西安一品家
1. 生活中处处有数学 2、解数学竞赛题的整体策略 3、谈数学解题中发掘隐含条件的若干途径4、论数学教育中性别差异的影响 5、逆向思维在数学论证中的作用及培养6、谈小学、初中数学的衔接 7、容斥原理及其应用8、从高中课程改革看大学课程改革 9、信息化教育问题10、数学素质教育中的教师素质问题 11. 浅析课堂教学的师生互动12、谈设疑法在课堂教学中的应用 13、计算机辅助小学数学教学的探索 14、谈一类重要的数学方法--分类讨论法15、小学数学竞赛题的教育价值16、在解题中培养学生的数学直觉思维 17. 反思教学中的一题多解18. 初探影响解决数学问题的心理因素 19、在数学教学中培养学生的反思意识 20、关于探索性命题的若干问题 21、数学实验教学模式探究22、论小学数学竞赛题的解题方法 23、奥林匹克数学的解题策略24、三角形面积在竞赛中的应用 25. 数学教育中的科学人文精神 26. 数学几种课型的问题设计 27. 在探索中发展学生的创新思维 28. 把握发现式教学实质,优化课堂教学 29. 如何评价小学学生的数学素质 30. 阅读材料在数学教学中的作用 31. 数学中的判断之我见 32. 关于学生数学能力培养的几点设想 33. 反例在数学中的作用 34. 谈谈类比法 35. 数学教学设计随笔 36. 数学CAI应遵循的原则 37. 我国数学教育改革的若干问题 38. 当代数学教学模式的发展趋势 39. “问题解决教学”的实践与认识 40. 数学教学中的“理论联系实际” 41. 小学数学课堂教学探究性学习案例简析 42. 数学训练,贵在科学 43. 教学媒体在数学教学中的作用 44. 培养数学能力的重要性和基本途径 45. 初探在数学教学中开展研究性学习 46. 浅谈数学学习兴趣的培养 47. 如何使计算机辅助教学变得更方便 48. 精心设计习题,提高教学质量 49. 我对概念教学的的再认识 50. 数学教学中的情境创设 51. 结合数学教学实际开展教研教改 52. 为学生展开想象的翅膀创造环境 53. 利用习题变换,培养思维能力 54. 课堂教学中培养学生创造能力的尝试 55. 观察法及其在数学教育研究中的应用 56. 直觉思维在解题中的运用 57. 数学方法论与数学教学—案例三则 58. 概念课是思维训练的重要环节 59. 对概念导入和问题设计的思考 60. 把握概念本质注重思维能力的培养 61. 将研究性学习引入数学课堂教学 62. 数学教学的现代研究 63. 数学探究性活动的内容、形式及教学设计 64. 注重创新性试题的设计 以上为参考论文选题,学生写论文时可选用,也可按选题提供的范围和方向,根据自己教学过程中体会最深的某方面自定论文选题1.关于数学教学目的问题; 2.关于数学思维问题; 3.关于数学教学方法问题; 4.关于学习的迁移问题; 5.关于数学教学的评价问题; 6.关于熟练技能与深刻理解的关系问题; 7.数学的实用功能与数学的文化教育功能相关关系的研究; 8.数学教学的德育功能研究; 9.班级授课制中集体教学、小组教学和个别教学在数学教学中的地位和作用; 10.数学发现法(探究式)教学可实施的基本内容、对象和范围; 11.对数学教学中“可接受性原则”的认识及其具体做法的实验研究; 12.中学生数学学习习惯与学习方法的调查分析; 13.诊断和鉴别数学学习困难学生的方法探析; 14.数学智力因素与数学非智力因素的界定及其对学生学习成绩交互作用的研究; 15.数学教学中激发学生学习兴趣的内在机制和外部因素的研究; 16.教法与学法的双向作用研究; 17.学生“用数学”意识和能力的形成机制以及培养途径的实验研究; 18.数学新课程实施中转变学生学习方式的途径; 19.学生数学观念或数学意识的形成机制和培养途径的实验研究; 20.创设良好的数学教学心理氛围与提高数学教学质量相关关系 的研究。 21.中学数学教育的地位与作用。 22.形象思维与数学教学。 23.直观思维与数学教学。 24.非智力因素与数学学习。 25.数学美与数学教学。 26.在数学教学中怎样培养学生的数学能力。 27.数学作图及图形的教学。 28.数学解题错误的探讨。 29.怎样配备数学习题。 30.数学解题常用的一些思维方法。 31.怎样提高学生的自学能力。 32.怎样培养学生学习数学的兴趣。二、《概率论与数理统计》参考题 1.有关概率论发展的历史。 2.随机性与必然的数学基础与认识。 