爱啃狼的木头
数字逻辑课程教学研究论文
“数字逻辑”课程是理工类专业的技术基础课,从计算机的层次结构上讲,“数字逻辑”是深入了解计算机“内核”的一门最关键的基础课程,同时也是一门实践性很强的课程[1]。其任务是使学生掌握数字逻辑与系统的工作原理和分析方法,能对主要的逻辑部件进行分析和设计,学会使用标准的集成电路和高密度可编程逻辑器件,掌握数字系统的基本设计方法,为进一步学习各种超大规模数字集成电路的系统设计打下基础。
pbl全称为problem—basedlearning,被翻译成“基于问题学习”或“问题式学习”。其基本思路是以问题为基础来展开学习和教学过程[2]。pbl教学法是以问题为基础,以学生为主体,以小组讨论形式,在老师的参与和指导下,围绕某一具体问题开展研究和学习的过程,培养学生独立思考能力[3]。如今pbl教学已经成为美国教育中最重要和最有影响力的教学方法。
一、研究背景
1.数字逻辑课程的内容及其教学中存在的问题
数字逻辑课程的主要内容包括数字逻辑基础和数字电路两个部分,在学习过程中学生应把握好这两条贯穿整个课程的主线。数字逻辑基础是研究数字电
路的数学基础,教师在教学中应使学生明确数字电路中逻辑变量的概念,掌握逻辑代数(布尔代数)的基本运算公式、定理,能够熟练对逻辑函数进行化简。数字电路是解决逻辑问题的硬件电路,包括组合逻辑电路和时序逻辑电路两种基本形式。对于每一种电路形式,教师应指导学生从基本单元电路入手,熟悉其常用中规模集成电路的原理及使用方法,掌握数字电路(组合和时序电路)的分析和设计方法,并了解数字系统的现代设计方法。
我们根据教学内容,总结数字逻辑课程具有以下几个特点:
1)数字逻辑课程是一门既抽象又具体的课程。在逻辑问题的提取和描述方面是抽象的,而在逻辑问题的实现上是具体的。因此,学习中既要务虚,又要务实。
2)理论知识与实际应用紧密结合。该课程各部分知识与实际应用直接相关,学习中必须将理论知识与实际问题联系起来,真正培养解决实际问题的能力。
3)逻辑设计方法灵活。许多问题的处理没有固定的方法和步骤,很大程度上取决于操作者的逻辑思维推理能力、知识广度和深度、以及解决实际问题的能力。换而言之,逻辑电路的分析与设计具有较大的弹性和可塑性。
基金项目:黑龙江省智能教育与信息工程重点实验室项目;黑龙江省计算机应用技术重点学科;黑龙江省教育厅科学研究项目。
作者简介:季伟东,男,讲师,研究方向为计算机教学、并行计算。
笔者发现在实际教学过程中存在以下一些问题。
1)在教学方式上,很多教师仍然在以“满堂灌”的教学方式为主,整堂课以教师为中心,教师将书本上现成的内容、公式、定理、结论讲授给学生,这使学生不能主动地去思考和探索,只能机械地记忆若干公式定理结论,长期下去会使学生失去学习兴趣。
2)在实验实践环节上,一些教师侧重理论知识的讲授,忽视实验实践环节,致使学生在面对具体应用问题时手忙脚乱,不知道如何运用所学的知识去解决问题。在实验方案的选择上,一些教师以传统实验为主,扩展性不足,使学生无法与实际工程项目接轨,不能很好地解决实际问题。
二、教学的内涵
在传统教学中,我们习惯于把知识的获得和应用看成是教学中两个独立的阶段。实际上,知识的应用并不是知识的套用,在应用知识解决有关问题的过程中,学习者常常需要针对当前的具体问题进行具体分析,在原有知识的基础上建构出解决当前问题的方案。因此,应用知识解决问题的过程同样是一个建构过程,在解决问题的过程中,学习者需要对问题背后所隐含的基本关系、基本规律做思考、分析、考察,从而建构起相应的知识。
