叮叮猫儿要飞
一、联系生活实际,引发问题——学现实的数学传统的数学观将数学看成一套已完成的严密的数学结论体系,而教师的任务又大都停留在忠实地教“数学(教科书)”,这就最终导致数学严重脱离实际,脱离学生生活。建构主义数学观认为,数学是一个活的、动态的、开放的数学活动。教师的主要工作是为学生的学习活动提供一个合适的环境,促进学生投入到教学活动中去,促进学生主动地建构知识。以此为出发点,则要求我们在设计课程内容时,要加强数学与学生生活和社会现实的联系,将数学与学生熟悉或感兴趣的问题有机结合起来,让学生真切感受到他们所学的数学是与当代社会生活密切相关的。例如,在数学人教版第十一册数学“求比一个数多(少)百分之几”的应用题时,笔者以备受学生关注的“世界杯”足球赛为题材组织教学:在多媒体播放巴西球星射门时激动人心的录像片断后,我及时抽取了近4届“世界杯赛”每届进球数这组信息制成统计表(见下表)在多媒体中出示供学生观察。在此基础上,启发学生提出用百分数表示表中两者关系的问题,现实的背景加上学生积极、灵活的思维,学生一下子提出了许多百分数问题。比较、分类后,抽取其中的“1998年进球比2002年多百分之几,2002年进球比1998年少百分之几”一组问题,即构成了本课要研究的重点。至此,学生经历了一个从现实背景中引发问题的过程,而真切地体验到数学与日常生活的密切联系,感受到数学的趣味和作用。年份2002199819941990进球(个)161 171141115 生活是数学的源泉,紧密联系生活的“源头性”的数学问题既能让学生感受到数学与生活的密切联系,更能激发学生强烈的探究兴趣。而要做到这一点,关键是教师首先自身要关注社会,关注学生生活,这样才能提出、提供生活中的现象和问题,并引导学生去观察、解释、探究。二、利用生活经验,主动建构——学有意义的数学构建智慧的重要基础,是人们已有的生活、学习经验。为此,建构主义教学论把“通过自己的经验主动建构”看成是其“灵魂”。还有学者认为。对小学生来说,小学数学知识并不是“新知识”,在一定程度上是一种“旧知识”,在他们的生活中已经有许多数学知识的体验,学校数学学习是他们生活中有关数学现象经验的总结与升华,每一个学生都从他们的现实数学世界出发与教材内容发生交互作用,构建自己的数学知识。鉴于学生并不是一张“白纸”,教学时,我们应充分利用其已有的学习、生活经验促使其主动建构。例如,教学“一个数加上或减去接近整百、整千数的速算”时,我充分利用学生生活中已有的购物付款时“付整找零”的经验,设计了这样一道生活情境题:“六·一”节,小明的妈妈带了136元钱去新华书店买了99元一套精装本的《上下五千年》,作为送给小明的节日礼物,妈妈可以怎样付钱,还剩多少元?讨论该题时,学生想出了很多办法,而首选的方法便是“先付100元,再用36元加上找回的1元钱”,而这恰恰就是“凑整简算”的思想,原先不易被同学们所理解的“思想”由于其生活经验的支撑得以主动建构。又如,“年、月、日”的教学,教学之前,学生在生活中已积累了年、月、日的许多“经验”,以此为起点,教学时,我让学生以小组为单位,先个人观察自己手中不同年份的年历卡,然后组内交流,自己发现问题,待组际汇报时,一年有12个月,月又分为31天的大月和30天的小月以及二月的天数等知识都已被同学们所理解和掌握,在此基础上我又出示了1990年至2000年来2月份的天数让学生作再次的研究和探索,四年一闰,以及判断平、闰年的方法又被同学们所发现。学习是经验的组织和重新解释的过程,而利用学生先前生活经验的学习则显得更积极、更主动,也更富有意义。三、应用生活现实,体现价值——学有用的数学荷兰数学家弗赖登塔尔在他的《作为教育任务的数学》中阐明:数学来源于现实,也必须扎根于现实,并且应用于现实。数学学习的最终目的还是看学生能否运用所学的知识去解决问题,尤其是一些简单的实际问题。所以,我们应及时提供把课堂上所学知识应用到实践中去的机会,让学生在应用中更深刻地理解和掌握数学知识,在应用中更深刻地感受数学的魅力,并通过应用促使学生更主动地观察生活中的数学,在学习和生活中更主动地运用数学。