3.随机变量的直观认识与数学描述。 4.古典概率型的计算技巧。 5.几何概率型的分析处理。 6.有关概率论之介绍。 7.概率论中数学期望概念。 8.利用期望概率统一引人矩阵概率。 9.期望概率在概率论中的地位和作用。 10.特征函数与因数在概率论中的作用及其含义。 11.关于独立性。 12.大数定律与中心定律之含义。 13.大数定律与概率的统计定义。 14.有关概率不等式。 15.条件概率与条件期望。 16.Bayes公式的扩展。 17.概率在其它学科中的应用。 18.其它数学分支在概率论中的应用。 19.概率题目计算的多解性。 20.数理统计概念。 21.数理统计的过去与现在。 22.数理统计在客观现实中的作用。 23.假设检验的实质与作用。 24.参数估计的作用与处理方法。 25.数理统计在你自己工作实践中的应用(实例)。 26.学习概率统计的实践与体会。 27.概率统计中的错题分析。 28.如果我讲概率统计的话,我将这样讲(要求具体详细,资料充实,结构新颖)。 29.利用回归分析方法处理问题。 30.回归分析理论中存在的问题与解决的设想。三、《微分几何》参考题 1.空间曲线的基本公式及其在曲线论中的作用。 2.渐近线与渐缩线。 3.空间曲线弯曲性的研究。 4.曲率与挠率。 5.曲面的第一基本形式在曲面论中的作用。 6.等矩映象与曲面的内在几何。 7.曲面的第二基本形式在曲面论中的作用。 8.曲面上的曲率线,渐近曲线,测地线。 9.曲面的内在几何与外在几何的相依性。 10.曲面内的基本定理与曲线论的基本定理的比较(相仿之处与不同之处)。 11.高斯曲率的意义与作用。 12.等矩映射与等角映射及等积映射的关系。 13.高斯与波涅公式的意义与作用。 14.伪球面与罗氏几何。四、《复变函数》参考题 1.复变函数在一点解析的等价定义。 2.幅角多值性所导出的问题汇集。 3.小结复变函数的积分。 4.解析与调和函数的关系。 5.漫谈复数∞。 6.0,∞与函数 7.多值函数单值分支的表达与计算。 8.分式线性函数全体对乘法——函数复合——构成群。 9.∞和∞邻域的引进使扩充复平面的为紧空间。 lo.等比级数 ,在函数的泰勒展开式和罗朗展开式中的作用。 11.谈复数的比较大小问题。 五、《实变函数》参考题, 1.关于积分号下取极限(积分与极限交换次序问题)。 ①在什么条件下可以积分号下取极限,是积分的一个重要性质,例 如关系到微积分基本定理成立的条件,函数项级数和的性质等等。 ②列举勒贝格积分和黎曼积分在几个问题上的基本结论,分析其 中最基本的要求和相互关系(书上P146第6题可供参考),可以发现勒贝格积分在这方面比黎曼积分好得多,而且是用勒贝格积分的主要好处之一。 ③给出上述基本结论的简单推论,新的证明方法应用例题,并说明它们的意义。 2.关于微积分基本定理(牛顿一菜布尼兹公式) ①什么是微积分基本定理,它的重要意义在哪里? ②黎曼积分情形,相应定理的条件是什么?有什么不足之处? ③勒贝格积分情形,相应的定理的结论和条件又是怎样的?条件减弱在哪里?还有什么问题? ④应用例题。 3.关于绝对连续函数。 ①绝对连续的定义是什么?有些什么等价说法或充分必要条件,并证明之。绝对连续与连续、一致连续有什么不同,有什么关系。 ②证明绝对连续函数列一致收敛的极限,可微函数与绝对连续函 数复合,仍为绝对连续的。 ③绝对连续函数几乎处处可微,能否做到处处可微?举例!绝对连续函数与它的导致关系如何,与微积分基本定理有什么关系。 ④绝对连续函数全体组成线性空间。 4.关于勒贝格积分。 ①试将关于勒贝格积分的定义综合起来,做出一个统一,一般的勒贝格积分定义,并说明勒贝格积分仍然是“分割、求积、取极限”的结果,勒贝格积分的“分割”与黎曼积分又有何根本不同之处? ②说明勒贝格积分在几何上仍是“曲边梯形的面积”。 ③证明对于勒贝格积分,也和黎曼积分一样,无界函数的积分(广 义积分)和无界区域上的积分(无穷积分),都是有界函数在有界域上的积分的极限。 ④勒贝格积分有哪些黎曼积分所没有的重要性质。从积分的定义看,是什么原因导致这两类积分有许多重大差别。 ⑤勒贝格积分有许多重要性质,带来一些什么好处? 5.关于测度。 ①总结定义点集的勒贝格测度的过程,并与数学分析中定义区域的面积的过程(重积分前面部分)作比较,分析其中不同之处,以及为什么因为这些不同,导致黎曼积分和勒贝格积分在性质上有许多重大差别。 ②说明勒贝格测度长度、面积、体积概念的推广,当平面区域可求面积时,它的面积和勒贝格测度相等。 ③列举勒贝格测度的重要性质,说明它们与勒贝格积分性质的关 系(例如测度的可数可加性与积分的可数可加性有什么关系,单调集列极限的测度(定理3、2、6~3、2、10)与勒维定理(定理5、4、2的关系)。 6.关于可测函数。 ①可测函数与连续函数,可积函数从定义上、性质上看有什么关系和差别。 ②全体可测函数构成线性空间,构成环。 ③试说明鲁金定理的意义,以及它与黎斯定理、叶果洛夫定理的关系。你如何理解“可测函数近于连续函数”及其理由。 7.关于可测函数列的各种收敛概念。 ①试述实变函数论中及数学分析中讲过的各种收敛概念的定义和性质、互相之间的关系。以及引进这些概念的意义和用处。 ②从黎斯定理和叶果洛夫定理出发说明,你怎么理解“几乎处处收敛,近乎一致收敛”。 8.关于点集上的连续函数。 ①定义,性质。 ②与数学分析中讲的连续的关系。 9.集合论和点集论的方法在实变函数论中的意义。 从一些具体例子出发说明,为了解决数学分析中一些结果不够完善的问题,如推广它们的结论,有必要用这种方法去研究函数,用它也确实有好的效果。说明集合论是测度论和积分论的基础。 以上问题,除参考.所用教材外,还可参考程其襄等编《实变函数与泛函分析基础》。朱玉楷编《实变函数简编》等有关书籍资料。
浮生若梦圈
论文的题目是论文的眼睛 ,是一篇文章成功的关键。下面我将为你推荐关于数学专业毕业论文题目参考的内容,希望能够帮到你!
1. 圆锥曲线的性质及推广应用
2. 经济问题中的概率统计模型及应用
3. 通过逻辑趣题学推理
4. 直觉思维的训练和培养
5. 用高等数学知识解初等数学题
6. 浅谈数学中的变形技巧
7. 浅谈平均值不等式的应用
8. 浅谈高中立体几何的入门学习
9. 数形结合思想
10. 关于连通性的两个习题
11. 从赌博和概率到抽奖陷阱中的数学
12. 情感在数学教学中的作用
13. 因材施教因性施教
14. 关于抽象函数的若干问题
15. 创新教育背景下的数学教学
16. 实数基本理论的一些探讨
17. 论数学教学中的心理环境
18. 以数学教学为例谈谈课堂提问的设计原则
1. 网络优化
2. 泰勒公式及其应用
3. 浅谈中学数学中的反证法
4. 数学选择题的利和弊
5. 浅谈计算机辅助数学教学
6. 论研究性学习
7. 浅谈发展数学思维的学习方法
8. 关于整系数多项式有理根的几个定理及求解方法
9. 数学教学中课堂提问的误区与对策
10. 中学数学教学中的创造性思维的培养
11. 浅谈数学教学中的“问题情境”
12. 市场经济中的蛛网模型
13. 中学数学教学设计前期分析的研究
14. 数学课堂差异教学
15. 一种函数方程的解法
16. 积分中值定理的再讨论
17. 二阶变系数齐次微分方程的求解问题
18. 毕业设计课题(论文主题等)
19. 浅谈线性变换的对角化问题
1. 浅谈奥数竟赛的利与弊
2. 浅谈中学数学中数形结合的思想
3. 浅谈中学数学中不等式的教学
4. 中数教学研究
5. XXX课程网上教学系统分析与设计
6. 数学CAI课件开发研究
7. 中等职业学校数学教学改革研究与探讨
8. 中等职业学校数学教学设计研究
9. 中等职业学校中外数学教学的比较研究
10. 中等职业学校数学教材研究
11. 关于数学学科案例教学法的探讨
12. 中外著名数学家学术思想探讨
13. 试论数学美
14. 数学中的研究性学习
15. 数字危机
16. 中学数学中的化归方法
17. 高斯分布的启示
Banyantree212
概率论与数理统计课程的改革与实践论文
摘要: 讨论了概率论与数理统计课程教学改革的必要性与重要性,提出了课程改革的思路与原则,并总结了该课程改革与实践取得的效果。
Abstract: The necessity and importance of teaching reform of the course of probability and mathematical statistics were discussed, ideas and principles of curriculum reform were put forward, and the achieved effect of this curriculum’s reform and practice was summarized.