以问题为导向的教学方法(pbl)是基于现实世界的`以学生为中心的教育方式,与传统的以学科为基础的教学法有很大不同,pbl强调以学生的主动学习为主,而不是传统教学中的以教师讲授为主;pbl将学习与更大的任务或问题挂钩,使学习者投入于问题中;它设计真实性任务,强调把学习设置到复杂的、有意义的问题情景中,通过学习者的自主探究和合作来解决问题,从而学习隐含在问题背后的科学知识,形成解决问题的技能和自主学习的能力,真正提高学习者分析问题、解决问题的能力。
当今的建构主义者越来越重视问题在学习中的作用,以问题为中心,以问题为基础,让学生通过解决问题来学习,通过高水平的思维来学习,这是当今教学改革的重要思路。
三、教材选择
针对pbl教学法,根据计算机工程专业的特点,笔者选择由欧阳星明主编、华中科技大学出版社出版的《数字逻辑》(第四版)作为基础教材,由欧阳星明主编、人民邮电出版社出版的《数字电路逻辑设计》作为参考教材。选择教材的目的是理论和实践相结合,每本教材各有其侧重点。
在“基于问题学习”模式的课堂中,教师是指导者,学生是活动的主体,它要求学生要会主动地去寻找学习中的问题,然后带着问题,在自己能力所及的范围内概括和应用知识,运用各种已有的知识和科学的方法去分析问题和解决问题。其教学目标立足于培养学生灵活的知识基础,发展高层次思维能力、自主学习能力以及合作学习能力。基于问题学习体现在课堂上,最突出的特点就是促使学生积极参与到学习中去,成为积极主动的学习者,从而去努力学习新的知识和技能,并能逐渐把所学知识整合,最终达到用知识来解决问题的目的。
作者在多年教学经验基础上,针对pbl教学模式,提出“2+2”教学方案,包括4个教学环节:提出问题→解决问题→方案讨论→总结评价。
在上述4个环节中,教师主要参与提出问题环节和总结评价环节,学生主要参与解决问题环节和方案讨论环节。下面具体说明各个环节的设置。
1、提出问题。
提出问题环节是教学方案中的第一个环节,也是教师参与的第一个环节。在这个环节中教师应该根据所讲课程内容的不同设计出不同的问题,好的问题是整个学习过程中的关键。一个好的问题能够充分调动学生自主学习能力以及合作学习能力,使学生参与到学习过程中,调动学生学习热情。
笔者讲到组合逻辑电路设计时,提出的问题是设计一个全加器,用硬件描述语言vhdl进行描述并在试验箱上进行实现,同时还给出一个已经设计好的参考例程,共学生参考学习;在讲到时序逻辑电路设计时,提出的问题是设计一个汽车尾灯控制器,并对选用的逻辑门器件进行了要求。
这个环节的实施能够提高学生的学习积极性,使学生产生学习需求,培养了学生的问题意识。
2、解决问题。
解决问题环节是以学生为主体的环节,是学生对老师提出的问题进行解决。在这个环节中,老师首先对学生进行分组,根据学生学习情况,以5~7个人为一组。学生接受任务后学习兴趣提高,小组成员进行分工,采取各种方法来完成任务。每个小组共同学习,学习好的同学带动大家一起学习,互相帮助,学生变被动为主动,主动地思考和探索老师所提出的问题,在解决问题的过程中进行学习。在实际解决问题过程中,学生将面临一些困难,如逻辑器件的选择上、语言的描述上、具体问题的实现上,等等。
通过这一环节,教师也感受到同学们的想象力、创造力和动手能力等都是非常强的。
3、方案讨论。
在方案讨论这个环节中,学生根据学习到的知识对自己所设计的方案进行讨论,积极发言,提出自己的见解,说明自己的理由。教师根据学生们的发言,指出其合理的地方,对其不足的地方进行指正,引导学生解决问题。如在全加器的设计问题中,有的小组采用的是多种逻辑门电路进行设计,有的小组基于经济问题考虑,只采用与非门电路来进行设计,每个小组都详细阐明自己的观点,对自己的设计方案进行论证。
