• 回答数

    4

  • 浏览数

    281

梁山好汉v
首页 > 学术期刊 > 关于光学的论文文献找茬

4个回答 默认排序
  • 默认排序
  • 按时间排序

gangyaya037

已采纳

高分辨率光学显微术在生命科学中的应用【摘要】 提高光学显微镜分辨率的研究主要集中在两个方面进行,一是利用经典方法提高各种条件下的空间分辨率,如用于厚样品研究的SPIM技术,用于快速测量的SHG技术以及用于活细胞研究的MPM技术等。二是将最新的非线性技术与高数值孔径测量技术(如STED和SSIM技术)相结合。生物科学研究离不开超高分辨率显微术的技术支撑,人们迫切需要更新显微术来适应时代发展的要求。近年来研究表明,光学显微镜的分辨率已经成功突破200nm横向分辨率和400nm轴向分辨率的衍射极限。高分辨率乃至超高分辨率光学显微术的发展不仅在于技术本身的进步,而且它将会极大促进生物样品的研究,为亚细胞级和分子水平的研究提供新的手段。【关键词】 光学显微镜;高分辨率;非线性技术;纳米水平在生物学发展的历程中显微镜技术的作用至关重要,尤其是早期显微术领域的某些重要发现,直接促成了细胞生物学及其相关学科的突破性发展。对固定样品和活体样品的生物结构和过程的观察,使得光学显微镜成为绝大多数生命科学研究的必备仪器。随着生命科学的研究由整个物种发展到分子水平,显微镜的空间分辨率及鉴别精微细节的能力已经成为一个非常关键的技术问题。光学显微镜的发展史就是人类不断挑战分辨率极限的历史。在400~760nm的可见光范围内,显微镜的分辨极限大约是光波的半个波长,约为200nm,而最新取得的研究成果所能达到的极限值为20~30nm。本文主要从高分辨率三维显微术和高分辨率表面显微术两个方面,综述高分辨率光学显微镜的各种技术原理以及近年来在突破光的衍射极限方面所取得的研究进展。1 传统光学显微镜的分辨率光学显微镜图像的大小主要取决于光线的波长和显微镜物镜的有限尺寸。类似点源的物体在像空间的亮度分布称为光学系统的点扩散函数(point spread function, PSF)。因为光学系统的特点和发射光的性质决定了光学显微镜不是真正意义上的线性移不变系统,所以PSF通常在垂直于光轴的x-y平面上呈径向对称分布,但沿z光轴方向具有明显的扩展。由Rayleigh判据可知,两点间能够分辨的最小间距大约等于PSF的宽度。根据Rayleigh判据,传统光学显微镜的分辨率极限由以下公式表示[1]:横向分辨率(x-y平面):dx,y=■轴向分辨率(沿z光轴):dz=■可见,光学显微镜分辨率的提高受到光波波长λ和显微镜的数值孔径等因素的制约;PSF越窄,光学成像系统的分辨率就越高。为提高分辨率,可通过以下两个途径:(1)选择更短的波长;(2)为提高数值孔径, 用折射率很高的材料。Rayleigh判据是建立在传播波的假设上的,若能够探测非辐射场,就有可能突破Rayleigh判据关于衍射壁垒的限制。2 高分辨率三维显微术在提高光学显微镜分辨率的研究中,显微镜物镜的像差和色差校正具有非常重要的意义。从一般的透镜组合方式到利用光阑限制非近轴光线,从稳定消色差到复消色差再到超消色差,都明显提高了光学显微镜的成像质量。最近Kam等[2]和Booth等[3]应用自适应光学原理,在显微镜像差校正方面进行了相关研究。自适应光学系统由波前传感器、可变形透镜、计算机、控制硬件和特定的软件组成,用于连续测量显微镜系统的像差并进行自动校正。 一般可将现有的高分辨率三维显微术分为3类:共聚焦与去卷积显微术、干涉成像显微术和非线性显微术。 共聚焦显微术与去卷积显微术 解决厚的生物样品显微成像较为成熟的方法是使用共聚焦显微术(confocal microscopy) [4]和三维去卷积显微术(three-dimensional deconvolution microscopy, 3-DDM) [5],它们都能在无需制备样品物理切片的前提下,仅利用光学切片就获得样品的三维荧光显微图像。