• 回答数

    3

  • 浏览数

    152

niuzhirong
首页 > 学术期刊 > 高并发解决方案毕业论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

你真美呀?

已采纳

2017年1月28日,正月初一,微信公布了用户在除夕当天收发微信红包的数量——142亿个,而其收发峰值也已达到76万每秒。百亿级别的红包,如何保障并发性能与资金安全?这给微信带来了超级挑战。面对挑战,微信红包在分析了业界“秒杀”系统解决方案的基础上,采用了 SET化、请求排队串行化、双维度分库表 等设计,形成了独特的高并发、资金安全系统解决方案。实践证明,该方案表现稳定,且实现了除夕夜系统零故障运行。概要: 一、业务 特点 :海量的并发要求;严格的安全级别 二、技术 难点 :并发请求抢锁;事务级操作量级大;事务性要求严格 三、解决高并发问题 通常 使用的 方案 : 1.使用内存操作替代实时的DB事务操作(优点:内存操作替代磁盘操作,提高了并发性能。) 2使用乐观锁替代悲观锁。应用于微信红包系统,则会存在下面三个问题:滚并返回失败;并发大失败,小成功。DB压力大。 四、微信 红包 系统的高并发解决 方案 : 1.系统垂直SET化,分而治之。 2.逻辑Server层将请求排队,解决DB并发问题。 3.双维度库表设计,保障系统性能稳定 类似“秒杀”活动,群里发一个红包=“秒杀”商品上架;抢红包的动作=“秒杀”的查询库存;拆红包=“秒杀” 同一时间有10万个群里的用户同时在发红包,那就相当于同一时间有10万个“秒杀”活动发布出去。10万个微信群里的用户同时抢红包,将产生海量的并发请求。 微信红包是微信支付的一个商户,提供资金流转服务。 用户发红包=购买一笔“钱”(在微信红包这个商户上),并且收货地址是微信群。当用户支付成功后,红包“发货”到微信群里,群里的用户拆开红包后,微信红包提供了将“钱”转入折红包用户微信零钱的服务。 资金交易业务比普通商品“秒杀”活动有更高的安全级别要求。普通的商品“秒杀”商品由商户提供,库存是商户预设的,“秒杀”时可以允许存在“超卖”、“少卖”的情况。但是对于微信红包,100元不可以被拆出101元;领取99元时,剩下的1元在24小时过期后要精确地退还给发红包用户,不能多也不能少。 在介绍微信红包系统的技术难点之前,先介绍下简单的、典型的商品“秒杀”系统的架构设计,如下图所示。该系统由接入层、逻辑服务层、存储层与缓存构成。Proxy处理请求接入,Server承载主要的业务逻辑,Cache用于缓存库存数量、DB则用于数据持久化。 一个“秒杀”活动,对应DB中的一条库存记录。当用户进行商品“秒杀”时,系统的主要逻辑在于DB中库存的操作上。一般来说,对DB的操作流程有以下三步: a. 锁库存 b. 插入“秒杀”记录 c. 更新库存 a.锁库存是为了 避免 并发请求时出现“ 超卖 ”情况。同时要求这 三步操作 需要在 一个事务 中完成(难点:并发请求抢锁)。 第一个事务完成提交之前这个锁一直被第一个请求占用,后面的所有请求需要 排队等待 。同时参与“秒杀”的用户越多,并发进DB的请求越多,请求 排队越严重 。 红包系统的设计上, 除了并发请求抢锁之外,还有以下两个突出难点 : 首先,事务级操作量级大 。上文介绍微信红包业务特点时提到,普遍情况下同时会有数以万计的微信群在发红包。这个业务特点映射到微信红包系统设计上,就是有数以万计的“并发请求抢锁”同时在进行。这使 得DB的压力 比普通单个商品“库存”被锁要大很多倍。 其次,事务性要求严格 。微信红包系统本质上是一个资金交易系统,相比普通商品“秒杀”系统有更高的事务级别要求。 普通商品“秒杀”活动系统,解决高并发问题的方案,大体有以下几种: 如图2所示,将“实时扣库存”的行为上移到 内存Cache中操作 ,内存Cache操作成功直接给Server返回成功,然后 异步落DB持久化 。 优点:提高了并发性能。 缺点: 在内存操作 成功 但 DB持久化失败 ,或者内存 Cache故障 的情况下,DB持久化会 丢数据 ,不适合微信红包这种资金交易系统。 商品“秒杀”系统中,乐观锁的具体应用方法,是在DB的“库存”记录中维护一个版本号。在更新“库存”的操作进行前,先去DB获取当前版本号。在更新库存的事务提交时,检查该版本号是否已被其他事务修改。