开心准新娘
URL: 论文pdf Google出品。亚毫秒级的移动端人脸检测算法。移动端可达200~1000+FPS速度。主要以下改进: 在深度可分离卷积中,计算量主要为point-wise部分,增加depth-wise部分卷积核大小并不会明显增加成本。因此本文在depth-wise部分采用了5x5的卷积核,已获得更大的感受野,故此可以降低在层数上的需求。 此外,启发于mobilenetV2,本文设计了一个先升后降的double BlazeBlock。BlazeBlock适用于浅层,double BlazeBlock适用于深层。 16x16的anchor是一样的,但本文将8x8,4x4和2x2的2个anchor替换到8x8的6个anchor。此外强制限制人脸的长宽为1:1。 由于最后一层feature map较大(相对于ssd),导致预测结果会较多,在连续帧预测过程中,nms会变导致人脸框变得更加抖动。本文在原始边界框的回归参数估计变为其与重叠概率的加权平均。这基本没有带来预测时间上的消耗,但在提升了10%的性能。 效果好速度快的方法想不想要?
哈哈的静静哈
姓名:张钰 学号:21011210154 学院:通信工程学院 【嵌牛导读】Frequency-aware Discriminative Feature Learning Supervised by Single-Center Loss for Face Forgery Detection论文阅读笔记 【嵌牛鼻子】Deepfake人脸检测方法,基于单中心损失监督的频率感知鉴别特征学习框架FDFL,将度量学习和自适应频率特征学习应用于人脸伪造检测,实现SOTA性能 【嵌牛提问】本文对于伪造人脸检测的优势在哪里体现 【嵌牛正文】 转自:
提起人脸相似度在线测试,大家都知道,有人问ai与腾讯ai哪个准哪个好 比如人脸识别相似度?另外,还有人想问有没有可以测试两个人脸的相似度的软件?我是苹果手机!你
facial recognition technology
==你是本科还是硕士啊论文的话应该主要是算法的研究和改进吧……问题比如:你采用了哪种人脸识别算法你对这种算法的改进在哪里(你不只要说明改进在哪里可能还需要做一些
URL: 论文pdf Google出品。亚毫秒级的移动端人脸检测算法。移动端可达200~1000+FPS速度。主要以下改进: 在深度可分离卷积中
随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读! 图像识别技术研究综述 摘要:随着图像处理技术的迅速发展,图像