• 回答数

    7

  • 浏览数

    339

小胖爱旅游
首页 > 学术期刊 > 关于奥数年龄问题的研究小论文

7个回答 默认排序
  • 默认排序
  • 按时间排序

心晴joanny

已采纳

巧 分 苹 果 在四年级的奥数课上,有一个学习专题是“年龄问题”。课后老师出了一道思考题给我们,我苦思冥想了好久,都没有解出答案。我又仔细地研究了有关“年龄问题”和“逆推问题”的解题思路,终于茅塞顿开,有了答案。题目是这样的:三个兄弟分别收到了奶奶给他们寄来的苹果。每人收到的苹果个数是他们三年前的岁数。三弟是个聪明的孩子,他向两个哥哥提出了一个交换苹果的建议:他说:“我只要留一半苹果,还有一半送给你们对方;然后要二哥也留一半,把另一半让我和大哥平分;最后也要大哥留下一半,把另一半让我和二哥平分。”两个哥哥没有怀疑这建议有什么不妥当的地方,都同意三弟的要求。结果大家的苹果数都变成相等了,每人各分到8只苹果。问:三兄弟每个人的年龄是多少岁?我的解题思路是这样的,从最终的结果向前推断,即:最终的交换结果是每人得到了8个苹果,所以大哥在分出自己的苹果前是16只苹果,而二哥和三弟各有4只苹果。二哥在分出自己的苹果前有8只苹果,大哥有14只苹果,三弟有2只苹果。由此可知,三弟在分出苹果前有4只苹果,二哥有7只苹果,大哥有13只苹果。最后一定要注意题目中“每人收到的苹果个数是他们三年前的岁数”这句话,再分别加上3,所以现在三弟是7岁,二哥是10岁,大哥是16岁。怎么样,数学中的趣味还是很多的吧!

337 评论

润风水尚

连乘的简便运算

今天,我做完作业,打开妈妈让我做的一册练习本。一翻开要做的那一页,就看见许多简便运算题。看到一题是这么写的:25×125×32。我看了看,回忆起老师讲过的方法:25和125无论哪一个乘32都不好算,而且把这两个数拆开来和32去乘也不是很好算,这样做肯定不对的,那只能把32拆开来,拆成什么呢?我想:老师教过,25×4=100,125×8=1000,这样算起来最好算,而且32也是由4乘8得过来的,所以只要把32拆开来,变成25×125×(4×8),然后再把小括号去掉,把数字换一下位置,就成了(25×4)×(125×8),这样就好算多了,25×4=100,125×8=1000,100×1000=100000,这应该就是这题的简便方法了。看来学习数学必须深入思考啊。

巧用高斯定律

在这个星期天,我过得很快乐,因为我学会了用高斯定律。

这天,妈妈看我整天在看电视,就出了一道题给我:0.1+0.4+0.7+„„+3.7+4,还告诉我,不能用计算器,而且要用简便方法。这不是刁难人吗,我发起了牢骚。妈妈提醒到,你可以参考数学书32页的高斯定律。我一看,从1加到100,真难呢,不过我发现了规律:1、头加尾的和,乘以所有个数的一半,最后是正确答案,就是:(1+100) ×(100÷2)。2、头加倒数第二个数正好等于最后一个数时,可以把它们加起来乘所有个数的一半,最后加上中间的数,也是正确答案,就是:(1+99) ×50+50。依照这些结论,我把妈妈出的那道题的头和尾,即0.1和0.4加起来,再乘以个数的一半14÷2,最后答案是28.7。

那天,妈妈奖励我去看书。

装灯问题

那天,徐老师叫我们做数学书的122页,我翻开来先看了看,目光停留在第四题上。第四题的题目是这样的:圆形滑冰场的一周全长是150米。如果沿着这一圈每隔15米安装一盏灯,一共需装几盏灯?我想:圆形应该怎样求出段数呢?因为徐老师在教这些内容,特地给了我们一句口诀,叫做:封闭路线求段数。只要求出段数,就可以求出东西的数量了。我在草稿纸上画了一个圆形,先求出了大概可以装10盏灯,然后再在圆形的边上画了10个小圆圈,一数,正好有10个间隔。我这才知道,原来圆形中盏数和间隔是一样的。最后,我就列了一步算式:150÷15=10(盏)。

后来,徐老师在上课的时候讲到:“在做这种圆形路线的题目时,可以在一盏灯的旁边剪一刀,再把它拉直,就是一条直线了。因为是末尾端没装灯,所以每一盏灯对应的就是后面一段路,因此盏数和间隔才会相同。”我恍然大悟。