共聚焦显微术的主要特点是,通过应用探测针孔去除非共焦平面荧光目标产生的荧光来改善图像反差。共聚焦显微镜的PSF与常规显微镜的PSF呈平方关系,分辨率的改善约为■倍。为获得满意的图像,三维共聚焦技术常需使用高强度的激发光,从而导致染料漂白,对活生物样品产生光毒性。加之结构复杂、价格昂贵,从而使应用在一定程度上受到了限制。3-DDM采用软件方式处理整个光学切片序列,与共聚焦显微镜相比,该技术采用低强度激发光,减少了光漂白和光毒性,适合对活生物样品进行较长时间的研究。利用科学级冷却型CCD传感器同时探测焦平面与邻近离焦平面的光子,具有宽的动态范围和较长的可曝光时间,提高了光学效率和图像信噪比。3-DDM拓展了传统宽场荧光显微镜的应用领域受到生命科学领域的广泛关注[6]。 选择性平面照明显微术 针对较大的活生物样品对光的吸收和散射特性,Huisken[7]等开发了选择性平面照明显微术(selective plane illumination microscopy,SPIM)。与通常需要将样品切割并固定在载玻片上的方式不同,SPIM能在一种近似自然的状态下观察2~3mm的较大活生物样品。SPIM通过柱面透镜和薄型光学窗口形成超薄层光,移动样品获得超薄层照明下切片图像,还可通过可旋转载物台对样品以不同的观察角度扫描成像,从而实现高质量的三维图像重建。因为使用超薄层光,SPIM降低了光线对活生物样品造成的损伤,使完整的样品可继续存活生长,这是目前其他光学显微术无法实现的。SPIM技术的出现为观察较大活样品的瞬间生物现象提供了合适的显微工具,对于发育生物学研究和观察细胞的三维结构具有特别意义。 结构照明技术和干涉成像 当荧光显微镜以高数值孔径的物镜对较厚生物样品成像时,采用光学切片是一种获得高分辨3D数据的理想方法,包括共聚焦显微镜、3D去卷积显微镜和Nipkow 盘显微镜等。1997年由Neil等报道的基于结构照明的显微术,是一种利用常规荧光显微镜实现光学切片的新技术,并可获得与共聚焦显微镜一样的轴向分辨率。干涉成像技术在光学显微镜方面的应用1993年最早由Lanni等提出,随着I5M、HELM和4Pi显微镜技术的应用得到了进一步发展。与常规荧光显微镜所观察的荧光相比,干涉成像技术所记录的发射荧光携带了更高分辨率的信息。(1)结构照明技术:结合了特殊设计的硬件系统与软件系统,硬件包括内含栅格结构的滑板及其控制器,软件实现对硬件系统的控制和图像计算。为产生光学切片,利用CCD采集根据栅格线的不同位置所对应的原始投影图像,通过软件计算,获得不含非在焦平面杂散荧光的清晰图像,同时图像的反差和锐利度得到了明显改善。利用结构照明的光学切片技术,解决了2D和3D荧光成像中获得光学切片的非在焦平面杂散荧光的干扰、费时的重建以及长时间的计算等问题。结构照明技术的光学切片厚度可达,轴向分辨率较常规荧光显微镜提高2倍,3D成像速度较共聚焦显微镜提高3倍。(2)4Pi 显微镜:基于干涉原理的4Pi显微镜是共聚焦/双光子显微镜技术的扩展。4Pi显微镜在标本的前、后方各设置1个具有公共焦点的物镜,通过3种方式获得高分辨率的成像:①样品由两个波前产生的干涉光照明;②探测器探测2个发射波前产生的干涉光;③照明和探测波前均为干涉光。4Pi显微镜利用激光作为共聚焦模式中的照明光源,可以给出小于100nm的空间横向分辨率,轴向分辨率比共聚焦荧光显微镜技术提高4~7倍。利用4Pi显微镜技术,能够实现活细胞的超高分辨率成像。Egner等[8,9]利用多束平行光束和1个双光子装置,观测活细胞体内的线粒体和高尔基体等细胞器的精微细节。Carl[10]首次应用4Pi显微镜对哺乳动物HEK293细胞的细胞膜上离子通道类别进行了测量。