月球的球球
力学课程中实验环节的重要性 论文关键词: 力学课程 实验环节 科学素养 创新能力 论文摘要: 力学课程是工程技术人才所必须学习的课程之一,由于课程的概念性强、抽象性强、应用性强等特点,课程中实验环节的设置是必不可少的,而且实验对课程的学习有着非常大的促进作用,实验环节是培养工程技术人才科学素养,创新能力的有效途径,我们在教学过程中应当加深对实验环节教学的探索,提高实验环节的课时比率,提高力学教学水平,促进教学方法的改革与创新。 1前言 力学课程作为专业基础课,大部分的工科专业的学生都要进行学习。按照学生层次、专业类别、力学知识深度的不同,力学课程包括《建筑力学》、《工程力学》、《材料力学》、《理论力学》等。对于建筑,机械,航空等这些与工程结合密切的专业来说,力学课程是及其重要的技术基础课,是这些专业学生学好专业课的一个重要前提。力学课程的特点就在于它所研究的问题都是与工程实际相结合的,是在生产生活中实实在在所遇到的问题。我们知道,实验也是解决实际工程问题的方法之一,因此力学课程的学习与实验就有了不可分离的关系。在力学课程中加开实验环节,就成了学好力学课程的有效方法。力学课程的学习离不开实验环节,加入实验环节是学好力学课程的最直观,最有效的方法。所以,实验环节在力学课程中的作用是十分重要的。 2实验环节可以更好的激发学生学习力学课程的兴趣 兴趣是推动人认识活动行为的重要动机,在课堂上,如果学生对所学的知识怀有兴趣,便会抱积极的态度、以愉快的心情去参与进去,从而体验到学习是一种无穷的乐趣。而力学理论的学习是枯燥无味的,课程内含力学相关基本概念和术语,有很多易混淆的名词,力学作用情景抽象,实际应用性强,如果不加以正确有效的引导学生学习,会很容易让学生知难而退,放弃对课程的学习。因此必须针对力学课程概念性强、抽象性强,应用性强等特点对学生进行一步一步的引导,这就需要力学实验的配合进行。力学实验主要包括材料力学实验,结构力学实验,根据课程的重点难点设置不同的实验项目,达到帮助学生学习的目的。比如在材料力学部分,材料的拉伸、压缩、扭转等内力的概念在学生中有很多疑点,必须给予明确而有说服力的解释,否则不利于培养学生的分析、思维能力。讲解每一概念后,到实验进行对应的实验项目,对实验过程进行详细的指导,对实验后的试件破坏形式和实验数据进行科学分析,使学生对相关的内力概念有一个深刻的'理解。从而解决了力学课程概念性强,情景抽象的问题。对于力学课程实践应用性强这个特点,这就要求在讲课过程中必须加入工程实际问题的举例。比如说,在材料的轴向拉伸和压缩试验中,做实验的目的是什么,在工程实际中的作用是什么,这个实验可以对机械零件,建筑材料进行检测,是研究材料性能,设计新零件等所必须要进行的实验,比如说:起重装置中载重件的设计、减速器中传动轴的设计等都需要进行实验,都需要经过周密的科学的计算才能设计尺寸选取材料。在力学课程的教学中根据课程的这些特点,有针对性的开设实验项目,激发学生们对力学知识的学习兴趣,养成从实验方面解决问题,在快乐中学习的习惯,教师应充分利用力学学科的特点及实验条件为课程服务,来激发学生的学习兴趣,解决学生在力学学习中的问题。 3实验环节可以培养学生的科学素养 科学素养(ScientificLiteracy)主要包括人们对于科学知识达到基本的了解程度;对科学的研究过程和方法达到基本的了解程度;对于科学技术对社会和个人所产生的影响达到基本的了解程度等三方面,科学素养是公民基本素质的一部分。当今培养学生的科学素养已成为时代呼唤高科技人才的需求,已成为今后社会进步、国家生存发展对公民综合素质的普遍要求。现在努力培养掌握科学技术的新世纪的公民就意味着将来提高国家的国际地位和综合国力。科学教育的目标有两个特点:一方面是把如何学习科学纳人科学教育的目标;另方面是强调学生个性和潜能的发展。因此为了适应国家建设、科技事业发展的需要,创新型人才应该具备良好的科学素养,应该具备必要的科学知识,科学的思维方式,对科学的理解,科学的态度与价值观,以及运用科学知识和方法解决问题的意识和能力 [1] 。力学知识作为工程技术人才的所必须具备的知识,力学课程的教学也就显得格外的重要,在教学过程中,必须要把对学生科学素养的培养和提高作为教育的一个基本目标。学生经过高等学校的学习,理工科的学生应该具备良好的道德品质、丰富的知识和技能、具有创造性思维和分析问题解决问题的能力,具有诚信的态度和健康向上的精神,成为国家建设的栋梁。为了达到教育目标,需要靠教育过程中的各个教学环节来体现,而实验环节对学生科学素养的培养起着重要作用。对于理工类的许多学科和专业,力学是主修骨干课程,它既有一条发展的主线,又与其它课程有着密切联系。通过对力学专门知识的系统的深入的钻研和专业工程中的应用训练,学生逐步掌握广博深入的力学知识,学会正确的思维方法,获得分析和解决工程中与力学有关问题的能力。实验又在学生科学素养的培养过程中处于承上启下的重要阶段。力学实验对培养学生良好的科学素养至关重要。