天可莲见
高二年研究性学习数学课题结题论文 一、标题 “生活中的黄金分割”结题报告论文 二、署名 杨晶 三、内容提要和关键词 [摘要] 黄金分割是一种数学上的比例关系。黄金分割具有严格的比例性,艺术性,和谐性,蕴藏着丰富的美学价值。应用时一般取0.618,就像圆周率在应用时取3.14一样。黄金分割在生活的体现很多,在摄影、医学、生物界、建筑甚至人体,处处都有黄金分割。 [关键词] 黄金分割 0.618 和谐美 应用 四、前言: 在我们的生活中处处有数学,而历史悠久的可说是黄金比例了。它可追溯到古代雅典的巴特农神庙,它之所以显得那么和谐,是因为这个建筑符合黄金比例。在我们的生活中,摄影、医学、生物界、建筑甚至人体,处处都有黄金分割。普通书的长宽比是黄金分割;有些植物的花瓣及主干上枝条的生长,也隐藏着黄金分割;一些名画、雕塑、摄影作品的主题,大多在画面的0.168„处。艺术家们认为弦乐器的琴马放在琴弦的0.168„处,能使琴声更加柔和甜美。由此可见黄金比例的历史和作用。我们以“生活中的黄金分割”为课题展开研究,进行近一步的了解,使学生了解生活中有数学,从而热爱数学,喜欢数学。 五、主要研究内容、方法: 1、内容:生活中的黄金分割 2、方法:1)去图书关查找资料,翻阅图书或相关的书籍 2)上网查找相关的资料 3)询问老师;小组成员之间相互探讨 3、研究涉及的知识基础、所需资源: 数学的黄金比例,斐波那契数列知识,杂志,网上所涉及的黄金比例的内容。 4、研究思路、活动步骤及进度安排: 1. 将学生按班级分组,并分配各组成员的工作及调查方向。(第1周) 2. 到图书馆查找有关黄金比例的书籍,并摘抄有关内容。(第2-3周) 3. 到网上查找相关黄金比例内容。(第2——3周) 4. 整理资料,小组组员讨论,发表观点,互相展示研究成果。(第4周) 5、研究方法 成员分工以网络及图书馆书籍查找有关资料,并对其进行汇总、筛选、加工,成员根据其结果讨论分析,并展示研究成果。 六、研究结果 1、艺术中的黄金数 “0.618",这个比值因具有美学价值而被古希腊美学家运用到造型艺术中,因为凡符合黄金分割律的形体总是最美的形体。在美术史上曾经把它作为经典法则来应用。有许多美术家运用它创造了不少不朽的著名。例如达·芬奇的《蒙娜丽莎》、拉斐尔笔下温和俊秀的圣母像,都有意无意地用上了这个比值。 黄金分割对摄影画面构图可以说有着自然联系。例如照相机的片窗比例:135相机就是24X36即2:3的比例,这是很典型的。只要我们翻开影集看一看,就会发现,大多数的画幅形式,都是近似这个比例。 2、饮食、生活作息中的黄金数: “黄金分割”的比值为0.618,它不仅是美学造型方面常用的一个比值,也是一个饮食参数。日本人的平均寿命多年来稳居世界首位,合理的膳食是一个主要因素。在他们的膳食中,谷物、素菜、优质蛋白、碱性食物所占的比例基本上达到了黄金分割的比值。 医学专家分析后还发现,饭吃六七成饱的人几乎不生胃病。还有喝5杯水。人体内的水分占体重的61.8%,不计出汗,每天失去和需要补充的水达2500毫升。其中半固体食物供给的水和人体内部合成的水约1500毫升,大约占61.8%。其余1000毫升需要补充,才能保持水平衡。因此,每人一天要喝5杯水。 一天合理的生活作息也应该符合黄金分割,24小时中,2/3时间是工作与生活,1/3时间是休息与睡眠;在动与静的关系上,究竟是“生命在于运动”,还是“生命在于静养”?