关键词: 概率论与数理统计;改革;实践
Key words: probability and mathematical statistics; reform; practice
概率论与数理统计是工程、人文、经济、社会等领域研究和处理随机现象的一门重要的随机数学,是目前数学专业大学本科阶段乃至其它理工类专业的唯一一门随机数学的必修课。自上个世纪六十年代引入大学课堂以来,它对于传承人类科学文明、培养人才的综合素质能力、解决实际问题的实践动手能力等起到了非常重要的作用。在信息社会高度发达的今天,随机数学的基本理论与方法作为信息采集、加工、利用的重要的理论基础和方法论基础,已经成为现代专业人才重要的必不可少的知识构成。文献[1-3]对该课程的改革与实践进行了探讨。本文就该课程的特点,结合我院(系)学生的特点就该课程改革与实践的必要性,具体思路与原则,以及改革实践的效果做一探讨。
1 概率论与数理统计课程教学改革的必要性与重要性
教学内容、手段、方法的陈旧反映出教育思想的落后,转变教育思想和更新教育观念是进行一切改革的先导。传统的数学教育理念重视教学过程的理论性,严谨性,逻辑性。但对于学生应用数学的理论和方法解决实际问题能力的培养从教和学两个侧面有所忽视。
现在,有一种流行的教育教学方法称为“案例教学”。“案例教学”就是通过实际问题的描述、假设、建模与求解,演示理论与方法的应用过程。数学上,这样的教学方式就是所谓的‘问题解决’的数学建模的思想。这种方法不拘泥于对理论和方法的阐述,更注重对理论与方法的实际应用过程的展示:包括问题的描述、所涉及的变量及其相互关系、问题的假设与简化、问题的数学模型的建立与求解。
信息社会的加速来临,在实际生活和科技工作中,海量、庞杂的数据不断产生,但是有用的信息并不会自动生成,它需要数学工作者利用数据采集、整理、分析与处理的工具,去发现有用的信息,以解决实际问题。数据采集与信息分析与处理的数学基础就是《概率论与数理统计》这门数学类专业的必修课程,这也是其它理工科专业的一门必修课程,只是对数学专业的`要求既注重理论又兼顾方法的实际应用,而对其它理工科专业,这门课程主要注重方法的应用。
但是,《概率论与数理统计》这门课程不同于以往学习的确定性数学,对于第一次接触这门课程的学生,理解起来会很困难,更不用说去利用它去进行统计数据的采集、整理、处理、分析等。因此,单从这点考虑,我们就有必要对其教学方法、手段等进行改革。从本门课程的应用目的角度来考虑,也必须进行改革,以增加实践性教学环节,培养学生应用概率论与数理统计的理论和方法解决实际问题的能力。
从培养学生利用数学的理论和方法、基于统计数据,建立和求解数学模型的能力的角度看,这完全符合现代大众化高等教育的目的,也符合我校的办学指导思想。
《概率论与数理统计》是其它随机数学的理论和方法的基础,这些课程是:多元统计分析、时间序列分析、随机过程,基于支持向量机的现代非参数统计学习方法等,为了这些知识和方法的学习与应用,我们也必须改变教学方式,为学生打下坚实继续学习的基础。
2 概率论与数理统计课程教学改革的思路与原则
通过以上的分析,我们认为概率论与数理统计课程的改革必须首先改变教学方法,抛弃那种古板的、填鸭式的、纯粹的重视逻辑推理而不重视应用的传统的教学观念,而采取不仅重视理论与方法的学习,为后继课程的学习打下良好基础,又能激发学生学习兴趣,同时还能培养学生应用所学理论和方法解决实际问题的能力的培养。
因此,概率论与数理统计课程的改革是一项系统工程,既要考虑课程本身理论与方法的学习,还要也兼顾后继课程的学习(有些课程是研究生的必修课),又要考虑学生应用理论与方法解决实际问题能力的培养,还要使得学生学习起来兴趣盎然。应用系统工程原理,从理论、实践、计算能力等全方位改革和建设,不能只重视某一个环节,而应从整体上思考。
在学时有限的约束条件下,我们必须改革教学内容,教学方法和教学手段,以期达到预期的改革目的。改革过程必须培养一批从事《概率论与数理统计》课程的课堂教学、实验教学的人才,积累改革的成果,不断总结经验。改革过程不会一番风顺,遇到非议也是可以理解的。但是,改革的决策一旦确定,就要毫不犹豫的进行下去。