如果版本没被修改,则提交事务,且版本号加1;如果版本号已经被其他事务修改,则回滚事务,并给上层报错。 这个方案解决了“并发请求抢锁”的问题,可以提高DB的并发处理能力。 应用于微信红包系统,则会存在下面三个问题 : 1.在并发抢到相同版本号的拆红包请求中, 只有一个能拆红包成功 , 其他的请求 将事务回滚并返回失败,给用户 报错 ,用户体验完全不可接受。 2.将会导致 第一时间 同时拆红包的用户有一部分直接 返回失败 ,反而那些“ 手慢 ”的用户,有可能因为 并发减小 后拆红包 成功 ,这会带来用户体验上的负面影响。 3.会带来 大数量 的 无效 更新 请求 、事务 回滚 ,给 DB 造成不必要的额外 压力 。 微信红包用户发一个红包时,微信红包系统生成一个ID作为这个红包的唯一标识。接下来这个红包的所有发红包、抢红包、拆红包、查询红包详情等操作,都根据这个ID关联。 红包系统根据这个红包ID,按一定的规则(如按ID尾号取模等),垂直上下切分。切分后,一个垂直链条上的逻辑Server服务器、DB统称为一个SET。 各个SET之间相互独立,互相解耦。并且同一个红包ID的所有请求,包括发红包、抢红包、拆红包、查详情详情等,垂直stick到同一个SET内处理,高度内聚。通过这样的方式,系统将所有红包请求这个巨大的洪流分散为多股小流,互不影响,分而治之,如下图所示。 这个方案解决了同时存在海量事务级操作的问题,将海量化为小量。 红包系统是资金交易系统,DB操作的事务性无法避免,所以会存在“并发抢锁”问题。但是如果到达DB的事务操作(也即拆红包行为)不是并发的,而是串行的,就不会存在“并发抢锁”的问题了。 按这个思路,为了使拆红包的事务操作串行地进入DB,只需要将请求在 Server层以FIFO ( 先进先出 )的方式排队,就可以达到这个效果。从而问题就集中到Server的FIFO队列设计上。 微信红包系统设计了分布式的、轻巧的、灵活的FIFO队列方案。其具体实现如下: 首先,将同一个红包ID的所有请求stick到同一台Server。 上面SET化方案已经介绍,同个红包ID的所有请求,按红包ID stick到同个SET中。不过在同个SET中,会存在多台Server服务器同时连接同一台DB(基于容灾、性能考虑,需要多台Server互备、均衡压力)。 为了使同一个红包ID的所有请求,stick到同一台Server服务器上,在SET化的设计之外,微信红包系统添加了一层基于红包ID hash值的分流,如下图所示。 其次,设计单机请求排队方案。 将stick到同一台Server上的所有请求在被接收进程接收后,按红包ID进行排队。然后 串行地进入worker进程 (执行业务逻辑)进行处理,从而达到 排队 的效果,如下图所示。 最后,增加memcached控制并发。 为了 防止 Server中的请求队列过载导致队列被降级,从而所有请求 拥进DB ,系统增加了与Server服务器同机部署的 memcached ,用于控制拆同一个红包的 请求并发数 。 具体来说,利用memcached的 CAS原子累增操作 ,控制同时进入 DB执行拆红包事务的请求数 ,超过预先设定数值则 直接拒绝服务 。用于 DB负载升高时的降级 体验。 通过以上三个措施,系统有效地 控制了DB的“并发抢锁” 情况。 红包系统的分库表规则,初期是根据 红包ID的hash值 分为多库多表。随着红包数据量逐渐增大,单表数据量也逐渐增加。而DB的性能与单表数据量有一定相关性。当单表数据量达到一定程度时,DB性能会有大幅度下降,影响系统性能稳定性。采用 冷热分离 ,将历史冷数据与当前热数据分开存储,可以解决这个问题。 系统在以 红包ID维度 分库表的基础上,增加了以 循环天分表的维度 ,形成了 双维度分库表 的特色。 具体来说,就是分库表规则像db_xx.t_y_dd设计,其中,xx/y是红包ID的 hash值后三位 ,dd的取值范围在01~31,代表一个月天数最多 31 天。 通过这种双维度分库表方式,解决了DB单表数据量膨胀导致性能下降的问题,保障了系统性能的稳定性。同时,在热冷分离的问题上,又使得数据搬迁变得简单而优雅。 综上所述,微信红包系统在解决高并发问题上的设计,主要采用了SET化分治、请求排队、双维度分库表等方案,使得单组DB的并发性能 提升了8倍 左右,取得了很好的效果。