在这个环节,老师应强调放开思路,开拓创新,
鼓励学生进行多途径思考,全方位构思。这样既加强了学生们学习自觉性、开创性,又培养学生更多地进行综合思考,得到更多的锻炼,提高分析和解决复杂问题的能力。
4、总结评价。
小组必须在规定时间内完成设计开发任务。各个小组分别展示各自成果,其他小组学生提出问题进行互动并相互评价,老师给出点评并比较各自设计的优缺点,最后老师进行总结评价。这个环节中,教师作为主要参与者,一方面要对知识进行系统性的总结归纳,使学生对知识的掌握具有条理性,另一方面还要对学生进行启发式扩展,使学生的知识面更广,同时对一些难点重点再次进行强调,增加学生对知识的理解。
3、结语
数字逻辑是一门理论联系实践比较强的课程,在教学中采用pbl教学模式,不仅可以提高学生掌握知识的能力和培养学生的创造性思维能力,还能提高学生的交流和合作能力。pbl教学可以使得数字逻辑课程目标更好的实现,能够引导学生自主学习,在实际的教学中,取得了良好的教学效果。
命丧与她丶
库恩努力告诉我们的是,科学家共同体所拥有的范式本身是一套“群体的推理规则”,信仰同一个范式的科学家群体用这样的推理规则进行群体推理;而不同的科学家共同体因推理规则不同(范式不同)而得出不同的结论。因此,科学哲学家所力图揭示的是科学家进行群体推理的规则,不同的是,“逻辑主义者”哲学家认为,存在不变的规则;而“历史主义者”则认为这样的标准随群体的不同、历史的发展而变化。四、公共选择理论:研究群体选择的逻辑 我们每个人在行动选择时;根据自己的偏好在多个行动中选择有利的行动。这是一个推理过程。然而,一个包含两个或以上的行动者的群体或社会是如何做出共同行动或集体行动决策呢?即:群体是如何进行行动选择的推理的呢?每个人有自己的偏好,群体行动的选择依赖于群体个人的偏好进行“加总”(collect),以形成群体的偏好。对群体中各个人的偏好进行加总是通过投票来完成的。对群体如何加总个人的偏好的研究是公共选择理论的重要研究内容。群体的投票规则即是群体的偏好形成的推理规则。如,一个群体对某个提案进行表决时,大多数规则——这是一个简单的易于理解的规则——说的是,一个“议案”若获得投票总人数中的一半以上则获得通过,即在此情况下,“该群体”“认为”该议案获得了通过;或者说该群体“认为”该议案通过比不通过要好。若一个“议案”没有获得投票总人数中的一半,在此情况下,“该群体”“认为”该议案不通过比通过要好。一个议案或者通过或者不通过,此时,投票群体进行投票便是在二中择一。当一个群体面临的候选对象超过两个(即三个或三个以上)时,情况便复杂起来。人们发明了许多加总投票人偏好的方法。如孔多塞的两两相决的规则,逐步淘汰的黑尔体系(Hare system)和库姆斯体系(Combs system),一次性决策的赞成性多数(approval voting)和博达记分法(Boda count)。逻辑主要是研究推理和论证的。若研究的是推理,在推理中存在前提和结论:前提是已知的,而结论要根据有效推理得出的。在群体投票中,我们根据投票者对某个议案的偏好——这构成推理前提,和投票规则——这构成推理规则,而得出投票结果——它便是结论。这样看来,群体加总群体中个人偏好的特定投票规则便是逻辑学中所说的系统,我们称这种系统为群体偏好推理系统。在实际中存在不同的投票规则,因而存在不同的群体偏好系统。我们考察逻辑系统时,往往考察系统的完全性和可靠性。群体偏好推理系统的完全性和可靠性如何呢?对于个体,他所用的偏好关系的推理系统满足完全性和可靠性,或者我们假定它满足完全性和可靠性。 研究社会选择的经济学家首先研究理性的偏好关系。偏好关系以“≥(弱优于)”表示。