blackiron.sh
逆矩阵的三种方法及例题如下:
一、逆矩阵的三种方法如下:
1、待定系数法。
2、伴随矩阵求逆矩阵。
伴随矩阵是矩阵元素所对应的代数余子式,所构成的矩阵,转置后得到的新矩阵。
3、初等变换求逆矩阵。
二、逆矩阵的例题如下:
设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。
例如:
逆矩阵的性质:1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)。
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6、两个可逆矩阵的乘积依然可逆。
7、矩阵可逆当且仅当它是满秩矩阵。
逆矩阵是对方阵定义的,因此逆矩阵一定是方阵。
朵喵喵ljh
逆矩阵求法有三种,分别是伴随矩阵法、初等变换法和待定系数法。
一、伴随矩阵法。根据逆矩阵的定义(对于n阶方阵A,如果有一个n阶方阵B满足AB=BA=E,则A是可逆的。),可以得出逆矩阵的计算公式:A^(-1)=1/|A|乘以A*,其中,A*为矩阵A的伴随矩阵。例题如下:
伴随矩阵法解题过程
注:用伴随矩阵法计算逆矩阵时需要运用代数余子式和余子式的相关知识,即代数余子式(Aij)和余子式(Mij),其中,i表示第几行,j表示第几列。
二、初等变换法。根据矩阵初等行变换的计算方式,然后引入单位矩阵E(矩阵对角线所对应的三个数字均为1,其他数字均为0的矩阵)。矩阵 A与单位矩阵E组成一个大矩阵,而后通过行变换将原来A的位置转变为E,此时,变换后的E就是所求的逆矩阵。
本人手写笔记
三、待定系数法。根据矩阵定义的推论,利用矩阵A乘以它的逆矩阵A^(-1)等于单位矩阵E的计算公式求得逆矩阵的方法。这种计算过程繁琐,需要列多组方程组,耗时,不建议使用。
题主可根据以上三种计算方法计算逆矩阵,希望对题主有帮助。
吃撑了别跑
一般用初等行变换,来求,对增广矩阵A|E,同时施行初等行变换,化成E|A^-1;
在原矩阵的右侧接写一个四阶单位矩阵,然后对扩展矩阵施行初等行变换,使前面的四阶矩阵化为单位矩阵,则右侧的单位矩阵就化为了原来前面的逆矩阵。
扩展资料:
逆矩阵求法:
求逆矩阵的初等变换法
将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵
对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A。
如求
的逆矩阵A-1。
故A可逆并且,由右一半可得逆矩阵A-1=
初等变换法计算原理
若n阶方阵A可逆,即A行等价I,即存在初等矩阵P1,P2,...,Pk使得
,在此式子两端同时右乘A-1得:
比较两式可知:对A和I施行完全相同的若干初等行变换,在这些初等行变化把A变成单位矩阵的同时,这些初等行变换也将单位矩阵化为A-1。
如果矩阵A和B互逆,则AB=BA=I。由条件AB=BA以及矩阵乘法的定义可知,矩阵A和B都是方阵。再由条件AB=I以及定理“两个矩阵的乘积的行列式等于这两个矩阵的行列式的乘积”可知,这两个矩阵的行列式都不为0。也就是说,这两个矩阵的秩等于它们的级数(或称为阶,也就是说,A与B都是方阵,且rank(A) = rank(B) = n)。
换句话说,这两个矩阵可以只经由初等行变换,或者只经由初等列变换,变为单位矩阵[2] 。
伴随矩阵法
如果矩阵可逆,则
注意:
中元素的排列特点是的第k列元素是A的第k行元素的代数余子式。
要求得
即为求解的余因子矩阵的转置矩阵。
A的伴随矩阵为,其中Aij=(-1)i+jMij称为aij的代数余子式。
参考资料:百度百科-逆矩阵
zenghuo721
逆矩阵的求法:
1、利用定义求逆矩阵
设A、B都是n阶方阵, 如果存在n阶方阵B 使得AB=BA=E, 则称A为可逆矩阵, 而称B为A的逆矩阵。
2、运用初等行变换法
将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵B=(A,I])对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。
3、增广矩阵法
如果要求逆的矩阵是A,则对增广矩阵(A E)进行初等行变换,E是单位矩阵,将A化到E,此时此矩阵的逆就是原来E的位置上的那个矩阵,原理是 A逆乘以(A E)= (E A逆)初等行变换就是在矩阵的左边乘以A的逆矩阵得到的。
4、待定系数法
待定系数法顾名思义就是对未知数进行求解。用一个新的包含未定因子的多项式来表达多项式,从而获得一个恒等式。接着,利用恒等式的特性,推导出一类系数必须满足的方程或方程,再由方程组或方程组得到待确定的系数,或确定各系数之间的对应关系,称为待定系数法。
解决步骤:1、将题目与页面边缘的距离调近,调节到一个比较合适的位置上,居中的处理不变。2、处理第二行剩余的题目了,光标放置在第一行末尾,按下Enter键进入第二
矩阵的秩一般有2种方式定义1. 用向量组的秩定义矩阵的秩 = 行向量组的秩 = 列向量组的秩2. 用非零子式定义矩阵的秩等于矩阵的最高阶非零子式的阶单纯计算矩阵
你可以去淘宝看看。
逆矩阵的三种方法及例题如下: 一、逆矩阵的三种方法如下: 1、待定系数法。 2、伴随矩阵求逆矩阵。 伴随矩阵是矩阵元素所对应的代数余子式,所构成的矩阵,转置后得
查重的,学校会统一对毕业论文进行查重,当学生将论文提交至学校工作人员处后,学校会使用统一的查重系统对毕业生论文进行检测,由于数量庞大,会在一周左右的查重时间后得