研究表明,4Pi显微镜可用于对细胞膜结构纳米级分辨率的形态学研究。(3)成像干涉显微镜(image interference microscopy, I2M):使用2个高数值孔径的物镜以及光束分离器,收集相同焦平面上的荧光图像,并使它们在CCD平面上产生干涉。1996年Gustaffson等用这样的双物镜从两个侧面用非相干光源(如汞灯)照明样品,发明了I3M显微镜技术(incoherent, interference, illumination microscopy, I3M),并将它与I2M联合构成了I5M显微镜技术。测量过程中,通过逐层扫描共聚焦平面的样品获得一系列图像,再对数据适当去卷积,即可得到高分辨率的三维信息。I5M的分辨范围在100nm内。 非线性高分辨率显微术 非线性现象可用于检测极少量的荧光甚至是无标记物的样品。虽有的技术还处在物理实验室阶段,但与现有的三维显微镜技术融合具有极大的发展空间。(1)多光子激发显微术:(multiphoton excitation microscope,MPEM)是一种结合了共聚焦显微镜与多光子激发荧光技术的显微术,不但能够产生样品的高分辨率三维图像,而且基本解决了光漂白和光毒性问题。在多光子激发过程中,吸收几率是非线性的[11]。荧光由同时吸收的两个甚至3个光子产生,荧光强度与激发光强度的平方成比例。对于聚焦光束产生的对角锥形激光分布,只有在标本的中心多光子激发才能进行,具有固有的三维成像能力。通过吸收有害的短波激发能量,明显地降低对周围细胞和组织的损害,这一特点使得MPEM成为厚生物样品成像的有力手段。MPEM轴向分辨率高于共聚焦显微镜和3D去卷积荧光显微镜。(2)受激发射损耗显微术:Westphal[12]最近实现了Hell等在1994年前提出的受激发射损耗(stimulated emission depletion, STED)成像的有关概念。STED成像利用了荧光饱和与激发态荧光受激损耗的非线性关系。STED技术通过2个脉冲激光以确保样品中发射荧光的体积非常小。第1个激光作为激发光激发荧光分子;第2个激光照明样品,其波长可使发光物质的分子被激发后立即返回到基态,焦点光斑上那些受STED光损耗的荧光分子失去发射荧光光子的能力,而剩下的可发射荧光区被限制在小于衍射极限区域内,于是获得了一个小于衍射极限的光点。Hell等已获得了28nm的横向分辨率和33nm的轴向分辨率[12,13],且完全分开相距62nm的2个同类的分子。近来将STED和4Pi显微镜互补性地结合,已获得最低为28nm的轴向分辨率,还首次证明了免疫荧光蛋白图像的轴向分辨率可以达到50nm[14]。(3)饱和结构照明显微术:Heintzmann等[15]提出了与STED概念相反的饱和结构照明显微镜的理论设想,最近由Gustafsson等[16]成功地进行了测试。当光强度增加时,这些体积会变得非常小,小于任何PSF的宽度。使用该技术,已经达到小于50nm的分辨率。(4)二次谐波 (second harmonic generation, SHG)成像利用超快激光脉冲与介质相互作用产生的倍频相干辐射作为图像信号来源。SHG一般为非共振过程,光子在生物样品中只发生非线性散射不被吸收,故不会产生伴随的光化学过程,可减小对生物样品的损伤。SHG成像不需要进行染色,可避免使用染料带来的光毒性。因其对活生物样品无损测量或长时间动态观察显示出独特的应用价值,越来越受到生命科学研究领域的重视[17]。3 表面高分辨率显微术表面高分辨率显微术是指一些不能用于三维测量只适用于表面二维高分辨率测量的显微技术。主要包括近场扫描光学显微术、全内反射荧光显微术、表面等离子共振显微术等。 