在实验环节进行过程中让学生对实验内容进行有意义的建构,通过使用先前所学的力学理论去进行有意义的建构当前试验内容,如果遇到问题需要课后找资料自学,这就培养了学生继续学习的能力,即学会学习;同时在实验中,学生通过一个完整的科学研究过程的训练,初步瞳得如何从事科学研究,培养了实践能力,即学会做事;在实验中,与指导老师的沟通,与同组同学的沟通与合作,在全班同学面前的表达能力等,既学会协作;同时,学会力学实验的实践操作技能,掌握技术,适应生存。在这一系列的过程中,学生的科学素养在慢慢的培养起来。 4力学实验与工程实际结合紧密,是培养工程技术人才的必要手段 实验在各个学科中的地位都是十分重要的,科学技术的发展,离不开实验,不经过实验检验的理论,也仅仅是空头理论。力学课程的教学过程更是离不开实验环节,在力学发展的道路上,许多科学家的发明、创造都是靠大量科学实验而得到的结果,因而实验能力在培养现代工程技术人才中,占有重要的地位。在力学知识的学习过程中,肯定会遇到很多困难,结合实验进行学习是一个十分有效的方法。实验教学是一种智力与能力,理论与实践相结合的教学活动。其功能是巩固加深对力学基本概念,基本理论的理解,并使学生在接触和熟悉实验仪器的使用过程中掌握基本测试技能,了解科学的实验方法,培养学生应用所学理论综合分析问题和解决实际问题的能力,有利于养成学生手脑并用,细心观察事物的习惯,让学生了解进行实验是解决工程问题的有效手段。所以,实验教学是整个教学过程的重要环节,与理论教学是相辅相成的。要培养出优秀科技人才,离不开实验教学。 5力学实验是培养学生创新能力的基础 创新能力是能够创造出具有社会价值的新理论和新事物的各种心理特点的综合,是指能独创性解决问题的能力。主要包括创造性思维与创造性想象,而以创造性思维为创造性心理的核心。创造性思维是人类思维的综合,是智力发展的高级表现形式。当人类进入了21世纪,科学技术的发展是日新月异,国家之间,行业之间的竞争越来越激烈,其中,人才的竞争更是愈演愈烈,说到人才的竞争归根结底是创新能力的竞争。在培养工程技术人才的教育过程中,创新能力的培养是十分必要和重要的。创新能力的培养是各个学科教育的重要目的,学科发展,科学技术的发展离不开创新能力[2]。力学学科的教育更是应该注重对学生创新能力的培养,这就要求在教学过程中通过多方面的训练提高学生的思维能力,发挥学生的自主学习能力,激发学生的求知欲,更好地培养学生的创新能力。力学实验就是一个很好的训练手段。工程力学实验作为工程力学课程的组成部分,它对学生实际操作技能的训练,动手能力的培养,创新思维的形成等都有重要作用。在力学实验包括基础实验、综合性实验、开放性实验等,学生通过基础实验熟练掌握了仪器、设备的使用方法和工作原理,完成教学大纲要求的基本实验技能。之后,再通过进行综合性实验,让学生把相关的知识用实验的方法结合起来去解决问题,提高学生对知识的综合认知水平。最后,发挥学生的主观能动性,指导学生进行设计性,创新性实验,此类实验才是实验环节的关键所在,实验者的设计思想和动手能力将在这一阶段集中地体现出来。让学生自己设计实验方案,包括实验所用仪器,实验步骤,实验原理等,在设计性实验中,学生将成为实验研究的主角,通过专业基础知识与工程实际相结合,一定能激发出学生的创造性,尤其是提供了所学知识的纵向和横向扩展与创新的舞台,既加深了学生对所学知识的理解和应用又训练了学生解决问题,处理问题的能力,提高了学生的创新思维和实践能力。 6小结 力学教学具有理论性、工程实践性强的特点,实验环节是教学过程中必不可少的,实验对教学的作用也是十分明显的,但是,现阶段我们的实验教学环节还不是很成熟,有些院校对力学实验课时比率设置较低,或者借课改减少其所占比率。我希望广大的力学教育工作者继续加深对力学教学方法的探索,尤其是对实验教学环节的创新,充分发挥实验教学的特点,提高力学教育的水平,多多培养出具有良好科学素养,创新能力强的新时代工程技术人才! 参考文献: [1] 钟启泉.国外科学素养说与理科课程改革[J].比较教育研究,1997(1):16—21. [2]唐晓雯.改革材料力学实验教学注重培养学生的工程素质与创新能力[J]高等建筑教育,2003,(4):83-84.相关论文查阅: 大学生论文 、 工商财务论文 、 经济论文 、 教育论文 热门毕业论文 ;
大旺财爱小旺财
[1]尤明庆.岩石的强度准则及中间主应力的影响.焦作工学院学报,2001,(6):474~478
[2]You Mingqing.True triaxial strength criterion of rock.Submitted to Inter.J.Rock Mech.Min.Sci.,2007.
[3]郑颖人,沈珠江.岩土塑性力学原理.重庆:中国人民解放军后勤工程学院出版社,1998.22~25,60~71
[4]Nadai A.Theory of flow and fracture of solids,vol.1,New York:McGraw-Hill.1950