3 概率论与数理统计课程教学改革的内容与措施
首先确定合理的教学学时,经过大家集思广益,制定了相应的教学大纲,使教学改革有法可依。为了达到上述改革目标,我们对教材的内容进行必要的增加和删减。由于,《概率论与数理统计》课程是大学生接触的第一门研究随机现象及其规律的数学学科,不同于以往的确定性数学,学生理解起来是相当困难的。为此,考虑到实际课时和课程的难度,在课堂教学中,借助于多媒体技术和计算机编程技术,增加了对一些随机现象的直观演示。删除掉一些陈旧的知识,比如关于一些定理的证明,或者保留这些证明,作为自学内容,提供给有能力学习的学生。这也起到因材施教的目的。经过多年的实践,编写了自己的教材《概率论与数理统计》(陕西师范大学出版社出版),该教材是国家面向21世纪规划教材。
为了达到培养学生利用计算机和数学软件,以及应用概率论与数理统计的理论和方法解决实际问题的能力,我们在自己编写的教材中,首次引入了SAS(Statistical Analysis Systems)高级程序设计语言。
为了使得课堂教学生动、有趣、直观以及指导学生的学习,我们研制开发了多媒体课件,并编写了与本门课程配套的课程学习指导教材。
为了达到培养学生的收集数据、整理数据、建立数学模型、利用相关的理论与方法解决实际问题的能力之目的,我们增加实践性教学环节。从1997级开始,我们在全国首次开设了《概率论与数理统计》的实验教学环节,并且编写相应实验教学大纲和实验指导书,使实验课有纲可循,有事可做而不流于形式。
为了培养学生的综合应用随机数学解决实际问题的能力,我们构建了以《概率论与数理统计》为核心的课程群,包括《多元统计分析》、《时间序列分析》、《教育测量与统计学》、《随机过程》、《数学模型与数学实验》、《数学软件》等选修课程,大大丰富了学生随机数学的理论与方法解决实际问题的数据处理与分析的能力及数学建模能力。
为了开拓学生的视野,在学年论文和毕业论文中,我们加强指导,向学生介绍了一种现代非参数统计学习方法:《基于支持向量机的统计学习方法》,将这种方法用于相关关系的学习中。
为了达到培养学生学习《概率论与数理统计》课程及其课程群的学习及其解决实际问题的能力,我们连续多年组织了对我校参加全国大学生数学建模竞赛的学生的培训工作,特别是随机数学解决实际问题能力的培养。
由于我们改革教学的内容,增加了实验教学环节,并注重学生平时能力的培养,所以我们改革考核方式:学生平时作业及考勤占总成绩的20%,实验占20%,课程考试占60%。
为了传承我们的改革成果,我们注意在改革中积累经验,培养人才,使我们的改革有了传承、继续推进的后备人才,形成本门课程及其课程群的年龄、学历层次和职称结构合理的教师队伍,有博士1个,硕士3个,学士5个;教授1个,副教授6个,讲师2个。
4 概率论与数理统计课程教学改革与实践的效果
通过几年来的改革实践,概率论与数理统计的教学取得了较显著的效果。教学内容、方法手段的改革增加了学生学习该课程的兴趣,使学生真正体会到该课程的内容在工农业生产以及科学研究中的应用价值,充分调动了学生学习的主动性,激发了学生的创造性思维,增加了学生应用概率统计方法解决实际问题的能力。该课程的改革与实践取得了良好的教学效果,提高了教学质量,得到了学生的认可和赞同,问卷调查表明90%以上的学生对现在的教学方式和考试方法给予肯定,大多数学生都认为概率统计课在各学科中有较重要的应用。说明同学们对该门课程的思想方法和应用性有了较深刻的认识,教学改革的总体方向是正确的。
随着本课程及相关课程的深入改革,有许多学生在学年论文及毕业论文的选题上倾向于采用《概率论与数理统计》课程的理论与方法。与本课程相关的多篇毕业论文被评为校级优秀论文。
此外,本课程的任课教师还积极组织、培训、指导学生参加全国大学生数学建模竞赛并取得优异成绩。
参考文献:
[1]朱松涛.师专数学系《概率论与数理统计》课程教学的改革实践[J].数学通报,1998,(4).