小学数学中,数学应用于现实的例子很多,如学习了《长方体的表面积》后,学生计算粉刷自己所在教室的总面积;学习《圆》《圆锥》后,引导学生测量、计算大树的直径与横截面的面积、沙堆、稻谷堆的体积和重量;学习《百分数的意义》后,引导学生收集日常生活和社会生活中的百分数材料,并通过数据对比、分析,了解社会的变化和进步;学习《比和比例》后,让学生测量、绘制学校平面图、家庭所在居委的示意图等等。这些活动大多可以在数学实践活动课上进行。需要提及的是,平时的数学课能否体现,又该怎样体现数学的应用价值呢?笔者认为,对课本例(习)题进行“生活化”处理,不失为既“经济”又“实用”的好办法,以人教版第十一册数学“工程问题”为例,在例题的教学并进行了适量的巩固练习后,我设计并出示了这样一道题:李军星期天进城买文具,所带的钱如果全部买笔记本,可以买10本,如果全部买铅笔,可以买15支,现在他先买了4本笔记本,剩下的钱还能买多少支铅笔?通过对该题的解答,既培养了学生灵活运用知识解决问题的能力,又使学生体验到用数学知识解决生活问题带来的愉悦和成功。
就叫小胖
经验一: 1、不妨给自己定一些时间限制。连续长时间的学习很容易使自己产生厌烦情绪,这时可以把功课分成若干个部分,把每一部分限定时间,这样不仅有助于提高效率,还不会产生疲劳感。如果可能的话,逐步缩短所用的时间,不久你就会发现,以前一小时都完不成的作业,现在四十分钟就完成了。 2、不要在学习的同时干其他事或想其他事。一心不能二用的道理谁都明白,可还是有许多同学在边学习边听音乐。或许你会说听音乐是放松神经的好办法,那么你尽可以专心的学习一小时后全身放松地听一刻钟音乐,这样比带着耳机做功课的效果好多了。 3、不要整个晚上都复习同一门功课。这样做非但容易疲劳,而且效果也很差。每晚安排复习两三门功课,情况要好多了。 除了十分重要的内容以外,课堂上不必记很详细的笔记。如果课堂上忙于记笔记,听课的效率一定不高,况且你也不能保证课后一定会去看笔记。课堂上所做的主要工作应当是把老师的讲课消化吸收,适当做一些简要的笔记即可。 经验二: 学习效率这东西,我也曾和很多人谈起过。本来,有付出就应该有回报,而且,付出的多就应该回报很多,这是天经地义的事。但实际的情况却并非如此,这里边就存在一个效率的问题。效率指什么呢?好比学一样东西,有人练十次就会了,而有人则需练一百次,这其中就存在一个效率的问题。 如何提高学习效率呢?我认为最重要的一条就是劳逸结合。学习效率的提高最需要的是清醒敏捷的头脑,所以适当的休息,娱乐不仅仅是有好处的,更是必要的,是提高各项学习效率的基础。那么上课时的听课效率如何提高呢?课前要有一定的预习,这是必要的,不过我的预习比较粗略,无非是走马观花地看一下课本,这样课本上讲的内容、重点大致在心里有个谱了,听起课来就比较有针对性。预习时,我们不必搞得太细,如果过细一是浪费时间,二是上课时未免会有些松懈,有时反而忽略了最有用的东西。上课时认真听课当然是必须的,但就象我以前一个老师讲的,任何人也无法集中精力一节课,就是说,连续四十多分钟集中精神不走神,是不太可能的,所以上课期间也有一个时间分配的问题,老师讲有些很熟悉的东西时,可以适当地放松一下。另外,记笔记有时也会妨碍课堂听课效率,有时一节课就忙着抄笔记了,这样做,有时会忽略一些很重要的东西,但这并不等于说可以不抄笔记,不抄笔记是不行的,人人都会遗忘,有了笔记,复习时才有基础,有时老师讲得很多,在黑板上记得也很多,但并不需要全记,书上有的东西当然不要记,要记一些书上没有的定理定律,典型例题与典型解法,这些才是真正有价值去记的东西。否则见啥记啥,势必影响课上听课的效率,得不偿失。 作题的效率如何提高呢?最重要的是选“好题”,千万不能见题就作,不分青红皂白,那样的话往往会事倍功半。题都是围绕着知识点进行的,而且很多题是相当类似的,首先选择想要得到强化的知识点,然后围绕这个知识点来选择题目,题并不需要多,类似的题只要一个就足够,选好题后就可以认真地去做了。作题效率的提高,很大程度上还取决于作题之后的过程,对于做错的题,应当认真思考错误的原因,是知识点掌握不清还是因为马虎大意,分析过之后再做一遍以加深印象,这样作题效率就会高得多。 