易叉叉叨叨
呵呵不要说我教坏你给你两篇我用了N次的范文哈《容易忽略的答案》大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
汉朝文帝
看看下面的。初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!匿名回答采纳率:21.2%2009-01-3116:06检举
阿富汗小海参
应用题是小学数学教学中的重点和难点,特别是一些较复杂的应用题,由于数量关系较隐蔽,学生在解题 时很难找出正确的解题思路,会出现这样和那样的问题。因此,在应用题教学中,教师应教会学生运用已有数 学知识,大胆地想象,力求通过不同方法,从不同角度进行探索,培养发散性思维能力。为此应重视各种解题 思路的训练。 一、对应的思路训练 例1:一户农民养鸡240只,平均5只鸡6天要喂饲料4.5千克。 照这样计算这些鸡15天要喂饲料多少千克? 写出题中的条件问题: 5只鸡 6天 4.5千克 240只鸡 15天 ?千克 从上面的对应关系可分析出两种方法: ①用归一法先求出1只鸡1天要喂的饲料,再求240只15 天所需的饲料。即 4.5÷5÷6×240×15=540(千克) 答:240只鸡15天需饲料540千克。 ②每只鸡平均每天用的饲料是一定的,根据倍数关系, 只要求出240只是5只的几倍和15天是6天的几倍, 这个题就可迎刃而解了。 4.5×(240÷5)×(15÷6)=540(千克)(答略) 二、数形结合看图分析训练 例2:修路队三天修了一段公路,第一天修40%,第二天修1/2,第三天修2.5千米。这段公路长多少千米 ? 先分段画图: 附图{图} 再分析解答:把全段公路看做单位“1”,那么第三天修的2.5千米正好是全段公路的(1-40%-1/2), 它和2.5相对应,所以全段公路长为: 2.5÷(1-40%-1/2)=25(千米)(答略) 例3:有一桶油第一次取出2/5,第二次取出20千克, 桶里还剩28千克油。全桶油重多少千克? 先分段画图: 附图{图} 把整桶油看作单位“1”, 从图中清楚地看出:后两次取出油的总和,正好是第一次取油后余下的部分, 即(1-2/5),它与(20 +28)相对应。 列式计算:(20+28)÷(1-2/5)=80(千克)(答略) 三、一题多解思路的训练 为培养学生的思维能力,引导学生探索解题思路,可对一道题的数量关系进行分析、对比,多角度、多层 次地沟通知识的内在联系。 例4:同学们参加野营活动, 一个同学到负责后勤的老师那里去领碗。老师问他领多少,他说领55个;又 问“多少人吃饭”,他说“一人一个饭碗,两人一个菜碗,三人一个汤碗”。算一算,这个同学给参加野营活 动的多少人领碗? 解法一:一般解法 把饭碗数看作单位“1”,则菜碗数是1/2,汤碗数是1/3, 总碗数55与(1+1/2+1/3)相对应,根据 除法意义可求出饭碗数。 55÷(1+1/2+1/3)=30(个) 根据题意,人数与饭碗数相同。(答略) 解法二:方程解法 设有x人参加野营活动,根据题意,饭碗数x个,菜碗数为x/2,汤碗数为x/3,列方程:x+x/2+x/3= 55,解得x=30。(答略) 解法三:按比例分配解法 把饭碗数看作“1”,则 饭碗数∶菜碗数∶汤碗数 =1∶1/2∶1/3=6∶3∶2 饭碗数是55×6/6+3+2=30(个) 人数与碗数相同。(答略) 此题解法不只限于以上三种,还有其他解法,这里不再赘述。 四、转化性题组训练 有很多应用题题材不同,但数量关系相同,且解法完全一样。把这样一些应用题排在一起,有利于学生掌 握问题的实质,找出这类题的解题规律。 有下面一组题: (1)一项工程由甲工程队修建需12天,由乙工程队修建需要20 天。两队共同修建需要多少天? (2)甲从东庄走到西庄需要2小时,乙从西庄走到东庄需要3 小时,如果甲、乙分别从东西庄同时相向出 发,需要经过几小时才能相遇? (3)甲、乙两个童装厂合做一批出口童装,甲厂单独做要20 天完成,乙厂单独做要30天完成。两厂合做 多少天可以完成? (4)有一水池装有甲、乙两个进水管。单开甲管需6分钟注满,单开乙管需4分钟注满,两管齐开需多少分 钟注满? 分析:(1)设工程总量为单位“1”。 甲每天完成工程的1/12,乙每天完成1/20,甲乙合做一天完成工程的1/12+1/20,完成全工程所需天 数为1÷(1/12+1/20)。 (2)设东庄到西庄的路程为单位“1”。 甲、乙二人的速度分别是1/2和1/3,甲、乙每小时走完全程的(1/2+1/3),两人相遇所需时间是1÷ (1/2+1/3)。 (3)设这批童装的总量为单位“1”。 甲厂每天完成的工作量是1/20,乙厂每天完成1/30,两厂合做一天就完成总量的(1/20+1/30),完 成工作后所需天数为1÷(1/20+1/30)。 (4)设水池的容积为单位“1”。根据题意,甲管每分可注水1/6,乙管每分可注水1/4,甲、乙两管齐 开每分钟可注(1/6+1/4),注满所需的时间是1÷(1/6+1/4)。 通过以上的类比训练,可使学生弄清工程问题、相遇问题、工作问题、水管问题。虽然题材不同,但它们 数量关系相同。这就使知识间的联系在学生的头脑中形成。
AndyBarrel
刘徽 刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了割圆术,即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣,这可视为中国古代极限观念的佳作.《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目.刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人.刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.贾宪贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。 他的主要贡献是创造了贾宪三角和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。秦九韶秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。