近场扫描光学显微术 近场扫描学光显微术(near-field scanning optical microscope, NSOM)是一种具有亚波长分辨率的光学显微镜。由于光源与样品的间距接近到纳米水平,因此分辨率由光探针口径和探针与样品之间的间距决定,而与光源的波长无关。NSOM的横向分辨率小于100nm,Lewis[18]则通过控制在一定针尖振动频率上采样,获得了小于10nm的分辨率。NSOM具有非常高的图像信噪比,能够进行每秒100帧图像的快速测量[19],NSOM已经在细胞膜上单个荧光团成像和波谱分析中获得应用。 全内反射荧光显微术 绿色荧光蛋白及其衍生物被发现后,全内反射荧光(total internal reflection fluorescence,TIRF)技术获得了更多的重视和应用。TIRF采用特有的样品光学照明装置可提供高轴向分辨率。当样品附着在离棱镜很近的盖玻片上,伴随着全内反射现象的出现,避免了光对生物样品的直接照明。但因为波动效应,有小部分的能量仍然会穿过玻片与液体介质的界面而照明样品,这些光线的亮度足以在近玻片约100nm的薄层形成1个光的隐失区,并且激发这一浅层内的荧光分子[20]。激发的荧光由物镜获取从而得到接近100nm的高轴向分辨率。TIRF近来与干涉照明技术结合应用在分子马达步态的动力学研究领域, 分辨率达到8nm,时间分辨率达到100μs[21]。 表面等离子共振 表面等离子共振(surface plasmon resonance, SPR) [22]是一种物理光学现象。当入射角以临界角入射到两种不同透明介质的界面时将发生全反射,且反射光强度在各个角度上都应相同,但若在介质表面镀上一层金属薄膜后,由于入射光被耦合入表面等离子体内可引起电子发生共振,从而导致反射光在一定角度内大大减弱,其中使反射光完全消失的角度称为共振角。共振角会随金属薄膜表面流过的液相的折射率而改变,折射率的改变又与结合在金属表面的生物分子质量成正比。表面折射率的细微变化可以通过测量涂层表面折射光线强度的改变而获得。1992年Fagerstan等用于生物特异相互作用分析以来,SPR技术在DNA-DNA生物特异相互作用分析检测、微生物细胞的监测、蛋白质折叠机制的研究,以及细菌毒素对糖脂受体亲和力和特异性的定量分析等方面已获得应用[23]。当SPR信息通过纳米级孔道[24]传递而提供一种卓越的光学性能时,将SPR技术与纳米结构设备相结合,该技术的深入研究将有可能发展出一种全新的成像原理显微镜。【参考文献】[1] 汤乐民,丁 斐.生物科学图像处理与分析[M].北京:科学出版社,2005:205.[2] Kam Z, Hanser B, Gustafsson MGL, et adaptive optics for live three-dimensional biological imaging[J]. Proc Natl Acad Sci USA,2001,98:3790-3795.[3] Booth MJ, Neil MAA, Juskaitis R, et al. Adaptive aberration correction in a confocal microscope[J]. Proc Natl Acad Sci USA,2002, 99:5788-5792.[4] Goldman RD,Spector cell imaging a laboratory manual[J].Gold Spring Harbor Laboratory Press,2005.[5] Monvel JB,Scarfone E,Calvez SL,et deconvolution for three-dimensional deep biological imaging[J].Biophys,2003,85:3991-4001.[6] 李栋栋,郭学彬,瞿安连.以三维荧光反卷