[5]Drucker D C and Prager W.Soil mechanics and plastic analysis or limit design.Quart.Appl.Math,1952.10:157~165
[6]周维垣主编.高等岩石力学.北京:水利电力出版社,1989.54~55,23~25
[7]李世平,吴振业,贺永年等.简明岩石力学教程.北京:煤炭工业出版社,1996.31~32
[8]孙均.地下工程设计理论与实践.上海:上海科学技术出版社,1996.105
[9]姚伟明,李同春,任旭华等.岩石材料包络型复合弹塑性计算模型.岩土工程学报,1999,21(1):95~99
[10]蔡美峰.岩石力学与工程.北京:科学出版社,2002.219~228
[11]徐卫亚,韦立德.岩石损伤统计本构模型的研究.岩石力学与工程学报,2002,21(6):787~791
[12]韦立德,徐卫亚.具有统计损伤的岩石弹塑性本构模型的研究.岩石力学与工程学报,2004,23(12):1971~1975
[13]叶金汉主编.岩石力学参数手册.北京:水利电力出版社,1991.425~501
[14]李春光,郑宏,葛修润等.双参数抛物线型Mohr 强度准则及其材料破坏规律研究.岩石力学与工程学报,2005,24(24):4428~4433
[15]Murrell S A F.A criterion for brittle fracture of rocks and concrete under triaxial and the effect of pore pressure on the criterion.In:Proc.Fifth Rock Mech.Symp.,University of Minnesota,Also in:Fairhurst C.Rock Mechanics.Oxford:Pergamon,1963.563~567
[16]贺永年.关于Griffith 准则的 Murrell 三维推广.力学与实践,1990,12(5):22~24
[17]中国科学院工程力学研究所译(耶格 J C,库克 N G W 著).岩石力学基础.北京:科学出版社,1981.126~129
[18]Mogi K.Fracture and flow of rocks under high triaxial compression,J.geophys.Res.,1971,76:1255~1269
[19]Haimson B.True triaxial stresses and the brittle fracture of rock.Pure and applied geophysics,2006,163:1101~1130
[20]Haimson B,Chang C.A new true triaxial cell for testing mechanical properties of rock,and its use to determine rockstrength and deformability of westerly granite.Inter.J.Rock Mech.Min.Sci.,2000,37:285~296
[21]Chang C,Haimson B C.True triaxial strength and deformability of the KTB deep hole amphibolite.J.Geophys.Res.2000,105:18999~19014
[22]Al-Ajmi A M,Zimmerman R W.Relation between the Mogi and the Coulomb failure criteria.Inter.J.Rock Mech.Min.Sci.,2005,42:431~439
[23]Von Karman T.Festigkeitsversuche unter all seitigem Druck.Z.Verein Deut.Ingr.,1911,55:1749~1759
[24]Böker,R.Die Mechanik der bleibenden Formanderung in kristallinisch aufgebauten Körpern,Verhandl.Deut.Ingr.Mitt.Forsch.,1915,175:1~51
[25]Handin J,Heard H C,Magouirk J N.Effect of the intermediate principal stress on the failure of limestone,dolomite,and glass at different temperature and strain rate.J.Geophys.Res.1967,72:611~640
[26]Mogi K.Effect of the intermediate principal stress on rock failure.J.Geopys.Res.,1967,72:5117~5131