从辩证观和大量的生活实践证明,动与静的关系同一天休息与工作的比例一样,动四分,静六分,才是最佳的保健之道。掌握与运用好黄金分割,可使人体节约能耗,延缓衰老,提高生命质量。 3、植物中的黄金数 植物叶子,千姿百态,生机盎然,给大自然带来了美丽的绿色世界(如下图)。 尽管叶子形状随种而异,但它在茎上的排列顺序(称为叶序),却是极有规律的。你从植物茎的顶端向下看,经细心观察,发现上下层中相邻的两片叶子之间约成137.5 °。如果每层叶子只画一片来代表,第一层和第二层的相邻两叶之间的角度差约是137.5 °,以后二到三层,三到四层,四到五层„„两叶之间都成这个角度数。植物学家经过计算表明:这个角度对叶子的采光、通风都是最佳的。叶子的排布,多么精巧! 叶子间的137.5 °中,藏有什么“密码”呢?我们知道,一周是360 ° ,360 ° –137.5 ° =222.5 ° ,137.5 ° :222.5 ° ≈0.618。瞧,这就是“密码”!叶子的精巧而神奇的排布中,竟然隐藏着0.618。 从自然界到日常生活处处都存在菲波那齐数列,存在黄金比率.某些花的花瓣数是斐波那契数:水仙花3瓣,金凤花5瓣,翠雀花8瓣,金盏花13瓣,紫苑花21瓣,雏菊花34,55或89瓣,向日葵的花盘上面有21个顺时针旋形与34个逆时针旋形;在动物中还可以发现一些软体动物的甲壳花纹,昆虫翅膀对的数目在一定程度上符合这个数列。 4、建筑中的黄金数 世界上最有名的建筑物中几乎都包含“黄金分割比”。遍布全球的众多优秀近现代建筑,尽管其风格各异,但在构图布局设计方面, 都有意无意地运用了黄金分割的法则, 给人以整体上的和谐与悦目之美。 举世闻名的巴特农神庙也是这样一个例子,神庙外部呈长方形,长228英尺,宽101英尺,有46根多立克式环列圆柱构成柱廊。 文明古国埃及的金字塔,形似方锥,大小各异。但这些金字塔底面的边长与高之比都接近于0.618,在现代建筑中,一些摩天建筑中使用“黄金分割点”进行处理,能使平直单调的塔身变得丰富多彩;在这类高层建筑物的黄金分割处布置腰线或装饰物,则可使整个楼群显得雄伟雅致。如举世闻名的法国巴黎埃菲尔铁塔、当今世界最高建筑之一的加拿大多伦多电视塔(553.33米),都是根据黄金分割的原则来建造的。上海的东方明珠广播电视塔,塔身高达468米。为了美化塔身,设计师巧妙地在上面装置了晶莹耀眼的上球体、下球体和太空舱,既可供游人登高俯瞰地面景色,又使笔直的塔身有了曲线变化。更妙的是,上球体所选的位置在塔身总高度5∶8的地方,即从上球体到塔顶的距离,同上球体到地面的距离大约是5∶8这一符合黄金分割之比的安排,使塔体挺拔秀美,具有审美效果。 最后,我们想告诉大家,数学的知识有的是我们生活实际中已经会的,但还没有找到规律,我们可以运用经验,通过实践活动把经验提炼为数学. 黄金分割"的实质就是0.618这个神奇的数字。只要留心,就会在生活的方方面面发现其"魅影"。黄金分割是古希腊哲学家毕达哥拉斯留心生活发现1:0.618的这个黄金比例最优美,和谐。数学在每个人身边,要有心去体验,发现。 七、参考文献 1、 2、北师大版八年级(下)《黄金分割的应用》
xiaomi595629661