85 评论

燃情咖啡

随着社会的不断进步,人民对提高生活质量的需求,尤其是对视力保健的关注度越来越高。统计数据表明, 中国 在校小学生佩戴眼镜的人数比例达到30%,中学生为50%,而大学生则达到了75%,成为名符其实的眼镜王国”。 一、应社会需求 发展 起来的新学科 1988年,中国计量 科学 研究院(以下简称“计量院”)组织了新中国成立以来首次、也是北京市第一次眼镜市场的产品质量调查。根据英国标准化协会(BSI)的标准,京城20多家大眼镜店被抽查的上千副眼镜的质量合格率不足10%。 为此,我国著名光学专家王大珩院士率先向社会发出呼吁:眼镜是保健用品,不是一般的商品,全社会都应陔关注消费者的视力健康!一些政协委员和人大代表电纷纷提出提案,建议国家有关部门对眼镜行业进行治理和整顿。 眼镜质量问题引起了原国家技术监督局的高度重况和关注.眼镜立即在“质量万里行”活动中被列为重点监督的产品。计量院正是从这时开始涉足眼科光学领计量和检测标准的研究的。近20年过去了,具有中国旖色的眼科光学计量取得了长足的发展和进步。 二、眼科光学与相关产业密切结合、与其他学科相巨交叉 眼科光学是集眼科学、计量学、光学和光学仪器、验光学、眼镜学、像质评价技术、光电检测技术、光谱光度学、神经学、生物学、材料学、制造工艺等为一体的新兴的边缘学科。眼科光学计量是眼科诊断、 治疗 、视力矫正和眼保健的基础保证。 根据国际标准化组织(ISO)的专业划分,至少有五大产业领域与眼科光学密切相关,它们是眼镜镜片、眼科仪器、角膜接触镜、人工晶体和个体眼部防护用品。由此可见,眼科光学又是医疗卫生、眼镜行业和光学 工业 的结合体。 三、具有中国特色的眼科光学计量体系 根据日益增长的国际市场和贸易全球化的需要,20世纪80年代中期,ISO在IS0C172“光学和光子学”标准化技术委员会下面设立了SC7“眼科光学和仪器”标准化分技术委员会。由于信息不畅以及行业划分的制约,中国的眼科光学计量研究与国际IS0C172,sC7的建立虽然同步,却又毫不相干。而国际计量界的同行们,无论是德国联邦物理技术研究院(PTB)、美国国家标准与技术研究院(NIST),还是英国国家物理实验室(NPL),都还没有开展这一领域的研究。 命运注定,中国眼科光学计量的生存、确立和发展必须自主创新。 1。独创性 由于有了计量院这样一支实力雄厚的技术队伍的实质性介入,仅仅十几年,中国已经开始步人国际先进水平的行列。 在国家质检总局的大力支持下.计量院会同全国质监系统先后研究建立了顶焦度计量基准、验光机顶焦度工作基准、角膜接触镜顶焦度工作基准等一系列有代表性的基、标准装置,并在全国范围内建立了具有中国特色的顶焦度量值传递和溯源体系,如图1所示。 纵观国际眼科光学大家庭,中国的眼科光学计量颇具独创性。正如国际计量局局长瓦拉德于2005年下半年参观计量院眼科光学实验室时所说的:“我在你们这里看到了一片新天地。” 2.建标与量值传递的新模式 传统的计量工作,往往是先投入巨资研究检测装置,待建立计量基准或计量标准后,再对社会开展周期检定和量值溯源。 计量院在开展眼科光学计量研究的初期.面临着技术上走哪条路的抉择。由于服科光学计量服务的对象是一个个不同的生命体,从某种意义上说.如果初期没有选择好突破口,计量检定方法不能通过临床医学的考验,就不可能得到今天医学界的承认,更不会被国内外市场广泛使用并接受,也绝无可能发展到今天的规模和水平。