[2]邓华玲等.概率论与数理统计课程的改革与实践[J].大学数学,2004,(1).
[3]陈新美等.《概率论与数理统计》教学改革与实践[J].湖南科技学院学报,2006,(11).
TT作天作地
浅谈数学中的研究性学习 (转,供参考)找个自己感兴趣的题目去写,参考范文! 现代社会知识更新的速度不断加快,在高中阶段,对学生传授的知识是有限的,学校教育不可能让学生学的知识用上一辈子。人们在获得生存与发展中所面临的问题越来越具有社会性、复杂性和不可预见性,人们所必需的知识范围与能力素养的范围急剧扩大。而作为一名数学教师我们有责任引导学生从数学的角度分析社会生活和实践活动中的问题、开展探究活动,让学生在获得必要的数学知识与技能的同时,认识知识探究与问题探索的基本方法和途径,提高参与社会生活的探究、发现和改造等一切活动中进行决策的基本能力。 一、 正确的认识是开展数学研究性学习的基础 弄清概念:什么是数学研究性学习 数学研究性学习是培养学生在数学教师指导下,从自身的数学学习和社会生活、自然界以及人类自身的发展中选取有关数学研究专题,以探究的方式主动地获取数学知识、应用数学知识解决数学问题的学习方式。它同社会实践等教育活动一样,从特定的数学角度和途径让学生联系社会生活实例,通过亲身体验进行数学的学习。数学研究性学习强调要结合学生的数学学习和社会生活实践选择课题,学生从自身数学学习实践出发,找到他们感兴趣的、有探究价值的数学问题。开展数学研究性课题学习将会转变学生的数学学习方式,变传统的“接受性、训练性学习”为新颖的“研究性学习”,它有利于克服当前数学教学中注重教师传授而忽视学生发展的弊端,有利于调动学生的研究热情,激发学生的求知欲和进取精神,从而有效提高学生对数学的探究性学习能力、实践能力、创造能力和创新意识。 数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学和现实问题的一种有意义的主动学习,是以学生动手动脑,主动探索实践和相互交流为主要学习方式的学习研究活动。 二、如何进行数学研究性学习 数学研究性学习是学生数学学习的一个有机组成部分,是在基础性、拓展性课程学习的基础上,进一步鼓励学生运用所学知识解决数学的和现实的问题的一种有意义的主动学习,是以学生动手动脑主动探索实践和相互交流为主要学习方式的学习研究活动。它能营造一个使学生勇于探索争论和相互学习鼓励的良好氛围,给学生提供自主探索、合作学习、独立获取知识的机会。古希腊哲学家德谟克利特曾经指出:“教育力图达到的目标不是完备的知识,而是充分的理解。”我国古代教育家说得更精辟且形象:教学中应“授之以‘渔’”,而不仅是“授之以‘鱼’”。数学研究性学习更加关注学习过程,然而老师又如何让学生在数学课堂上进行研究性学习呢? (一) 从教材切入让学生在数学家探索数学规律的研究思维过程中体验研究性学习 ?在高中数学教材中有大量的材料可切入研究性学习的探索。在课堂教学中,教师应把握住“遵循大纲、教材,但又不拘泥于大纲、教材”的原则,结合生产、生活实际适当地加深、加宽,选出探究的切入点,对学生创新意识和能力进行初步培养。如:在讲复数的概念的引入时,告诉学生数的发展是由生产与生活的需要和解方程的需要推动的,是科学实际和生产、生活相结合的产物,然后要学生:解方程: 。学生一定会说无解或无实数解,教师引导学生分析“无解”和“无实数解”的区别,要学生探讨是不是有什么新的东西?如果有应该是怎样的?学生会通过探求及讨论发现此方程的解有但不是实数从而就会想到是虚的,教师要求学生用已有的方法求出方程的解,学生往往会感觉困难,教师就要问学生为什么困难?学生会说无法求,教师要求学生探求一个新的东西出来解决。 