[27]Colmenares L B,Zoback M D.A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks.Inter.J.Rock Mech.Min.Sci.,2002,39(6):695~729
[28]Emmermann R,Lauterjung J.The German continental deep drilling program KTB:Overview and major results.J.Geophys.Res.,1997,102:18179~18201
[29]Brudy M,Zoback M D,Fuchs K,et al.Estimation of the complete stress tensor to8kmdepth in the KTB scientific drill holes:implications for crustal strength,J.Geophys.Res.,1997,102:18453~18475
[30]Vernik L,Zoback M D.Estimation of maximum horizontal principal stress magnitude from stress-induced well bore breakouts in the cajon pass scientific research borehole,J.Geophys.Res.,1992,97:5109~5119
[31]Haimson B,Chang C.True triaxial strength of the KTB amphibolite under borehole wall conditions and its use to estimatethe maximum horizontal in-situ stress,J.Geophys.Res.,2002,107(B10),ETG15:1~14,doi:10.1029/2001JB000647
[32]Yoshinaka R,Yamabe T.A strength criterion of rocks and rock masses.In:Proc.of the Inter.Symp.on Weak Rock,Tokyo,1981.613~618
[33]刘宝琛,崔志莲,涂继飞.幂函数型岩石强度准则研究.岩石力学与工程学报,1997,16(5):437~444
[34]尤明庆.岩石的强度和强度准则.岩石力学与工程学报,1998,17(5):602~604
[35]张金铸,林天健.三轴试验中岩石的应力状态和破坏性质.力学学报,1979,(2):99~105
[36]Mogi K.Effect of the triaxial stress systems on the failure of dolomite and limestone.Tectono-physics,1971,11:111~127
[37]Mogi K.Fracture and flow of rocks.Tectono-physics,1972,13:541~568
[38]许东俊,耿乃光.中等主应力变化引起的岩石破坏与地震.地震学报,1984,6(2):159~165
[39]Brace W F.Brittle fracture of rocks.IN:Judd W R.State of stress in the earth’s crust.New York:Eleviser,1964.111~174
[40]Brown E T.Fracture of rock under uniform biaxial compression.In:Proc.3rd congr.Int.Soc.Rock Mech.Denver,1974,2A,111~117
[41]Chang C,Haimson B.Two distinct modes of compressive failure in rocks.IN:Elsworth D,Tinucci J,Heasley K.Rock Mechanics in the National Interest(Vol II).Netherlands:A A Balkema,2001.1251~1258
[42]Kim M K,Lade P V.Modeling rock strength in three dimensions.Inter.J.Rock Mech.Min.Sci.,1984,21(1):21~33
[43]Wiebols G A,Cook N G W.An energy criterion for the strength of rock in polyaxial compression.Inter.J.Rock Mech.Min.Sci.,1968,5:529~549