回顾 历史 ,眼科光学计量所实现的突破在于: (1)选择了以动态或在线检测为研究目标 事实证明,这种模式能够较好地适应眼镜行业或医学界在使用现场进行动态测量或在线校准和检测的需求显然,传统的、基于静态或分量程的工业计量模式,以及高成本低使用率的计量建标和检定模式.不适于眼科临床医学的需求。而中国自主研发的各种眼科光学计量标准器具,如标准镜片和标准模拟眼等,则以其高科技含量、低成本高使用率、便于携带等显著特点.一下子就被国内外客户广泛接受,并占领了市场。 (2)以Map手段实现量值传递的新模式 面对具有3.6亿用户的眼镜市场,我们只有通过大面积的建标和计量检定,才能有效控制眼镜行业的产品质量,才能保证全国范围内顶焦度量值的统一。而Map了用客传递手段,就像勾画一张全国地图一样,把顶焦度一级或二级标准、验光机顶焦度标准、瞳距仪检定装置、透射比计量标准装置、角膜曲率计检定标准等通过自上而下的逐级推广、很快就覆盖了全国除 台湾 和西藏以外的大部分省、市地区计量所,甚至远销海外。这种新模式,满足了我国眼镜行业分布区域大、计量检定贯穿始终、无所不在的市场的需求。 四、计量基标准与科研成果转化 眼科光学领域内的基本物理量是顶焦度——VertexPowero 围绕着顶焦度这个重要物理量,我国先后研究建立了各项基(标)准,并将其迅速转化为市场上可流通的商用计量标准器具。例如:“顶焦度标准镜片”、“主观式和客观式标准模拟眼”、“接触镜顶焦度专用标准镜片”、“眼镜片透射比测量装置”、“瞳距仪计量检定装置”和“商用瞳距仪样机”、“角膜曲率计标准器”等。 上述计量标准器具均可直接用于对眼科光学计量仪器进行强制检定和计量校准,且具有包容性强、较长期的适应性、研究费用低廉、易于操作和大范围推广等优点,有利于调动地方质监部门的积极性。 上下齐抓共管大好局面的形成,使我国政府对眼科光学领域的产品质量实施市场监督的目标能够落到实处。 五、发挥龙头作用、形成计量院与地方技术机构双赢的局面 眼科光学计量之所以能够在短短十几年里取得如此快速的发展.并为提高我国眼镜行业产品质量的提高作出举足轻重的贡献,除了计量院自身的努力之外,另一个重要的原因就是这项工作得到了全国各地质监部门的积极响应和大力协助。 目前.除台湾、西藏以外的大多数省市级的计量和质检机构都开展了眼科光学计量检定和产品质量监督工作.各地技术机构直接使用计量院提供的计量标准器具。这种“统一研制、统一推广、统一培训、统一周期检定”的“四个统一”模式有效解决了巨大市场需求下的量值溯源和量值统一问题,使将原来看起来十分复杂和困难的技术管理和市场监督工作变得简化和顺畅起来。 眼科光学计量走出了一条计量为国民 经济 服务、为社会发展服务、为提高人民生活质量和身体健康服务的新思路,不但使社会和国民从中受益,也形成了计量院与地方技术机构双赢共进的新局面。 六、中国眼科光学计量研究实现“从零的突破到质变的跨越” 眼科光学计量所走过的路。为计量科学技术的发展开拓了广阔的研究领域,使计量科学更贴近生活,更贴近国民经济。也锻炼和造就了一批了解市场、了解 企业 需求。通过为社会服务而发现和寻找科研方向的新型的科技人员。 顶焦度计量标准(基准)、验光机工作基准、角膜接触镜顶焦度工作基准的相继研发成功。确立了计量院在国内眼科光学领域的“科研龙头”地位.同时。为提高中国在国际眼科光学界的地位赢得了关键的一票。