评:夏宇同学对于听课和做题的建议,实际上反应了提高学习效率的一个重要方法--“把劲儿使在刀刃上”,即合理分配时间,听课、记笔记应抓住重点,做习题应抓住典型,这就是学习中的"事半功倍"。 经验三: 学习效率是决定学习成绩的重要因素,我们如何提高自己学习效率呢? 一、要自信。很多的科学研究都证明,人的潜力是很大的,但大多数人并没有有效地开发这种潜力,这其中,人的自信力是很重要的一个方面。无论何时何地,你做任何事情,有了这种自信力,你就有了一种必胜的信念,而且能使你很快就摆脱失败的阴影。相反,一个人如果失掉了自信,那他就会一事无成,而且很容易陷入永远的自卑之中。 二、学会用心。学习的过程,应当是用脑思考的过程,无论是用眼睛看,用口读,或者用手抄写,都是作为辅助用脑的手段,真正的关键还在于用脑子去想。举一个很浅显的例子,比如说记单词,如果你只是随意的浏览或漫无目的地抄写,也许要很多遍才能记住,而且不容易记牢,而如果你能充分发挥自己的想象力,运用联想的方法去记忆,往往可以记得很快,而且不容易遗忘。现在很多书上介绍的英语单词快速记忆的方法,也都是强调用脑筋联想的作用。可见,如果能做到集中精力,发挥脑的潜力,一定可以大大提高学习的效果。 三、人的情绪。如果某一天,自己的精神饱满而且情绪高涨,那样在学习一样东西时就会感到很轻松,学的也很快,其实这正是我们的学习效率高的时候。因此,保持自我情绪的良好是十分重要的。我们在日常生活中,应当有较为开朗的心境,不要过多地去想那些不顺心的事,而且我们要以一种热情向上的乐观生活态度去对待周围的人和事,因为这样无论对别人还是对自己都是很有好处的。这样,我们就能在自己的周围营造一个十分轻松的氛围,学习起来也就感到格外的有精神。 [编辑本段]学习要讲究效率,提高效率 一、每天保证8小时睡眠 晚上不要熬夜,定时就寝。中午坚持午睡。充足的睡眠、饱满的精神是提高效率的基本要求。 二、学习时要全神贯注 玩的时候痛快玩,学的时候认真学。一天到晚伏案苦读,不是良策。学习到一定程度就得休息、补充能量。学习之余,一定要注意休息。但学习时,一定要全身心地投入,手脑并用。我学习的时候常有陶渊明的"虽处闹市,而无车马喧嚣"的境界,只有我的手和脑与课本交流。 三、坚持体育锻炼 身体是"学习"的本钱。没有一个好的身体,再大的能耐也无法发挥。因而,再繁忙的学习,也不可忽视放松锻炼。有的同学为了学习而忽视锻炼,身体越来越弱,学习越来越感到力不从心。这样怎么能提高学习效率呢? 四、学习要主动 只有积极主动地学习,才能感受到其中的乐趣,才能对学习越发有兴趣。有了兴趣,效率就会在不知不觉中得到提高。有的同学基础不好,学习过程中老是有不懂的问题,又羞于向人请教,结果是郁郁寡欢,心不在焉,从何谈起提高学习效率。这时,唯一的方法是,向人请教,不懂的地方一定要弄懂,一点一滴地积累,才能进步。如此,才能逐步地提高效率。 五、保持愉快的心情,和同学融洽相处 每天有个好心情,做事干净利落,学习积极投入,效率自然高。另一方面,把个人和集体结合起来,和同学保持互助关系,团结进取,也能提高学习效率。 六、注意整理 学习过程中,把各科课本、作业和资料有规律地放在一起。待用时,一看便知在哪。而有的学生查阅某本书时,东找西翻,不见踪影。时间就在忙碌而焦急的寻找中逝去。我认为,没有条理的学生不会学得很好。
1144177586丫头
美国教育学家布卢姆在其“目标分类学”和“掌握学习策略”的理论中指出,以目标为核心,运用评价手段,构成教学过程三要素。教学目标是教学活动的指南,教学评价的依据。布卢姆认为学生学业成绩的差异与教学方法及教学内容呈现顺序有关。所以教师如何合理安排内容,制订符合学生认知规律的实施程序,便尤为重要。同时,思维科学表明,人类思维是一个整体性的活动过程,又是一个系统结构,而且是一种有层次的系统结构。不同的思维表现为不同的思维层次,思维“是由模糊→清晰→高一层次模糊→高一层次清晰…螺旋上升的”。故教师在设计教学过程时,既要适合学生现有的思维水平,又要考虑为下一个思维阶段的发展奠定基础。以下是关于二面角的平面角的目标层次(思维)教学,望与同行共勉。