的幻想,使数学哲学的研究一度陷入谷底。直到20世纪60年代,西方学者提出了数学文化观,从新的立场为数学哲学研究提出新的观点、新的方法。最早系统地完成这一开创性工作的是美国数学家怀尔德(),他提出了数学作为文化体系的数学哲学观。怀尔德是一名出色的数学家,主要从事拓扑学和数学基础的研究。他的《数学基础引论》和《数学概念演变初探》对数学基础研究有着深远的意义。受到人类学家朋友的影响,他对人类学产生了浓厚的兴趣,并大胆地从人类学的视角考察数学的本质和发展,在数学研究中融入了人类学的研究体会,出版了着作《数学概念的进化》和《作为文化体系的数学》。

他在著作中从文化生成和发展的理论等角度考察数学,率先提出了数学文化的概念并构建了数学文化的理论体系,形成了很长时期以来出现的第一个成熟的数学哲学观,强调了数学的发展动力、发展规律、思维方式等文化内涵,强调了遗传、环境、人类以及人类文化等对数学的作用影响。

二、数学文化研究的意义

区别于其他文化,数学文化具有独特的研究对象、研究视角及价值评判标准,它的出现为数学研究提出了新的思想和方法,使得我们可以从人类文化的任意一个角度切入数学、理解数学、解构数学,最大范围地打开研究思路,拓宽研究范围。

数学文化首先研究的是数学本身,包括从科学体系角度对数学科学进行研究和从哲学角度对数学哲学进行研究。数学科学研究就是一般意义上的数学理论研究,而数学哲学研究则是对数学基础、数学悖论和数学本体论进行探讨,包括数学的对象、性质、特点、地位与作用,数学新分支、新课题提出的哲学意义,着名数学家和数学流派的数学和哲学思想以及数学方法、数学的实在性和真理性等。

数学文化同时研究的是数学学科与其他学科、数学文化与其他文化之间的交互作用,比如数学与文学、数学与经济学之间的渗透影响等。

数学文化研究从文化因素思考数学的演变和发展,为数学史的研究提供新的思考方向。数学文化的历史研究不同于数学史的研究,数学史研究追求的是完善数学知识、数学思想的演化史,数学文化的历史研究是基于全局视角,思考数学与其他文化系统历史的互动关系,关注这些关系对现代数学发展的影响和启示。

如中国的传统文化和实用哲学使中国传统数学重视实用性,制定实际问题的算法成为中国传统数学的本质,也是中国数学存在和发展的基点。古希腊的数学思想产生在城邦航海贸易的氛围中,兼容并追求独立的思辨思想孕育了演绎数学,这是古希腊哲学的深入渗透和文化价值观的体现。从中西文化的差异角度,我们找到了东西方数学体系大相径庭的原因,不是数学本身的要求,而是文化的要求。

数学文化研究强调和突出社会文化心理、价值观念以及人类文化对数学发生的作用,从新的角度诠释了某些理论出现、发展、停滞或覆灭的原因。如古希腊的数学之所以昌盛,是因为希腊人以数学为万学之基,二元论的宇宙观也引导科学家将物质与自身分离而进行科学有效的客观分析。中国的儒家思想将数学放在六艺之末,天人合一的宇宙观使得东方人表现出长于直觉而短于抽象,擅于综合而不擅分析。这也是古代东方数学不能蓬勃发展的原因。

三、数学的文化特征

1.数学的抽象性

在早期的人类文明,数学的创始之初,人类学会了思考数字并进行一定程度的运算。苏联数学家亚历山大洛夫()说:“抽象性在简单的计算中就已经表现出来。我们运用抽象的数字,却并不打算每次都把它们同具体的对象联系起来。我们在学校学的是抽象的乘法表--总是数字的.乘法表,而不是男孩的数目乘上苹果的数目,或者苹果的数目乘上苹果的价钱等等。”

数学成为抽象的学科,人们将这一巨大的功劳记在希腊人身上,毕达哥拉斯学派纯凭心智考虑抽象问题,认为数是真实物质的终极组成部分,是宇宙的要素,完全的演绎推理证明也加深了数学的抽象程度。希腊人有意识地承认并强调:数学上的东西如数和图形是思维的抽象,同实际事物或实际形象是完全不同的。物质实体是短暂的、不完善的,而抽象概念却是永恒的、完美的。虽然抽象相对实体更困难,但它的优点也是实体无法企及的,那就是一般性。在抽象的世界里,点没有大小,线没有宽度,面没有厚度,堆积的石子、成捆的树枝都可以表示数量关系。