某个理性人认为“a≥b”,表示的是,对于该理性人而言,备选对象a与b相比,a至少与b一样好。经济学家认为“理性的”的偏好关系应当满足完备性和传递性条件:(1)完备性:任何两个备选对象a,b,它们的关系是或者a≥b,或者b≥a,二者必居其一;(2)传递性:对于任意的三个备选对象,如果a≥b,b≥c,那么a≥c。满足这两个假定的偏好关系的推理系统,如果用逻辑学的术语来说,该推理系统具有完全性——任何两个备选对象都具有一个偏好关系;上面的完备性正是说明了这点;该系统同时具有可靠性——不会产生矛盾的偏好关系;由传递性作保证。一个群体进行推理时,该群体能够做到完全性和可靠性吗?这是下一部分要回答的。五、群体理性如何得到保证?群体推理的理性如何保证?科学哲学家库恩认为,同一个范式下的活动是理性的,因为存在一套为科学共同体中所有人都接受的不相互矛盾的规则体系。此时,科学共同体的理性是能够得到保证的。但在科学革命时期,由于不存在共同接受可以对不同的范式下的规则进行评价的元规则,科学理论之间的竞争是非理性的。这样,不同的科学家群体组成的更大群体的理性得不到保证。在群体选择中理性是不是也得不到保证呢?群体的偏好关系推理系统具有完全性和可靠性吗?这个问题涉及到两个方面:第一,群体用于偏好推理的系统能否适合一切可能的偏好组合,这是可靠性问题;第二,该系统进行推理时能否保证不出现矛盾,这是完全性问题。偏好关系推理系统的特性是许多学者所关心的重大问题。一个极端情况是,加总的规则为独裁规则,即某个人的偏好即群体的偏好,那么将不出现所谓矛盾性的结论。阿罗证明了,一个群体中的每个人给定偏好顺序的情况下,不可能存在满足下列4个条件并具有传递关系的社会福利函数:第一,定义域不受限制——社会福利函数适合所有可能的个人偏好类型;第二,非独裁——社会偏好不以一个人或少数人的偏好来决定;第三,帕累托原则——如果所有个人都偏好a甚于b,则社会偏好a甚于b;第四,无关备选对象的独立性——如果社会偏好a甚于b,无论个人对其他的偏好发生怎样的变化,只要a与b的偏好关系不变,社会偏好a甚于b不变。这被称为阿罗不可能性定理。这个定理说明了什么?这说明了,群体作为总体不可能像个人那样,在任何情况下都能够作出“理性的”排序。孔多塞投票悖论反映的正是这个情况:群体得出了矛盾的结果。群体投票是群体推理过程,投票规则是群体推理系统。以这样的视角看,阿罗不可能性定理告诉我们,对于有三个以上的备选方案的情况下,群体推理系统不可能既是完备的——适合所有的人的偏好类型,又是可靠的——不出现矛盾性的结论。六、结语综上所述,群体推理是发生于实际社会中的现象,不同领域里的学者在自己的学术领域里研究了不同的群体推理的逻辑,并取得了丰富成果。然而,这方面的研究可以说刚刚起步,有许多工作等待我们去做。
问题一:论文结构是什么?什么算好论文? 论文结构是什么? 一、论文是讨论某种问题或研究某种问题的学术性文章。在信息社会中,论文又是通过报刊、计算机网络等媒
毕业论文要有正确的立意,还要有严密的逻辑性。就是说论文不仅要做到“言之有理”、“言之有物”,还要做到“言之有序”。任何事物的发展,都有它的规律性。论文的结构也有
书名 定价 编著 1 全球通史/从史前史到21世纪(第7版) 54
中国哲学史。逻辑学作为一门科学的逻辑,是既古老又年轻的。2021年逻辑学最佳学生论文在中国哲学史一杂志发表,中国哲学是世界几大类型的传统哲学之一,它致力于研究天
数字逻辑课程教学研究论文 “数字逻辑”课程是理工类专业的技术基础课,从计算机的层次结构上讲,“数字逻辑”是深入了解计算机“内核”的一门最关键的基础课程,同时也是