目标层次教学过程层次1知识目标:理解二面角的平面角的概念,寻找“三要素”,模拟“三步曲”。能力目标:通过二面角的平面角的空间模型,培养空间想象能力。情感目标:建立学习数学的自信心,培养学习数学的兴趣。教学难点:由于取点P的任意性引起作图的不确定,容易造成学生思维不稳定性。就这点而言,需要教师通过具体模型,进行比较、辨别,使解题与作图过程简洁,自然。展示过程:(1)展示空间模型,强化“三要素”(二面α,β,一棱l)。(图1)(图2)(2)依托空间模型,模拟“三步曲”(二垂直、一连接)。第1步:在面α内任取一点P,作P,B⊥面β,点B为垂足。第2步:在面β内作BA⊥l,交l于点A。第3步:连接A、P,此时∠PAB为二面角α-l-β的平面角(其中图2二面角的平面角为∠PBA的补角)。举例测评:例1已知三棱锥V-ABC(如图3)。作出:①二面角V-AB-C的平面角;②二面角B-AV-C的平面角;③二面角A-VB-C的平面角。(图3)(图4)反馈评注:(1)显然对数学的恐惧心理,使得部分学生在解题1之前整整捉摸了5、6分钟,让他们为难的是不知点V的射影应落在何处。在再三鼓励与督促下,终于作图如4。老师及时强化三要素,定式三步曲,目的是使其在思维上造成一种定式、定图,学会模仿,形成一个具体的感性认识和一个具体思维框架。此后再找二面角V-CB-A的平面角,显然就容易多了。(2)面对问2,图形的经过翻转,部分学生又显得措手无策了。这暴露了他们空间想象能力的缺乏,平时忽视对概念的本质的正确认识和深层次理解,同时思维也缺乏广阔性与灵活性。如何让他们有空间立体的概念?我用铅丝制作了一个立体模型,在注重情感交流的同时,更注重了让他们有一个“观察,模拟,表达,总结”的过程,去伪存真,把握问题的实质。在完成问题2之后,问题3的解决似乎并不是很艰难的。层次2让学生原有认知结构中相应的旧知识与所学新知识产生同化和顺应,促进认知结构的不断更新。要从学生已掌握的知识水平基础上创设最近发展区,并促进学生知识的提高和水平的发展。知识目标:掌握二面角平面角的作法(巧练“三元素”,定式“三步曲”)。能力目标:培养空间想象能力与逻辑推理能力,尤其是批判性思维能力。情感目标:增强学生学习的自信心,体验成功的喜悦。教学难点:对于三步曲中的第一步曲:过点作面的垂线,分成三个层次:(1)直接找(从已有的边上找,如例2);(2)面内作(通常作法,如例3);(3)空间作(转化为面作,如例2)。举例展示:例2在正四棱柱ABCD-A1B1C1D1中,底面边长为a,侧棱长为2a,如图5。求二面角A-B1C-B的平面角。分析思考过点A作还是过点B作垂线。(1)发现AB⊥面BCB1:(找到垂线)(2)过点B作棱B1C的垂线交B1C于点E;(3)连点AE。即∠AEB就是二面角A-B1C-B的平面角。(图5)(图6)例3如图6,直面三棱柱ABC-A1B1C1,底面为直角三角形,∠ABC=90°,棱长AA1=6,AB=4,BC=3,求面A1BC1与面ACC1A1的二面角。分析过点B作垂线。(1)在面ABC内过点B作BE⊥AC,交AC于点E;(2)过E作EF⊥A1C1,交A1C1于F;(3)连接BF,即得∠EFB为所求二面角B-A1C1-A的平面角。例2中如过点B作面ACB1的垂线就面临着在空间过点作面垂线问题了,应选作一个垂面,在面内作垂线。分析:过点B作BE⊥B1C,连AE,先证B1C⊥面ABE,易得面ABE⊥AB1C,找到垂面,在△ABE中作BF⊥AE得BF⊥面AB1C,易证∠AEB就是二面角A-B1C-B的平面角。反馈评注:(1)对于图5求二面角A-B1C-B的平面角来讲,过点B显然过于繁杂,故仅作为一种解题的思路来介绍。但事实上,经过例2过点A还是过点B的对比练习,使学生对于取点做垂线问题有了更深的理解。让学生自己意识到在平时解题过程中,优化思维、优化解法的重要性。培养学生认真审题的习惯,会利用题中的已知、求证关系,进行分析、比较。在平时教学过程中要求学生不要盲目做题,强调思维过程的教学,加强数学思想方法的培养。