209 评论

1234大兄弟

我这里有很多材料,欢迎来537寻找!

245 评论

尛小尛111

光的干涉应用的新进展 光的干涉无处而不在,如在日光照射下,肥皂泡的薄层色及昆虫翅膀上的彩色便是最明显的例子。这仅在生活中光的干涉便随处可见,那么在它的实际应用岂不更让人意想不到。光的干涉最要的前提条件就是:必须满足传播方向相同、初相位恒定、频率相同。对于光干涉最开始的意愿是为了测单色光的波长,然而现在我们熟悉的照相机便也运用了光的干涉,普通照相是把照相机的镜头对着被拍摄的物体,让从物体上反射的光进入镜头,在感光底片上产生物体的像。感光底片上记录的是从物体上各点反射出来的光的强度。一、全息照相是应用光的干涉来实现的。它用激光(是良好的相干光)作光源。全息照相的原理如图所示,激光束被分成两部分:一部分射向被摄物体,另一部分射向反射镜(这束光叫参考光束)。从物体上反射出来的光(叫做物光束)具有不同的振幅和相位,物光束和从反射镜来的参考光束都射到感光片上,两束光发生干涉,在感光片上产生明暗的干涉条纹,感光片就成了全息照相。干涉条纹的明暗记录了干涉后光的强度,干涉条纹的形状记录了两束光的位相关系。 从全息照片的干涉条纹上不能直接看到物体的像,为了现出物体的像,必须用激光束(参考光束)去照射全息照片,当参考光束通过全息照片时,便复现出物光束的全部信息,于是就能看到物体的像。二、光学千涉生物传感器的建立及其在多种生物分子识别中的应用1.光学千涉生物传感器系统的设置(1)光学干涉生物传感器的硬件构成 (2)聚荃乙烯薄膜厚度与光学常数的测定及软件的编译2.光学干涉生物传感器敏感膜的构建3.光学干涉生物传感器在多种类型分子识别中的应用(1)酶标记的表面抗原一表面抗体相互作用(2)寡核昔酸分子杂交实验(3) L一天冬酞胺酶B细胞表位的筛选(4)不同细胞与固定化凝集素的相互作用三、当前光刻技术的主要研究领域及进展 1.光学光刻 光学光刻是通过光学系统以投影方法将掩模上的大规模集成电路器件的结构图形"刻"在涂有光刻胶的硅片上,限制光刻所能获得的最小特征尺寸直接与光刻系统所能获得的分辨率直接相关,而减小光源的波长是提高分辨率的最有效途径。因此,开发新型短波长光源光刻机一直是国际上的研究热点。 2.极紫外光刻(EUVL)极紫外光刻用波长为10-14纳米的极紫外光作 光源。虽然该技术最初被称为软X射线光刻,但实际上更类似于光学光刻。所不同的是由于在材料中的强烈吸收,其光学系统必须采用反射形式。如果EUVL得到应用,它甚至可能解决2012年的微米及以后的问题,对此发展应予以足够重视。总的来说,随着科学技术的迅速发展,在科学和技术领域中人们不断地利着光的干涉原理解决了许多复杂的实际问题。让我们更加深刻的认识光的干涉现象,以便日后更好的利用光的干涉知识解决生产及生活中的问题

153 评论

相关问答

  • 关于激光技术的论文

    激光加工就是利用其所具有的输出光线的高指向性和高能量,进行微小孔及狭缝等的精密加工、切割、微细焊接等。下面是我整理了激光加工技术论文,有兴趣的亲可以来阅读一下!

    YXRS游戏人生 4人参与回答 2023-12-11
  • 关于激光加工的小论文参考文献

    《模具工业》2001. No . 4 总 242 40激 光 加 工 技 术 在 模 具 制 造 中 的 应 用江苏理工大学(江苏镇江 212013) 张 莹

    小公举A酱 3人参与回答 2023-12-10
  • 关于论文文献怎么找

    寻找论文参考文献的最佳方法包括以下几个步骤: 1、使用学术搜索引擎:Google Scholar、PubMed、Web of Science等学术搜索引擎可以帮

    王子恭贺 5人参与回答 2023-12-09
  • 关于眼光的议论文题目

    你好! 推荐参考: 换一种眼光 老师在黑板上挂历了一张"画",白纸中画了一个黑色圆点。 "你们看见了什么?"老师问。 全班学生一起回答:"一个黑点。" 教师说:

    黎明前的静谧 5人参与回答 2023-12-10
  • 关于声光报警器的论文文献

    蜂鸣器是一种一体化结构的电子讯响器,本文介绍如何用单片机驱动蜂鸣器,他广泛应用于计算机、打印机、复印机、报警器、电话机等电子产品中作发声器件。蜂鸣器主要分为压电

    小小追风者 3人参与回答 2023-12-10