李冶李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。朱世杰朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).祖冲之祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。 祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。祖暅祖暅,祖冲之之子,同其父祖冲之一起圆满解决了球面积的计算问题,得到正确的体积公式。现行教材中著名的“祖暅原理”,在公元五世纪可谓祖暅对世界杰出的贡献。杨辉杨辉,中国南宋时期杰出的数学家和数学教育家。在13世纪中叶活动于苏杭一带,其著作甚多。 他著名的数学书共五种二十一卷。著有《详解九章算法》十二卷(1261年)、《日用算法》二卷(1262年)、《乘除通变本末》三卷(1274年)、《田亩比类乘除算法》二卷(1275年)、《续古摘奇算法》二卷(1275年)。 杨辉的数学研究与教育工作的重点是在计算技术方面,他对筹算乘除捷算法进行总结和发展,有的还编成了歌决,如九归口决。 他在《续古摘奇算法》中介绍了各种形式的纵横图及有关的构造方法,同时垛积术是杨辉继沈括隙积术后,关于高阶等差级数的研究。杨辉在纂类中,将《九章算术》246个题目按解题方法由浅入深的顺序,重新分为乘除、分率、合率、互换、二衰分、叠积、盈不足、方程、勾股等九类。 他非常重视数学教育的普及和发展,在《算法通变本末》中,杨辉为初学者制订的习算纲目是中国数学教育史上的重要文献。赵爽赵爽,三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有云幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。 赵爽还在《勾股圆方图注》中推导出二次方程 (其中a>0,A>0)的求根公式 在《日高图注》中利用几何图形面积关系,给出了重差术的证明。(汉代天文学家测量太阳高、远的方法称为重差术)。华罗庚华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。 1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。 1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。 历任清华大学教授,中国科学院数学研究所、应用数学研究所所长、名誉所长,中国数学学会理事长、名誉理事长,全国数学竞赛委员会主任,美国国家科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士,中国科学院物理学数学化学部副主 任、副院长、主席团成员,中国科学技术大学数学系主任、副校长,中国科协副主席,国务院学位委员会委员等职。曾任一至六届全国人大常务委员,六届全国政协副主席。 曾被授予法国南锡大学、香港中文大学和美国伊利诺斯大学荣誉博士学位。主要从事解 析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积 分等领域的研究与教授工作并取得突出成就。40年代,解决了高斯完整三角和的估计这 一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈 代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至 今仍是最佳纪录。 代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出 了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉 当-布饶尔-华定理。其专著《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍 德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居 世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在 调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等 奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作 并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为 “华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多 篇,并有专著和科普性著作数十种。陈景润数学家,中国科学院院士。1933 年5月22日生于福建福州。1953年毕业于厦门大学数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数 学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国 际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王 元教授、潘承洞教授共同获得1978年国家自然科学奖一等奖。其后对上述定理又作了改 进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到 16 ,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类 生活密切关系等问题也作了研究。发表研究论文70余篇,并有《数学趣味谈》、《组合数学》等著作。
初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4
悬*浮* 回答采纳率:27.1% 2010-02-18 11:40
初一的作文应多观察身边,应仔细、认真,还要有良好的心态。反复练习,这样可能会进步!
可以谈谈你们学不好数学的困惑。谈谈如何自己去学习数学。或者可以写访问式的论文。
数学在生活中无处不在,办公时、买菜时哪里都能遇上数学问题。生活中用数学的地方可真多呀!我们一定要努力学好数学,解决生活中更多的难题。下面给大家分享一些生活中的数