Lolita1015
纳米材料3D结构石墨烯和量子点的光电探测器芯片
多年来,仅一或几个原子厚的二维纳米材料就在材料科学界风靡一时。以石墨烯为例。这种单层的碳原子产生的材料比钢强数百倍,具有高导电性和超柔韧性。
加州大学圣地亚哥分校雅各布斯工程学院的纳米工程教授Oscar Vazquez-Mena正在将这些类型的材料推向新的高度。他的研究专注于将不同的纳米级材料以3D形式集成在一起,以创建用于环境监测,能量收集和生物医学应用的全新设备。Vazquez-Mena最近因国家研究基金会的一个此类项目而获得了为期五年,50万美元的职业奖。
该项目涉及将石墨烯与被称为量子点的半导体纳米粒子相结合,以创建能够"看到"人眼不可见的各种不同波长的光(例如红外和紫外线)的设备。这些被称为多光谱光电探测器的设备可以使相机拍摄感染,有毒气体和有害辐射的照片。检查食品质量或污染;并监测空气和水的质量。他们还可以在夜间和有雾的时候帮助视力。
集成石墨烯和量子点的芯片。
Vazquez-Mena的方法将使这些设备超薄。他说:"由于我们正在使用纳米材料,因此原则上我们可以设计非常薄的光电探测器,其厚度约为1微米,可以很容易地集成到智能手机和其他移动设备中,以便在实验室外方便地部署。"
用超声波对大脑成像
在另一个项目中,巴斯克斯-梅纳(Vazquez-Mena)正在堆叠纳米结构以构建3D阵列,该阵列可以使超声波穿过头骨并对人脑进行非侵入式成像和刺激。这样的技术将对治疗脑部疾病和创伤很有用,而无需打开颅骨或将电线和植入物插入大脑。它还可以使医生迅速诊断出患者的脑部创伤,而不必执行昂贵的MRI扫描。
要使超声波穿过颅骨并进入大脑并非易事。人类的头颅骨相对较厚且密集,因此它可以反射或吸收超声波,然后才能将其送入大脑。
为了克服这个障碍,Vazquez-Mena正在设计一种特殊的材料,称为超材料,该材料由纳米结构组成,可以抵消头骨产生的反射,并从根本上重定向超声波穿过头骨。该超材料由氮化硅和微尺度声腔的纳米薄膜。两个组件以3D阵列的形式排列在一起,可使材料以常规材料无法完成的方式操纵声波。
Vazquez-Mena说:"这是基于纳米材料构建3D结构的另一个例子,该结构可实现令人兴奋的新特性。"
爬爬的蜜糖
成果简介
基于石墨烯的光电探测器由于其带宽大、占地面积小以及与硅基光子学平台的兼容性而在高速光通信中引起了极大的关注。大带宽硅基光相干接收器是具有先进调制格式的大容量光通信网络的关键元件。 本文,华中 科技 大学张新亮教授团队等研究人员在《Nat Commun》期刊 发表名“Ultrahigh-speed graphene-based optical coherent receiver”的论文, 研究通过实验证明一种基于90度光学混合和石墨烯上等离子体槽波导光电探测器的集成光学相干接收器,具有紧凑的占地面积和远超过67GHz的大带宽 。结合平衡检测,接收 90 Gbit/s 二进制相移键控信号并提高信噪比。此外,实现了在单极化载波上接收 200 Gbit/s 正交相移键控和 240 Gbit/s 16 正交调幅信号,附加功耗低于 14 fJ/bit。这种基于石墨烯的光相干接收器将有望在 400千兆以太网和800千兆以太网技术中应用,为未来高速相干光通信网络铺平另一条路线。
图文导读
图1:在PSW上使用石墨烯的 OCR。
图2:90度光学混合性能。
图3:石墨烯-PSW PD 的性能。
图4:平衡检测测试。
图5:相干检测的实验演示。
小结
综上所述,结果表明,我们提出的基于石墨烯的 OCR 对高级调制格式具有超高速和高质量的接收能力,这些格式对光的幅度和相位信息进行编码。 经过验证的基于石墨烯的器件为超紧凑和高性能 OCR 提供了一条不同的材料路线,在数据中心和下一代高速光互连中具有竞争力。
文献:
石墨烯(Graphene):是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。2004年,英国曼彻斯特大学物理学家安德
· 题名(Title,Topic)题名又称题目或标题。题名是以最恰当、最简明的词语反映论文中最重要的特定内容的逻辑组合。 论文题目是一篇论文给出的涉及论文范围
1、题目:题目应简洁、明确、有概括性,字数不宜超过20个字(不同院校可能要求不同)。本专科毕业论文一般无需单独的题目页,硕博士毕业论文一般需要单独的题目页,展示
石墨烯是一种由碳原子以 sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料.石墨烯是世上最薄也是最坚硬的纳米材料,它几乎是完全透明的,只
扭转双层石墨烯可视作两层石墨烯以一定的扭转角度堆叠而成,其表面会形成随扭转角度变化的摩尔周期势,其能带结构也受扭转角度的调制。例如,两层石墨烯的能带耦合会导致态