2.数学的确定性

数学追求一种完全确定、完全可靠的知识。这种结果得益于数学体系的特殊而有效的方法,即从一系列不证自明的公理出发,准确地描述将要讨论的概念和定义,经过严密的逻辑推理演绎得出明确无误的结论,这也是数学得以长足发展的动力因素。几千年来,数学的真理性得到人们的高度认同和尊崇。

然而,十九世纪以后,数学的这种真理性地位却一次次受到巨大的冲击。非欧几何、四元数理论、集合论悖论给数学“真理的化身”形象笼罩上了阴影,使得数学丧失了揭示客观世界的“真理性”,也丧失了自身基础的严密性。克莱因(Morris Kline)在《数学:确定性的丧失》中提到“数学的当前困境是有许多种数学而不是只有一种,而且由于种种原因每一种都无法使对立学派满意。显然,普遍接受的概念、正确无误的推理体系--1800年时的尊贵数学和那时人的自豪--现在都成了痴心妄想。与未来数学相关的不确定性和可疑,取代了过去的确定性和自满。关于”最确定的“科学的基础意见不一致不仅让人吃惊,而且,温和一点说,是让人尴尬。”

3.数学的继承性

科学知识是在长期的历史发展过程中形成的,其过程就说明了知识具有继承性,没有继承,就没有积累。我认为继承性应该从两方面理解。

从个人来讲,我们学习一些知识,无须重新经历科学家们艰苦的实践过程,短时间内就可以掌握到一门学科千百年来积累的成果。这种继承通过教育实现,极大的加速了科学技术的发展,故而现在一个中学生掌握的知识可以超过若干古代著名的科学家。“只有有效地继承人类知识,同时把世界最先进的科学技术知识拿到手,我们再向前迈出半步,就是最先进的水平,第一流的科学家(诺贝尔物理学奖得主温伯格(Steven Weinberg))。”正因如此,知识领域才能发展成今天的面貌。法国的着名科学家庞加莱被誉为“全能数学家”,因为他在数学、天文、物理的几乎每一个领域都做出了杰出的贡献,然而今天,一个人想要掌握全部数学知识的三分之一都是不可能的。

四、提纲

目录

第1章 概述

文化的内涵

文明的内涵

数学文化的内涵

数学文化研究的意义与现状

第2章 数学的文化特征

数学的文化特征

数学的抽象性

数学的确定性

数学的继承性

数学的简洁性

数学的统一性

数学的功能特征

数学的渗透性

数学的传播性

数学的工具性

数学的预见性

数学的艺术特征

数学的艺术性

数学与音乐

数学与美术

数学与文学

第3章 数学与人类文明

数学是人类逻辑能力的来源

数学唤醒人类理性精神

数学促进人类思想解放

数学改善人类生活

数学完善人类品格

数学提高人类文化素质

第4章 数学与社会文明

数学促进社会进步

数学推动知识发展

第5章 我国数学文化与数学教育的研究进展

数学文化与数学教育研究综述

数学文化与数学教育活动进展

第6章 对数学教育的若干思考

数学素养是国民文化素质的重要构成.

数学教育现状

数学文化教育亟需解决的问题与建议

结束语

参考文献

致谢

五、亟需解决的问题与建议

1.数学技能的培养与数学素养的培育应当紧密结合为一个有机的整体,一方面提高学生对于数学的学习兴趣,另一方面,也可以使学生在学习数学技能的过程中,不断地加深对于数学的理解,提高逻辑思维能力,养成理性思考的习惯。高等学校数学文化教育普遍存在的一个问题是数学文化与数学技能培养相脱节。目前,数学文化课或者数学教育课都是选修课,在本质上仍属于“弥补型”课程,通常都是在学生入学一到两个学期以后开设的。当数学文化课引发了学生对于数学的兴趣和思考的时候,数学基础课程已经修完或即将修完,于是,对于学生来说,数学文化课有着某种“相见恨晚”的感觉。正像有些学生所反映的那样,如果早一点开设数学文化课,早一点了解数学的文化内涵,他们的高等数学会学得更好。由于一直以来积重难返的应试教育所致,学生在初、高中阶段主要接受的是数学技能方面的知识,而极少接触到数学文化方面的知识,于是,在进入高等学校以后,学生对于数学文化的了解几近空白。这也在客观上造成了数学文化与技能的培养脱节。