135 评论

比尼爱汤姆

那是星期六的一天下午,我嚷着要吃西瓜,妈妈爽快地答应了.于是我和奶奶就去买西瓜.走进菜市场,我一眼就瞅住了一个西瓜堆儿.这里的西瓜是红瓤的,又大又圆,看着就让人垂涎三尺.奶奶说:“给我挑个熟的!”那个小贩在西瓜上敲了敲,说:“包熟!”于是放在电子秤上说:“一斤十块半,3.6斤,17元8角.”奶奶说:“什么?17元8角,这么贵?不买了不买了!”小贩急了,说:“别,别,别,你去其它地方买就不贵吗?我这儿可是全市最便宜的了,我这儿一斤十块半,人家一斤半十五块五了!”奶奶数学本来就不好,被小贩这么一说便糊涂了,我当时也在想:一斤十块半,也就是1斤10.5元,单价是:10.5÷1=10.5元,而一斤半十五块五,也就是1.5斤15.5元,它的单价是:15.5÷1.5,我没细算,想想可能应该比10.5多,但是却犯了个致命的错误.算错就会犯错,我向奶奶使了个眼色,示意让她买,于是奶奶说:“价格能少一点吗?”“不能、不能,本能就比人家便宜,再少,我就亏大了,干脆别卖了.”看着小贩的“真诚”的态度,奶奶于是付了钱,拎着装好西瓜的袋子就走了.回到家,我把这件事告诉给妈妈.妈妈听了之后又问了一遍价钱.我说:“小贩说他这儿一斤十块半,别人那一斤半十五块五.”妈妈哭笑不得,问:“你怎么知道别人那儿贵呢?你再好好的算算”.“因为这儿是10.5÷1=10.5,而别人那儿是15.5÷1.5,反正他这儿便宜”我理直气壮.妈妈说:“你呀,太马虎了,15.5÷1.5=10.333……,谁便宜呀!”通过这件事,我知道了数学在我们日常生活中运用十分广泛,学好数学十分重要,另外还要记住:“不要利用数学人,也不能不懂数学而被人!

106 评论

maggie13050

今天,我做完作业,打开妈妈让我做的一册练习本。一翻开要做的那一页,就看见许多简便运算题。看到一题是这么写的:25×125×32。我看了看,回忆起老师讲过的方法:25和125无论哪一个乘32都不好算,而且把这两个数拆开来和32去乘也不是很好算,这样做肯定不对的,那只能把32拆开来,拆成什么呢?我想:老师教过,25×4=100,125×8=1000,这样算起来最好算,而且32也是由4乘8得过来的,所以只要把32拆开来,变成25×125×(4×8),然后再把小括号去掉,把数字换一下位置,就成了(25×4)×(125×8),这样就好算多了,25×4=100,125×8=1000,100×1000=100000,这应该就是这题的简便方法了。看来学习数学必须深入思考啊。

95 评论

999966开心

有一天,我跟妈妈去逛商场。妈妈进了超市买东西,让我站在付钱的地方等她。我没什么事,就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服。 在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!

85 评论

嘟嘟喵呜

数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具,而生活也是缺不了数学的。 现实生活中,我们会看到用正多边形拼成的各种图案,例如,平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题。 在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢? 例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。 再看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。 …… 由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。 瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢? 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 正如华罗庚先生所说的:近100年来,数学发展突飞猛进,我们可以毫不夸张地在用:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,用“无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题. 可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域 赞同

112 评论

土豆炒洋芋G

四年级奥数年龄问题是个很有趣的数学题,本站用户整理了四年级数学小论文:年龄问题,来看看作者是怎么算出来的吧。年龄问题今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的3倍?我百思不得其解。后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。解是:26-2=24(岁)24÷(3-1)=12(岁)12-2=10(年)答:10年后爸爸的年龄是小华的3倍。妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。(26+10)÷(2+10)=36÷12=3耶!我答对了。看来做题先得画图,画了图就能就一目了然了。

144 评论

相关问答

  • 癌症与年龄的关系研究论文

    随着年龄的增长,人的抵抗力以及身体功能在不断衰退,身体器官也在慢慢趋向衰竭,逐渐出现各种疾病或者不适症状。通过研究发现,近几年来,患上癌症的人数在急剧升高,治愈

    zhangchanli 5人参与回答 2023-12-11
  • 老龄化问题研究研究生论文

    人口老龄化 小论文 1、摘要中应排除本学科领域已成为常识的内容;切忌把应在引言中出现的内容写入摘要;一般也不要对论文内容作诠释和评论(尤其是自我评价)。

    sherry美享家 2人参与回答 2023-12-07
  • 关于青少年近视眼问题研究小论文

    那个写论文一般是要钱的你可以去各大教育网去搜搜

    啵嘶小王子 3人参与回答 2023-12-11
  • 关于刑事责任年龄论文答辩的问题

    目前我国《刑法》是这样规定的 不负刑事责任 根据我国《刑法》的规定,不满十四周岁是无责任能力年龄阶段。因此,不满十四周岁的人不管实施何种法益侵害行为,都不负刑事

    大坏蛋make 3人参与回答 2023-12-08
  • 关于奥数年龄问题的研究小论文

    巧 分 苹 果 在四年级的奥数课上,有一个学习专题是“年龄问题”。课后老师出了一道思考题给我们,我苦思冥想了好久,都没有解出答案。我又仔细地研究了有关“年龄

    小胖爱旅游 7人参与回答 2023-12-11