[44]Zhou S.A program to model the initial shape and extent of borehole breakout.Computers and Geosciences,1994,20:1143~1160
[45]尤明庆.岩石的强度准则和真三轴压缩试验结果的讨论.岩土力学,2007
[46]俞茂宏.双剪理论及其应用.北京:科学出版社,1998
[47]Mao-hong Yu.Advances in strength theories for materials under complex stress state in the 20thCentury.Applied Mechanics Reviews,2002,55(3):169~218
[48]陈秋南,张永兴,刘新荣等.考虑 σ2作用的加筋土挡墙筋材设计计算.岩石力学与工程学报,2006,25(2):241~245
[49]刘国华,王振宇.爆破荷载作用下隧道的动态响应与抗爆分析.浙江大学学报(工学版),2004,38(2):204~209
[50]黄煜镔,朱礼君.三维应力状态下圆筒形巷道塑性区次生应力、半径和位移.地下空间,2004,24(1):5~6
[51]谢兴华,速宝玉,詹美礼.基于应变的脆性岩石破坏强度研究.岩石力学与工程学报,2004,23(7):1087~1090
[52]过镇海.混凝土的强度与变形.北京:清华大学出版社,1997.118~119
[53]Perice F T.Tensile test for cotton yarns vs“the weakest link”.J.Textile Inst.,1926,17.355~368
[54]余寿文,冯西桥.损伤力学.北京:清华大学出版社,1999.37~40,57~58
[55]Kachonov L M.On the time to failure under creep condition.Izv.Akad.Nauk.,USSR.Otd.Tekhn.Nauk.1958,8:26~31
[56]Lemaitre J.Evaluation of dissipation and damage in metals submitted to dynamic loading.In:Proceedings of ICM-1,Kyoto,1971
[57]Hudson J A,Harrison J P.Engineering Rock Mechanics:An introduction to the principles.New York:Elsevier Science Inc,1997.100~101
[58]唐春安.岩石破裂过程中的灾变.北京:煤炭工业出版社,1993
[59]张全胜,杨更社,任建喜.岩石损伤变量及本构方程的新探讨.中国岩石力学与工程学会第七次学术大会论文集.北京:科学技术出版社,2002.147~150
[60]曹文贵,赵明华,刘成学.岩石损伤统计强度理论研究.岩土工程学报,2004,26(6):820~823
[61]周维垣,吴澎,杨若琼.节理岩体的损伤模型.见:中国岩石力学与工程学会教育工作委员会编.岩石力学新进展.沈阳:东北工学院出版社,1989.37~54
[62]Hojem J P M,Cook N G W,Heins C.A stiff,two meganewton testing machine for measuring the“work-softening”behavior of brittle materials.S A Mech.Eng,1975,25:250~270
[63]曹文贵,赵明华,刘成学.基于 Weibull 分布的岩石损伤软化模型及其修正方法研究.岩石力学与工程学报,2004,23(19):3226~3231
[64]曹文贵,赵明华,唐学军.岩石破裂过程的统计损伤模拟研究.岩土工程学报,2003,25(2):184~187
[65]曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究.岩石力学与工程学报,1998,17(6):628~633
[66]杨强.岩石损伤力学发展现状和面临的问题.见:第七届全国岩石力学与工程会议论文集.北京:科学技术出版社,2002.46~50
[67]黄克智,肖纪美主编.材料的损伤断裂机理和宏微观力学理论.北京:清华大学出版社,1999.序言
[68]尤明庆.岩样单轴压缩的失稳破坏和试验机加载性能.岩土力学,1998,19(3):43~49
周大侠go