2.近年来,由于各个领域对工作者建模能力的需要,数学建模教育逐渐得到了重视。在建模过程中培养学生的创新意识、思维能力,培养学生良好的数学素养是数学建模教育的主要目标。路易斯安那州立大学一项研究表明,与细菌的生存发展方式类似,学生对知识的探求和接受并非只是个体行为,学生与学生之间形成的交流网络会使学生相互影响、相互促进,对教学效果产生质的影响。数学建模教育形式正是突破了时间和空间的限制,改变“师对生”的传统、单一的教学

六、进度安排

20XX年11月01日-11月07日 论文选题。

20XX年11月08日-11月20日 初步收集毕业论文相关材料,填写《任务书》。

20XX年11月26日-11月30日 进一步熟悉毕业论文资料,撰写开题报告。

20XX年12月10日-12月19日 确定并上交开题报告。

20XX年01月04日-02月15日 完成毕业论文初稿,上交指导老师。

20XX年02月16日-02月20日 完成论文修改工作。

20XX年02月21日-03月20日 定稿、打印、装订。

20XX年03月21日-04月10日 论文答辩。

七、参考文献

[1]曹红军,厉树忠,刘亚楠.《易经》卦象符号的拓扑群结构[J].周易研究.

[2](美)塞缪尔·亨廷顿.文明的冲突与世界秩序的重建[M].北京:新华出版社,2005.

[3]范森林.中国政治思想的起源[M/OL].

[4]黄秦安.论数学文化的本质、功能及其在人类文化变革中的角色[J].陕西师范大学学报,1993(2):54-61.

[5]郑毓信.数学哲学的内容和意义[J/OL].

[6]普通高中数学课程标准(实验)[M].北京:人民教育出版社,2003.

[7]顾沛.数学文化[M],北京:高等教育出版社,2008.

[8]南开大学数学文化课程简介.

[9]吉林大学本科生数学文化课程教学大纲--数学文化.

[10](美)莫里斯·克莱因.古今数学思想(第一册)[M].上海:上海科学技术出版社,2002.

[11]郑毓信.数学方法论[M].南宁:广西教育出版社,2001.

[12]张维忠.数学:丧失了确定性吗?[J]自然辩证法研究,1998,14(11).

[13]郭光华,常春艳,王小燕.试论数学的文化特性[J].par数学教育学报,2005,14(3):25-27.

[14]蒋岚.论数学美[J].温州职业技术学院学报,2003,3(2):38-42.

[15]杨毅.论体育数学与体育科学[J].衡阳师范学院学报,2002,23(3):95-96.

[16]数学地质四川省高校重点实验室.

[17]林履端.《易经》与模糊数学[J].闽江学院学报,2002,22(2):116-118.

113 评论

相关问答

  • 国际法学专业毕业论文

    我是国际法的,字数大概8000左右,那算半个毕业论文啦.首先,理论依据! 这是你之后分析问题的基础,必写,字数大约在一千左右的量。接着,介绍中国的领土与边界的实

    辛燃arzue 5人参与回答 2023-12-08
  • 法学毕业论文实证数据

    问题一:怎样进行论文数据分析 请在此输入您的回答,每一次专业解答都将打造您的权威形象数据源:(是什么) 研究区域描述:(如果你研究的是区域的话,要写出研究

    玲珑金月 2人参与回答 2023-12-12
  • 法律国际法学专业毕业论文

    在法学领域中,比较法(Rechtsvergleichung)是不同国家或地区法律秩序的比较研究。下文是我为大家整理的关于法学论文比较法的 范文 ,欢迎大家阅

    长草的燕窝 5人参与回答 2023-12-09
  • 本科法学毕业论文字数

    不同学校要求不同,我本科10000,硕士30000字

    别惹阿玉 4人参与回答 2023-12-10
  • 本科数学毕业论文写法

    用简明的语言、客观而准确地解说事物或阐述说事理的一种表达方式。4抒情:是作者通过作品中心人物表达主观感受,倾吐心中情感的文字表露,可分为直接抒情、间接抒情两种。

    天津小吃好 5人参与回答 2023-12-06