黄金分割漫谈 分已知线段为两部分,使其中一部分是全线段与另一部分的比例中项,这就是在中学几何课本中提到的黄金分割问题。若C为线段AB的满足条件的分点,则可求得AC 约为 0.618AB。这个分割在课本上被称作黄金分割,我们有时也可说是将线段分成中末比、中外比或外内比。若用G来表示它,G 被称为黄金比或黄金分割数。黄金分割、黄金分割数都被冠以“黄金”二字,说明了它们的重要性与应用上的广泛性,同时也为它们平添了几分神秘的色彩。著名天文学家开普勒称黄金分割是“几何学中的一大宝藏”,就让我们揭开它的神秘面纱,共同来开采一下这座宝藏吧! 寻踪探迹话名称由来 最早对中末比有所了解的大约可追溯到毕达哥拉斯学派。该学派对正五边形、正十边形都很熟悉,并且把“五角星”作为成员联络标记,而这些图形的作法与中末比是密切联系的。如果相信毕达哥拉斯熟知正五边形与五角星的作图,那么可以推知他已掌握了中末比。古希腊著名的数学家、天文学家欧多克索斯最早对中末比做了系统的研究,他在深入探究五角星性质时,曾惊叹道:“中末比到底在这儿出现了!”对中末比的严格论述最早见于欧几里德的《几何原本》。到中世纪以后,中末比被披上更神秘的外衣,渐渐笼上了一层神秘的色彩。 文艺复兴时期,中末比问题引起了人们广泛的注意。1509年,意大利文艺复兴重要人物之一帕乔里出版《神圣的比例》一书。书中系统介绍了古希腊中外比,并称其为神圣比例。他认为世间一切事物都须服从这一神圣比例的法则。开普勒称中末比为“比例分割”,他写道:“毕达哥拉斯定理和中末比是几何中的双宝,前者好比黄金,后者堪称珠玉。”他是把黄金之喻给了毕达哥拉斯定理,而用珠玉来形容了中末比。最早正式在书中使用黄金分割这个名称的是欧姆(以欧姆定律闻名的G.S.欧姆之弟)。在他1835年出版的第二版《纯粹初等数学》一书中首次使用了这一名称。到19 世纪以后,这一名称才逐渐通行起来,成为现在人们所熟知的名称。 挂一漏万谈奇妙性质 黄金分割数G有着许多有趣的性质。最引人注目的是它与斐波那契数列的关系。 斐波那契是中世纪著名的学者。他在《算盘书》一书中提出了一道有趣的“兔子生殖问题”,由此引出了一个奇妙数列: 1,2,3,5,8,13,21,34,55,89,144,…… 规律是:从第三项开始每一项是前两项之和。后人称为斐波那契数列。它与黄金分割会有什么关系呢? 让我们计算一下斐波那契数列中每前一项与后一项之比,就会发现这个比值竟与黄金分割数G越来越接近,完全可以作为G的一阶、二阶……N阶近似。多么奇妙啊!其实可以证明这些比值正是以G作为它们的极限。 中外比与斐波那契数列的这种内在联系,为它大添了光彩,也使它具有了一种特殊的神秘感与迷人的魅力,使后来的许多数学家为之倾倒。 抛砖引玉粗说影响及应用 黄金分割无论是在理论上,还是实际生活中都有着极其广泛而又非常简单的应用,从而也在历史上产生了巨大的影响。古代,中末比主要是作为作图的方法而使用。到文艺复兴时期它又重新引起了当时人们的极大兴趣与注意,并产生了广泛的影响,得到了多方面的应用。如在绘画、雕塑方面,画家、雕塑家都希望从数学比例上解决最完美的形体,它的各部分的相互关系问题,以此作为科学的艺术理论用来指导艺术创造,来体现理想事物的完美结构。著名画家达芬奇在《论绘画》一书中就相信:“美感完全建立在各部分之间神圣的比例关系上,各特征必须同时作用,才能产生使观众如醉如痴的和谐比例。”