双峰二中创建八十年,培养人才三万余人。在教育、科技、军政、工农、艺术各界出现了众多有成就的人物。据1996年建校七十周年时的不完全统计:教育战线大学的正副教授、中学的特级教师,科技战线高级工程师以上,军政界地师级以上,工农战线的企业家、养殖家以及艺术、技能方面有突出成就或有著作问世者,总数在五百人以上。以下仅为部分之简单介绍。 (转自《双峰二中七十周年校庆纪念册》) 欧阳崇一 又名欧阳祜,青树坪人,起陆高小一班毕业。湖南和平解放前夕,任国min党第一兵团司令部第四处上校处长,主管后勤业务。积极趋向弃暗投明,抗拒执行白崇禧对长沙的破坏命令,促使司令员陈明仁和平起义。和平解放后,任兵团军需处长、省政府参事、省政协委员等职。他对母校感情甚深,曾来信说:“我1949年能走向光明,是与母校的教育分不开的,堪可告慰。” 匡燕鸣 双峰人,起陆高小四班毕业。1960年及1979年两次回校任党支书、校长。工作刻苦实干,文化大革命后拨乱反正,恢复学校元气,备著辛劳。荣膺全国教育战线劳动模范称号。后调任双峰一中党支书、校长。 戴鸿仪 青树坪人,起陆高小十一班毕业。四十年代曾回起陆初中任教,是有名数理老师。中国矿业大学北京研究生部教授,其与人合作发明的“矿用强力运输带横向断裂预报装置”获国家专利。享受国家特殊津贴。 欧阳谦叔 又名欧阳熙,青树坪人,起陆高小十六班毕业。曾任湖北歌剧团编剧、作曲。是著名歌剧《洪湖赤卫队》的主要作曲者。国家一级作曲家。其论文《歌剧探索三十年》曾发表于北京《音乐理论》杂志及《中国歌剧艺术文集》。1990年,他与爱人一同回到母校与师生们联欢,后又为母校校歌作曲。 欧阳骅 青树坪人,起陆初中十二班毕业。空军航空医学研究所研究员、教授、硕士和博士论文评审委员。编写了《中国航空百科词典》、《中国医学检验全书》及论文40余篇。所发明“管式液冷防暑降温背心”获国家专利。对母校怀有深厚感情,为庆祝母校七十周年校庆与爱人曾月英捐出多年积蓄设希望奖,要求奖励家庭困难而品学兼优的学生,以报答国家和母校对他们的培育之恩。 王文介 双峰县花门镇人,起陆初中十三班毕业。中国科学院南海海洋研究员、国际海洋研究委员会中国工作组委员、硕士研究生导师、国家特殊津贴获得者。获得过中国科学院科技进步二等奖,广东省科技进步特等奖、国家海洋局科技成果三等奖。主持和参与专门著作16本。有论文和译文60余篇在国内有关学报刊物发表。 曾月英(女) 青树坪人,起陆初中十五班毕业。1956年考入空军第二飞行学院,毕业后,分配空军专机师任飞行员,担任过中央首长专机机长。1987年被授予空军上校,一级飞行员。其机组获“英雄机组”称号,个人曾荣立二等功一次,三等功二次。三十年飞行近五千个小时,行程达200万公里,飞过四十多次专机,参加过常年的战备值班,执行过临时的抢险救灾,均安全而出色地完成了任务。 王影 原名李醒辰,永丰镇人,二中初五班毕业。1963年大学毕业后分配在林业部湖南农林工业设计研究院工作,并任该院副总工程师。他主持、设计的工程,多次获部、省奖励及先进称号。由于他的突出贡献,1993年起,享受政府特殊津贴。系民盟湖南省委副主委,第六届省政协委员,省八届人大常委。 李希特 双峰人,二中初十五班毕业。现为县文化局干部,中国剪纸学会会员、农工民主党县委常委、政协双峰常委。1995年,联合国教科文组织和中国民间文艺家协会联合授予他“民间工艺美术家”称号。有作品百余幅在报刊发表,并多次在展出中获奖。其《凤朝阳》《凤凰戏牡丹》经选送日本、瑞典展出。其三分钟人像剪影,以快、准、美受到中外好评,誉为“湘中一绝”。 欧阳梦轲 青树坪人,二中初二十一班毕业。1985年临池学书,兼学装裱。1988年获全省农民书法大奖赛三等奖,1990年获全省国土杯书法大赛二等奖,1993年获国际和平杯书法赛三等奖。其作品编入《中国国际艺术大观》。《人民日报》及《人事与人才》报道了其自学成才的事迹。 王振华 青树坪人,二中高一、二班毕业。乘改革开放东风,在农村发展养殖事业。全国养猪协会副理事长、湖南省动物人参系列产品开发公司总经理。荣获全国农村科普工作先进个人、全国科技致富能手、湖南省优秀科技工作者等称号。 谢和平 双峰县甘棠镇人,二中高三十一班毕业。现任四川大学校长、教授、博士生导师。中国科学院国际材料物理中心成员。他在岩石损伤力学和分形几何结合方面取得了开创性的成果,从而推动岩石力学的发展,他的学术成果在国内外产生了较大的影响。1992年被评为中国青年科学家。被聘至美、英、波兰、德国各大学讲学。共发表论文40余篇,英文著作3部,中文著作2部。
电子专业论文参考文献 参考文献按照其在正文中出现的先后以阿拉伯数字连续编码,序号置于方括号内。以下是我和大家分享的电子专业论文参考文献,更多内容请关注毕业论文网
安全管理是实现安全最好的选择,安全管理的 毕业 论文写作过程中,适当的引用参考文献有助于提高论文的质量。下面是我带来的关于安全管理论文参考文献的内容,欢迎阅
电力拖动自动控制系统 课程涉及到各种电动机控制系统的模型建立、系统分析和系统设计等的基础理论。下面是我为大家整理的电力拖动自动控制系统论文,供大家参考。 《 浅
直接百度这么方面的教程- -...一般售书的都有详细作品资料...比如这个网站就有很多书..类似淘宝上面也有...详细需要什么书子去找下吧...
在现代生活中,几乎随时随地都离不开化工产品,下面是我精心推荐的一些化工类职称论文,希望你能有所感触! 化工产业的希望绿色化工 摘要 随着化工行业飞速发展,在带来