277 评论

princefrank

建议采用缓存处理,按照你说的这种数据量,基于redis的缓存完全可以满足,存取速度可以10W+的,另外,拟采用的hashMap 是ConcurrentHashMap还是其他,页面展示是增量查询还是直接所有的再查询一次,socket数据接收你是用的netty还是mina,这都需要经过仔细的斟酌考虑设计的。有这么大的并发的需求,完全可以考虑做分布式集群的,估计这只是领导想要的目标吧

82 评论

winnietang1

使用高性能的服务器、高性能的数据库、高效率的编程语言、还有高性能的Web容器,(对架构分层+负载均衡+集群)这几个解决思路在一定程度上意味着更大的投入。

1、高并发:在同一个时间点,有大量的客户来访问我们的网站,如果访问量过大,就可能造成网站瘫痪。

2、高流量:当网站大后,有大量的图片,视频,这样就会对流量要求高,需要更多更大的带宽。

3、大存储:可能对数据保存和查询出现问题。

解决方案:

1、提高硬件能力、增加系统服务器。(当服务器增加到某个程度的时候系统所能提供的并发访问量几乎不变,所以不能根本解决问题)

2、本地缓存:本地可以使用JDK自带的Map、Guava Cache.分布式缓存:Redis、Memcache.本地缓存不适用于提高系统并发量,一般是用处用在程序中。

Spiring把已经初始过的变量放在一个Map中,下次再要使用这个变量的时候,先判断Map中有没有,这也就是系统中常见的单例模式的实现。

204 评论

相关问答

  • 论文解决方案实施分析模板

    毕业论文开题报告 论文题目: 学生姓名: 学 号: 专 业: 指导教师: 年 月 日 开题报告填写要求 1.开题报告作为毕业设计(论文)答辩委员会

    金凯瑞砖家 2人参与回答 2023-12-09
  • 解决毕业论文重复率高

    降低论文重复率的方法很多,如果你进行多次论文降重,重复内容一直不能降低,可能是两种问题,一个是查重软件有虚标的嫌疑;另一种可能是论文降重方法不对。搞定毕业论文查

    qingkong88888 7人参与回答 2023-12-05
  • 主题展馆设计解决方案论文范文

    艺术设计是一种通过物质表达精神的创作手段,是一个能衍生和追溯到多方面的专业集群,也是一种现代化的技术行业。下面是我为大家整理的艺术设计博士论文,供大家参考。 【

    肥嘟嘟的哲妈 2人参与回答 2023-12-11
  • 网络安全问题及解决方案论文

    摘 要 探索了网络平安的目前状况及新问题由来以及几种主要网络平安技术,提出了实现网络平安的几条办法。网络平安 计算机网络 防火墙1 网络平安及其目前状况1.1

    张家阿婆 3人参与回答 2023-12-11
  • 毕业论文不好但想不到解决的方案

    毕业论文不合格可以进行二次答辩或者复读。 毕业论文是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节。大学生

    加勒B海盗 4人参与回答 2023-12-11