这样才有利于提高学生进行正确分析比较,分清事物本质,使学生能够合理选择思维的起点,增强思维的灵活性。(2)在层次2的教学中更注重数学交流的过程,让学生袒露自己的想法与思路,用自己的语言阐述数学思维的过程。不仅有利于学生增强学习数学的兴趣,更有利于学生找到问题的所在,发现不良的学习方法和思维角度。同时数学交流有利于培养学生的责任感,与人分享数学学习的经验,诚信合作,互相帮助。层次3知识目标:熟练掌握二面角平面角的作法,会灵活的运用。能力目标:提高分析问题能力,培养辨证思维能力及思维品质,激发思维的创造性。情感目标:帮助学生养成多角度,多方向进行思考的习惯。教学难点:对于三步曲中的第二步:过垂足作棱的垂线,分成三个层次:(1)垂足在线段上(如例3);(2)垂足在线段延长线上(如例4);(3)无棱(添辅助线(如例5)。举例展示:例4如图7,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,侧棱PB=15,PD=3。(1)求证:BD⊥面PAD;(2)若PD与底面ABCD成60°的角,求二面角P-BC-A的大小。分析(1)略。(2)如图7,由BD⊥面PAD,得面PAD⊥面ABCD,过点P在面PAD中作PE⊥AD,交AD于E,可得PE⊥面ABCD,过E在面ABCD内作BC的垂线交CB延长线于F。易证∠PFE为二面角P-BC-A的平面角。(图7)(图8)例5如图8,正三棱柱ABC-A1B1C1,其中E为CC1的中点,2BD=BC=EC,且△ABC的面积为a2。求面ADE与底面ABC的二面角的平面角。分析由于EC⊥面ABC,难点在于二面的交线(即棱)。延长ED、CB交于点F,连AF,可知AF为二面的棱。在△AFC中,可证∠FAC=90°,易得∠EAC就是二面角的平面角。反馈评注:(1)层次3的例题设计是在学生已熟练掌握层次2的基础上,且遵循知识的认识规律,恪守循序渐进的原则,充分体现层次教学,同时让学生参与揭示知识发生的全过程,让学生参与例题分析的全过程,让学生参与数学思想方法总结的全过程,体现学生的主体性。(目标层次设计如下表)目标 层次1 层次2 层次3 知识目标 理解概念,模拟过程 掌握方法,巧练定式 熟练掌握,灵活运用 能力目标 空间想象能力 判断性思维能力 创造性思维能力 情感目标 建立自信心 体验成功的喜悦 数学精神与品质 数学交流 鼓励、尝试 交流、协作 自主探索(2)同时层次(思维)教学是将知识按层次进行教学,实质就是将知识条理化,思维层次化。所以每一个学生必须将知识予以归纳条理化,来调整自己的认知结构。(知识条理如下表)三步曲垂直(点到面)直接找面内作空间化(转化)垂直(点到棱)在线段上在线段的延长线上添辅助线(无棱)连接点到点(垂足)(3)对于例5,在解题过程中如取DB为垂线,势必要过点B作BH⊥AF,交AF于点H,连HD,∠DHB也是二面角的平面角。当然也可以用射影定理cosθ=S△ABC/S△ADE来求。但在解题过程中反映出学生思路狭窄,缺乏良好的思维品质,对学生批判性思维能力培养不够。出现这种情况的主要原因是教师满堂灌,搞一言堂,没有时间留给学生思考质疑,搞题海战术,没有真正做到问题教学,思维过程教学,没有发挥一题多解的作用。素质教育势在必行,如何培养学生思维能力将是我们一线教师所孜孜以求的。
数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社
1.营造氛围,激发兴趣。 2.创设情境,提高效率 4. 客观次序3.重视引导,合理组织 5、交流汇报,深入归纳
作业练习是课堂教学的延伸和继续,是课堂内容的提升和综合,是学科知识的应用和迁移。合理的语文作业有利于学生更好地掌握知识和技能,进而使学生在思维、情感和价值观等方
一、联系生活实际,引发问题——学现实的数学传统的数学观将数学看成一套已完成的严密的数学结论体系,而教师的任务又大都停留在忠实地教“数学(教科书)”,这就最终导致
数学是思维的体操,数学知识抽象、逻辑性强,不容易学好,尤其是高中数学知识,学生很难学好。研究性学习是新课程倡导的教学模式,目的是让学生作为学习的主体,主动去研究