通过问题的层层揭示,并通过联系数的开方知识、解方程知识等手段来突破难点。这一过程使学生亲历数学研究之中,是学生主动地获取知识、应用知识、解决问题的学习活动。这一过程能充分调动学生的参与意识,培养学生的探索精神,启迪学生的思维,使学生能自然地掌握知识。 教师引导学生把提出的新东西进行归纳、总结,上升到理论。然后提出新的问题。如上面这节课对要求学生:解方程:x3-1=0.这样处理能再次将理论和实践结合起来,使学生感悟到在数学学研究中理论和实践之间的辩证关系。课后教师可以再布置几个探究性思考题,让学生在课外进一步巩固课堂上的探究方法和思路,拓展和活跃学生思维。 指导学生进行一题多解和一题多变也是一种研究性学习的方法。 这样以数学教材为载体渗透研究性学习,有一定的灵活性能更好的培养学生探求规律的能力。数学知识探索是数学学习的核心,用类似科学的研究方式,让学生置于探索和研究的气氛之中,亲身参与研究,体会知识及规律的探索方法,提高学生发现和解决问题的能力。 (二) 把握教材例、习题的潜在功能,有效培养学生的研究性学习能力 数学知识由纷繁复杂的客观世界抽象而来,研究性学习能力是学习数学知识的必要条件。很多教师都有一个发现:在学习单个知识时,学生似乎学得不错,但学完了多个知识或一个系统后,却变成简单的题目都不会,这除了综合能力不高外,还与平时没有养成研究性学习有关。像二倍角公式的理解就不能只知道2α是α的二倍角,类似的:4α是2α的二倍,α是的二倍, 例如:已知Sin= ,? ?, 求4的三角函数值。 分析:由,两次运用二倍角公式;又如:Cosα=2Cos 2? ?- 1 = 1 – 2Sin2 ???????? ?Cos 2? ??=? ,? Sin2 ?= ?????? ????tan2 ?= 这实际上是二倍角公式的逆向运用,得到的半角公式(或降幂公式)。有了对例题的深刻理解和研究性学习就能解决一类问题,如求的值;化简等。 通过变式、逆用、一题多解等训练思维的深度,引导学生不满足表面知识,能深入钻研问题,探求各种知识的联系,从而找到解决问题的本质和规律。 在教学上要鼓励学生敢于主动、独立的发现问题、探讨问题,敢于提问,敢于发表自己的不同观点,例如:在△ABC中 ,,求CosC值,可我在批改作业时,没有考究教材参考资料提供的答案(实际上只有),结果把正误答案颠倒。发现错误后,我主动向全班同学道歉,并表扬了善于研究思考、敢于坚持真理的同学。并及时提出新问题:(1)在△ABC中若 ,,求CosC值。有几个解?(2)在△ABC中,成立吗?作为留给学生的课外研究性学习题。学习了正弦定理后,再回头证明。通过这一问题的深刻探讨,不但使学生牢固掌握知识,更大大提升了学习的自信心和学习的热情,在潜移默化中培养了学生的科学态度和研究性学习精神。在学习等比数列前n项和知识时,有一题是:在等比数列中:已知 。在求解过程中学生得到了:? ,进一步发现:成等比数列 ,这就是研究性学习所得的成果,继续引导这一结论并推广就就可完成下面一题。证明:等比数列的也成等比数列。学生们总结前面的学习也较顺利地完成了证明,心理充满了成功的喜悦。真的没有漏洞吗?鼓励学生进行研究性学习探讨其严谨性,有学生举出了反例:数列 1,-1,1,-1……是公比q= -1等比数列,但 ,并不是等比数列;这一发现令人吃惊,因为在课本和其他所有的课外书都没有此说法。从理论上讨论:当,显然当n为偶数且q= -1时, ,不可能为等比数列。由此可见数学研究性学习的重要。 (三) 数学开放题与研究性学习 ??? 研究性学习的开展需要有合适的载体,即使是学生提出的问题也要加以整理归类。作为研究性学习的载体应有利于调动学生学习数学的积极性,有利于学生创造潜能的发挥。