在这一时期,艺术家们自觉地被黄金分割的魅力所诱惑而使数学研究与艺术创作紧密地结合起来,并对后来形式美学与实验美学产生了巨大影响。 十九世纪,德国美学家蔡辛提出黄金分割原理且对黄金分割问题进行理论阐述,并认为黄金分割是解开自然美和艺术美奥秘的关键。他用数学比例方法研究美学,启发了后人。德国哲学家、美学家、心理学家费希纳进行了实验美学的尝试,把黄金分割原理建立在广泛的心理学测试基础上,将美学研究与自然科学研究结合在一起,引起广泛的注意。直到本世纪50年代,实验美学的研究还十分活跃。直到最近,黄金分割原理仍然是一个充满了神奇之谜的科学美学问题。如在晶体学的准晶体结构研究领域中,黄金分割问题重新引起了物理学家和数学家们的兴趣。 它的实际应用,也有很多。最广为人道的例子是优选学中的黄金分割法,它是美国的基弗于1953年首先提出的。从1970年开始在我国推广并取得了很大的成绩。优选法的另一种方法――分数法,是取G的分数近似值,在实际中同样有着广泛应用。 真真假假道神秘传说 由于中末比具有各种独特的性质,随着它的影响越来越大,也就有了越来越多的关于它的传说。这些传说虚虚实实,令人扑朔迷离难辨真伪,但却一直为人们所津津乐道,广为流传。 有人研究得出黄金分割是人和动植物形态的一个结构原则。于是有了以下各种说法: 人体自身美,即人体最优美的身段遵循着G这个黄金分割比。据说在人们并未认识黄金分割之前制造的美的物品竟都恰好与黄金律暗合。如著名的爱神维纳斯与女神雅典纳的雕像下身与全身之比近于G。 据说芭蕾舞艺术的魅力也离不开G。芭蕾演员起舞时踮起脚尖,是为了展现符合G的身段比例的最优美的艺术形象。 在自然界中,G也是美的重要规律。据说特别令人心旷神怡的花,凭借的是G这个美的密码。 另外我们知道现在各国的国旗上,凡是“星”几乎无例外都画成五角星,据说就是因为五角星中多处暗含了G这个美的密码,从而使这个图形赏心悦目。 还据说报幕员处于黄金分割点处的位置时,会给观众留下一个美的印象。甚至有人说演奏弦乐器时,把“千斤”放在琴弦的黄金分割点获得的音色更优美和谐。 还有一种流行极广的说法是:黄金矩形(即两边的比等于G的矩形)比用任何其他比值作边的矩形都要美观。1876年,费希纳曾为此作过大规模的试验。结果表明喜欢黄金矩形的人数占全体的三分之一,在各种矩形中得票最多。 诸如此类的传说恐怕还有很多。一句话:哪里有G,哪里就有了美。黄金分割数G成了宇宙的美神!
在法学领域中,比较法(Rechtsvergleichung)是不同国家或地区法律秩序的比较研究。下文是我为大家整理的关于法学论文比较法的 范文 ,欢迎大家阅
【推荐】比较文学的论文 在社会的各个领域,大家最不陌生的就是论文了吧,论文是学术界进行成果交流的工具。你写论文时总是无从下笔?下面是我整理的【推荐】比较文学的论
与导师交流 19、请一定先写出一份开题报告来再去找导师。 20、开题会的时候不要怕。一般来说,再烂的题目,老师们也都会让你做的。因为他/她们往往抱着这样一种乐观
高二年研究性学习数学课题结题论文 一、标题 “生活中的黄金分割”结题报告论文 二、署名 杨晶 三、内容提要和关键词 [摘要] 黄金分割是一种数学上的比例关系。黄
黄金投资方式有很多,不外乎实物黄金、纸黄金、黄金远期衍生品、现货实盘以及黄金ETF/基金等。这些投资方式优劣点各不相同,适合人群也不一样,投资者可根据自己的喜好