实践证明,数学开放题用于研究性学习是合适的。 自70年代日本、美国在中小学教学中较为普遍地使用数学开放题以来,数学开放题已逐渐被数学教育界认为是最富有教育价值的一种数学问题,因为数学开放题能够激起学生的求知欲和学习兴趣,而强烈的求知欲望浓厚的学习兴趣是创新能力发展的内在动力。80年代介绍到我国后,在国内引起了广泛的关注,各类刊物发表了大量的介绍、探讨开放题的理论文章或进行教学实验方面的文章,并形成了一个教育界讨论研究的亮点。 高考命题专家也敏锐地觉察到开放题在考查学生创新能力方面的独特作用,近几年在全国和各地的高考试题中连续出现具有开放性的题目。 数学开放题体现数学研究的思想方法,解答过程是探究的过程,数学开放题体现数学问题的形成过程,体现解答对象的实际状态,数学开放题有利于为学生个别探索和准确认识自己提供时空,便于因材施教,可以用来培养学生思维的灵活性和发散性,使学生体会学习数学的成功感,使学生体验到数学的美感。因此数学开放题用于学生研究性学习应是十分有意义的。 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 21、浅谈中学数学中的反证法 22、数学选择题的利和弊 23、浅谈计算机辅助数学教学 24、数学研究性学习 25、谈发展数学思维的学习方法 26、关于整系数多项式有理根的几个定理及求解方法 27、数学教学中课堂提问的误区与对策 28、中学数学教学中的创造性思维的培养 29、浅谈数学教学中的“问题情境” 30、市场经济中的蛛网模型 31、中学数学教学设计前期分析的研究 32、数学课堂差异教学 33、浅谈线性变换的对角化问题 34、圆锥曲线的性质及推广应用 35、经济问题中的概率统计模型及应用 36、通过逻辑趣题学推理 37、直觉思维的训练和培养 38、用高等数学知识解初等数学题 39、浅谈数学中的变形技巧 40、浅谈平均值不等式的应用 41、浅谈高中立体几何的入门学习 42、数形结合思想 43、关于连通性的两个习题 44、从赌博和概率到抽奖陷阱中的数学 45、情感在数学教学中的作用 46、因材施教与因性施教 47、关于抽象函数的若干问题 48、创新教育背景下的数学教学 49、实数基本理论的一些探讨 50、论数学教学中的心理环境 51、以数学教学为例谈谈课堂提问的设计原则 52、不等式证明的若干方法 53、试论数学中的美 54、数学教育与美育 55、数学问题情境的创设 56、略谈创新思维 57、随机变量列的收敛性及其相互关系 58、数字新闻中的数学应用 59、微积分学的发展史 60、利用几何知识求函数最值 61、数学评价应用举例 62、数学思维批判性 63、让阅读走进数学课堂 64、开放式数学教学
1. 生活中处处有数学 2、解数学竞赛题的整体策略 3、谈数学解题中发掘隐含条件的若干途径4、论数学教育中性别差异的影响 5、
概率论与数理统计课程的改革与实践论文 摘要: 讨论了概率论与数理统计课程教学改革的必要性与重要性,提出了课程改革的思路与原则,并总结了该课程改革与实践取得的效
压疮又称压力性溃疡,一直是临床护理工作的重点和难点,随着护理质量评价体系的推广,压疮已成为衡量医院护理质量的一项主要指标。下面是我为大家整理的压疮护理论文,供大
本文试图从会计理论体系方面,首先明确“真实的会计信息”与“不真实的会计信息”的内涵,然后研究基于我国实际国情的会计信息失真的主观与客观原因,并提出根治问题的措施
我国中小企业融资环境的优化与对策研究摘 要: 改革开放至今,民营中小企业经过长足的发展,作为经济社会发展不可缺少的组织细胞, 在促进经济发展、扩大社会就业、提供